1
|
Hasan S, Amin MAI, Mia M, Khatun S, Arafat Y, Gofur MR, Islam MM, Hosen ME, Almaary KS, Fentahun Wondmie G, Islam A, Rahman M, Bourhia M. Yogurt Supplementation Can Ameliorate Fatty Liver Diseases and Metabolic Syndrome in High Fat-Induced Conditions in Mice. Food Sci Nutr 2025; 13:e4650. [PMID: 39803213 PMCID: PMC11716991 DOI: 10.1002/fsn3.4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Hepatic steatosis/non-alcoholic fatty liver disease is a major public health delinquent caused by the excess deposition of lipid into lipid droplets (LDs) as well as metabolic dysregulation. Hepatic cells buildup with more fat molecules when a person takes high fat diet that is excessive than the body can handle. At present, millions of people in the world are affected by this problem. So, it is very important to know the effects of factors responsible for the disease. Here, the role of lipid droplet (LD) biogenesis and metabolism was analyzed and intended to investigate if defects in biogenesis/metabolic enzymes are responsible for the accumulation of lipids other than LDs in fatty liver disease in high-fat-induced conditions in mice model. To explore it, high-fat diet (HFD), fast food (FF), and soft drinks (SD) were administered to wild-type Swiss albino mice for 14 weeks following yogurt supplementation. After experimental period, glucose tolerance, enzyme function, lipid profile, plasma biochemistry, and other analytical tests were analyzed by auto-analyzer including different oxidative stress markers. Lipids from hepatic tissues were extracted, and purified by Floatation Assay and subsequently analyzed by different biochemical and chromatographic techniques. Histological architecture of hepatocytes was performed using Zeiss microscope. Finally, increased amount of lipids biogenesis/accumulation was found in liver tissues that causes Fatty liver disease. Significantly, HFD, FF, and SD were identified as factors for the increased LD biogenesis and or lipid metabolic disorder. Nevertheless, yogurt supplementation can homeostasis those LD formation and metabolic syndrome as it increases the down regulation of lipid biogenesis as well as lipid metabolic rate. So, yogurt supplementation was considered as a novel agent for decreasing LD biogenesis as well as excessive accumulation of fat in hepatocytes which can be used as therapeutics for the treatment of NAFLD.
Collapse
Affiliation(s)
- Sohel Hasan
- Molecular and Biomedical Research Lab (MBRL), Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Md Aminul Islam Amin
- Molecular and Biomedical Research Lab (MBRL), Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Masum Mia
- Molecular and Biomedical Research Lab (MBRL), Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Sumaiya Khatun
- Molecular and Biomedical Research Lab (MBRL), Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Yesir Arafat
- Molecular and Biomedical Research Lab (MBRL), Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Md Royhan Gofur
- Department of Veterinary and Animal SciencesUniversity of RajshahiRajshahiBangladesh
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Md Eram Hosen
- Department of Microbiology, Shaheed Shamsuzzoha Institute of BiosciencesAffiliated With University of RajshahiRajshahiBangladesh
| | - Khalid S. Almaary
- Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | | | - Amirul Islam
- Molecular and Biomedical Research Lab (MBRL), Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Matiar Rahman
- Molecular and Biomedical Research Lab (MBRL), Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of SciencesIbn Zohr UniversityAgadirMorocco
| |
Collapse
|
2
|
Zheng Y, Zhao J, Nie X, Chitrakar B, Gao J, Sang Y. Mutual adhesion of Lactobacillus spp. to intestinal cells: A review of perspectives on surface layer proteins and cell surface receptors. Int J Biol Macromol 2024; 282:137031. [PMID: 39476894 DOI: 10.1016/j.ijbiomac.2024.137031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/10/2024]
Abstract
The bacterial ability to adhere and colonize in the gut is a key prerequisite to become a probiotic. Lactobacillus spp. surface layer proteins (SLPs) play an important role for such functions in the human body. Interestingly, all SLPs in spite of their structural variation promote adhesion and colonization. A clear understanding about the binding sites of SLPs with the host and their binding modes would help to precisely reveal the process of Lactobacillus spp.-host interaction. Therefore, in this paper, we have sorted out the Lactobacillus spp. SLPs and their adhesion sites in human intestinal cells. Such SLPs included surface layer protein, motif proteins, binding proteins and moonlighting proteins, while enterocyte adhesion receptors included transmembrane glycoproteins and extracellular matrix proteins. We also summarized the tools to assess the adhesion by Lactobacillus spp. Finally, we recommended that three-dimensional cell models and intestinal microarrays could be major tools for assessing adhesion in the future.
Collapse
Affiliation(s)
- Yixin Zheng
- Hebei Agricultural University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China
| | - Jinrong Zhao
- Hebei Agricultural University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China
| | - Xinyu Nie
- Hebei Agricultural University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China
| | - Bimal Chitrakar
- Hebei Agricultural University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China
| | - Jie Gao
- Hebei Agricultural University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China.
| | - Yaxin Sang
- Hebei Agricultural University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China
| |
Collapse
|
3
|
Kar P, Çiftci G, Çiftci A. Potential benefit of Lactobacillus acidophilus supplementation to rats fed with a high-fat diet on serum lipid profile, kidney amyloid protein and tumor necrosis factor-alpha level. Prostaglandins Other Lipid Mediat 2024; 175:106911. [PMID: 39321864 DOI: 10.1016/j.prostaglandins.2024.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
AIM It was aimed to determine the potential effect of Lactobacillus acidophilus supplementation on rats exposed to an experimental high-fat diet on serum lipid profile and kidney total beta amyloid protein (TBAP) and Tumor Necrosis Factor-alpha (TNF-α) levels. METHODS 24 male Sprague-Dawley rats were used in the study to establish 4 groups. Standard rat food (SD) was provided to Group 1 as the control; Group 2 was fed a high-fat diet (HFD); Group 3 consumed SD and received L. acidophilus probiotics; Group 4 was fed HFD and received L. acidophilus probiotics. Body weights were determined weekly during the 12-week trial period. At the end of the experiment, TBP and TNF-α levels in the serum and kidney tissue of the rats were measured by ELISA method. Serum total cholesterol (TC), triglyceride (TG), HDL, LDL, urea and creatinine levels and paraoxanase, amylase and lipase activities were determined by spectrophotometric method on the analyzer device. RESULTS When the control (Group 1) group and Group 2 were compared at the end of the experiment, it was found that Group 2 had gained the most weight and that both the blood and kidney tissue levels of TNF-α and TBAP, as well as the quantities of TG, TK, LDL, and urea, were significantly greater (P<0.05). Serum HDL, PON and amylase levels were found to be significantly low (P>0.05). TG, TK, LDL, urea, and the levels of TNF-α and TBAP in serum and renal tissue were shown to be lower in the groups who received L. acidophilus probiotics (Groups 3, 4) when compared to Group 2 (P>0.05). It was observed that HDL, PON and amylase levels increased and approached the control group (P<0.05). CONCLUSION The study's findings showed that probiotic supplementation improved blood levels of TG, TC, HDL, LDL, urea, PON, and amylase as well as serum and kidney tissue levels of TNF-α and TBAP in obese rats fed a high-fat diet.
Collapse
Affiliation(s)
- Pınar Kar
- Department of Veterinary Biochemistry, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Samsun, Turkey
| | - Gülay Çiftci
- Department of Veterinary Biochemistry, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Samsun, Turkey.
| | - Alper Çiftci
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Samsun, Turkey
| |
Collapse
|
4
|
Abdulqadir R, Al-Sadi R, Haque M, Gupta Y, Rawat M, Ma TY. Bifidobacterium bifidum Strain BB1 Inhibits Tumor Necrosis Factor-α-Induced Increase in Intestinal Epithelial Tight Junction Permeability via Toll-Like Receptor-2/Toll-Like Receptor-6 Receptor Complex-Dependent Stimulation of Peroxisome Proliferator-Activated Receptor γ and Suppression of NF-κB p65. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1664-1683. [PMID: 38885924 PMCID: PMC11372998 DOI: 10.1016/j.ajpath.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Bifidobacterium bifidum strain BB1 causes a strain-specific enhancement in intestinal epithelial tight junction (TJ) barrier. Tumor necrosis factor (TNF)-α induces an increase in intestinal epithelial TJ permeability and promotes intestinal inflammation. The major purpose of this study was to delineate the protective effect of BB1 against the TNF-α-induced increase in intestinal TJ permeability and to unravel the intracellular mechanisms involved. TNF-α produces an increase in intestinal epithelial TJ permeability in Caco-2 monolayers and in mice. Herein, the addition of BB1 inhibited the TNF-α increase in Caco-2 intestinal TJ permeability and mouse intestinal permeability in a strain-specific manner. BB1 inhibited the TNF-α-induced increase in intestinal TJ permeability by interfering with TNF-α-induced enterocyte NF-κB p50/p65 and myosin light chain kinase (MLCK) gene activation. The BB1 protective effect against the TNF-α-induced increase in intestinal permeability was mediated by toll-like receptor-2/toll-like receptor-6 heterodimer complex activation of peroxisome proliferator-activated receptor γ (PPAR-γ) and PPAR-γ pathway inhibition of TNF-α-induced inhibitory kappa B kinase α (IKK-α) activation, which, in turn, resulted in a step-wise inhibition of NF-κB p50/p65, MLCK gene, MLCK kinase activity, and MLCK-induced opening of the TJ barrier. In conclusion, these studies unraveled novel intracellular mechanisms of BB1 protection against the TNF-α-induced increase in intestinal TJ permeability. The current data show that BB1 protects against the TNF-α-induced increase in intestinal epithelial TJ permeability via a PPAR-γ-dependent inhibition of NF-κB p50/p65 and MLCK gene activation.
Collapse
Affiliation(s)
- Raz Abdulqadir
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania.
| | - Rana Al-Sadi
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Mohammad Haque
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Yash Gupta
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Manmeet Rawat
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Thomas Y Ma
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania.
| |
Collapse
|
5
|
Qian G, Zang H, Tang J, Zhang H, Yu J, Jia H, Zhang X, Zhou J. Lactobacillus gasseri ATCC33323 affects the intestinal mucosal barrier to ameliorate DSS-induced colitis through the NR1I3-mediated regulation of E-cadherin. PLoS Pathog 2024; 20:e1012541. [PMID: 39250508 PMCID: PMC11412683 DOI: 10.1371/journal.ppat.1012541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/19/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an immune system disorder primarily characterized by colitis, the exact etiology of which remains unclear. Traditional treatment approaches currently yield limited efficacy and are associated with significant side effects. Extensive research has indicated the potent therapeutic effects of probiotics, particularly Lactobacillus strains, in managing colitis. However, the mechanisms through which Lactobacillus strains ameliorate colitis require further exploration. In our study, we selected Lactobacillus gasseri ATCC33323 from the intestinal microbiota to elucidate the specific mechanisms involved in modulation of colitis. Experimental findings in a DSS-induced colitis mouse model revealed that L. gasseri ATCC33323 significantly improved physiological damage in colitic mice, reduced the severity of colonic inflammation, decreased the production of inflammatory factors, and preserved the integrity of the intestinal epithelial structure and function. It also maintained the expression and localization of adhesive proteins while improving intestinal barrier permeability and restoring dysbiosis in the gut microbiota. E-cadherin, a critical adhesive protein, plays a pivotal role in this protective mechanism. Knocking down E-cadherin expression within the mouse intestinal tract significantly attenuated the ability of L. gasseri ATCC33323 to regulate colitis, thus confirming its protective role through E-cadherin. Finally, transcriptional analysis and in vitro experiments revealed that L. gasseri ATCC33323 regulates CDH1 transcription by affecting NR1I3, thereby promoting E-cadherin expression. These findings contribute to a better understanding of the specific mechanisms by which Lactobacillus strains alleviate colitis, offering new insights for the potential use of L. gasseri as an alternative therapy for IBD, particularly in dietary supplementation.
Collapse
Affiliation(s)
- Guanru Qian
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Hui Zang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Jiankang Yu
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Huibiao Jia
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Xinzhuang Zhang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| |
Collapse
|
6
|
Haque M, Kaminsky L, Abdulqadir R, Engers J, Kovtunov E, Rawat M, Al-Sadi R, Ma TY. Lactobacillus acidophilus inhibits the TNF-α-induced increase in intestinal epithelial tight junction permeability via a TLR-2 and PI3K-dependent inhibition of NF-κB activation. Front Immunol 2024; 15:1348010. [PMID: 39081324 PMCID: PMC11286488 DOI: 10.3389/fimmu.2024.1348010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Background Defective intestinal epithelial tight junction (TJ), characterized by an increase in intestinal TJ permeability, has been shown to play a critical role in the pathogenesis of inflammatory bowel disease (IBD). Tumor necrosis factor-α (TNF-α) is a key pro-inflammatory cytokine involved in the immunopathology of IBD and has been shown to cause an increase in intestinal epithelial TJ permeability. Although TNF-α antibodies and other biologics have been advanced for use in IBD treatment, these therapies are associated with severe side effects and have limited efficacy, and there is an urgent need for therapies with benign profiles and high therapeutic efficacy. Probiotic bacteria have beneficial effects and are generally safe and represent an important class of potential therapeutic agents in IBD. Lactobacillus acidophilus (LA) is one of the most used probiotics for wide-ranging health benefits, including in gastrointestinal, metabolic, and inflammatory disorders. A specific strain of LA, LA1, was recently demonstrated to have protective and therapeutic effects on the intestinal epithelial TJ barrier. However, the mechanisms of actions of LA1 remain largely unknown. Methods The primary aim of this study was to investigate microbial-epithelial interactions and novel signaling pathways that regulate the effect of LA1 on TNF-α-induced increase in intestinal epithelial TJ permeability, using cell culture and animal model systems. Results and Conclusion Pre-treatment of filter-grown Caco-2 monolayers with LA1 prevented the TNF-α-induced increase in intestinal epithelial TJ permeability by inhibiting TNF-α-induced activation of NF-κB p50/p65 and myosin light chain kinase (MLCK) gene and kinase activity in a TLR-2-dependent manner. LA1 produced a TLR-2- and MyD88-dependent activation of NF-κB p50/p65 in immune cells; however, LA1, in intestinal cells, inhibited the NF-κB p50/p65 activation in a TLR-2-dependent but MyD88-independent manner. In addition, LA1 inhibition of NF-κB p50/p65 and MLCK gene was mediated by TLR-2 pathway activation of phosphatidylinositol 3-kinase (PI3K) and IKK-α phosphorylation. Our results demonstrated novel intracellular signaling pathways by which LA1/TLR-2 suppresses the TNF-α pathway activation of NF-κB p50/p65 in intestinal epithelial cells and protects against the TNF-α-induced increase in intestinal epithelial TJ permeability.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Lauren Kaminsky
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Raz Abdulqadir
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Jessica Engers
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Evgeny Kovtunov
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Manmeet Rawat
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Rana Al-Sadi
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Thomas Y. Ma
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
7
|
Sarmadi R, Lotfi H, Hejazi MA, Ghiasi F, Keyhanmanesh R. The role of probiotics on microvascular complications of type-2 diabetes: Nephropathy and retinopathy. J Cardiovasc Thorac Res 2024; 16:65-76. [PMID: 39253347 PMCID: PMC11380747 DOI: 10.34172/jcvtr.32877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 05/04/2024] [Indexed: 09/11/2024] Open
Abstract
Diabetes is a multifactorial disorder that involves several molecular mechanisms and is still one of the key global health challenges with increasing prevalence and incidence. Gut microbiome dysbiosis could activate and recognize receptors that trigger the inflammation response and modulation of insulin sensitivity. In addition, the intricate role of gut microbiota dysbiosis in the onset and development of T2D (Type 2 diabetes mellitus) and associated microvascular complications was identified. These complications include diabetic nephropathy (DN) and diabetic retinopathy (DR), diabetic neuropathy, cerebrovascular disorders, and coronary heart disease. A recent interesting strategy to improve these complications is probiotics administration. The safety and health effects of probiotics against various diseases have been validated by various in vitro, in vivo and clinical studies. In this review, the related mechanisms between the gut microbiome, initiation, and progression of T2D and its common microvascular complications (DN and DR) have been discussed.
Collapse
Affiliation(s)
- Robab Sarmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Amin Hejazi
- Food Biotechnology Research Institute, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Tabriz, Iran
| | - Fariba Ghiasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Puzhankara L, Rajagopal A, Kedlaya MN, Karmakar S, Nayak N, Shanmugasundaram S. Cell Junctions in Periodontal Health and Disease: An Insight. Eur J Dent 2024; 18:448-457. [PMID: 38049123 PMCID: PMC11132765 DOI: 10.1055/s-0043-1775726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
Cells are the building blocks of all living organisms. The presence of cell junctions such as tight junctions, gap junctions, and anchoring junctions between cells play a role in cell-to-cell communication in periodontal health and disease. A literature search was done in Scopus, PubMed, and Web of Science to gather information about the effect of cell junctions on periodontal health and disease. The presence of tight junction in the oral cavity helps in cell-to-cell adhesiveness and assists in the barrier function. The gap junctions help in controlling growth and development and in the cell signaling process. The presence of desmosomes and hemidesmosomes as anchoring junctions aid in mechanical strength and tissue integrity. Periodontitis is a biofilm-induced disease leading to the destruction of the supporting structures of the tooth. The structures of the periodontium possess multiple cell junctions that play a significant role in periodontal health and disease as well as periodontal tissue healing. This review article provides an insight into the role of cell junctions in periodontal disease and health, and offers concepts for development of therapeutic strategies through manipulation of cell junctions.
Collapse
Affiliation(s)
- Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhurya N. Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Namratha Nayak
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
9
|
Adnane M, Whiston R, Tasara T, Bleul U, Chapwanya A. Harnessing Vaginal Probiotics for Enhanced Management of Uterine Disease and Reproductive Performance in Dairy Cows: A Conceptual Review. Animals (Basel) 2024; 14:1073. [PMID: 38612312 PMCID: PMC11011061 DOI: 10.3390/ani14071073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Uterine disease in cattle impairs reproductive performance and profitability and increases antibiotic use and antimicrobial resistance. Thus, probiotics offer a promising alternative therapy. This review presents conceptual findings on the efficacy of probiotics in managing uterine diseases and fertility in cows. Probiotics containing Lactobacillus spp. and Bifidobacterium spp. individually or as composite formulations are known to improve fertility. Strategic intravaginal administration of these formulations would likely enhance uterine immunity, particularly during the postpartum period. While current findings on the benefits to uterine health are encouraging, there is still significant knowledge missing, including a lack of empirical information from large-scale field trials. This review underscores the need for evidence-based guidelines for probiotics, such as genomic selection of formulations, targeted delivery, or potential synergy with other interventions. Future research should address these gaps to maximize the potential of probiotics in managing uterine diseases and enhancing the reproductive health of dairy cattle.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University Ibn Khaldoun of Tiaret, Tiaret 14000, Algeria
- USDA, Faculty Exchange Program Fellow, University of Georgia, Athens, GA 30602, USA
| | - Ronan Whiston
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre 00265, Saint Kitts and Nevis; (R.W.); (A.C.)
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Ulrich Bleul
- Department of Farm Animals, Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre 00265, Saint Kitts and Nevis; (R.W.); (A.C.)
| |
Collapse
|
10
|
Kumari K, Kashyap P, Chakrabarti P. Germination and probiotic fermentation: a way to enhance nutritional and biochemical properties of cereals and millets. Food Sci Biotechnol 2024; 33:505-518. [PMID: 38274183 PMCID: PMC10805689 DOI: 10.1007/s10068-023-01401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 01/27/2024] Open
Abstract
Probiotics have become increasingly popular as consumers demand balanced nutrition and health benefits from their diet. However, lactose intolerance and allergies to milk proteins may make dairy-based probiotics unsuitable for some individuals. Thus, probiotics derived from cereals and millets have shown promise as an alternative to dairy probiotics. Soaking, germination, and fermentation can reduce the anti-nutritional factors present in cereal grains and improve nutrient quality and bioactive compounds. Biochemical properties of probiotics are positively influenced by fermentation and germination. Thus, the current review provides an overview of the effect of fermentation and germination on the biochemical properties of probiotics. Further, probiotics made from non-dairy sources may prevent intestinal infections, improve lactose metabolism, reduce cholesterol, enhance immunity, improve calcium absorption, protein digestion, and synthesize vitamins. Finally, health-conscious consumers seeking non-dairy probiotic options can now choose from a wider variety of low-cost, phytochemically rich probiotics derived from germinated and fermented cereal grains.
Collapse
Affiliation(s)
- Kirti Kumari
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Piyush Kashyap
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411 India
| | | |
Collapse
|
11
|
Forouhandeh H, Soofiyani SR, Hosseini K, Beirami SM, Ahangari H, Moammer Y, Ebrahimzadeh S, Nejad MK, Farjami A, Khodaiefar F, Tarhriz V. Modulation of the Immune System Mechanisms using Probiotic Bacteria in Allergic Diseases: Focus on Allergic Retinitis and Food Allergies. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:11-26. [PMID: 37842889 DOI: 10.2174/0127722708246899230928080651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Allergic illnesses occur when an organism's immune system is excessively responsive to certain antigens, such as those that are presented in the environment. Some people suffer from a wide range of immune system-related illnesses including allergic rhinitis, asthma, food allergies, hay fever, and even anaphylaxis. Immunotherapy and medications are frequently used to treat allergic disorders. The use of probiotics in bacteriotherapy has lately gained interest. Probiotics are essential to human health by modulating the gut microbiota in some ways. Due to probiotics' immunomodulatory properties present in the gut microbiota of all animals, including humans, these bacterial strains can prevent a wide variety of allergic disorders. Probiotic treatment helps allergy patients by decreasing inflammatory cytokines and enhancing intestinal permeability, which is important in the battle against allergy. By altering the balance of Th1 and Th2 immune responses in the intestinal mucosa, probiotics can heal allergic disorders. Numerous studies have shown a correlation between probiotics and a reduced risk of allergy disorders. A wide range of allergic disorders, including atopic dermatitis, asthma, allergic retinitis and food allergies has been proven to benefit from probiotic bacteria. Therefore, the use of probiotics in the treatment of allergic diseases offers a promising perspective. Considering that probiotic intervention in the treatment of diseases is a relatively new field of study, more studies in this regard seem necessary.
Collapse
Affiliation(s)
- Haleh Forouhandeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sohrab Minaei Beirami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusif Moammer
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Ebrahimzadeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Kashef Nejad
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Khodaiefar
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
12
|
Biermann R, Rösner L, Beyer L, Niemeyer L, Beutel S. Bioprocess development for endospore production by Bacillus coagulans using an optimized chemically defined medium. Eng Life Sci 2023; 23:e2300210. [PMID: 37795343 PMCID: PMC10545977 DOI: 10.1002/elsc.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
Bacillus coagulans is a promising probiotic, because it combines probiotic properties of Lactobacillus and the ability of Bacillus to form endospores. Due to this hybrid relationship, cultivation of this organism is challenging. As the probiotics market continues to grow, there is a new focus on the production of these microorganisms. In this work, a strain-specific bioprocess for B. coagulans was developed to support growth on one hand and ensure sporulation on the other hand. This circumstance is not trivial, since these two metabolic states are contrary. The developed bioprocess uses a modified chemically defined medium which was further investigated in a one-factor-at-a-time assay after adaptation. A transfer from the shake flask to the bioreactor was successfully demonstrated in the scope of this work. The investigated process parameters included temperature, agitation and pH-control. Especially the pH-control improved the sporulation in the bioreactor when compared to shake flasks. The bioprocess resulted in a sporulation efficiency of 80%-90%. This corresponds to a sevenfold increase in sporulation efficiency due to a transfer to the bioreactor with pH-control. Additionally, a design of experiment (DoE) was conducted to test the robustness of the bioprocess. This experiment validated the beforementioned sporulation efficiency for the developed bioprocess. Afterwards the bioprocess was then scaled up from a 1 L scale to a 10 L bioreactor scale. A comparable sporulation efficiency of 80% as in the small scale was achieved. The developed bioprocess facilitates the upscaling and application to an industrial scale, and can thus help meet the increasing market for probiotics.
Collapse
Affiliation(s)
- Riekje Biermann
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Laura Rösner
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Lisa‐Marie Beyer
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Laura Niemeyer
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Sascha Beutel
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| |
Collapse
|
13
|
Wang H, Shen Q, Zhang F, Fu Y, Zhu Y, Zhao L, Wang C, Zhao Q. Heat-treated foxtail millet protein delayed the development of pre-diabetes to diabetes in mice by altering gut microbiota and metabolomic profiles. Food Funct 2023; 14:4866-4880. [PMID: 37133422 DOI: 10.1039/d3fo00294b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Millet protein has gained much attention for its beneficial effects in mitigating metabolic diseases. However, most individuals pass through a prediabetic phase before developing full-blown diabetes, and whether millet protein has hypoglycemic effects on prediabetic mice remains unclear. In the present study, heat-treated foxtail millet protein (HMP) supplementation significantly decreased fasting blood glucose and serum insulin levels, alleviated insulin resistance, and improved impaired glucose tolerance in prediabetic mice. In addition, HMP altered the intestinal flora composition, as evidenced by the reduction in the abundance of Dubosiella and Marvinbryantia and the increase in the content of Lactobacillus, Bifidobacterium, and norank_f_Erysipelotrichaceae. Moreover, HMP supplementation dramatically regulated the levels of serum metabolites (i.e., LysoPCs, 11,14,17-eicosatrienoic acid, and sphingosine) and related metabolic pathways, such as sphingolipid metabolism and pantothenate and CoA biosynthesis. In conclusion, the improvement of gut microbiota and serum metabolic profiles was related to the hypoglycemic potential of HMP in prediabetes.
Collapse
Affiliation(s)
- Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Fan Zhang
- Beijing Industrial Technology Research Institute Ltd, Beijing, China
| | - Yongxia Fu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Liangxing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| |
Collapse
|
14
|
Kingsley C, Kourtidis A. Critical roles of adherens junctions in diseases of the oral mucosa. Tissue Barriers 2023; 11:2084320. [PMID: 35659464 PMCID: PMC10161952 DOI: 10.1080/21688370.2022.2084320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022] Open
Abstract
The oral cavity is directly exposed to a variety of environmental stimuli and contains a diverse microbiome that continuously interacts with the oral epithelium. Therefore, establishment and maintenance of the barrier function of the oral mucosa is of paramount importance for its function and for the body's overall health. The adherens junction is a cell-cell adhesion complex that is essential for epithelial barrier function. Although a considerable body of work has associated barrier disruption with oral diseases, the molecular underpinnings of these associations have not been equally investigated. This is critical, since adherens junction components also possess significant signaling roles in the cell, in addition to their architectural ones. Here, we summarize current knowledge involving adherens junction components in oral pathologies, such as cancer and oral pathogen-related diseases, while we also discuss gaps in the knowledge and opportunities for future investigation of the relationship between adherens junctions and oral diseases.
Collapse
Affiliation(s)
- Christina Kingsley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
15
|
Xiang X, Wang X, Shang Y, Ding Y. Microfluidic intestine-on-a-chip: Current progress and further perspectives of probiotic-foodborne pathogen interactions. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
16
|
Ganapathy Y, Muthusamy Sridhar N, Dhandapani P. Probiotics: A Healthy Treasure. ROLE OF MICROBES IN SUSTAINABLE DEVELOPMENT 2023:89-97. [DOI: 10.1007/978-981-99-3126-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Santinelli L, Rossi G, Gioacchini G, Verin R, Maddaloni L, Cavallari EN, Lombardi F, Piccirilli A, Fiorucci S, Carino A, Marchianò S, Lofaro CM, Caiazzo S, Ciccozzi M, Scagnolari C, Mastroianni CM, Ceccarelli G, d'Ettorre G. The crosstalk between gut barrier impairment, mitochondrial dysfunction, and microbiota alterations in people living with HIV. J Med Virol 2023; 95:e28402. [PMID: 36515414 DOI: 10.1002/jmv.28402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022]
Abstract
Functional and structural damage of the intestinal mucosal barrier significantly contribute to translocation of gut microbial products into the bloodstream and are largely involved in HIV-1 associated chronic immune activation. This microbial translocation is largely due to a progressive exhaustion of intestinal macrophage phagocytic function, which leads to extracellular accumulation of microbial derived components and results in HIV-1 disease progression. This study aims to better understand whether the modulation of gut microbiota promotes an intestinal immune restoration in people living with HIV (PLWH). Long-term virologically suppressed PLWH underwent blood, colonic, and fecal sampling before (T0) and after 6 months (T6) of oral bacteriotherapy. Age- and gender-matched uninfected controls (UC) were also included. 16S rRNA gene sequencing was applied to all participants' fecal microbiota. Apoptosis machinery, mitochondria, and apical junctional complex (AJC) morphology and physiological functions were analyzed in gut biopsies. At T0, PLWH showed a different pattern of gut microbial flora composition, lower levels of occludin (p = 0.002) and zonulin (p = 0.01), higher claudin-2 levels (p = 0.002), a reduction of mitochondria number (p = 0.002), and diameter (p = 0.002), as well as increased levels of lipopolysaccharide (LPS) (p = 0.018) and cCK18 (p = 0.011), compared to UC. At T6, an increase in size (p = 0.005) and number (p = 0.008) of mitochondria, as well as amelioration in AJC structures (p < 0.0001) were observed. Restoration of bacterial richness (Simpson index) and biodiversity (Shannon index) was observed in all PLWH receiving oral bacteriotherapy (p < 0.05). Increased mitochondria size (p = 0.005) and number (p = 0.008) and amelioration of AJC structure (p < 0.0001) were found at T6 compared to T0. Moreover, increased occludin and zonulin concentration were observed in PLWH intestinal tracts and decreased levels of claudin-2, LPS, and cCK18 were found after oral bacteriotherapy (T0 vs. T6, p < 0.05 for all these measures). Oral bacteriotherapy supplementation might restore the balance of intestinal flora and support the structural and functional recovery of the gut mucosa in antiretroviral therapy treated PLWH.
Collapse
Affiliation(s)
- Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, DiSVA-Marche Polytechnic University, Ancona, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, BCA-University of Padua, Padova, Italy
| | - Luca Maddaloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Eugenio N Cavallari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Stefano Fiorucci
- Department of Surgical and Biomedical Medicine and Surgery Sciences, University of Perugia, Perugia, Italy
| | - Adriana Carino
- Department of Surgical and Biomedical Medicine and Surgery Sciences, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Surgical and Biomedical Medicine and Surgery Sciences, University of Perugia, Perugia, Italy
| | - Chiara M Lofaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Sara Caiazzo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, Istituto Pasteur Italia, Sapienza University of Rome, Rome, Italy
| | - Claudio M Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Osteopontin Exacerbates High-Fat Diet-Induced Metabolic Disorders in a Microbiome-Dependent Manner. mBio 2022; 13:e0253122. [PMID: 36300928 PMCID: PMC9765578 DOI: 10.1128/mbio.02531-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gut microbiome is involved in metabolic disorders. Osteopontin (OPN), as a key cytokine, contributes to various inflammation-related diseases. The underlying role of OPN in the microbiome remains poorly understood. Here, we investigated whether OPN could modulate metabolic disorders by affecting gut microbiota. In our present study, we found that the expression of OPN was elevated in individuals with obesity compared to that observed in healthy controls. There was a positive correlation between plasma OPN levels and body mass index (BMI) in humans. Moreover, OPN significantly exacerbated lipid accumulation and metabolic disorders in high-fat diet (HFD)-fed mice. Importantly, OPN significantly aggravated HFD-induced gut dysbiosis with a key signature profile. Fecal microbiota transplantation also supported the role of OPN in HFD-induced metabolic disorders in a microbiota-dependent manner. Moreover, the microbiome shift of OPN-deficient mice would be compensated to resemble those of wild-type mice by feeding with either OPN-containing milk or recombinant OPN protein in vivo. Furthermore, metagenomic analysis showed that OPN induced a higher abundance of Dorea and a lower abundance of Lactobacillus, which were positively and negatively correlated with body weight, respectively. Indeed, the abundance of Dorea was significantly decreased after Lactobacillus administration, suggesting that OPN may regulate the intestinal abundance of Dorea by reducing the colonization of Lactobacillus. We further confirmed that OPN decreased the adhesion of Lactobacillus to intestinal epithelial cells through the Notch signaling pathway. This study suggested that OPN could exacerbate HFD-induced metabolic dysfunctions through the OPN-induced alteration of the gut microbiome. Therefore, OPN could be a potential therapeutic target for metabolic syndrome. IMPORTANCE Gut microbiota are involved in metabolic disorders. However, microbiome-based therapeutic interventions are not always effective, which might be due to interference of the host factors. Here, we identified a strong positive correlation between OPN levels and BMI in humans. Next, we confirmed that OPN could aggravate high-fat diet-induced metabolic disorders in mice. Importantly, we found that fecal microbiota transplantation from OPN-deficient mice significantly alleviated metabolic disorders in WT mice. OPN directly induces the remodeling of the gut microbiota both in vitro and in vivo. These findings indicate that OPN could contribute to metabolic disorders by inducing an alteration of gut microbiota. OPN regulated the relative abundance of Lactobacillus by decreasing the adhesion of Lactobacillus to intestinal epithelial cells through the Notch signaling pathway. These data identify OPN as a potential pharmaceutical target for weight control and for the treatment of metabolic disorders.
Collapse
|
19
|
Food for the mind: The journey of probiotics from foods to ANTI-Alzheimer’s disease therapeutics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Efficacy of Selected Live Biotherapeutic Candidates to Inhibit the Interaction of an Adhesive-Invasive Escherichia coli Strain with Caco-2, HT29-MTX Cells and Their Co-Culture. Biomedicines 2022; 10:biomedicines10092245. [PMID: 36140346 PMCID: PMC9496071 DOI: 10.3390/biomedicines10092245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) has been implicated as a microbiological factor in the pathogenesis of inflammatory bowel disease (IBD). We evaluated the ability of six live biotherapeutic products (LBPs) to inhibit the interaction of an AIEC strain to three cell lines representing human gut epithelium. Co-inoculation of LBPs with AIEC showed a reduction in adhesion (up to 73%) and invasion of AIEC (up to 89%). Pre-inoculation of LBPs in HT-29-MTX and Caco-2 cells before challenging with AIEC further reduced the adhesion and invasion of the AIEC, with three LBPs showing significantly (p < 0.0001) higher efficiency in reducing the adhesion of AIEC. In co-inoculation experiments, the highest reduction in adhesion (73%) of AIEC was observed in HT-29-MTX cells, whereas the highest reduction in invasion (89%) was seen in HT-29-MTX and the co-culture of cells. Pre-inoculation of LBPs further reduced the invasion of AIEC with highest reduction (97%) observed in co-culture of cells. Our results indicated that whilst there were differences in the efficacy of LBPs, they all reduced interaction of AIEC with cell lines representing gut epithelium. Their efficiency was higher when they were pre-inoculated onto the cells, suggesting their potential as candidates for alleviating pathogenesis of AIEC in patients with IBD.
Collapse
|
21
|
Xu D, Fu L, Pan D, Chu Y, Feng M, Lu Y, Yang C, Wang Y, Xia J, Sun G. Role of probiotics/synbiotic supplementation in glycemic control: A critical umbrella review of meta-analyses of randomized controlled trials. Crit Rev Food Sci Nutr 2022; 64:1467-1485. [PMID: 36052685 DOI: 10.1080/10408398.2022.2117783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evidence regarding the beneficial effects of probiotics/synbiotic supplementation have been revealed by several meta-analyses, however some of these studies have fielded inconsistent results and a conclusion has yet to be reached. Therefore, the aim of present umbrella meta-analyses was to assess relevant evidence and elucidate the efficacy of probiotics/synbiotic supplementation in glycemic control. A comprehensive search in four databases (Cochrane library, PubMed, Web of science and Scopus) was performed to collect relevant studies up to August 2022, the pooled effects were measured with the use of random/fix-effect model depends on the heterogeneity. A total of 47 eligible meta-analyses involving 47,720 participants were identified to evaluate the pooled effects. The overall results showed that probiotics/synbiotic supplementation delivered significant decreases in fast plasma glucose (ES = -0.408, 95% CI: -0.518, -0.298; P < 0.001; I2 = 82.996, P < 0.001), fast plasma insulin (ES = -1.165, 95% CI: -1.454, -0.876; P < 0.001; I2 = 89.629, P < 0.001), homeostasis model assessment of insulin resistance (ES = -0.539, 95% CI: -0.624, -0.454; P < 0.001; I2 = 56.716, P < 0.001), and glycosylated hemoglobin (ES = -0.186, 95% CI: -0.270, -0.102; P < 0.001; I2 = 59.647, P = 0.001). Subgroup analysis showed that patients with impaired glucose homeostasis might benefit the most from probiotics/synbiotic supplementation. In conclusion, current umbrella meta-analysis strongly supporting the beneficial health effects of probiotics/synbiotic supplementation in glycemic control.
Collapse
Affiliation(s)
- Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Lingmeng Fu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
- Department of Quality Management, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - YiFang Chu
- Department of R&D Life Science, PepsiCo, Inc, Barrington, IL, USA
| | - Meiyuan Feng
- Department of R&D Life Science, PepsiCo, Inc, Shanghai, China
| | - Yifei Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| |
Collapse
|
22
|
Peng X, Ed-Dra A, Song Y, Elbediwi M, Nambiar RB, Zhou X, Yue M. Lacticaseibacillus rhamnosus alleviates intestinal inflammation and promotes microbiota-mediated protection against Salmonella fatal infections. Front Immunol 2022; 13:973224. [PMID: 36032095 PMCID: PMC9411107 DOI: 10.3389/fimmu.2022.973224] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 01/17/2023] Open
Abstract
The fatal impairment of the intestinal mucosal barrier of chicks caused by Salmonella significantly resulting economic losses in the modern poultry industry. Probiotics are recognized for beneficially influencing host immune responses, promoting maintenance of intestinal epithelial integrity, antagonistic activity against pathogenic microorganisms and health-promoting properties. Some basic studies attest to probiotic capabilities and show that Lacticaseibacillus rhamnosus could protect intestinal mucosa from injury in animals infected with Salmonella Typhimurium. However, the mechanisms underlying its protective effects in chicks are still not fully understood. Here, we used the chick infection model combined with histological, immunological, and molecular approaches to address this question. The results indicated that L. rhamnosus significantly reduced the diarrhea rate and increased the daily weight gain and survival rate of chicks infected with S. Typhimurium. Furthermore, we found that L. rhamnosus markedly improved the immunity of gut mucosa by reducing apoptotic cells, hence effectively inhibiting intestinal inflammation. Notably, pre-treatment chicks with L. rhamnosus balanced the expression of interleukin-1β and interleukin-18, moderated endotoxin and D-lactic acid levels, and expanded tight junction protein levels (Zonula occluden-1 and Claudin-1), enhanced the function of the intestinal mucosal epithelial cells. Additionally, investigations using full-length 16S rRNA sequencing also demonstrated that L. rhamnosus greatly weakened the adhesion of Salmonella, the mainly manifestation is the improvement of the diversity of intestinal microbiota in infected chicks. Collectively, these results showed the application of L. rhamnosus against Salmonella fatal infection by enhancing barrier integrity and the stability of the gut microbiota and reducing inflammation in new hatch chicks, offering new antibiotic alternatives for farming animals.
Collapse
Affiliation(s)
- Xianqi Peng
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | | | - Yan Song
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Reshma B. Nambiar
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiao Zhou
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Min Yue,
| |
Collapse
|
23
|
Qing F, Xie T, Xie L, Guo T, Liu Z. How Gut Microbiota Are Shaped by Pattern Recognition Receptors in Colitis and Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14153821. [PMID: 35954484 PMCID: PMC9367250 DOI: 10.3390/cancers14153821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The pathogenesis of intestinal inflammatory disorders such as colitis and colorectal cancer is complicated and dysregulation of gut microbiota is considered an important contributing factor. Inflammation is often initiated by the activation of pattern recognition receptors. However, the relationship between these innate immune receptors and gut microbiota is not fully understood. Here, we show that pattern recognition receptors not only recognize pathogens and initiate inflammatory signal transduction to induce immune responses, but also influence the composition of intestinal microorganisms, thus affecting the development of intestinal inflammation and cancer through various mechanisms. This suggests that the modification of innate immune receptors and relevant molecules could be therapeutic targets for the treatment of colitis and colorectal cancer by regulating gut microbiota. Abstract Disorders of gut microbiota have been closely linked to the occurrence of various intestinal diseases including colitis and colorectal cancer (CRC). Specifically, the production of beneficial bacteria and intestinal metabolites may slow the development of some intestinal diseases. Recently, it has been proposed that pattern recognition receptors (PRRs) not only recognize pathogens and initiate inflammatory signal transduction to induce immune responses but also influence the composition of intestinal microorganisms. However, the mechanisms through which PRRs regulate gut microbiota in the setting of colitis and CRC have rarely been systematically reviewed. Therefore, in this paper, we summarize recent advances in our understanding of how PRRs shape gut microbiota and how this influences the development of colitis and CRC.
Collapse
Affiliation(s)
- Furong Qing
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- School of Graduate, Gannan Medical University, Ganzhou 341000, China
| | - Tao Xie
- Center for Scientific Research, Gannan Medical University, Ganzhou 341000, China
| | - Lu Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Tianfu Guo
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (T.G.); (Z.L.)
| | - Zhiping Liu
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Center for Scientific Research, Gannan Medical University, Ganzhou 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (T.G.); (Z.L.)
| |
Collapse
|
24
|
Wong-Chew RM, de Castro JAA, Morelli L, Perez M, Ozen M. Gut immune homeostasis: the immunomodulatory role of Bacillus clausii, from basic to clinical evidence. Expert Rev Clin Immunol 2022; 18:717-729. [PMID: 35674642 DOI: 10.1080/1744666x.2022.2085559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The gut microbiota affects the development of the gut immune system in early life. Perturbations to microbiota structure and composition during this period can have long-term consequences on the health of the individual, through its effects on the immune system. Research in the last few decades has shown that probiotic administration can reverse these effects in strain- and environment-specific ways. Bacillus clausii (B. clausii) has been in use for many decades as a safe and efficacious probiotic, but its mode of action has not yet been completely elucidated. AREAS COVERED In this review, we discuss how the gut immune system works, the factors that affect its functioning, and the plethora of research highlighting its role in various diseases. We also discuss the known modes of action of Bacillus probiotics, and highlight the preclinical and clinical evidence that reveal how B. clausii acts to bolster gut defense. EXPERT OPINION We anticipate that the treatment and/or prevention of dysbiosis will be central to managing human health and disease in the future. Discovering the pathophysiology of autoimmune diseases, infections, allergies, and some cancers will aid our understanding of the key role played by microbial communities in these diseases.
Collapse
Affiliation(s)
- Rosa María Wong-Chew
- Facultad de Medicina, División de Investigación, Universidad Nacional Autónoma de México, Coyoacán, Cdmx
| | - Jo-Anne A de Castro
- Department of Pediatrics de la Salle Medical and Health Sciences Institute (DLSMHSI), Dasmariñas Cavite, Philippines; Department of Microbiology and Parasitology, Pamantasan ng Lunsod ng Maynila (PLM), College of Medicine Intramuros, Manila, Philippines
| | - Lorenzo Morelli
- Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore Piacenza - Cremona, Italy
| | | | - Metehan Ozen
- Division of Pediatric Infectious Diseases, Acıbadem Mehmet Ali Aydınlar University, School of Medicine, Istanbul Turkey
| |
Collapse
|
25
|
Dempsey E, Corr SC. Lactobacillus spp. for Gastrointestinal Health: Current and Future Perspectives. Front Immunol 2022; 13:840245. [PMID: 35464397 PMCID: PMC9019120 DOI: 10.3389/fimmu.2022.840245] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
In recent decades, probiotic bacteria have become increasingly popular as a result of mounting scientific evidence to indicate their beneficial role in modulating human health. Although there is strong evidence associating various Lactobacillus probiotics to various health benefits, further research is needed, in particular to determine the various mechanisms by which probiotics may exert these effects and indeed to gauge inter-individual value one can expect from consuming these products. One must take into consideration the differences in individual and combination strains, and conditions which create difficulty in making direct comparisons. The aim of this paper is to review the current understanding of the means by which Lactobacillus species stand to benefit our gastrointestinal health.
Collapse
Affiliation(s)
- Elaine Dempsey
- Trinity Biomedical Science Institute, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland.,Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Sinéad C Corr
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Javanshir N, Hosseini GNG, Sadeghi M, Esmaeili R, Satarikia F, Ahmadian G, Allahyari N. Evaluation of the Function of Probiotics, Emphasizing the Role of their Binding to the Intestinal Epithelium in the Stability and their Effects on the Immune System. Biol Proced Online 2021; 23:23. [PMID: 34847891 PMCID: PMC8903605 DOI: 10.1186/s12575-021-00160-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Due to the importance of using cost-effective methods for therapeutic purposes, the function of probiotics as safe microorganisms and the study of their relevant functional mechanisms have recently been in the spotlight. Finding the mechanisms of attachment and stability and their beneficial effects on the immune system can be useful in identifying and increasing the therapeutic effects of probiotics. In this review, the functional mechanisms of probiotics were comprehensively investigated. Relevant articles were searched in scientific sources, documents, and databases, including PubMed, NCBI, Bactibace, OptiBac, and Bagel4. The most important functional mechanisms of probiotics and their effects on strengthening the epithelial barrier, competitive inhibition of pathogenic microorganisms, production of antimicrobials, binding and interaction with the host, and regulatory effects on the immune system were discussed. In this regard, the attachment of probiotics to the epithelium is very important because the prerequisite for their proper functioning is to establish a proper connection to the epithelium. Therefore, more attention should be paid to the binding effect of probiotics, including sortase A, a significant factor involved in the expression of sortase-dependent proteins (SDP), on their surface as mediators of intestinal epithelial cell binding. In general, by investigating the functional mechanisms of probiotics, it was concluded that the mechanism by which probiotics regulate the immune system and adhesion capacity can directly and indirectly have preventive and therapeutic effects on a wide range of diseases. However, further study of these mechanisms requires extensive research on various aspects.
Collapse
Affiliation(s)
- Nahid Javanshir
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology. (NIGEB), P.O. Box: 14155-6343, Tehran, Iran
| | | | - Mahdieh Sadeghi
- Department of Science, Islamic Azad University - Parand Branch, Parand, Iran
| | | | - Fateme Satarikia
- Department of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology. (NIGEB), P.O. Box: 14155-6343, Tehran, Iran.
| | - Najaf Allahyari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology. (NIGEB), P.O. Box: 14155-6343, Tehran, Iran.
| |
Collapse
|
27
|
Sun P, Su L, Zhu H, Li X, Guo Y, Du X, Zhang L, Qin C. Gut Microbiota Regulation and Their Implication in the Development of Neurodegenerative Disease. Microorganisms 2021; 9:microorganisms9112281. [PMID: 34835406 PMCID: PMC8621510 DOI: 10.3390/microorganisms9112281] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, human gut microbiota have become one of the most promising areas of microorganism research; meanwhile, the inter-relation between the gut microbiota and various human diseases is a primary focus. As is demonstrated by the accumulating evidence, the gastrointestinal tract and central nervous system interact through the gut–brain axis, which includes neuronal, immune-mediated and metabolite-mediated pathways. Additionally, recent progress from both preclinical and clinical studies indicated that gut microbiota play a pivotal role in gut–brain interactions, whereas the imbalance of the gut microbiota composition may be associated with the pathogenesis of neurological diseases (particularly neurodegenerative diseases), the underlying mechanism of which is insufficiently studied. This review aims to highlight the relationship between gut microbiota and neurodegenerative diseases, and to contribute to our understanding of the function of gut microbiota in neurodegeneration, as well as their relevant mechanisms. Furthermore, we also discuss the current application and future prospects of microbiota-associated therapy, including probiotics and fecal microbiota transplantation (FMT), potentially shedding new light on the research of neurodegeneration.
Collapse
Affiliation(s)
- Peilin Sun
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Hua Zhu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Xue Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Yaxi Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Xiaopeng Du
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
- Correspondence: ; Tel.: +86-10-8777-8141
| |
Collapse
|
28
|
Ballan R, Saad SMI. Characteristics of the Gut Microbiota and Potential Effects of Probiotic Supplements in Individuals with Type 2 Diabetes mellitus. Foods 2021; 10:foods10112528. [PMID: 34828808 PMCID: PMC8622611 DOI: 10.3390/foods10112528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of type 2 diabetes mellitus (T2DM) worldwide has become a burden to healthcare systems. In 2019, around 463 million adults were living with diabetes mellitus, and T2DM accounted for 90 to 95% of cases. The relationship between the gut microbiota and T2DM has been explored with the advent of metagenomic techniques. Genome-wide association studies evaluating the microbiota of these individuals have pointed to taxonomic, functional, and microbial metabolite imbalances and represent a potential intervention in T2DM management. Several microbial metabolites and components, such as imidazole propionate, trimethylamine, and lipopolysaccharides, appear to impair insulin signaling, while short-chain fatty acids, secondary bile acids, and tryptophan metabolites may improve it. In addition, the use of probiotics with the aim of transiently restoring the microbial balance or reducing the effects of microbial metabolites that impair insulin sensitivity has been explored. Herein, we critically review the available literature on the changes in the gut microbiota in T2DM together with potential adjuvant therapies that may improve the health status of this population.
Collapse
Affiliation(s)
- Rafael Ballan
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food Research Center, University of São Paulo, São Paulo 05508-080, SP, Brazil
| | - Susana Marta Isay Saad
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food Research Center, University of São Paulo, São Paulo 05508-080, SP, Brazil
- Correspondence: ; Tel.: +55-11-3091-2378
| |
Collapse
|
29
|
Abstract
High expression of the transmembrane protein angiotensin I converting enzyme 2 (ACE2), more than 100-times higher as in the lung, and transmembrane serine protease 2 (TMPRSS2) in the gastrointestinal tract leads to infection with SARS-CoV-2. According to meta-analysis data, 9.8–20% of COVID-19 patients experience gastrointestinal symptoms, where diarrhoea is the most frequent, and about 50% shed viruses with high titre through their faeces, where a first faecal transmission was reported. Furthermore, gut inflammation, intestinal damage, and weakening of the gut mucosal integrity that leads to increased permeability has been shown in different studies for COVID-19 patients. This can lead to increased inflammation and bacteraemia. Low mucosal integrity combined with low intestinal damage is a good predictor for disease progression and submission to the intensive care unit (ICU). Several pilot studies have shown that the gut microbiome of COVID-19 patients is changed, microbial richness and diversity were lower, and opportunistic pathogens that can cause bacteraemia were enriched compared to a healthy control group. In a large proportion of these patients, dysbiosis was not resolved at discharge from the hospital and one study showed dysbiosis is still present after 3 months post COVID-19. Consequently, there might be a link between dysbiosis of the gut microbiome in COVID-19 patients and chronic COVID-19 syndrome (CCS). Various clinical trials are investigating the benefit of probiotics for acute COVID-19 patients, the majority of which have not reported results yet. However, two clinical trials have shown that a certain combination of probiotics is beneficial and safe for acute COVID-19 patients. Mortality was 11% for the probiotic treatment group, and 22% for the control group. Furthermore, for the probiotic group, symptoms cleared faster, and an 8-fold decreased risk of developing a respiratory failure was calculated. In conclusion, evidence is arising that inflammation, increased permeability, and microbiome dysbiosis in the gut occur in COVID-19 patients and thus provide new targets for adjuvant treatments of acute and chronic COVID-19. More research in this area is needed.
Collapse
|
30
|
Belkina TV, Averina OV, Savenkova EV, Danilenko VN. Human Intestinal Microbiome and the Immune System: The Role of Probiotics in Shaping an Immune System Unsusceptible to COVID-19 Infection. BIOLOGY BULLETIN REVIEWS 2021. [PMCID: PMC8365270 DOI: 10.1134/s2079086421040034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- T. V. Belkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - O. V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - E. V. Savenkova
- International Institute for Strategic Development of Sectoral Economics, Peoples’ Friendship University of Russia (RUDN), Moscow, Russia
| | - V. N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- International Institute for Strategic Development of Sectoral Economics, Peoples’ Friendship University of Russia (RUDN), Moscow, Russia
| |
Collapse
|
31
|
Spagnolello O, Pinacchio C, Santinelli L, Vassalini P, Innocenti GP, De Girolamo G, Fabris S, Giovanetti M, Angeletti S, Russo A, Mastroianni CM, Ciccozzi M, Ceccarelli G, d'Ettorre G. Targeting Microbiome: An Alternative Strategy for Fighting SARS-CoV-2 Infection. Chemotherapy 2021; 66:24-32. [PMID: 33756475 PMCID: PMC8089442 DOI: 10.1159/000515344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 11/25/2022]
Abstract
Respiratory and gastrointestinal symptoms are the predominant clinical manifestations of the coronavirus disease 2019 (COVID-19). Infecting intestinal epithelial cells, the severe acute respiratory syndrome coronavirus-2 may impact on host's microbiota and gut inflammation. It is well established that an imbalanced intestinal microbiome can affect pulmonary function, modulating the host immune response ("gut-lung axis"). While effective vaccines and targeted drugs are being tested, alternative pathophysiology-based options to prevent and treat COVID-19 infection must be considered on top of the limited evidence-based therapy currently available. Addressing intestinal dysbiosis with a probiotic supplement may, therefore, be a sensible option to be evaluated, in addition to current best available medical treatments. Herein, we summed up pathophysiologic assumptions and current evidence regarding bacteriotherapy administration in preventing and treating COVID-19 pneumonia.
Collapse
Affiliation(s)
- Ornella Spagnolello
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Claudia Pinacchio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paolo Vassalini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Gabriella De Girolamo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- COVID-19 Unit, Azienda Policlinico "Umberto I" University Hospital, Rome, Italy
| | - Silvia Fabris
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, Rome, Italy
| | - Marta Giovanetti
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, Rome, Italy
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratório de Genética Celular e Molecular, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University of Biomedical Campus, Rome, Italy
| | - Alessandro Russo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- COVID-19 Unit, Azienda Policlinico "Umberto I" University Hospital, Rome, Italy
| | - Claudio M Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- COVID-19 Unit, Azienda Policlinico "Umberto I" University Hospital, Rome, Italy
| | - Massimo Ciccozzi
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy,
- COVID-19 Unit, Azienda Policlinico "Umberto I" University Hospital, Rome, Italy,
- Migrant and Global Health Research Organization (Mi-HeRo), Rome, Italy,
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- COVID-19 Unit, Azienda Policlinico "Umberto I" University Hospital, Rome, Italy
| |
Collapse
|
32
|
Limosilactobacillus fermentum CECT5716: Mechanisms and Therapeutic Insights. Nutrients 2021; 13:nu13031016. [PMID: 33801082 PMCID: PMC8003974 DOI: 10.3390/nu13031016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics microorganisms exert their health-associated activities through some of the following general actions: competitive exclusion, enhancement of intestinal barrier function, production of bacteriocins, improvement of altered microbiota, and modulation of the immune response. Among them, Limosilactobacillus fermentum CECT5716 has become one of the most promising probiotics and it has been described to possess potential beneficial effects on inflammatory processes and immunological alterations. Different studies, preclinical and clinical trials, have evidenced its anti-inflammatory and immunomodulatory properties and elucidated the precise mechanisms of action involved in its beneficial effects. Therefore, the aim of this review is to provide an updated overview of the effect on host health, mechanisms, and future therapeutic approaches.
Collapse
|
33
|
Promotive effects of sesamin on proliferation and adhesion of intestinal probiotics and its mechanism of action. Food Chem Toxicol 2021; 149:112049. [DOI: 10.1016/j.fct.2021.112049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022]
|
34
|
Al-Sadi R, Nighot P, Nighot M, Haque M, Rawat M, Ma TY. Lactobacillus acidophilus Induces a Strain-specific and Toll-Like Receptor 2-Dependent Enhancement of Intestinal Epithelial Tight Junction Barrier and Protection Against Intestinal Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:872-884. [PMID: 33607043 DOI: 10.1016/j.ajpath.2021.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Defective intestinal tight junction (TJ) barrier is an important pathogenic factor of inflammatory bowel disease. To date, no effective therapies that specifically target the intestinal TJ barrier are available. The purpose of this study was to identify probiotic bacterial species or strains that induce a rapid and sustained enhancement of intestinal TJ barrier and protect against the development of intestinal inflammation by targeting the TJ barrier. After high-throughput screening of >20 Lactobacillus and other probiotic bacterial species or strains, a specific strain of Lactobacillus acidophilus, referred to as LA1, uniquely produced a marked enhancement of the intestinal TJ barrier. LA1 attached to the apical membrane surface of intestinal epithelial cells in a Toll-like receptor (TLR)-2-dependent manner and caused a rapid increase in enterocyte TLR-2 membrane expression and TLR-2/TLR-1 and TLR-2/TLR-6 hetero-complex-dependent enhancement in intestinal TJ barrier function. Oral administration of LA1 caused a rapid enhancement in mouse intestinal TJ barrier, protected against a dextran sodium sulfate (DSS) increase in intestinal permeability, and prevented the DSS-induced colitis in a TLR-2- and intestinal TJ barrier-dependent manner. In conclusion, we report for the first time that a specific strain of LA causes a strain-specific enhancement of intestinal TJ barrier through a novel mechanism that involves the TLR-2 receptor complex and protects against the DSS-induced colitis by targeting the intestinal TJ barrier.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania.
| | - Prashant Nighot
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Meghali Nighot
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Mohammad Haque
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Thomas Y Ma
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania.
| |
Collapse
|
35
|
Archer AC, Muthukumar SP, Halami PM. Lactobacillus fermentum MCC2759 and MCC2760 Alleviate Inflammation and Intestinal Function in High-Fat Diet-Fed and Streptozotocin-Induced Diabetic Rats. Probiotics Antimicrob Proteins 2021; 13:1068-1080. [PMID: 33575913 PMCID: PMC8342349 DOI: 10.1007/s12602-021-09744-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
The growing incidence of type 2 diabetes and obesity has become a worldwide crisis with increased socio-economic burden. Changes in lifestyle and food habits resulting in dysbiosis of the gut microbiota and low-grade inflammation are linked to the rising incidence. The aim of this study was to investigate the effects of potential probiotic Lactobacillus fermentum MCC2759 and MCC2760 on intestinal markers of inflammation using a high-fat diet (HFD)-fed model and a streptozotocin (STZ)-induced diabetic model. Lact. fermentum administration showed improved oral glucose tolerance compared with the model controls of HFD (AUC 1518) and STZ (628.8). Plasma insulin levels improved in the Lact. fermentum treated groups of HFD + MCC2759 (129 ± 4.24 pmol/L) and HFD + MCC2760 (151.5 ± 9.19 pmol/L) in HFD study, while in STZ diabetic study, the insulin levels were normalized with Lact. fermentum administration, for D + MCC2759 (120.5 ± 7.77) and D + MCC2760 (138 ± 5.65 pmol/L) groups. The results showed reduction in inflammatory tone in liver, muscle, and adipose tissues of rats in both models with stimulation of anti-inflammatory IL-10 by real-time quantitative polymerase chain reaction. Additionally, the potential probiotic cultures also displayed normalization of markers related to intestinal barrier integrity (ZO-1), TLR-4 receptor, and insulin sensitivity (GLUT-4, GLP-1, adiponectin). Thus, the results suggest that Lact. fermentum could act as potential probiotic for lifestyle-related disorders such as obesity, diabetes, and metabolic syndrome as both prophylactic and adjunct therapies.
Collapse
Affiliation(s)
| | - Serva Peddha Muthukumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, 570020, Mysuru, India
| | | |
Collapse
|
36
|
Abstract
Postpartum uterine diseases are common in dairy cows and are a great concern for the dairy industry as they are associated with various consequences, including lower fertility, lower milk yield, and an overall negative impact on the host health. An infected uterus is a source of bacterial compounds and cytokines that spill into the systemic circulation, spreading inflammation to other organs. In this review article, we discuss a short overview of the anatomy of the reproductive tract of dairy cows and several infectious diseases of the uterus including metritis, endometritis, and pyometra. Additionally, we discuss the microbiome of the reproductive tract in health and during uterine diseases. As well, diagnostic criteria for metritis and endometritis and contributing factors for increased susceptibility to metritis infection are important topics of this review. To better understand how the uterus and reproductive tract respond to bacterial pathogens, a section of this review is dedicated to immunity of the reproductive tract. Both the innate and adaptive immunity systems are also discussed. We conclude the review with a factual discussion about the current treatments of uterine diseases and the new developments in the area of application of probiotics for uterine health. Mechanisms of actions of probiotics are discussed in detail and also some applications to prevent uterine infections in dairy cows are discussed.
Collapse
|
37
|
Sampsell K, Hao D, Reimer RA. The Gut Microbiota: A Potential Gateway to Improved Health Outcomes in Breast Cancer Treatment and Survivorship. Int J Mol Sci 2020; 21:E9239. [PMID: 33287442 PMCID: PMC7731103 DOI: 10.3390/ijms21239239] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer in women worldwide. The disease and its treatments exert profound effects on an individual's physical and mental health. There are many factors that impact an individual's risk of developing breast cancer, their response to treatments, and their risk of recurrence. The community of microorganisms inhabiting the gastrointestinal tract, the gut microbiota, affects human health through metabolic, neural, and endocrine signaling, and immune activity. It is through these mechanisms that the gut microbiota appears to influence breast cancer risk, response to treatment, and recurrence. A disrupted gut microbiota or state of 'dysbiosis' can contribute to a biological environment associated with higher risk for cancer development as well as contribute to negative treatment side-effects. Many cancer treatments have been shown to shift the gut microbiota toward dysbiosis; however, the microbiota can also be positively manipulated through diet, prebiotic and probiotic supplementation, and exercise. The objective of this review is to provide an overview of the current understanding of the relationship between the gut microbiota and breast cancer and to highlight potential strategies for modulation of the gut microbiota that could lead to improved clinical outcomes and overall health in this population.
Collapse
Affiliation(s)
- Kara Sampsell
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Desirée Hao
- Department of Medical Oncology, Tom Baker Cancer Centre and Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
| | - Raylene A. Reimer
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
38
|
Myneni SR, Brocavich K, Wang H. Biological strategies for the prevention of periodontal disease: Probiotics and vaccines. Periodontol 2000 2020; 84:161-175. [DOI: 10.1111/prd.12343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Srinivas Rao Myneni
- Department of Periodontology Stony Brook School of Dental Medicine Stony Brook University Stony Brook NY USA
| | - Kristen Brocavich
- Department of Periodontology Stony Brook School of Dental Medicine Stony Brook University Stony Brook NY USA
| | - Howard Wang
- Department of Periodontology Stony Brook School of Dental Medicine Stony Brook University Stony Brook NY USA
| |
Collapse
|
39
|
SNAI1 is a prognostic biomarker and correlated with immune infiltrates in gastrointestinal cancers. Aging (Albany NY) 2020; 12:17167-17208. [PMID: 32833672 PMCID: PMC7521489 DOI: 10.18632/aging.103667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/04/2020] [Indexed: 01/24/2023]
Abstract
Epithelial-mesenchymal transition (EMT)-related genes play an important role in immunosuppression. However, the correlations of EMT-related genes to prognosis and tumor-infiltrating lymphocytes in different cancers remain unclear. TCGA, GEO databases were used to analyze the expression, prognosis, and immune infiltration of EMT markers in cancer. RT-qPCR, immunohistochemistry, and western blot were used to analysis the expression and prognosis of SNAI1 in gastrointestinal cancers. High SNAI1 expression was closely related with poorer overall survival in gastrointestinal cancers in TCGA cohort. High SNAI1 expression was closely related with poorer overall survival in gastrointestinal cancers, and was validated in GEO database. Simultaneously, high expression of SNAI1 correlates with clinical relevance of gastric cancer. Moreover, SNAI1 expression was associated with tumor-infiltrating immune cells in gastrointestinal cancers. In addition, RT-qPCR, immunohistochemistry, and western blot showed SNAI1 expression was higher in gastrointestinal cancers compared to the normal tissues. Finally, high SNAI1 expression was closely related with poorer overall survival and correlates with clinical relevance of gastrointestinal cancers in an independent validation cohort. In summary, the results approaches to suggest that SNAI1 can be used as a prognostic biomarker for determining prognosis and immune infiltration in gastrointestinal cancers.
Collapse
|
40
|
Ashaolu TJ. Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics. Biomed Pharmacother 2020; 130:110625. [PMID: 32795926 DOI: 10.1016/j.biopha.2020.110625] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Comprehensive studies conducted on the link between the gut microbiome and immunity in recent decades have correspondingly led to ever increasing interests in functional foods, especially probiotics and prebiotics. Probiotics and prebiotics play crucial roles in managing the intestinal microbiota in order to improve host health, even though their influence on other body sites are being investigated. Different colonic bacteria metabolize dietary prebiotics to produce beneficial metabolites, especially short chain fatty acids (SCFAs) that improve luminal contents and intestinal performance, while positively affecting overall host physiology. Thus, this review provides a general perspective of the immune system, the gut immune system and its microbiota. The review also evaluates functional foods with critical but comprehensive perspectives into probiotics and prebiotics, their immune boosting and mechanisms of action. It is recommended that further mechanistic and translational studies are conducted to promote health, social life and also empower poverty-stricken communities.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Smart Agriculture Research and Application Team, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
41
|
Gayathri D, Ramesha A. Gluten‑hydrolyzing probiotics: An emerging therapy for patients with celiac disease (Review). WORLD ACADEMY OF SCIENCES JOURNAL 2020. [DOI: 10.3892/wasj.2020.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Devaraja Gayathri
- Department of Microbiology, Davangere University, Davangere, Karnataka 577007, India
| | - Alurappa Ramesha
- Department of Microbiology, Davangere University, Davangere, Karnataka 577007, India
| |
Collapse
|
42
|
Ghanavati R, Akbari A, Mohammadi F, Asadollahi P, Javadi A, Talebi M, Rohani M. Lactobacillus species inhibitory effect on colorectal cancer progression through modulating the Wnt/β-catenin signaling pathway. Mol Cell Biochem 2020; 470:1-13. [PMID: 32419125 DOI: 10.1007/s11010-020-03740-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
Probiotic bacteria are known to exert a wide range of anticancer activities on their animal hosts. In the present study, the anticancer effect of a cocktail of several potential probiotic Lactobacillus species (potential probiotic L.C) was investigated in vitro and in vivo. MTT and Flow cytometry tests results showed that administration of live potential probiotic L.C significantly decreased the HT-29 and CT-26 cells proliferation and induced late apoptotis in a time-dependent manner. In addition, quantitative real-time polymerase chain reaction (qPCR) results showed that exposure of potential probiotic L.C to both HT-29 and CT-26 cells during the incubation times resulted in the upregulation (apc and CSNK1ε for HT-29, CSNK1ε and gsk3β for CT-26) and downregulation (CTNNB1, CCND1, pygo2, axin2 and id2) of the Wnt/β- catenin pathway-related genes in a time-dependent manner. The significance of in vitro anticancer effect of potential probiotic L.C was further confirmed in an experimental tumor model. Data from the murine model of colorectal cancer (CRC) induced by Azoxymethane (AOM) and Dextran Sulfate Sodium (DSS) showed significantly alleviated inflammation and tumor development in AOM/DSS/L.C-injected mice compared to the AOM/DSS-injected mice. Tumor growth inhibition was accompanied by potential probiotic L.C-driven upregulation and downregulation of the Wnt/β-catenin pathway-related genes, similar to the in vitro results. These results showed that potential probiotic L.C inhibited the tumor growth, and that its anticancer activity was at least partially mediated through suppressing the Wnt/β-catenin pathway. Overall, the present study suggested that this probiotic could be used clinically as a supplement for CRC prevention and treatment.
Collapse
Affiliation(s)
- Roya Ghanavati
- Behbahan Faculty of Medical Sciences, Behbahan, Iran.,Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fahime Mohammadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Asadollahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbiology Department, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Abdolreza Javadi
- Pathology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
43
|
Pourmollaei S, Barzegari A, Farshbaf-Khalili A, Nouri M, Fattahi A, Shahnazi M, Dittrich R. Anticancer effect of bacteria on cervical cancer: Molecular aspects and therapeutic implications. Life Sci 2020; 246:117413. [PMID: 32035929 DOI: 10.1016/j.lfs.2020.117413] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022]
Abstract
Cervical cancer is the second common cancer and the third leading cause of cancer deaths among women in less developed countries. It has been indicated that changes in vaginal microbiome play an important role in the occurrence and development of cervical cancer. However, studies have shown that probiotics play an effective role in fighting cancer by affecting pathogenic bacteria, inducing cancer cells apoptosis, and other anticancer activities. Therefore, the purpose of the present study is reviewing the anticancer effect of cervicovaginal bacteria and their potential for cervical cancer treatment.
Collapse
Affiliation(s)
- Soraya Pourmollaei
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center of Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander-Universität of Erlangen-Nürnberg, Germany.
| | - Mahnaz Shahnazi
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander-Universität of Erlangen-Nürnberg, Germany
| |
Collapse
|
44
|
Beyond Heat Stress: Intestinal Integrity Disruption and Mechanism-Based Intervention Strategies. Nutrients 2020; 12:nu12030734. [PMID: 32168808 PMCID: PMC7146479 DOI: 10.3390/nu12030734] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
The current climate changes have increased the prevalence and intensity of heat stress (HS) conditions. One of the initial consequences of HS is the impairment of the intestinal epithelial barrier integrity due to hyperthermia and hypoxia following blood repartition, which often results in a leaky gut followed by penetration and transfer of luminal antigens, endotoxins, and pathogenic bacteria. Under extreme conditions, HS may culminate in the onset of “heat stroke”, a potential lethal condition if remaining untreated. HS-induced alterations of the gastrointestinal epithelium, which is associated with a leaky gut, are due to cellular oxidative stress, disruption of intestinal integrity, and increased production of pro-inflammatory cytokines. This review summarizes the possible resilience mechanisms based on in vitro and in vivo data and the potential interventions with a group of nutritional supplements, which may increase the resilience to HS-induced intestinal integrity disruption and maintain intestinal homeostasis.
Collapse
|
45
|
Effect of High Calorie Diet on Intestinal Flora in LPS-Induced Pneumonia Rats. Sci Rep 2020; 10:1701. [PMID: 32015367 PMCID: PMC6997398 DOI: 10.1038/s41598-020-58632-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Intestinal flora plays an important role in inflammatory response to systemic or local organs of its host. High calorie diet has been shown to aggravate the condition of pneumonia and delay recovery, especially in children. However, the underlying mechanisms remain unclear. This study placed SPF rats in a conventional environment, high calorie diet or LPS atomization was performed respectively or combined. Analysis of high-throughput sequencing of intestinal content combined with animal weight, organ index, serum inflammatory factors indicators and bioinformatics found that after pulmonary infection combined with a high-calorie diet, rats showed significant changes such as weight loss and increased lung weight index, and their lung and intestinal tissues showed more obvious inflammatory changes. And its gut flora structure suggests, the abundance of Leuconostocaceae in significantly reduced; abundance of Staphylococcus, Planococcaceae, Staphylococcus, Staphylococcaceae, Bacillales, Gemellales and Aerococcus significant increased. The study showed that high calorie diet and LPS atomization synergistically promoted pneumonia process in rat pups, which is related to changes in structure of intestinal flora. It is worth noting that pneumonia rats fed by convention diet also causing intestinal flora imbalance.
Collapse
|
46
|
High-fat diet-induced metabolic syndrome and oxidative stress in obese rats are ameliorated by yogurt supplementation. Sci Rep 2019; 9:20026. [PMID: 31882854 PMCID: PMC6934669 DOI: 10.1038/s41598-019-56538-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022] Open
Abstract
The main objective of this experiment was to determine the effects of yogurt supplementation on fat deposition, oxidative stress, inflammation and fibrosis in the liver of rats with high-fat (HF) diet-induced obesity. Male Wistar rats were used in this study and were separated into the following four different groups: the control, control + yogurt, high fat and high fat+ yogurt groups. The high fat groups received a HF diet for eight weeks. A 5% yogurt (w/w) supplement was also provided to rats fed the HF diet. Yogurt supplementation prevented glucose intolerance and normalized liver-specific enzyme activities in the HF diet-fed rats. Yogurt supplementation also significantly reduced the levels of oxidative stress markers in the plasma and liver of HF diet-fed rats. Moreover, inflammatory cell infiltration, collagen deposition and fibrosis in the liver of HF diet-fed rats were also prevented by yogurt supplementation. Furthermore, yogurt supplementation normalized the intestinal lining and brush border in HF diet-fed rats. This study suggests that yogurt supplementation potentially represents an alternative therapy for the prevention of metabolic syndrome in HF diet-fed rats.
Collapse
|
47
|
Daulagala AC, Bridges MC, Kourtidis A. E-cadherin Beyond Structure: A Signaling Hub in Colon Homeostasis and Disease. Int J Mol Sci 2019; 20:E2756. [PMID: 31195621 PMCID: PMC6600153 DOI: 10.3390/ijms20112756] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
E-cadherin is the core component of epithelial adherens junctions, essential for tissue development, differentiation, and maintenance. It is also fundamental for tissue barrier formation, a critical function of epithelial tissues. The colon or large intestine is lined by an epithelial monolayer that encompasses an E-cadherin-dependent barrier, critical for the homeostasis of the organ. Compromised barriers of the colonic epithelium lead to inflammation, fibrosis, and are commonly observed in colorectal cancer. In addition to its architectural role, E-cadherin is also considered a tumor suppressor in the colon, primarily a result of its opposing function to Wnt signaling, the predominant driver of colon tumorigenesis. Beyond these well-established traditional roles, several studies have portrayed an evolving role of E-cadherin as a signaling epicenter that regulates cell behavior in response to intra- and extra-cellular cues. Intriguingly, these recent findings also reveal tumor-promoting functions of E-cadherin in colon tumorigenesis and new interacting partners, opening future avenues of investigation. In this Review, we focus on these emerging aspects of E-cadherin signaling, and we discuss their implications in colon biology and disease.
Collapse
Affiliation(s)
- Amanda C Daulagala
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Mary Catherine Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
48
|
Cutting Edge: Probiotics and Fecal Microbiota Transplantation in Immunomodulation. J Immunol Res 2019; 2019:1603758. [PMID: 31143780 PMCID: PMC6501133 DOI: 10.1155/2019/1603758] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
Probiotics are commensal or nonpathogenic microbes that confer beneficial effects on the host through several mechanisms such as competitive exclusion, antibacterial effects, and modulation of immune responses. Some probiotics have been found to regulate immune responses via immune regulatory mechanisms. T regulatory (Treg) cells, T helper cell balances, dendritic cells, macrophages, B cells, and natural killer (NK) cells can be considered as the most determinant dysregulated mediators in immunomodulatory status. Recently, fecal microbiota transplantation (FMT) has been defined as the transfer of distal gut microbial communities from a healthy individual to a patient's intestinal tract to cure some immune disorders (mainly inflammatory bowel diseases). The aim of this review was followed through the recent literature survey on immunomodulatory effects and mechanisms of probiotics and FMT and also efficacy and safety of probiotics and FMT in clinical trials and applications.
Collapse
|
49
|
Delaney S, Hornig M. Environmental Exposures and Neuropsychiatric Disorders: What Role Does the Gut-Immune-Brain Axis Play? Curr Environ Health Rep 2019; 5:158-169. [PMID: 29423662 DOI: 10.1007/s40572-018-0186-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Evidence is growing that environmental exposures-including xenobiotics as well as microbes-play a role in the pathogenesis of many neuropsychiatric disorders. Underlying mechanisms are likely to be complex, involving the developmentally sensitive interplay of genetic/epigenetic, detoxification, and immune factors. Here, we review evidence supporting a role for environmental factors and disrupted gut-immune-brain axis function in some neuropsychiatric conditions. RECENT FINDINGS Studies suggesting the involvement of an altered microbiome in triggering CNS-directed autoimmunity and neuropsychiatric disturbances are presented as an intriguing example of the varied mechanisms by which environmentally induced gut-immune-brain axis dysfunction may contribute to adverse brain outcomes. The gut-immune-brain axis is a burgeoning frontier for investigation of neuropsychiatric illness. Future translational research to define individual responses to exogenous exposures in terms of microbiome-dependent skew of the metabolome, immunity, and brain function may serve as a lens for illumination of pathways involved in the development of CNS disease and fuel discovery of novel interventions.
Collapse
Affiliation(s)
- Shannon Delaney
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
| | - Mady Hornig
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th St, Rm 1706, New York, NY, 10032, USA.
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 W 168th St, Rm 1706, New York, NY, 10032, USA.
| |
Collapse
|
50
|
Probiotics: How Effective Are They in the Fight against Obesity? Nutrients 2019; 11:nu11020258. [PMID: 30678355 PMCID: PMC6412733 DOI: 10.3390/nu11020258] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 02/08/2023] Open
Abstract
Obesity has been associated with structural and functional changes in the gut microbiota. The abundance in, and diversity of, certain bacteria may favor energy harvest and metabolic pathways leading to obesity. Therefore, gut microbiota has become a potential target that can be manipulated to obtain optimal health. Probiotics have been shown to influence the composition of the gut microbiota, improve gut integrity, and restore the microbial shifts characteristic of obesity. Based on physical and biochemical parameters, metabolic and inflammatory markers, and alterations in gut microbe diversity, animal studies revealed beneficial results in obese models whereas the results in humans are sparse and inconsistent. Thus, the purpose of this review is to present evidence from animal studies and human clinical trials demonstrating the effects of various probiotic strains and their potential efficacy in improving obesity and associated metabolic dysfunctions. Furthermore, the review discusses current gaps in our understanding of how probiotics modulate gut microflora to protect against obesity. Finally, we propose future studies and methodological approaches that may shed light on the challenges facing the scientific community in deciphering the host–bacteria interaction in obesity.
Collapse
|