1
|
Belir M, Kadivarian S, Moradi J, Kooti S, Ghadimi D, Abiri R, Mahaki B, Alvandi A. Exploring microbial diversity in Kermanshah province's Kermanshahi oil through DGGE and sequencing analysis. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:173. [PMID: 39468611 PMCID: PMC11520800 DOI: 10.1186/s41043-024-00669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Ghee, known as "roghane heiwâni," or "Kermanshahi oil" is a traditional fermented butter-like product highly esteemed for its nutritional value. Ghee is prepared using traditional methods and has substantial potential as a reservoir of probiotic microorganisms. Previous research delved into isolating and identifying lactic acid bacteria (LAB) in Kermanshahi through culture and PCR sequencing. This study seeks to elucidate the microbial profiles and diversity within Kermanshahi using culture, Denaturing Gradient Gel Electrophoresis (DGGE), and sequencing methodologies. METHODS Twenty samples of Kermanshahi oil were meticulously gathered from diverse locales across Kermanshah province. These samples were cultivated under specialized conditions in MRS and M17 environments spanning 24 to 72 h. Following DNA extraction, amplification of the 16SrRNA gene sequences was performed, culminating in sequencing for conclusive identification of the isolates. Furthermore, the DGGE technique was directly employed to separate and identify various species present in the oil samples utilizing bioinformatics software. RESULTS Sequencing outcomes revealed a diverse array of microorganisms among the isolates, with Lactobacillus constituting 43%, Streptococcus comprising 27.6%, Enterococcus at 4.61%, and yeasts at 7.6%. Other species exhibited lower frequencies, encompassing Rhizobium, Bacillus coagulans, and Staphylococcus hominis. CONCLUSIONS The isolation of a diverse spectrum of probiotic microorganisms underscores their potential utility in the realm of industrial dairy product production. These findings allude to the possibility of integrating these valuable microorganisms, which have historically been associated with traditional products, into the contemporary dairy industry. As consumer interest in probiotic-enriched products surges, the insights gained from this study pave the way for harnessing the benefits of Kermanshahi-derived probiotics.
Collapse
Affiliation(s)
- Mahsa Belir
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepide Kadivarian
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jale Moradi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Kooti
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Mediacl Sciences, Ahvaz, Iran
| | - Darab Ghadimi
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institute, Kiel, Germany
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Fertility and Infertility Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Mahaki
- Department of Biostatistics, School of Health, Social Development and Health Promotion Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhooshang Alvandi
- Department of Microbiology, School of Medicine, Medical Technology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, 6714415333, Iran.
| |
Collapse
|
2
|
Flori L, Benedetti G, Martelli A, Calderone V. Microbiota alterations associated with vascular diseases: postbiotics as a next-generation magic bullet for gut-vascular axis. Pharmacol Res 2024; 207:107334. [PMID: 39103131 DOI: 10.1016/j.phrs.2024.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The intestinal microbiota represents a key element in maintaining the homeostasis and health conditions of the host. Vascular pathologies and other risk factors such as aging have been recently associated with dysbiosis. The qualitative and quantitative alteration of the intestinal microbiota hinders correct metabolic homeostasis, causing structural and functional changes of the intestinal wall itself. Impairment of the intestinal microbiota, combined with the reduction of the barrier function, worsen the pathological scenarios of peripheral tissues over time, including the vascular one. Several experimental evidence, collected in this review, describes in detail the changes of the intestinal microbiota in dysbiosis associated with vascular alterations, such as atherosclerosis, hypertension, and endothelial dysfunction, the resulting metabolic disorders and how these can impact on vascular health. In this context, the gut-vascular axis is considered, for the first time, as a merged unit involved in the development and progression of vascular pathologies and as a promising target. Current approaches for the management of dysbiosis such as probiotics, prebiotics and dietary modifications act mainly on the intestinal district. Postbiotics, described as preparation of inanimate microorganisms and/or their components that confers health benefits on the host, represent an innovative strategy for a dual management of intestinal dysbiosis and vascular pathologies. In this context, this review has the further purpose of defining the positive effects of the supplementation of bacterial strains metabolites (short‑chain fatty acids, exopolysaccharides, lipoteichoic acids, gallic acid, and protocatechuic acid) restoring intestinal homeostasis and acting directly on the vascular district through the gut-vascular axis.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| |
Collapse
|
3
|
Noori M, Shateri Z, Babajafari S, Eskandari MH, Parastouei K, Ghasemi M, Afshari H, Samadi M. The effect of probiotic-fortified kefir on cardiovascular risk factors in elderly population: a double-blind, randomized, placebo-controlled clinical trial. BMC Nutr 2024; 10:74. [PMID: 38741203 DOI: 10.1186/s40795-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION The outbreak of cardiovascular disease (CVD) augments with age. Gut dysbiosis can worsen or initiate systemic disorders such as metabolic diseases and CVDs. Therefore, this research aimed to assess the effect of kefir fortified with Lactobacillus helveticus R0052 and Bifidobacterium longum R017 on CVD risk factors in the elderly population. The subjects of this study were selected from the Motahari Clinic in Shiraz, Iran. METHOD This study was a double-blind, randomized, and controlled clinical trial that was conducted on 67 elderly people who were randomly divided into two groups: the fortified kefir group (n = 32), which received one bottle of fortified kefir (240 cc), and the placebo group (n = 35), which received one bottle of regular kefir for eight weeks. To analyze the data, SPSS software was applied. RESULTS After eight weeks, significant differences were seen in atherogenic and Castell's risk index I between the fortified and regular groups (p = 0.048 and p = 0.048, respectively). No significant differences were found in Castelli's risk index II, high-density lipoprotein cholesterol (HDL-C), total cholesterol, triglycerides (TG), non-HDL-C, TG-cholesterol index, and fasting blood sugar by comparing the two groups. CONCLUSION Our investigation demonstrated that fortified kefir with probiotics did not significantly affect lipid profiles. Still, it could significantly affect some indices, including Castelli's risk index I and atherogenic index. More studies are required to confirm the findings and mechanisms of probiotics' effect on CVD risk factors. TRIAL NUMBER The present registered at the Iranian Registry of Clinical Trials (IRCT20130227012628N3) at 2023-02-21.
Collapse
Affiliation(s)
- Mehran Noori
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Zainab Shateri
- Department of Nutrition and Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Siavash Babajafari
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Karim Parastouei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghasemi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hoseein Afshari
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Samadi
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kinoshita H. Biosorption of Heavy Metals by Lactic Acid Bacteria for Detoxification. Methods Mol Biol 2024; 2851:201-212. [PMID: 39210184 DOI: 10.1007/978-1-0716-4096-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The gradual accumulation of heavy metals can have detrimental effects on health. Lactic acid bacteria (LAB) are common microbes used as probiotics; various LAB strains are consumed in food products, especially in fermented foods. Many studies have suggested that LAB with high affinity to harmful heavy metals can be used as efficient detoxification tools. Accordingly, it is important to test the biosorption of various heavy metals, e.g., cadmium, lead, arsenic, and mercury, by LAB. Here, I describe protocols to quantify the binding ability of LAB and to identify their heavy metal-binding proteins.
Collapse
|
5
|
Choksket S, Sharma S, Harshvardhan, Pal V, Jain A, Patil PB, Korpole S, Grover V. Evaluation of Human Dental Plaque Lactic Acid Bacilli for Probiotic Potential and Functional Analysis in Relevance to Oral Health. Indian J Microbiol 2023; 63:520-532. [PMID: 38031619 PMCID: PMC10682319 DOI: 10.1007/s12088-023-01108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Members of the lactic acid bacillus group are well-known probiotics and primarily isolated from fermented food, dairy products, intestinal and gut environment of human. Since probiotics from the human source are preferred, there exists a huge repertoire of lactobacilli in the human oral cavity which could prove a much better niche to be exploited for these beneficial microorganisms. Therefore, in this study, four lactobacilli strains, including strain DISK7, reported earlier, isolated from dental plaque samples of a healthy humans were evaluated for their probiotic potential. Strains displayed 99.9% of 16S rRNA gene sequence identity with species of the genera Lactobacillus and Limosilactobacillus. All strains showed lactic acid production, tolerance to low pH and antibiotic sensitivity. Variations were observed among strains in their aggregation ability, biofilm formation, bile salt resistance and cholesterol degradation. Further, we analyzed the interaction of strains with other oral commensals and opportunistic pathogens in co-culture experiments. Isolates DISK7 and DISK26 exhibited high co-aggregation (> 70%) with secondary colonizers, Streptococcus pyogenes and Veillonella parvula, respectively, but their aggregation ability was decreased with opportunistic pathogens. Furthermore, strains showed a substantial increase in biofilm in co-culture with other Lactobacillus isolates, indicating their ability to proliferate commensal bacteria in the oral environment. These microbes continually evolve in terms of niche adaptation as evidenced in genome analysis. The highlight of the investigation is the isolation and evaluation of the probiotic lactobacilli from the human oral cavity, which could prove a much better niche to be exploited for the effective commercialization of these beneficial microbes. Taken together, probiotic properties and interaction with commensal bacteria, these isolates exhibit the huge potential to be developed as alternative bioresource agents for maintenance of oral health. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01108-2.
Collapse
Affiliation(s)
- Stanzin Choksket
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Shikha Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Harshvardhan
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Vijay Pal
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Ashish Jain
- Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Prabhu B. Patil
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Suresh Korpole
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Vishakha Grover
- Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| |
Collapse
|
6
|
Nguyen NHK, Giang BL, Truc TT. Isolation and Evaluation of the Probiotic Activity of Lactic Acid Bacteria Isolated from Pickled Brassica juncea (L.) Czern. et Coss. Foods 2023; 12:3810. [PMID: 37893703 PMCID: PMC10606517 DOI: 10.3390/foods12203810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The naturally occurring lactic acid bacteria can be isolated from various sources. Pickled Brassica juncea (L.) Czern. et Coss. was used to isolate lactic acid bacteria (LAB). This study was conducted to compare the probiotic properties of probiotics isolated from pickled Vietnamese cabbage with some commercial strains of probiotics available on the Vietnamese market. The results showed that two strains (Lactobacillus fermentum and Lactiplantibacillus plantarum) isolated from pickled Vietnamese cabbage and three commercial strains of probiotics (Bacillus subtilis, Bacillus clausii, Lactobacillus acidophilus) all showed probiotic properties. Probiotic properties were evaluated through the ability to survive in low pH, pepsin, pancreatin, and bile salt media, the hydrophobicity of the bacteria, the antibiotic resistance, and the resistance to pathogenic bacteria. The isolated strain Lactiplantibacillus plantarum had fewer probiotic properties than Bacillus subtilis but more than the two commercial strains Bacillus clausii and Lactobacillus acidophilus, and the isolated Lactobacillus fermentum showed the fewest probiotic properties of the five strains.
Collapse
Affiliation(s)
- Nguyen Hong Khoi Nguyen
- Institute of Food and Biotechnology, Can Tho University, Can Tho 900000, Vietnam;
- Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Bach Long Giang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam;
| | - Tran Thanh Truc
- Institute of Food and Biotechnology, Can Tho University, Can Tho 900000, Vietnam;
- School of Graduate, Can Tho University, Can Tho 900000, Vietnam
| |
Collapse
|
7
|
Alonso L, Calvo MV, Fontecha J. Reduction of Beta Cyclodextrin by Curd Washing in Low-Cholesterol Manchego Cheese. Molecules 2023; 28:4709. [PMID: 37375264 DOI: 10.3390/molecules28124709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Beta-cyclodextrin (β-CD) is a cyclic oligosaccharide consisting of seven glucose units. β-CD is increasingly used in food research to reduce cholesterol due to its affinity for non-polar molecules such as cholesterol and as a natural additive. The purpose of this study was to evaluate the effect of curd washing in ewe's milk cheese on the reduction in cholesterol by β-CD from pasteurized ewe's milk Manchego cheese and the characteristics of its main components: milk, lipids, and flavor. An approximately 98.45% cholesterol reduction was observed in washed experimental cheeses that were treated by using β-CD. The remaining residual β-CD from the effect of curd washing was 0.15% in mature cheese, of the initial 1% β-CD treatment of the milk. The chemical properties (fat, moisture, and protein) did not change as a result of the curd washing with or without β-CD. The curd washing with or without β-CD on the levels of the various lipid fraction (fatty acids, triglycerides, and phospholipids) were comparable in treated and untreated cheeses. The effects of curd washing and the β-CD treatment did not significantly affect flavor components or short chain free fatty acids. The β-CD molecules were edible and nontoxic; as a result, they could be used safely in cholesterol removal processing in cheese manufacturing, improving the reduction in residual β-CD by curd washing by 85%. Therefore, the present study suggests that curd washing combined with β-CD is an effective process for cholesterol removal in Manchego cheese, preserving its desirable properties.
Collapse
Affiliation(s)
- Leocadio Alonso
- Instituto de Productos Lácteos de Asturias (CSIC), 33300 Villaviciosa, Asturias, Spain
| | - María V Calvo
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), 28049 Madrid, Spain
| | - Javier Fontecha
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), 28049 Madrid, Spain
| |
Collapse
|
8
|
Ziarno M, Zaręba D, Ścibisz I, Kozłowska M. Exploring the Cholesterol-Modifying Abilities of Lactobacilli Cells in Digestive Models and Dairy Products. Microorganisms 2023; 11:1478. [PMID: 37374980 DOI: 10.3390/microorganisms11061478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the ability of lactic acid bacteria to remove cholesterol in simulated gastric and intestinal fluids. The findings showed that the amount of cholesterol removed was dependent on the biomass, viability, and bacterial strain. Some cholesterol binding was stable and not released during gastrointestinal transit. The presence of cholesterol affected the fatty acid profile of bacterial cells, potentially influencing their metabolism and functioning. However, adding cholesterol did not significantly impact the survival of lactic acid bacteria during gastrointestinal transit. Storage time, passage, and bacterial culture type did not show significant effects on cholesterol content in fermented dairy products. Variations in cell survival were observed among lactic acid bacteria strains in simulated gastric and intestinal fluids, depending on the environment. Higher milk protein content was found to be more protective for bacterial cells during gastrointestinal transit than fat content. Future research should aim to better understand the impact of cholesterol on lactic acid bacteria metabolism and identify potential health benefits.
Collapse
Affiliation(s)
- Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| | - Dorota Zaręba
- Professor E. Pijanowski Catering School Complex in Warsaw, 04-110 Warsaw, Poland
| | - Iwona Ścibisz
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| | - Mariola Kozłowska
- Department of Chemistry, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| |
Collapse
|
9
|
Zibaei-Rad A, Rahmati-Joneidabad M, Alizadeh Behbahani B, Taki M. Assessing the protection mechanisms on Enterobacter aerogenes ATCC 13048 by potentially probiotic strain Lacticaseibacillus casei XN18: An experimental and modeling study. Microb Pathog 2023:106177. [PMID: 37245632 DOI: 10.1016/j.micpath.2023.106177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
In this study, Lacticaseibacillus casei XN18 had a remarkable resistant to simulated gastrointestinal conditions, hydrophobicity (38.60%), auto-aggregation (29.80%), co-aggregation (21.10%), adhesion (9.50%), anti-adhesion (24.40-36.90%), antioxidant activity (46.47%), cholesterol assimilation (41.10%), and antimicrobial effect on some pathogenic microorganisms. The modified double layer method, and Enterobacter aerogenes (inhibition zone (IZ) = 9.10 mm) and Listeria monocytogenes (IZ = 14.60 mm) were the most sensitive and resistant pathogens to the probiotic strain. The Lb. casei was sensitive to ciprofloxacin (IZ = 23 mm) and nitrofurantoin (IZ = 25.10 mm), semi-sensitive to imipenem (IZ = 18.80 mm), erythromycin (IZ = 16.90 mm), and chloramphenicol (IZ = 17.90 mm), and resistant to ampicillin (IZ = 9.60 mm) and nalidixic acid (IZ = 9.90 mm). The Lb. casei showed no haemolytic and DNase properties, and it could therefore be used for health-promoting purposes. In the next section, multilayer perceptron (MLP) neural network (NN) and gaussian process regression (GPR) models with k-fold cross validation method were used for predicting the rate of probiotic viability based on three levels of pH and time. The results showed that GPR has the lowest error. The mean absolute percentage error (MAPE), root mean absolute error (RMSE) and coefficient of determination (R2) for GPR and MLP models were 1.49 ± 0.40, 0.21 ± 0.03, 0.98 ± 0.05 and 6.66 ± 0.98, 0.83 ± 0.23 0.82 ± 0.09, respectively. So, the GPR model can be reliably used as a useful method to predict the probiotic viability in similar cases.
Collapse
Affiliation(s)
- Aref Zibaei-Rad
- Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box: 6341773637, Mollasani, Iran
| | - Mostafa Rahmati-Joneidabad
- Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box: 6341773637, Mollasani, Iran.
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box: 6341773637, Mollasani, Iran
| | - Morteza Taki
- Department of Agricultural Machinery and Mechanization Engineering, Faculty of Agricultural Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box: 6341773637, Mollasani, Iran
| |
Collapse
|
10
|
Elbaz AM, El-Sheikh SE, Abdel-Maksoud A. Growth performance, nutrient digestibility, antioxidant state, ileal histomorphometry, and cecal ecology of broilers fed on fermented canola meal with and without exogenous enzymes. Trop Anim Health Prod 2023; 55:46. [PMID: 36701002 PMCID: PMC9879825 DOI: 10.1007/s11250-023-03476-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
This study was conducted to evaluate the effects of supplementation of exogenous enzymes in broiler diets that includes fermented canola meal on performance, nutrient digestibility, biochemical indication, antioxidative capacity, digestive enzyme activity, immune responses, and gut health. Five hundred 1-day-old Ross 308 broiler chicks were randomly allocated into five experimental groups (5 replicate/group), the first group: a control (CON) contained a basal diet, and the second to the fifth groups were fed diets as follows: containing 20% canola meal (CM), contains 20% fermented canola meal (FCM), contains 20% canola meal and exogenous enzymes at 0.02%/kg feed (ECM), and contains 20% fermented canola meal and exogenous enzymes at 0.02%/kg feed (EFC), respectively. At the finisher phase, the best body weight gain, feed conversion ratio, and nutrient utilization were associated with chickens fed EFC compared to other groups (P < 0.05). Total protein, albumin, alanine aminotransferase, and superoxide dismutase levels increased (P < 0.05), while cholesterol and malondialdehyde levels decreased in chickens fed on EFC. Likewise, there was a significant increase in the relative weight of the bursa of Fabricius and antibody titer against Newcastle disease, whereas the weight of abdominal fat decreased in the EFC group compared to other groups. Furthermore, there was a significant improvement in the activity of lipase and amylase enzymes (P < 0.05) in the EFC group. Fermented canola meal addition improved gut health (decreased Escherichia coli, increased Lactobacillus, and the highest values of villus height). Overall, these results confirmed that supplementing a fermented canola meal diet with exogenous enzymes improved growth performance through enhancing nutrient digestibility, immunity, antioxidant capacity, and gut health. Thus, adding enzymes to a diet containing fermented canola meal can be recommended as an alternative protein source that could be safely used to replace up to 20% soybean meal in broiler diets.
Collapse
|
11
|
Particulate Cell Wall Materials of Lactobacillus acidophilus as Vaccine Adjuvant. Vet Sci 2022; 9:vetsci9120698. [PMID: 36548859 PMCID: PMC9783621 DOI: 10.3390/vetsci9120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
We evaluated Lactobacillus acidophilus (LA) for adjuvant application in animal vaccines. LA particles (LAPs) are made by treating LA with purification processes and high-pressure homogenization (HPH). We found that LAPs treated with HPH with trehalose and emulsifiers had an average particle size of 179 nm, considerably smaller than LAPs without additives. First, we evaluated the adjuvanticity of LAPs using a murine model with ovalbumin antigens, revealing that LAPs, especially in a five-fold concentration, could induce a considerable antibody response compared with other current adjuvants. In poultry vaccination tests using inactivated Newcastle disease virus, LAPs alone could induce a similar antibody response compared to commercial water-in-oil (W/O) adjuvant ISA70, a commercial adjuvant, at weeks 4 and 6; however, they declined faster than ISA70 at weeks 8 and 10. LAPs added to conventional adjuvant materials, such as mineral oil-based O/W emulsions, showed similar adjuvanticity to ISA70. LA-H5-C, composed of carbomer, emulsifiers and trehalose showed no significant body weight change in acute toxicity compared to other adjuvants including ISA70, making formulated LAPs a potential candidate for use as a veterinary vaccine adjuvant.
Collapse
|
12
|
Pakroo S, Tarrah A, Bettin J, Corich V, Giacomini A. Genomic and Phenotypic Evaluation of Potential Probiotic Pediococcus Strains with Hypocholesterolemic Effect Isolated from Traditional Fermented Food. Probiotics Antimicrob Proteins 2022; 14:1042-1053. [PMID: 34668141 DOI: 10.1007/s12602-021-09860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/25/2022]
Abstract
The use of probiotic microorganisms in food with the aim to confer health benefits to the host is one of the most critical roles of functional foods. Many pediococci bacteria frequently related to the meat environment, have technological properties, and are therefore commercially used as starter in the production of fermented meat products, such as different types of sausages. In this study, different lactic acid bacteria were isolated, identified to the species level, and then evaluated for their safety and functionality as possible probiotics. Different properties, such as resistance to simulated human gastrointestinal conditions, antimicrobial activity, and cholesterol-lowering effects, have been studied. Finally, the complete genome of one strain, namely P. acidilactici IRZ12B, which showed interesting features as a promising probiotic candidate, was sequenced and further studied. The results revealed that IRZ12B possesses interesting probiotic properties, particularly cholesterol-lowering capability and antimicrobial activity. In silico analysis evidenced the absence of plasmids, transmissible antibiotic resistance genes, and virulence factors. We also detected a bacteriocin encoding gene and a cholesterol assimilation-related protein. The phenotypical and genomic outcomes described in this study make P. acidilactici IRZ12B a very interesting cholesterol-lowering potential probiotic strain to be considered for the development of novel non-dairy-based functional foods.
Collapse
Affiliation(s)
- Shadi Pakroo
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, viale dell'Università 16, 35020, Padua, Legnaro, PD, Italy
| | - Armin Tarrah
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, viale dell'Università 16, 35020, Padua, Legnaro, PD, Italy.
| | - Jacopo Bettin
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, viale dell'Università 16, 35020, Padua, Legnaro, PD, Italy
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, viale dell'Università 16, 35020, Padua, Legnaro, PD, Italy.
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, viale dell'Università 16, 35020, Padua, Legnaro, PD, Italy
| |
Collapse
|
13
|
Gao H, Li X, Chen X, Hai D, Wei C, Zhang L, Li P. The Functional Roles of Lactobacillus acidophilus in Different Physiological and Pathological Processes. J Microbiol Biotechnol 2022; 32:1226-1233. [PMID: 36196014 PMCID: PMC9668099 DOI: 10.4014/jmb.2205.05041] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022]
Abstract
Probiotics are live microorganisms that can be consumed by humans in amounts sufficient to offer health-promoting effects. Owing to their various biological functions, probiotics are widely used in biological engineering, industry and agriculture, food safety, and the life and health fields. Lactobacillus acidophilus (L. acidophilus), an important human intestinal probiotic, was originally isolated from the human gastrointestinal tract and its functions have been widely studied ever since it was named in 1900. L. acidophilus has been found to play important roles in many aspects of human health. Due to its good resistance against acid and bile salts, it has broad application prospects in functional, edible probiotic preparations. In this review, we explore the basic characteristics and biological functions of L. acidophilus based on the research progress made thus far worldwide. Various problems to be solved regarding the applications of probiotic products and their future development are also discussed.
Collapse
Affiliation(s)
- Huijuan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
| | - Xin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
| | - Xiatian Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
| | - Deng Hai
- Department of Chemistry, University of Aberdeen, Aberdeen, AB243UE, UK
| | - Chuang Wei
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China,Corresponding authors L. Zhang Phone +86 18660263885 E-mail:
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China,
P. Li E-mail:
| |
Collapse
|
14
|
Swe ZM, Chumphon T, Panya M, Pangjit K, Promsai S. Evaluation of Nano-Wall Material for Production of Novel Lyophilized-Probiotic Product. Foods 2022; 11:foods11193113. [PMID: 36230189 PMCID: PMC9564142 DOI: 10.3390/foods11193113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022] Open
Abstract
Lyophilization is one of the most used methods for bacterial preservation. In this process, the cryoprotectant not only largely decreases cellular damage but also plays an important part in the conservation of viability during freeze-drying. This study investigated using cryoprotectant and a mixture of the cryoprotectant to maintain probiotic activity. Seven probiotic strains were considered: (Limosilactobacillus reuteri KUKPS6103; Lacticaseibacillus rhamnosus KUKPS6007; Lacticaseibacillus paracasei KUKPS6201; Lactobacillus acidophilus KUKPS6107; Ligilactobacillus salivarius KUKPS6202; Bacillus coagulans KPSTF02; Saccharomyces cerevisiae subsp. boulardii KUKPS6005) for the production of a multi-strain probiotic and the complex medium for the lyophilized synbiotic production. Cholesterol removal, antioxidant activity, biofilm formation and gamma aminobutyric acid (GABA) production of the probiotic strains were analyzed. The most biofilm formation occurred in L. reuteri KUKPS6103 and the least in B. coagulans KPSTF02. The multi-strain probiotic had the highest cholesterol removal. All the probiotic strains had GABA production that matched the standard of γ-aminobutyric acid. The lyophilized synbiotic product containing complex medium as a cryoprotectant and wall material retained a high viability of 7.53 × 108 CFU/g (8.89 log CFU/g) after 8 weeks of storage. We found that the survival rate of the multi-strain probiotic after freeze-drying was 15.37% in the presence of complex medium that was used as high performing wall material. Our findings provided a new type of wall material that is safer and more effective and, can be extensively applied in relevant food applications.
Collapse
Affiliation(s)
- Zin Myo Swe
- Bioproduct Science Program, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Thapakorn Chumphon
- Bioproduct Science Program, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Marutpong Panya
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Kanjana Pangjit
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Saran Promsai
- Bioproduct Science Program, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Division of Microbiology, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Correspondence: ; Tel.: +66-3440-0481
| |
Collapse
|
15
|
Ziar H, Riazi A. Polysorbate 80 improves the adhesion and survival of yogurt starters with cholesterol uptake abilities. Saudi J Biol Sci 2022; 29:103367. [PMID: 35846386 PMCID: PMC9284390 DOI: 10.1016/j.sjbs.2022.103367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
The goal of this study is to improve the adhesion and survival of yogurt bacteria with probiotic traits by using polysorbate 80, a food additive emulsifier commonly found in milk derivative products. Polysorbate 80 was used at 1% (w/v), and its effects on yogurt bacteria's survival under simulated digestive conditions, cholesterol uptake activities, bile salt hydrolase (BSH) activity, and adhesion to HT-29 culture were studied. In the presence of 1% polysorbate 80, both starters demonstrated better cholesterol uptake and BSH activities, as well as higher bacterial survival at pH 2.5, particularly in associated cultures. In the presence of 0.3 % bile or cholic acid, polysorbate 80 reduced the drop in L. bulgaricus's survival load. However, the carbon source had a greater impact on S. thermophilus bile tolerance than the food additive emulsifier. Oleic acid was incorporated into both bacterial membranes when grown in the presence of bile and polysorbate 80, resulting in a higher unsaturated/saturated fatty acid ratio. In the presence of polysorbate 80, S. thermophilus adhered to HT-29 cells 2.3-fold better, while L. bulgaricus's adhesion remained unchanged. We suggest that polysorbate 80 may have a protective effect on cell survival under simulated digestive stress as well as a role in yogurt bacteria adhesion to the intestines, giving these bacteria more opportunities to exert their purported cholesterol-removal activities.
Collapse
|
16
|
Ali SM, Salem FE, Aboulwafa MM, Shawky RM. Hypolipidemic activity of lactic acid bacteria: Adjunct therapy for potential probiotics. PLoS One 2022; 17:e0269953. [PMID: 35737711 PMCID: PMC9223303 DOI: 10.1371/journal.pone.0269953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/31/2022] [Indexed: 12/31/2022] Open
Abstract
Background Individuals with hyperlipidemia are two times more likely to develop atherosclerotic cardiovascular disease (ASCVD) as opposed to those with controlled serum total cholesterol (TC) levels. Considering the documented adverse events of the current lipid-lowering medications which ultimately affect patient’s compliance, substantial efforts have been made to develop new therapeutic strategies. Probiotics, on the other hand, are reported to have lipid-lowering activity with the added benefit of being generally well-tolerated making it an appealing adjuvant therapy. Methods A total of fifty Lactic acid bacteria (LAB) were isolated from raw milk (human and animal) and dairy products. Isolates demonstrating promising in vitro cholesterol removal capabilities were morphologically and biochemically characterized. Lastly, two bacterial candidates were selected for evaluation of their potential hypolipidemic activity using a laboratory animal model. Statistical differences between the means were analyzed by one-way analysis of variance (ANOVA) followed by Tukey’s post-hoc test. A p-value < 0.05 was considered statistically significant. Results Most of the isolates demonstrated an in vitro cholesterol removal activity. The six LAB isolates showing the highest cholesterol removal activity (36.5–55.6%) were morphologically and biochemically identified as Lactobacillus, Pediococcus, and Lactococcus species. The results demonstrated two promising antihyperlipidemic candidates, a Lactococcus lactis ssp. lactis with an in vivo significant reduction of serum triglycerides (TG) levels by 34.3%, and a Pediococcus sp. that was able to significantly reduce both the serum TC and TG levels by 17.3% and 47.0%, respectively, as compared to the diet-induced hyperlipidemic animal group. Conclusion This study further supports the growing evidence regarding the antihyperlipidemic activity among probiotics, presenting them as a promising therapeutic approach for the management of hyperlipidemia.
Collapse
Affiliation(s)
- Shima Mahmoud Ali
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Fatma E. Salem
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Mohammad M. Aboulwafa
- Faculty of Pharmacy, King Salman International University, Ras Sudr, South Sinai, Egypt
- Faculty of Pharmacy, Department of Microbiology and Immunology, Ain Shams University, Al Khalifa Al Ma’moun St., Abbassia, Cairo, Egypt
- * E-mail: ,
| | - Riham M. Shawky
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, Ain-Helwan, Cairo, Egypt
| |
Collapse
|
17
|
Frappier M, Auclair J, Bouasker S, Gunaratnam S, Diarra C, Millette M. Screening and Characterization of Some Lactobacillaceae for Detection of Cholesterol-Lowering Activities. Probiotics Antimicrob Proteins 2022; 14:873-883. [PMID: 35704269 PMCID: PMC9474388 DOI: 10.1007/s12602-022-09959-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/11/2022]
Abstract
Dyslipidemia, specifically abnormal levels of low-density lipoprotein cholesterol (LDL-C), is an important risk factor of cardiovascular disease. Evidence showing the promising abilities of probiotics to lower total cholesterol or LDL-C has, however, not yet convinced experts to recommend probiotic bacteria as treatment for blood lipid management. Therefore, there are opportunities for the development of new efficient cholesterol-lowering probiotics. Bile salt hydrolase (BSH) and feruloyl esterase (FAE) are bacterial enzymes proposed to explain the cholesterol-lowering capacity of some bacteria and have both been shown to be responsible for lipid reduction in vivo. Here, in order to select for cholesterol-lowering bacteria, 70 strains related to Lactobacillaceae were screened for BSH and FAE activities. Based on this two-way screening approach, two bacteria were selected and assessed for their capacity to assimilate cholesterol in vitro, another suggested mechanism. Lactobacillus acidophilus CL1285 showed BSH and FAE activity as well as capacity to assimilate cholesterol in vitro. Lactiplantibacillus plantarum CHOL-200 exhibited BSH activity and ability to assimilate cholesterol. These properties observed in vitro make both strains good probiotic candidates for the management of dyslipidemia. Further investigation is needed to assess their ability to reduce blood cholesterol in human trial.
Collapse
Affiliation(s)
- Martin Frappier
- Bio-K Plus International Inc., a Kerry Company, 495 Armand-Frappier Boulevard, Laval, QC, H7V 4B3, Canada
| | - Julie Auclair
- Bio-K Plus International Inc., a Kerry Company, 495 Armand-Frappier Boulevard, Laval, QC, H7V 4B3, Canada
| | - Samir Bouasker
- Bio-K Plus International Inc., a Kerry Company, 495 Armand-Frappier Boulevard, Laval, QC, H7V 4B3, Canada
| | - Sathursha Gunaratnam
- Bio-K Plus International Inc., a Kerry Company, 495 Armand-Frappier Boulevard, Laval, QC, H7V 4B3, Canada
| | - Carine Diarra
- Bio-K Plus International Inc., a Kerry Company, 495 Armand-Frappier Boulevard, Laval, QC, H7V 4B3, Canada
| | - Mathieu Millette
- Bio-K Plus International Inc., a Kerry Company, 495 Armand-Frappier Boulevard, Laval, QC, H7V 4B3, Canada.
| |
Collapse
|
18
|
Hameed A, Condò C, Tauseef I, Idrees M, Ghazanfar S, Farid A, Muzammal M, Al Mohaini M, Alsalman AJ, Al Hawaj MA, Adetunji CO, Dauda WP, Hameed Y, Alhashem YN, Alanazi AA. Isolation and Characterization of a Cholesterol-Lowering Bacteria from Bubalus bubalis Raw Milk. FERMENTATION-BASEL 2022; 8:163. [DOI: 10.3390/fermentation8040163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Probiotics retrieved from animal sources have substantial health benefits for both humans and animals. The present study was designed to identify lactic acid bacteria (LAB) isolated from domestic water buffalo milk (Bubalus bubalis) and to evaluate their potential as target-based probiotics. Forty-six LAB strains were isolated and, among them, five strains (NMCC-M2, NMCC-M4, NMCC-M5, NMCC-M6, and NMCC-M7) were regarded as possible probiotics on the basis of their phenotypic and biochemical properties. These isolates were molecularly identified as Weissella confusa (NMCC-M2), Leuconostoc pseudo-mesenteroides (NMCC-M4), Lactococcus lactis Subsp. hordniae (NMCC-M5), Enterococcus faecium NMCC-M6, and Enterococcus lactis NMCC-M7. The tested bacterial strains showed significant antimicrobial activity, susceptibility to antibiotics, acid and bile tolerance, sugar fermentation, enzymatic potential, and nonhemolytic characteristics. Interestingly, NMCC-M2 displayed the best probiotic features including survival at pH 3 and 0.5% (w/v) bile salts, complete susceptibility to the tested antibiotics, high enzymatic potential, and in vitro cholesterol reduction (48.0 µg/mL for NMCC-M2) with 0.3% bile salt supplementation. Therefore, the isolated strain NMCC-M2 could be considered as a potential target-based probiotic in cholesterol-lowering fermented food products.
Collapse
Affiliation(s)
- Abdul Hameed
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Carla Condò
- Departemtent of Life Sciences, University of Medona and Reggio Emilia, Via Giuseppe Campi 287, 41125 Modena, Italy
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Maryam Idrees
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan
| | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Al Ahsa 31982, Saudi Arabia
- King Abdullah International Medical Research Center, Al Ahsa 31982, Saudi Arabia
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo State University, Etsako West 312102, Nigeria
| | | | - Yasir Hameed
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Yousef N. Alhashem
- Clinical Laboratory Sciences Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Abeer A. Alanazi
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
19
|
Nutraceuticals in Paediatric Patients with Dyslipidaemia. Nutrients 2022; 14:nu14030569. [PMID: 35276928 PMCID: PMC8840379 DOI: 10.3390/nu14030569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Coronary heart disease (CHD) is the main cause of death and morbidity in the world. Childhood is a critical period during which atherosclerosis may begin to develop; in the presence of familial hypercholesterolaemia (FH), the lifelong elevation of LDL cholesterol levels greatly accelerates atherosclerosis. Lowering LDL-C levels is associated with a well-documented reduction in cardiovascular disease risk. Current guidelines support the dietary and lifestyle approach as the primary strategy of intervention in children and adolescents with FH. Nutraceuticals (functional foods or dietary supplements of plant or microbial origin) are included in the EU guidelines as lifestyle interventions and may provide an additional contribution in reducing LDL levels when pharmacological therapy is not yet indicated. Meta-analyses of randomised clinical trials have demonstrated that the same nutraceuticals improve lipid profile, including lowering LDL-C, total cholesterol and triglyceride levels. In this narrative review, starting from current scientific evidence, we analyse the benefits and limitations of the nutraceuticals in children and adolescents with dyslipidaemia, and we try to evaluate their use and safety in clinical practice.
Collapse
|
20
|
Manzoor S, Wani SM, Mir SA, Rizwan D. Role of probiotics and prebiotics in mitigation of different diseases. Nutrition 2022; 96:111602. [PMID: 35182833 DOI: 10.1016/j.nut.2022.111602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
|
21
|
Amran RA, Alhimaidi AR, Al-Ghadi MQ, Ammari AA, Gaafar ARZ. Carryover effect of direct-fed microbial supplementation and early weaning on the growth performance and carcass characteristics of growing Najdi lambs. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Growing Najdi lambs were randomly selected from lambs weaned at 30, 45, and 60 days old which were treated with 3 doses of direct-fed microbial (DFM) at 5, 10, and 15 days old to investigate the carryover effect of early weaning and DFM supplementation on their growth performance and carcass characteristics. Ten lambs from each group were transferred to individual pens for a feeding trial using the total mixed ration (Wafi). Lambs treated with DFM and weaned at 60 days old showed numerically higher body weight and average daily gains compared to other groups. Concerning the carcass and meat quality, there were significant differences between all groups in all carcass and tissue measurements, except for the back-fat and body wall thickness. In conclusion, treatment did not have any significant negative effect on body weight, feed intake, and conversion ratio compared with the control, but positively affected Zn and Cu absorption. DFM also played an important role in fat metabolism, which affects fat deposits in carcasses. The most important finding was that early weaning can be performed using DFM supplementation without any negative effect on the lambs’ performance during growth.
Collapse
Affiliation(s)
- Ramzi A. Amran
- Department of Zoology, College of Science, King Saud University , Riyadh 11451 , Saudi Arabia
| | - Ahmad R. Alhimaidi
- Department of Zoology, College of Science, King Saud University , Riyadh 11451 , Saudi Arabia
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University , Riyadh 11451 , Saudi Arabia
| | - Aiman A. Ammari
- Department of Zoology, College of Science, King Saud University , Riyadh 11451 , Saudi Arabia
| | - Abdel-Rhman Z. Gaafar
- Department of Zoology, College of Science, King Saud University , Riyadh 11451 , Saudi Arabia
| |
Collapse
|
22
|
Cao K, Zhang K, Ma M, Ma J, Tian J, Jin Y. Lactobacillus mediates the expression of NPC1L1, CYP7A1, and ABCG5 genes to regulate cholesterol. Food Sci Nutr 2021; 9:6882-6891. [PMID: 34925816 PMCID: PMC8645708 DOI: 10.1002/fsn3.2600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/09/2023] Open
Abstract
Hypercholesterolemia is the main cause of cardiovascular disease worldwide, and the regulation of cholesterol homeostasis is essential for human health. Lactobacillus is present in large quantities in the human intestine. As the normal flora in the gut, lactobacillus plays an important role in regulating metabolism in the human body. Lactobacillus can regulate the cholesterol content by regulating the expression of genes involved in cholesterol synthesis, metabolism, and absorption. This article reviews the biological effects and mechanisms of lactobacillus that mediate the expression of NPC1L1, CYP7A1, ABCG5, ABCG8, and other genes to inhibit cholesterol absorption, and discusses the mechanism of reducing cholesterol by lactobacillus in cells in vitro, to provide a theoretical basis for the development and utilization of lactobacillus resources.
Collapse
Affiliation(s)
- Kaihui Cao
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Kaiping Zhang
- Department of Cooking & Food ProcessingInner Mongolia Business and Trade Vocational CollegeHohhotChina
| | - Muran Ma
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Junjie Ma
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Jianjun Tian
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Ye Jin
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
23
|
Kadja L, Dib AL, Lakhdara N, Bouaziz A, Espigares E, Gagaoua M. Influence of Three Probiotics Strains, Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745 on the Biochemical and Haematological Profiles and Body Weight of Healthy Rabbits. BIOLOGY 2021; 10:biology10111194. [PMID: 34827188 PMCID: PMC8615081 DOI: 10.3390/biology10111194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Currently, probiotics are used as growth promoters on a large scale to improve the productivity of several animals’ species within the aim of reducing the presence of antibiotic residues in animal products consumed by humans. Several reports evidenced the positive effect of probiotic supplementation on the growth performances and health of rabbits, mainly through the balance of the intestinal microbiota of the host animal. Therefore, certain probiotics, including Lactobacilli, Bifidobacteria, Saccharomyces, can improve the biochemical and haematological profiles, especially in production animals. In this context, this study was performed on rabbits for the economic importance they play as a source of meat proteins in developing countries and their use as experimental models in research and biomedicine. This study then aimed to evaluate the effect of three strains of probiotics: Lactobacillus rhamnosus GG Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745, on the biochemical and haematological parameters and their influence on the rabbit’s weight of the ITELV2006 strain. The findings evidenced that the probiotic strain affected the biochemical and haematological parameters. Further, the strains showed a positive effect on the weight gain of the rabbits. Abstract This study aimed to investigate the effects of three strains of probiotics, these being Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745, on the body weight, animal performances and blood parameters of rabbits (male and female) of the ITELV2006 strain. The supplementation of the feed of the rabbits with the three probiotic strains allowed observing positive effects on most of the biochemical and haematological parameters investigated during a period of 60 days (30 days of supplementation and 30 days without treatment). Further, there was a significant improvement in the body weight of the rabbits at the end of the experiment. The effect of the three probiotics investigated in this trial was found to be related to the sex of the rabbits and to the intake period (duration). Ultimately, these findings raise the possibility of using probiotics to investigate in an in-depth and specific manner based on fixed factors such as the strain, the gender and age of the animals, the main underlying mechanisms and effects, which would allow achieving optimal and adapted health benefits and sustainable production. In the context of animal production, it is worth investigating in a targeted study the effect of the three strains on muscle growth and development and finding evidence of the possible consequences on meat quality traits of the rabbits supplemented with probiotics.
Collapse
Affiliation(s)
- Louiza Kadja
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Amira Leila Dib
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Nedjoua Lakhdara
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Assia Bouaziz
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Elena Espigares
- Department of Preventive Medicine and Public Health, Faculty of pharmacy, University of Granada, 18071 Granada, Spain;
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
- Correspondence: or
| |
Collapse
|
24
|
Gu Y, Gan S, Bian S, Meng G, Zhang Q, Liu L, Wu H, Yao Z, Zhang S, Wang Y, Zhang T, Wang X, Cao X, Li H, Liu Y, Li X, Wang X, Wang X, Sun S, Zhou M, Jia Q, Song K, Wu Y, Wu XH, Niu K. The association between daily yogurt consumption and serum lipid profiles in the general adult population: the TCLSIH cohort study. Int J Food Sci Nutr 2021; 73:415-423. [PMID: 34749580 DOI: 10.1080/09637486.2021.1993155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The purpose of this cross-sectional study is to determine the association between yogurt consumption and lipid profiles in the general Chinese population. In this cross-sectional study, a total of 26,824 participants were included from Tianjin, China. Lipid profiles were determined by automated biochemical analyser. Yogurt consumption frequency was assessed by a validated food frequency questionnaire. Analysis of covariance was used to determine the association between daily yogurt consumption and lipid profiles. In the final multivariate model, daily yogurt consumption was negatively associated with triglyceride (TG) (p for trend <0.001) and positively associated with high density lipoprotein cholesterol (HDL-C) (p for trend = 0.02). There were no significant differences (p for trend >0.05) between daily yogurt consumption and total cholesterol (TC) or low density lipoprotein cholesterol (LDL-C). Results suggested that higher daily yogurt consumption was negatively correlated with TG and positively correlated with HDL-C in the general Chinese population.
Collapse
Affiliation(s)
- Yeqing Gu
- Nutrition and Radiation Epidemiology Research Center, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shinan Gan
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shanshan Bian
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhanxin Yao
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Shunming Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yawen Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Tingjing Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xuena Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xingqi Cao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huiping Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yunyun Liu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaoyue Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaohe Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuntang Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiao-Hui Wu
- College of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Kaijun Niu
- Nutrition and Radiation Epidemiology Research Center, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
25
|
Souza O, Adams C, Rodrigues B, Krause A, Bonamigo R, Zavarize K, Stefanello C. The Impact of Bacillus subtilis PB6 and Chromium Propionate on the Performance, Egg Quality and Nutrient Metabolizability of Layer Breeders. Animals (Basel) 2021; 11:3084. [PMID: 34827816 PMCID: PMC8614521 DOI: 10.3390/ani11113084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to evaluate the effects of Bacillus subtillis PB6, chromium propionate or a combination of the two on the performance, egg and eggshell quality, nutrient metabolizability and serum biochemistry of layer breeders. White Plymouth Rock and Red Rhodes Island breeder hens at 55 weeks of age were allocated in individual cages using a completely randomized block design with 16 replicates. Hens were fed control, control + probiotic (500 g/ton of Bacillus subtilis PB6), control + CrProp (50 g/ton of chromium propionate) and control + probiotic + CrProp diets from 55 to 70 weeks of age. Productive parameters and eggshell quality as well as cortisol and blood biochemistry were grouped each 28 d as well as for the overall period. The metabolizability of nutrients and energy was determined at 70 weeks of age. In the overall period, hens fed the control + probiotic or control + probiotic + CrProp diets had significantly higher egg production, egg mass, shell percentage, thickness and shell strength. The metabolizability of dry matter, nitrogen and energy increased in hens that were fed the control + probiotic + CrProp diet. In conclusion, diets supplemented with Bacillus subtillis PB6 and chromium propionate resulted in improved productive performance, eggshell quality and nutrient metabolizability of layer breeders, without modifying serum cortisol, albumin and triglycerides.
Collapse
Affiliation(s)
- Otoniel Souza
- Department of Animal Science, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (O.S.); (C.A.); (B.R.)
| | - Carine Adams
- Department of Animal Science, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (O.S.); (C.A.); (B.R.)
| | - Beatriz Rodrigues
- Department of Animal Science, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (O.S.); (C.A.); (B.R.)
| | - Alexandre Krause
- Clinical Analysis Laboratory (LACVET), Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (A.K.); (R.B.)
| | - Renata Bonamigo
- Clinical Analysis Laboratory (LACVET), Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (A.K.); (R.B.)
| | - Kelen Zavarize
- Animal Nutrition and Health South America, Kemin Industries Inc., Valinhos 13279-450, Brazil;
| | - Catarina Stefanello
- Department of Animal Science, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (O.S.); (C.A.); (B.R.)
| |
Collapse
|
26
|
Wan Z, Sun N, Luo M, Gan B, Yao Z, Cao X, Wang H, Pan K, Shu G, Zeng Y, Zeng D, Ni X. Promotion of Egg Production Rate and Quality Using Limosilactobacillus oris BSLO 1801, a Potential Probiotic Screened from Feces of Laying Hens with Higher Egg Productive Performance. Probiotics Antimicrob Proteins 2021; 15:535-547. [PMID: 34697775 DOI: 10.1007/s12602-021-09856-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 02/08/2023]
Abstract
In this experiment, laying hens were divided into a high productive group (group H) and a low productive group (group L). The purpose of this experiment was to screen and isolate a potential probiotic associated with the laying rate from group H by comparing the results via 16S rDNA high-throughput sequencing. The high-throughput sequencing analysis results showed that there were some differences in the composition of the gut microbiome between groups H and L on the Phylum and Genus levels. Through isolation and identification, we screened 16 lactobacilli strains. Among the 16 strains, S5 showed good acid tolerance, bile salt tolerance, and cholesterol degradation. Therefore, we chose strain S5 (identified as Limosilactobacillus oris, named Limosilactobacillus oris BSLO 1801) as a potential probiotic to promote the productivity of ordinary laying hens. During the animal experiment, 288 Hy-line white hens (30 weeks old) were divided into four groups, with six replications (n = 12) per group. The control group received the basic diet, and the treatment groups received the same basic diet supplemented with 107 CFU/kg, 108 CFU/kg, and 109 CFU/kg of BSLO 1801. The laying hens were acclimated to the environment for 1 week before the initiation of the experiment. Dietary supplementation with 107 CFU/kg and 109 CFU/kg of BSLO 1801 increased the laying rate significantly, and the potential probiotic improved the egg weight in all treatment groups. Additionally, the cholesterol content of the yolk dropped significantly in the 109 CFU/kg group, and the weight of egg yolk was significantly increased in all treatment groups. However, no significant differences in eggshell strength, eggshell thickness, protein height, and Haugh unit were observed among the four groups. These results revealed that lactobacilli spp. are important bacteria of the intestinal microbiome in highly productive laying hens, and BSLO 1801 was isolated as a potential probiotic. Through these animal experiments, we also found that adding BSLO 1801 to the basic diet of laying hens could effectively improve the laying rate, average egg weight, and yolk weight and reduce the cholesterol content in egg yolk.
Collapse
Affiliation(s)
- Zhiqiang Wan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Luo
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Baoxing Gan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhipeng Yao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xi Cao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hesong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
27
|
Fernández-Calderón MC, Sánchez-Moro MDH, Rincón EO. In vitro Cholesterol Assimilation by Bifidobacterium animalis subsp. lactis (BPL1) Probiotic Bacteria under Intestinal Conditions. Endocr Metab Immune Disord Drug Targets 2021; 22:433-439. [PMID: 34496737 DOI: 10.2174/1871530321666210908124848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hypercholesterolemia is one of the principal causes of the development of cardiovascular diseases. Recently, probiotics consumption has been also proposed as a non-pharmacological intervention to control cholesterol concentrations. OBJECTIVE To evaluate in vitro assimilation of cholesterol by Bifidobacterium animalis subsp. lactis (BPL1) under simulated intestinal environment in anaerobic conditions and to review and discuss potential physiological mechanisms in this context. METHODS Bacterial viability and cholesterol assimilation was evaluated in both standard MRS and stimulated intestinal fluid (SIF) medium under anaerobic conditions, and in presence or absence of cholesterol. For assimilation assays, cholesterol concentrations in the different suspensions, containing the probiotic or not, was determined by chromatography coupled to mass spectrometry. RESULTS Results showed that the growth of B. lactis BPL1 under intestinal conditions is favored when cholesterol is present in the culture medium. In addition, a cholesterol assimilation of up to 44.4% under intestinal and anaerobic conditions was observed. CONCLUSION Taking into account the revised literature and the experimental results herein presented, administration of functional foodstuffs together with probiotic bacteria such as B. lactis BPL1 could be a potential effective option to decrease hypercholesterolemia, thus preventing the development of cardiovascular diseases. Nevertheless, further studies on mechanisms of effectiveness in animals and clinical trials are still needed.
Collapse
Affiliation(s)
- María Coronada Fernández-Calderón
- Grupo de Investigación en Microbiología de la UEx. Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz. Spain
| | - María Dolores Hinchado Sánchez-Moro
- Grupo de Investigación en Inmunofisiología. Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz. Spain
| | - Eduardo Ortega Rincón
- Grupo de Investigación en Inmunofisiología. Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz. Spain
| |
Collapse
|
28
|
Farid W, Masud T, Sohail A, Ahmad N, Naqvi SMS, Khan S, Ali A, Khalifa SA, Hussain A, Ali S, Saghir M, Siddeeg A, Manzoor MF. Gastrointestinal transit tolerance, cell surface hydrophobicity, and functional attributes of Lactobacillus Acidophilus strains isolated from Indigenous Dahi. Food Sci Nutr 2021; 9:5092-5102. [PMID: 34532018 PMCID: PMC8441270 DOI: 10.1002/fsn3.2468] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/27/2023] Open
Abstract
Strains of Lactobacillus acidophilus WFA1 (KU877440), WFA2 (KU877441), and WFA3 (KU877442) were isolated from indigenous Dahi (yogurt), screened, and selected based on acid and bile tolerance along with the antimicrobial activity. These selected strains were further assessed for their probiotic and functional attributes. Results for simulated gastric and intestinal tolerance/ resistance revealed that all three strains can resist and survive under the following mentioned conditions. To access cell surface hydrophobicity, bacterial adhesion to hydrocarbons (BATH), cellular auto-aggregation, and salt aggregation were performed. In BATH, adhesion of strains against three hydrocarbons namely xylene, dichloromethane, and hexadecane was conducted. The results show that strains showed the least adhesion to xylene (54.25%) as compared to dichloromethane (55.25%) and hexadecane (56.65%). WFA1 showed maximum adherence percentage (55.48%) followed WFA2 (55.48%) and WFA3 (51.38%). Cellular auto-aggregation varied from 21.72% to 30.73% for WFA3 and WFA1, respectively. In the salt aggregation test (SAT), WFA1, WFA2, and WFA3 aggregated at 0.6, 1.0, and 2.0 molar concentrations of ammonium sulfate, respectively. PCR amplification of bile salt hydrolase gene (bsh) was performed and sequences were submitted to the public database of NCBI and Gene bank under accession numbers, KY689139, KY689140, and KY689141. Additionally, a cholesterol-lowering assay was conducted and up to 26% reduction in cholesterol was observed by the strains. Regarding functional properties, exopolysaccharide (EPS) production, and antioxidant potential, strain WFA1 showed promising results EPS (1.027mg/ml), DPPH (80.66%), ABTS (81.97%), and reducing power (1.787). It can be concluded from the present study that the mentioned strains of L. acidophilus (WFA1, WFA2, and WFA3) are strongly hydrophobic; thus having an ability to survive and colonize under the gastrointestinal tract which confirms their probiotic nature. Regarding their functional properties, L. acidophilus WFA1 (KU877440) showed excellent properties of antioxidants and EPS production.
Collapse
Affiliation(s)
- Wajiha Farid
- Department of Food TechnologyPir Mehr Ali Shah, Arid Agriculture UniversityRawalpindiPakistan
| | - Tariq Masud
- Department of Food TechnologyPir Mehr Ali Shah, Arid Agriculture UniversityRawalpindiPakistan
| | - Asma Sohail
- Department of Food TechnologyPir Mehr Ali Shah, Arid Agriculture UniversityRawalpindiPakistan
| | - Nazir Ahmad
- Institute of Food & Home SciencesGovernment College UniversityFaisalabadPakistan
| | - S. M. Saqlan Naqvi
- Institute of Biochemistry and BiotechnologyPir Mehr Ali Shah, Arid Agriculture UniversityRawalpindiPakistan
| | - Sipper Khan
- Tropics and Subtropics GroupInstitute of Agricultural EngineeringUniversity of HohenheimStuttgartGermany
| | - Amjad Ali
- Department of Agriculture and Food TechnologyKarakoram International UniversityGilgitPakistan
| | - Salah A. Khalifa
- Department of Food ScienceFaculty of AgricultureZagazing UniversitySharkiaEgypt
| | - Abid Hussain
- Department of Agriculture and Food TechnologyKarakoram International UniversityGilgitPakistan
| | - Sartaj Ali
- Department of Agriculture and Food TechnologyKarakoram International UniversityGilgitPakistan
| | - Maryum Saghir
- Department of Manufacturing EngineeringNational University of Science and TechnologyIslamabadPakistan
| | - Azhari Siddeeg
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity of GeziraWad MedaniSudan
| | - Muhammad Faisal Manzoor
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
- Riphah College of Rehabilitation and Allied Health SciencesRiphah International UniversityFaisalabadPakistan
| |
Collapse
|
29
|
Cicero AFG, Fogacci F, Stoian AP, Vrablik M, Al Rasadi K, Banach M, Toth PP, Rizzo M. Nutraceuticals in the Management of Dyslipidemia: Which, When, and for Whom? Could Nutraceuticals Help Low-Risk Individuals with Non-optimal Lipid Levels? Curr Atheroscler Rep 2021; 23:57. [PMID: 34345932 PMCID: PMC8332568 DOI: 10.1007/s11883-021-00955-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Purpose of Review The aim of this review is to summarize the available clinical efficacy and safety data related to the most studied and used lipid-lowering nutraceuticals. Recent Findings A growing number of meta-analyses of randomized clinical trials supports the effectiveness and tolerability of some lipid-lowering nutraceuticals such as red yeast rice, plant sterols and stanols, soluble fibers, berberine, artichoke extracts, bergamot polyphenol fraction, garlic, green tea, and spiruline. No significant safety concern has been raised for the use of such products. Association of more lipid-lowering nutraceuticals and of some nutraceuticals with lipid-lowering drugs has been tested as well. Summary Current evidence suggests that some clinically tested lipid-lowering nutraceuticals could be safely used to improve plasma lipid levels in subjects affected by mild-to-moderate dyslipidaemia with low cardiovascular risk.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy. .,Italian Society of Nutraceuticals (SINut), Bologna, Italy. .,IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy. .,Atherosclerosis Research Center, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy.
| | - Federica Fogacci
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy.,Italian Society of Nutraceuticals (SINut), Bologna, Italy.,IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Anca Pantea Stoian
- Faculty of Medicine, Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Michal Vrablik
- Third Department of Internal Medicine, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Łódź, Poland
| | - Peter P Toth
- CGH Medical Center, Sterling, IL, USA.,Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manfredi Rizzo
- Italian Society of Nutraceuticals (SINut), Bologna, Italy.,Faculty of Medicine, Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| |
Collapse
|
30
|
Yin J, Lu J, Lei P, He M, Huang S, Lv J, Zhu Y, Liu Z, Jiang M. Danggui-Shaoyao-San Improves Gut Microbia Dysbiosis and Hepatic Lipid Homeostasis in Fructose-Fed Rats. Front Pharmacol 2021; 12:671708. [PMID: 34326769 PMCID: PMC8313808 DOI: 10.3389/fphar.2021.671708] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023] Open
Abstract
Metabolic syndrome (MetS) is a pathological state of many abnormal metabolic sections. These abnormalities are closely related to diabetes, heart pathologies and other vascular diseases. Danggui-Shaoyao-San (DSS) is a traditional Chinese medicine formula that has been used as a therapy for Alzheimer’s disease. DSS has rarely been reported in the application of MetS and its mechanism of how it improves gut microbia dysbiosis and hepatic lipid homeostasis. In this study, three extracts of DSS were obtained using water, 50% methanol in water and methanol as extracting solvents. Their chemical substances were analyzed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass (UPLC-Q/TOF-MS). Pharmacodynamic effect of the extracts were evaluated by comparison of biochemical factors, 16S rRNA sequencing test for gut microbiota analysis, as well as metabonomic and transcriptomic assessments on liver tissues from fructose-fed rats. This study aimed at investigating DSS’s mechanism of regulating blood lipid, anti-inflammation and reducing blood glucose. The results showed that the 50% methanol extract (HME) was more effective. It was worth noting that hydroxysteroid 17β-dehydrogenase 13 (HSD17β13) as a critical element of increasing blood lipid biomarker-triglyceride (TG), was decreased markedly by DSS. The influence from upgraded hydroxysteroid 17β-dehydrogenase 7 (HSD17β7) may be stronger than that from downgraded Lactobacillus in the aspect of regulating back blood lipid biomarker-total cholesterol (TC). The differential down-regulation of tumornecrosis factor alpha (TNF-α) and the significant up-regulation of Akkermansia showed the effective effect of anti-inflammation by DSS. The declining glycine and alanine induced the lowering glucose and lactate. It demonstrated that DSS slowed down the reaction of gluconeogenesis to reduce the blood glucose. The results demonstrated that DSS improved pathological symptoms of MetS and some special biochemical factors in three aspects by better regulating intestinal floras and improving hepatic gene expressions and metabolites.
Collapse
Affiliation(s)
- Jing Yin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaxi Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Lei
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingshuai He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengjie Huang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jialin Lv
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmacy, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
31
|
Design of a New Fermented Beverage from Medicinal Plants and Organic Sugarcane Molasses via Lactic Fermentation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Functional beverages obtained using medicinal plants and fermented with lactic acid bacteria are gaining much interest from the scientific community, driven by the growing demand for food and beverages with beneficial properties. In this work, three different batches of medicinal plants and organic sugarcane molasses, named FB-lc, FB-sp and FB-lcsp, were prepared and fermented by using Lactobacillus acidophilus ATCC 43121, Bifidobacterium breve B632 and a mix of both strains’ culture, respectively. The three fermented beverages revealed a high level of polyphenols (expressed as gallic acid equivalent), ranging from 182.50 to 315.62 µg/mL. The highest content of flavonoids (152.13 µg quercetin equivalent/mL) and tannins (93.602 µg catechin equivalent/mL) was detected in FB-lcsp trial. The IR spectroscopy analysis showed a decrease in sugar (pyranose forms, D-glucopyranose and rhamnosides). In addition, the aromatic compounds of the fermented beverages, detected by GC-MS headspace analysis, showed twenty-four interesting volatile compounds, which could give positive aroma attributes to the flavor of the beverages. The highest antioxidant activity was observed in the beverage obtained by the mix culture strains. Accordingly, the production of these beverages can be further investigated for considering their well-being effects on human health.
Collapse
|
32
|
Abdi M, Lohrasbi V, Asadi A, Esghaei M, Jazi FM, Rohani M, Talebi M. Interesting probiotic traits of mother's milk Lactobacillus isolates; from bacteriocin to inflammatory bowel disease improvement. Microb Pathog 2021; 158:104998. [PMID: 34044041 DOI: 10.1016/j.micpath.2021.104998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
AIMS AND BACKGROUND Lactobacillus spp. are an important element in breast milk. This component has a beneficial effect on the composition of the intestinal microflora and the intestinal immune system. The aim of this study was to isolate and identify Lactobacillus strains in breast milk and evaluate some of their probiotic properties, such as presence of bacteriocin genes, adhesion to HT-29 cell line, competition with enteropathogens in cell culture, and effect on serum level of lipids and digestive enzymes, and mice model of inflammatory bowel disease (IBD). MATERIALS AND METHODS A total of 323 lactic acid bacteria (LAB) were isolated from breast milk samples of healthy mothers with the age ranges from 21 to 45 years old. These isolates were subjected to phenotypic and molecular experiments. The frequency of bacteriocin genes was determined by polymerase chain reaction (PCR). Adhesion of Lactobacillus isolates to HT-29 cells was measured based on the number of attached bacterial cells in 20 fields of the light microscopy. Competition test was done by colony count and real-time PCR procedures. Five strongly adhesive Lactobacillus strains were selected and administered orally to the treatment groups. After 8 days, the serum level of digestive enzymes and improvement in induced IBD, and after 14 days, the serum level of lipids (triglycerides, total cholesterol, HDL, and LDL) in treated mice were surveyed compared to the control groups. RESULTS Based on the phenotypic and molecular experiments, L. casei, L. plantarum, L. rhamnosus, and L. acidophilus strains were isolated and identified in the breast milk samples. The highest frequency of bacteriocin genes belonged to Plantaricin B (100%), followed by Plantaricin D (84.7%), Plantaricin G (84.7%), and Plantaricin EF (54.3%). Also, 71.8% of the isolates were strongly adhesive, 21.8% were non-adhesive, and 6.4% were adhesive. Lactobacillus strains had a significant effect on the displacement of enteropathogens. The in vitro cholesterol-removing ability of L. casei (L1), L. casei (L2), L. casei (L3), L. plantarum (L4), and L. rhamnosus (L5) was 3.5, 31.5, 21.3, 18.7, and 27.3%, respectively. The serum level of total cholesterol in the L. plantarum (L4) group as well as LDL in the L. casei (L3) (p = .0108) and L. rhamnosus (L5) (p = .0206) groups decreased significantly compared to the control group. The serum level of lipase increased in all the treatment groups compared to the control group, which was significant in the L. plantarum (L4) group (p = .0390). Disease activity index (DAI) scores were improved significantly in L. casei (L3) group compared to the IBD control group (p < .0001). CONCLUSION It could be concluded that lactobacilli strains isolated from the breast milk samples had good probiotic properties, such as presence of bacteriocin genes, attaching to enterocyte-like HT-29 cells, competing with intestinal pathogens, lowering cholesterol, and improving IBD. Thus, after further studies, they could be considered as probiotic strains.
Collapse
Affiliation(s)
- Milad Abdi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Lohrasbi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
The Role of Bifidobacteria in Predictive and Preventive Medicine: A Focus on Eczema and Hypercholesterolemia. Microorganisms 2021; 9:microorganisms9040836. [PMID: 33919907 PMCID: PMC8070932 DOI: 10.3390/microorganisms9040836] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Bifidobacteria colonize the human gastrointestinal tract early on in life, their interaction with the host starting soon after birth. The health benefits are strain specific and could be due to the produced polysaccharides. The consumption of probiotics may prevent obesity, irritable bowel syndrome, eczema or atopic dermatitis, and asthma. Non-replicative strains of Bifidobacterium longum (NCC3001 and NCC2705) promote the differentiation of normal human epidermal keratinocytes (NHEKs), inducing a high expression of differentiation markers (keratin —KRT1—, and transglutaminase —TGM1—) and pro-regeneration markers (cathepsins), including β-defensin-1, which plays an important role in modulating the cutaneous immune response. Strains belonging to the genera Bifidobacterium and Lactobacillus can increase tight-junction proteins in NHEKs and enhance barrier function. Bifidobacteria and lactobacilli may be used as prophylactic or therapeutic agents towards enteric pathogens, antibiotic-associated diarrhea, lactose intolerance, ulcerative colitis, irritable bowel syndrome, colorectal cancer, cholesterol reduction, and control of obesity and metabolic disorders. Bifidobacterium bifidum showed an in vitro capability of lowering cholesterol levels thanks to its absorption into the bacterial membrane. Several strains of the species Lactobacillus acidophilus, L. delbrueckii subsp. bulgaricus, L. casei, and L. gasseri led to a reduced amount of serum cholesterol due to their ability to assimilate cholesterol (in vitro). Lactococcus lactis KF147 and Lactobacillus plantarum Lp81 have also been shown to reduce cholesterol levels by 12%. Clarifying the specific health mechanisms of Bifidobacterium and Lactobacillus strains in preventing high-cost pathologies could be useful for delineating effective guidelines for the treatment of infants and adults.
Collapse
|
34
|
GHASEMIAN SO, GHOLAMİ-AHANGARAN M, POURMAHDİ O, AHMADİ-DASTGERDİ A. Dietary supplementation of protexin and artichoke extract for improving growth indices, lipid profile and antioxidant capacity in broilers chickens. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2021. [DOI: 10.33988/auvfd.833094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Abstract
Several studies have shown that probiotics and synbiotics ameliorate dyslipidemia. However, the molecular mechanisms mediating their effects remain to be determined. Therefore, we aimed to compare the effects of a probiotic, a prebiotic, and a synbiotic in dyslipidemic Sprague–Dawley rats, and explore the mechanisms involved using a proteomic approach. The rats were allocated to five groups: a control group that was fed normal chow, and four high-fat diet-fed groups, three of which were administered a probiotic (Lactobacillus acidophilus), a prebiotic (inulin), or a combination of the two (a synbiotic) for 30 days. We showed that the administration of inulin, and especially L. acidophilus, improved the lipid profile and reduced the serum concentrations of inflammatory markers in high-fat diet-fed rats. Proteomic analysis showed changes in lipid elongation, glycerolipid metabolism, activation of antioxidants, and a reduction in the activation of the mitogen-activated protein kinase signaling pathway in the livers of rats administered L. acidophilus, which likely mediate its beneficial effects on inflammation and dyslipidemia by reduced the levels of 18.56% CRP, 35.71% TNF-α 25.6% LDL-C and 28.57% LDL-C/HDL-C ratio when compared to HF group. L. acidophilus and inulin may represent effective natural means of maintaining inflammation and dyslipidemia.
Collapse
|
36
|
Afrin S, Akter S, Begum S, Hossain MN. The Prospects of Lactobacillus oris as a Potential Probiotic With Cholesterol-Reducing Property From Mother's Milk. Front Nutr 2021; 8:619506. [PMID: 33748173 PMCID: PMC7969506 DOI: 10.3389/fnut.2021.619506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
This experiment was conducted to characterize potential Lactobacillus spp. isolated from mother's milk and infant feces to obtain new and specific probiotic strains. In this study, seven ascendant strains were identified as Lactobacillus spp. based on their morphological characteristics and biochemical properties. Among them, only one (C-1) isolate was identified as Lactobacillus oris through BioLogTM identification. The study further investigated the isolate through probiotic potentiality tests such as pH and bile tolerance, NaCl tolerance test, gastric juice tolerance, antioxidant activity, resistance to hydrogen, reduction of sodium nitrate, antimicrobial activity, and antibiotic susceptibility test. The result showed that the strain is a potential probiotic based on probiotic capability. The identified strain was most acid-tolerant and retained around 80% viability for up to 4 h at pH 1.0 and 2.0. The isolate showed tolerance against up to 1.50% bile concentration and gastric juice and was able to grow 1-6% NaCl concentrations. Lactobacillus oris showed resistance to most antibiotics as well as antagonistic activity against the tested pathogen, good antioxidant properties, reduction of sodium nitrate and H2O2. The isolate exhibited good intestinal epithelial adhesion properties, and SDS page was performed for secreted protein analysis. Moreover, the strain showed promising cholesterol-lowering properties based on the cholesterol level. This present result indicates that L. oris has superior probiotic properties and can be regarded as a potential probiotic candidate.
Collapse
Affiliation(s)
- Sadia Afrin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Suraiya Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Shamima Begum
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Md Nur Hossain
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| |
Collapse
|
37
|
Potential Probiotic Strains of Saccharomyces and Non- Saccharomyces: Functional and Biotechnological Characteristics. J Fungi (Basel) 2021; 7:jof7030177. [PMID: 33801543 PMCID: PMC7999857 DOI: 10.3390/jof7030177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
Due to the evident demand for probiotic microorganisms, a growing number of scientific studies have involved the preliminary selection of new strains, but deeper studies for knowing specific functional and biotechnological properties are needed. In the present work, twenty yeasts (Saccharomyces and non-Saccharomyces) with potential probiotic characteristics, selected in previous works, were evaluated. The following assays were realized: adhesion to Caco-2/TC7 cells, prebiotic metabolisms, assimilation of cholesterol, enzymatic and antioxidant activity, and antifungal resistance. In addition, the effect of ultrasonic treatment was evaluated for attenuating the cultures before their possible incorporation into a food or supplement. In all of the cases, the unique commercial probiotic yeast (S. boulardii CNM I-745) was used as positive control. Results show different capabilities depending on the property studied. In general, no Saccharomyces yeasts were better in the adhesion to Caco cells, prebiotic metabolism, and presented higher variability of enzymatic activities. The ones related to cholesterol assimilation and antioxidant capability did not show a marked trend, and with respect to the attenuation process, the Saccharomyces yeasts were more resistant. For selecting the potential probiotic yeasts with better balance among all characteristics, a principal component analysis (PCA) was carried out. The most promising yeasts for use as health-promoting probiotics are Hanseniaspora osmophila 1056 and 1094, Lachancea thermotolerans 1039, and S. cerevisiae 3 and 146.
Collapse
|
38
|
Kim Y, Yoon S, Shin H, Jo M, Lee S, Kim SH. Isolation of the Cholesterol-Assimilating Strain Pediococcus acidilactici LRCC5307 and Production of Low-Cholesterol Butter. Food Sci Anim Resour 2021; 41:300-311. [PMID: 33987550 PMCID: PMC8115011 DOI: 10.5851/kosfa.2020.e101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/08/2020] [Accepted: 12/26/2020] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to evaluate the cholesterol-assimilation ability of lactic acid bacteria (LAB), which were isolated from kimchi, a Korean traditional fermented cabbage. The isolated strain, using modified MRS medium, showed 30.5% cholesterol assimilation activity and was named Pediococcus acidilactici LRCC5307. Types and concentrations of bile were investigated for their effects on increasing the cholesterol assimilation ability of the LRCC5307 strain, a 74.5% decrease in cholesterol was observed when 0.2% bile salts were added. In addition, the manufacture of low-cholesterol butter using LRCC5307 was examined. After fermentation, LRCC5307 with butter showed 8.74 Log CFU/g viable cells, pH 5.43, and a 11% decrease in cholesterol. These results suggest that LRCC5307 could help in the production of healthier butter by decreasing cholesterol and including living LAB.
Collapse
Affiliation(s)
- Yunsik Kim
- Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
| | - Seokmin Yoon
- Food-Biotech Team, Division of Basic Research, Lotte R&D Center, Seoul 07594, Korea
| | - Hyejung Shin
- Department of Food Bioscience and Technology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
| | - Miyoun Jo
- Food-Biotech Team, Division of Basic Research, Lotte R&D Center, Seoul 07594, Korea
| | - Sunmin Lee
- Food-Biotech Team, Division of Basic Research, Lotte R&D Center, Seoul 07594, Korea
| | - Sae-Hun Kim
- Department of Food Bioscience and Technology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
39
|
Zou Y, Xue W, Lin X, Hu T, Liu SW, Sun CH, Luo G, Lv M, Dai Y, Kristiansen K, Xiao L. Taxonomic Description and Genome Sequence of Christensenella intestinihominis sp. nov., a Novel Cholesterol-Lowering Bacterium Isolated From Human Gut. Front Microbiol 2021; 12:632361. [PMID: 33692769 PMCID: PMC7937921 DOI: 10.3389/fmicb.2021.632361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/20/2021] [Indexed: 01/29/2023] Open
Abstract
A Gram-staining-negative, non-spore-forming, short, straight rod, non-motile, and obligate anaerobic bacterial strain, AF73-05CM02T, was isolated from a fecal sample of a 30 years old healthy male living in Shenzhen, China. Colonies were approximately 0.2 mm in diameter, beige, and circular after 4 days of incubation on PYG agar under anaerobic conditions at 37°C. Strain AF73-05CM02T grew in a temperature range between 30 and 42°C and a pH range from 6.0 to 8.5, with optimum growth at 37–42°C and pH 7.0. 16S rRNA gene sequence analysis demonstrated that strain AF73-05CM02T belongs to the genus Christensenella and showed the highest level of sequence similarity (98.68%) with Christensenella minuta DSM 22607T. The predominant fatty acids of strain AF73-05CM02T were C10:0 (7.5%), iso-C11:0 (5.6%), C12:0 (7.2%), C14:0 (46.6%), iso-C15:0 (7.4%), C16:0 (9.7%), and C18:1 ω9c (6.9%). Acetic acid, formic acid, butyric acid, and lactic acid were the end products of glucose fermentation. The strain was negative for catalase, indole production, and hydrolysis of gelatin. Genomic relatedness analyses based on average nucleotide identity (ANI) indicated that strain AF73-05CM02T significantly differed from other species of the genus Christensenella, showing ANI values less than 82.89% with the phylogenetically closest species. The G + C content of the genomic DNA was 52.07 mol% from the genome sequence, which differs from that of Christensenella minuta. Several physiological, biochemical, and genotypic properties differentiated the novel bacterial strain from the related species, indicating that the strain represents a new species of the genus Christensenella for which the name Christensenella intestinihominis sp. nov. is proposed, with strain AF73-05CM02T ( = CGMCC 1.5207T = DSM 103477T ) being the type strain. The following study explored the cholesterol-lowering function of strains AF73-05CM02T and Christensenella minuta DSM 22067T and revealed that the two strains exhibit the capacity for removing cholesterol with efficiency rates of 36.6 and 54.3% and produce exopolysaccharide of 234 and 271 mg/L, respectively.
Collapse
Affiliation(s)
- Yuanqiang Zou
- BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
| | | | - Xiaoqian Lin
- BGI-Shenzhen, Shenzhen, China.,School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, China
| | | | - Shao-Wei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng-Hang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Mei Lv
- BGI-Shenzhen, Shenzhen, China
| | | | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China.,BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Ma F, Luo L, Wang Q. Response of the ileum transcriptome to fructo-oligosaccharides in Taiping chickens. Anim Biotechnol 2021; 33:1217-1228. [PMID: 33591232 DOI: 10.1080/10495398.2021.1884565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate the effects of fructo-oligosaccharide (FOS) supplementation intake of Taiping chickens (Gallus gallus domesticus) and its stimulating effects on ileum. 120 healthy chickens were randomly divided into two groups; control group (CT) and fructo-oligosaccharides group (FOS). At the 60th day of age, ileum mucosa of three chickens per group were collected and performed transcriptome profiling of Taiping chicken ileum mucosa using the Hiseq™ 2500 sequencing platform. Compared with CT group, 50 genes were differentially expressed in the FOS group. Ten of the differently expressed genes were further validated by RT-qPCR. In addition, gene ontology and Kyoto encyclopedia of genes and genomes analyses revealed that these differentially expressed genes were mainly enriched to drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, retinol metabolism, fat digestion and absorption, herpes simplex infection and valine, leucine and isoleucine biosynthesis. The results of this study provided the help to our understanding application of fructo-oligosaccharides in indigenous chicken production and provide a theoretical basis for the genetic development of indigenous chickens.
Collapse
Affiliation(s)
- Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, P. R. China
| | - Lintong Luo
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, P. R. China
| | - Qianning Wang
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, P. R. China
| |
Collapse
|
41
|
Kaur J, Singh BP, Chaudhary V, Elshaghabee FMF, Singh J, Singh A, Rokana N, Panwar H. Probiotics as Live Bio-therapeutics: Prospects and Perspectives. MICROORGANISMS FOR SUSTAINABILITY 2021:83-120. [DOI: 10.1007/978-981-15-6795-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
42
|
Nguyen TPT, Garrahan MA, Nance SA, Seeger CE, Wong C. Assimilation of Cholesterol by Monascus purpureus. J Fungi (Basel) 2020; 6:E352. [PMID: 33317087 PMCID: PMC7770578 DOI: 10.3390/jof6040352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Monascus purpureus, a filamentous fungus known for its fermentation of red yeast rice, produces the metabolite monacolin K used in statin drugs to inhibit cholesterol biosynthesis. In this study, we show that active cultures of M. purpureus CBS 109.07, independent of secondary metabolites, use the mechanism of cholesterol assimilation to lower cholesterol in vitro. We describe collection, extraction, and gas chromatography-flame ionized detection (GC-FID) methods to quantify the levels of cholesterol remaining after incubation of M. purpureus CBS 109.07 with exogenous cholesterol. Our findings demonstrate that active growing M. purpureus CBS 109.07 can assimilate cholesterol, removing 36.38% of cholesterol after 48 h of incubation at 37 °C. The removal of cholesterol by resting or dead M. purpureus CBS 109.07 was not significant, with cholesterol reduction ranging from 2.75-9.27% throughout a 72 h incubation. Cholesterol was also not shown to be catabolized as a carbon source. Resting cultures transferred from buffer to growth media were able to reactivate, and increases in cholesterol assimilation and growth were observed. In growing and resting phases at 24 and 72 h, the production of the mycotoxin citrinin was quantified via high-performance liquid chromatography-ultraviolet (HPLC-UV) and found to be below the limit of detection. The results indicate that M. purpureus CBS 109.07 can reduce cholesterol content in vitro and may have a potential application in probiotics.
Collapse
Affiliation(s)
- Theresa P. T. Nguyen
- Department of Chemistry & Biochemistry, Loyola University Maryland, Baltimore, MD 21210, USA; (M.A.G.); (S.A.N.); (C.E.S.); (C.W.)
| | | | | | | | | |
Collapse
|
43
|
Wang C, Zhang C, Li S, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Effects of Probiotic Supplementation on Dyslipidemia in Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Foods 2020; 9:foods9111540. [PMID: 33114518 PMCID: PMC7692794 DOI: 10.3390/foods9111540] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The effectiveness of probiotic consumption in controlling dyslipidemia in type 2 diabetes mellitus (T2DM) has been unclear. We reviewed relevant randomized controlled trials (RCTs) to clarify the effect of probiotic intake on dyslipidemia in T2DM patients. The Web of Science, Scopus, PubMed and Cochrane Library databases were used for searching relevant RCTs published up to October 2020. The total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) concentrations were selected as the primary indicators for dyslipidemia. The results of 13 eligible RCTs showed that probiotic intake could significantly reduce TC (SMD: −0.23, 95% CI: (−0.37, −0.10)) and TG (SMD: −0.27, 95% CI: (−0.44, −0.11)) levels, but did not regulate LDL-C or HDL-C concentrations. Subgroup analysis showed that multispecies probiotics (≥two species), but not single-species probiotics, significantly decreased TC and TG concentrations. Furthermore, powder, but not liquid, probiotics could reduce TC and TG concentrations. This meta-analysis demonstrated that probiotic supplementation is helpful in reducing TC and TG concentrations in T2DM patients. However, more well-controlled trials are needed to clarify the benefits of probiotics on dyslipidemia in T2DM patients.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.W.); (C.Z.); (S.L.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.W.); (C.Z.); (S.L.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Sijia Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.W.); (C.Z.); (S.L.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.W.); (C.Z.); (S.L.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.W.); (C.Z.); (S.L.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.W.); (C.Z.); (S.L.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.W.); (C.Z.); (S.L.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine, Research Institute Wuxi Branch, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.W.); (C.Z.); (S.L.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.W.); (C.Z.); (S.L.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-85912155
| |
Collapse
|
44
|
Oynotkinova OS, Nikonov EL, Demidova TY, Baranov AP, Kryukov EV, Dedov EI, Karavashkina EA. [Changes in the intestinal microbiota as a risk factor for dyslipidemia, atherosclerosis and the role of probiotics in their prevention]. TERAPEVT ARKH 2020; 92:94-101. [PMID: 33346437 DOI: 10.26442/00403660.2020.09.000784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
The review presents an analysis of studies on the role of the intestinal microbiota and microbiome in lipid metabolism and the development of dyslipidemia, atherosclerosis and cardiovascular diseases. The role of the intestine as a metabolic organ with a multifactorial strain evolution, involved in lipid metabolism, cholesterol homeostasis and enterohepatic circulation is shown. The influence of microbial imbalance on the development of dyslipidemia and atherosclerosis is considered. Special attention is paid to preventive therapy with hypolipidemic probiotics. It is shown that the use of probiotics with hypolipidemic properties and consisting of a mixture of such strains asLactobacillus plantarumCECT7527, CET7528 and CECT7529, mixtures ofLactobacillus acidophilusLa-5,Bifidobacterium lactisBB-12,Bifidobacterium animalis lactisBB-12 contribute to reducing the level of LDL-C, CCS, TG, are safe and well tolerated, can be used as an adjuvant non-drug therapy in combination with hypolipidemic drugs for dyslipidemia, multifocal atherosclerosis.
Collapse
Affiliation(s)
- O S Oynotkinova
- Research Institute of the Organization of Health Care and Medical Management.,Pirogov Russian National Research Medical University.,Lomonosov Moscow State University
| | - E L Nikonov
- Pirogov Russian National Research Medical University
| | - T Y Demidova
- Pirogov Russian National Research Medical University
| | - A P Baranov
- Pirogov Russian National Research Medical University.,Lomonosov Moscow State University
| | | | - E I Dedov
- Pirogov Russian National Research Medical University
| | | |
Collapse
|
45
|
He YJ, You CG. The Potential Role of Gut Microbiota in the Prevention and Treatment of Lipid Metabolism Disorders. Int J Endocrinol 2020; 2020:8601796. [PMID: 33005189 PMCID: PMC7509545 DOI: 10.1155/2020/8601796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Due to changes in lifestyle, diet structure, and aging worldwide, the incidence of metabolic syndromes such as hyperlipidemia, hypertension, diabetes, and obesity is increasing. Metabolic syndrome is considered to be closely related to cardiovascular disease and severely affects human health. In recent years, researchers have revealed that the gut microbiota, through its own or interacting metabolites, has a positive role in regulating metabolic syndrome. Therefore, the gut microbiota has been a new "organ" for the treatment of metabolic syndrome. The role has not been clarified, and more research is necessary to prove the specific role of specific strains. Probiotics are also believed to regulate metabolic syndromes by regulating the gut microbiota and are expected to become a new preparation for treating metabolic syndromes. This review focuses on the regulation of lipid metabolism disorders by the gut microbiota through the effects of bile acids (BA), short-chain fatty acids (SCFAs), bile salt hydrolase (BSH), and genes such as ABCG5 and ABCG8, FXR, NPC1L, and LDL-R.
Collapse
Affiliation(s)
- Yan-Jun He
- Laboratory Medicine Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen Lanzhou, Lanzhou 730030, Gansu, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen Lanzhou, Lanzhou 730030, Gansu, China
| |
Collapse
|
46
|
Abomughaid MM. Isolation and Identification of Some Probiotic Bacteria and Their Potential Role in Improving Immune Response and Resistance of Nile Tilapia (Oreochromis niloticus) in Comparison with a Commercial Product. Int J Microbiol 2020; 2020:8865456. [PMID: 32724309 PMCID: PMC7382714 DOI: 10.1155/2020/8865456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/17/2020] [Indexed: 11/18/2022] Open
Abstract
This work aimed to retrieve a field isolate of probiotic from Nile tilapia (Oreochromis niloticus) and compare the obtained results with a commercial probiotic product through experimental studies. The study was conducted on 250 Nile tilapia. Ten fish were used to isolate the probiotic strain. Two isolates showed an in vitro inhibitory effect against pathogenic A. hydrophila. The isolate with the largest zone was identified by PCR. Sixty fish were used to test the safety of a potential probiotic. One hundred and eighty fish were used in a two-month feeding experiment. Fish were divided into 3 groups, group (1): the control, group (2): fed on potential probiotics, and group (3): fed on commercial probiotic (Organic Green™). The effects of tested products on the immune response were recorded in all groups. After one and two months of feeding experiment, blood and nonspecific immune parameters were evaluated. Disease resistance against Aeromonas hydrophila was evaluated through challenge experiment. The histopathology of the treated groups was fully recorded in comparison with the control group. The potential probiotic based on the in vitro antimicrobial activity test was identified as P. putida using routine and gel electrophoresis and 16S rRNA sequencing. During the first and the second month of experiment, there was a highly significant increase in the survival percent of the experimental fish in both treated groups with probiotics. In the first phase of the experiment, a significant increase in the haematocrit values and NBT, lysozyme activity, and phagocytic activity was seen in all treated groups in comparison with the control. The increase in the TLC was significant in the group fed with P. putida in comparison with the control group. In the second phase, a nonsignificant increase in the hematocrit values and significant increases in the NBT and phagocytic index were seen in P. putida and organic green groups in comparison with the control group. The TLC and DLC revealed nonsignificant changes in the treated groups in comparison with the control. The RLP in the groups treated with P. putida was higher than that in those treated with organic green. Although probiotics are an important management tool in aquaculture, it should be subjected to scientific laboratory tests and field measurements.
Collapse
Affiliation(s)
- Mosleh M. Abomughaid
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
47
|
Sharma M, Shukla G. Administration of Metabiotics Extracted From Probiotic Lactobacillus rhamnosus MD 14 Inhibit Experimental Colorectal Carcinogenesis by Targeting Wnt/β-Catenin Pathway. Front Oncol 2020; 10:746. [PMID: 32670864 PMCID: PMC7326139 DOI: 10.3389/fonc.2020.00746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/20/2020] [Indexed: 12/30/2022] Open
Abstract
Background and Objective: The cellular microenvironment, diet, and lifestyle play a key role in the occurrence of colorectal cancer. Due to its rising trend, attempts are being made to devise novel biointerventions as adjunct to conventional therapies to prevent this deadly disease. "Metabiotics," the beneficial metabolic signatures of probiotics are emerging as potential anticancer agent due to their ability to alter metabolic processes in the gut lumen and reduce the severity of colon carcinogenesis. Although beneficial attributes of metabiotics have been elucidated in vitro, yet their anticancer mechanism in vivo needs to be explored. Thus, the present study was performed to envisage anticancer potential of metabiotic extract obtained from indigenous probiotic, Lactobacillus rhamnosus MD 14, in early experimental colon carcinogenesis. Materials and Methods: Sprague-Dawley rats were daily administered with low, medium, and high dose of metabiotic extract orally along with a single dose of weekly intraperitoneal injection of 1,2-dimethylhydrazine up to 6 weeks and monitored for the markers of early colon carcinogenesis. Results: It was observed that the medium dose of metabiotic extract attenuated early colon carcinogenesis by reducing fecal procarcinogenic enzymes, oxidants, aberrant crypt foci, vis-à-vis downregulating oncogenes [K-ras, β-catenin, Cox-2, nuclear factor kappa B (NF-κB)] and upregulating tumor suppressor p53 gene leading to almost normal colon histology. Conclusions: It can be suggested that metabiotics modulate experimental colorectal cancer and could be used as a promising alternative of probiotics, particularly in immunocompromised individuals.
Collapse
Affiliation(s)
| | - Geeta Shukla
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
48
|
Shekh SL, Boricha AA, Chavda JG, Vyas BRM. Probiotic potential of lyophilized Lactobacillus plantarum GP. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01556-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Purpose
Freeze drying of Lactobacillus plantarum GP in the presence of wall materials to achieve improved survival and retention of probiotic functionality during storage.
Methods
L. plantarum cells were lyophilized in the presence of inulin, fructooligosaccharides, lactulose, and/or skim milk. The lyophilized vials were stored at 8–10 °C up to 6 months and cells from these vials were evaluated for their probiotic functionality.
Results
L. plantarum GP freeze dried in the presence of wall material lactulose displayed viability of 98 ± 2.8% promising survival rate in the stress conditions of human digestive tract. The freeze dried cells of Lactobacilli retained the ability to adhere intestinal mucin layer, form biofilm, inhibit food spoilage and enteropathogens, produce β-galactosidase, bile salt hydrolase and γ-amino butyric acid, remove cholesterol, and scavenge DPPH radical.
Conclusion
Lyophilized cells of L. plantarum GP retained all the functional characteristics without any significant loss during storage, which prompts to incorporate prebiotics for the development of stable functional food products.
Collapse
|
49
|
Khare A, Gaur S. Cholesterol-Lowering Effects of Lactobacillus Species. Curr Microbiol 2020; 77:638-644. [PMID: 32020463 DOI: 10.1007/s00284-020-01903-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
|
50
|
Qu T, Yang L, Wang Y, Jiang B, Shen M, Ren D. Reduction of serum cholesterol and its mechanism byLactobacillus plantarumH6 screened from local fermented food products. Food Funct 2020; 11:1397-1409. [DOI: 10.1039/c9fo02478f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Scheme showing the possible mechanisms by whichL. plantarumH6 maintains cholesterol homeostasis in mice with high-cholesterol-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Tianming Qu
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun
- China
| | - Liu Yang
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun
- China
| | - Yuhua Wang
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun
- China
| | - Bin Jiang
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun
- China
| | - Minghao Shen
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun
- China
| | - Dayong Ren
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun
- China
| |
Collapse
|