1
|
Orrell-Trigg R, Awad M, Gangadoo S, Cheeseman S, Shaw ZL, Truong VK, Cozzolino D, Chapman J. Rapid screening of bacteriostatic and bactericidal antimicrobial agents against Escherichia coli by combining machine learning (artificial intelligence) and UV-VIS spectroscopy. Analyst 2024; 149:1597-1608. [PMID: 38291984 DOI: 10.1039/d3an01608k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Antibiotics are compounds that have a particular mode of action upon the microorganism they are targeting. However, discovering and developing new antibiotics is a challenging and timely process. Antibiotic development process can take up to 10-15 years and over $1billion to develop a single new therapeutic product. Rapid screening tools to understand the mode of action of the new antimicrobial agent are considered one of the main bottle necks in the antimicrobial agent development process. Classical approaches require multifarious microbiological methods and they do not capture important biochemical and organism therapeutic-interaction mechanisms. This work aims to provide a rapid antibiotic-antimicrobial biochemical diagnostic tool to reduce the timeframes of therapeutic development, while also generating new biochemical insight into an antimicrobial-therapeutic screening assay in a complex matrix. The work evaluates the effect of antimicrobial action through "traditional" microbiological analysis techniques with a high-throughput rapid analysis method using UV-VIS spectroscopy and chemometrics. Bacteriostatic activity from tetracycline and bactericidal activity from amoxicillin were evaluated on a system using non-resistant Escherichia coli O157:H7 by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and UV-VIS spectroscopy (high-throughput analysis). The data were analysed using principal component analysis (PCA) and support vector machine (SVM) classification. The rapid diagnostic technique could easily identify differences between bacteriostatic and bactericidal mechanisms and was considerably quicker than the "traditional" methods tested.
Collapse
Affiliation(s)
- R Orrell-Trigg
- School of Science, RMIT University, Melbourne, Australia
| | - M Awad
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - S Gangadoo
- School of Science, RMIT University, Melbourne, Australia
| | - S Cheeseman
- The Graeme Clark Institute, Faculty of Engineering and Information Technology and Faculty of Medicine, Dentistry and Health Services, The University of Melbourne, Melbourne 3010, Australia
| | - Z L Shaw
- School of Engineering, RMIT University, Melbourne, Australia
| | - V K Truong
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - D Cozzolino
- QAAFI, University of Queensland, Brisbane, Australia
| | - J Chapman
- The University of Queensland, Brisbane, Australia.
| |
Collapse
|
2
|
Terry LG, Peterson E, Summers RS. Organic matter biofiltration performance modeling: Influence of influent water quality, operating conditions, and biomass. WATER RESEARCH 2024; 249:121006. [PMID: 38141435 DOI: 10.1016/j.watres.2023.121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
The impact of source water dissolved organic matter (DOM) origin, empty bed contact time (EBCT), temperature, and pretreatment methods on biofiltration performance was evaluated and predictive models based on experimental data were developed. Three DOM source water types, terrestrial, microbial, and treated wastewater (WW) effluent, were utilized. A model was developed to predict biofilter performance for dissolved organic carbon (DOC) removal based on the influent biodegradable DOC (BDOC) fraction, a single active biomass measurement from the top of the filter and the filter EBCT. A biomass distribution model was developed to predict total active biomass throughout the filter based on a single biomass measurement from the top of the filter. The measured BDOC fractions were 21 % for the nonWW impacted source waters, 36 % for the WW effluents and 62 % for the ozonated WW effluents. At an EBCT of 15 min, biofilters removed between 7 and 21 % of the DOC (19 to 50 % for BDOC) depending on the DOM type and use of ozonation. When the EBCT decreased to 5 min DOC removal decreased by 40 % and when increased to 30 min removal increased by 42 %. When the temperature decreased from 22 °C to 6 °C DOC removal was 33 % lower and when increased to 28 °C removal was 42 % higher. ATP values were found to be a function of temperature and DOM origin, as the average ATP values from the WW effluent biofilters were almost double that of the non-WW impacted sources and pre-ozonation of the WW effluent yielded values three times higher. The model was applied to the results of 27 different biofilter runs at three EBCTs yielding one distinct rate constant for the non-WW impacted source waters and one rate constant for the WW effluents. The model was successfully applied to the results of 19 filter runs from the literature and to those from a pilot plant over 6 months of operation.
Collapse
Affiliation(s)
- Leigh G Terry
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Box 870205, Tuscaloosa, AL 35487, USA
| | - Eric Peterson
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado at Boulder, UCB 428, Boulder, CO 80309, USA
| | - R Scott Summers
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado at Boulder, UCB 428, Boulder, CO 80309, USA.
| |
Collapse
|
3
|
de Carvalho CCCR. Adaptation of Bacteria to Antineoplastic Agents Involves Persister Cells and Increases Resistance to Antibiotics. Bioengineering (Basel) 2022; 9:bioengineering9080355. [PMID: 36004880 PMCID: PMC9404991 DOI: 10.3390/bioengineering9080355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing number of life-threatening infections observed in cancer patients has been ascribed to chemotherapy-induced neutropenia and to invasive medical procedures such as surgery and the application of catheters. In this study, it was questioned if the infections could also be favored by an increased resistance of bacteria due to the adaptation to antineoplastic agents used in chemotherapy. After exposure to several antineoplastic agents, it was observed that cells of Staphylococcus aureus, Mycobacterium vaccae, Pseudomonas aeruginosa, and Escherichia coli changed the fatty acid profile of their cellular membranes, produced exopolymeric substances, and formed aggregates that adhered to surfaces. Additionally, when exposed to high concentrations of these compounds, a persister sub-population could be identified. After adaptation to antineoplastic agents, the minimum inhibitory concentration (MIC) of several antibiotics increased considerably in the tested strains.
Collapse
Affiliation(s)
- Carla C. C. R. de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; ; Tel.: +351-21-841-9594
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
4
|
Zhao S, Yun H, Khan A, Salama ES, Redina MM, Liu P, Li X. Two-stage microbial fuel cell (MFC) and membrane bioreactor (MBR) system for enhancing wastewater treatment and resource recovery based on MFC as a biosensor. ENVIRONMENTAL RESEARCH 2022; 204:112089. [PMID: 34571032 DOI: 10.1016/j.envres.2021.112089] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Lack of process control between the two stages of a combined microbial fuel cell-membrane bioreactor (MFC-MBR) system limits its application in wastewater treatment due to membrane fouling and high energy consumption. In this study, a two-stage MFC-MBR integrated system was established to investigate the impact of incorporating process control on petroleum refinery wastewater treatment. The results showed that chemical oxygen demand (COD) removal exhibits a linear relationship with the MFC voltage output (R2 = 0.9821); therefore, the MFC was used as a biosensor to control the combined system. The removal efficiencies of COD, ammonium nitrogen (NH4+-N), and total nitrogen (TN) were 96.3%, 92.4%, and 86.6%, respectively, in the MFC-MBR biosensor, whereas those in the control system were 74.7%, 71.2%, and 64.7% respectively. Furthermore,using the biosensor control system yielded a 50% reduction in the transmembrane pressure (1.01 kPa day-1) and decreased membrane fouling in wastewater treatment. The maximum energy recovery of the biosensor system (0.00258 kWh m-3) was five times higher than that of the control system, as determined by calculating the mass balance of the system. Thus, this study indicates that using the MFC as a biosensor for process control in an MFC-MBR system can improve overall system performance.
Collapse
Affiliation(s)
- Shuai Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China
| | - Hui Yun
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China
| | - Aman Khan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | | | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
5
|
Atoloye IA, Adesina IS, Sharma H, Subedi K, Liang CL(K, Shahbazi A, Bhowmik A. Hemp biochar impacts on selected biological soil health indicators across different soil types and moisture cycles. PLoS One 2022; 17:e0264620. [PMID: 35226702 PMCID: PMC8884510 DOI: 10.1371/journal.pone.0264620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Application of crop residues and biochar have been demonstrated to improve soil biological and chemical properties in agroecosystems. However, the integrated effect of organic amendments and hydrological cycles on soil health indicators are not well understood. In this study, we quantified the impact of hemp residue (HR), hemp biochar (HB), and hardwood biochar (HA) on five hydrolytic enzymes, soil microbial phospholipid (PLFA) community structure, pH, permanganate oxidizable carbon (POXC) soil organic carbon (SOC), and total nitrogen (TN). We compared two soil types, Piedmont and Coastal Plain soils of North Carolina, under (i) a 30-d moisture cycle maintained at 60% water-filled pore space (WFPS) (D-W1), followed by (ii) a 7-day alternate dry-wet cycle for 42 days (D-W2), or (iii) maintained at 60% WFPS for 42 days (D-W3) during an aerobic laboratory incubation. Results showed that HR and HB significantly increased the geometric mean enzyme activity by 1-2-fold in the Piedmont soil under the three moisture cycles and about 1.5-fold under D-W in the Coastal soil. In the presence of HA, the measured soil enzyme activities were significantly lower than control under the moisture cycles in both soil types. The shift in microbial community structure was distinct in the Coastal soil but not in the Piedmont soil. Under D-W2, HR and HB significantly increased POXC (600-700 mg POXC kg-1 soil) in the Coastal soil but not in the Piedmont soil while HA increased nitrate (8 mg kg-1) retention in the Coastal soil. The differences in amendment effect on pH SOC, TN, POXC, and nitrate were less distinct in the fine-textured Piedmont soil than the coarse-textured Coastal soil. Overall, the results indicate that, unlike HA, HR and HB will have beneficial effects on soil health and productivity, therefore potentially improving soil's resilience to changing climate.
Collapse
Affiliation(s)
- Idowu A. Atoloye
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, NC, United States of America
| | - Ifeoluwa S. Adesina
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, NC, United States of America
| | - Harmandeep Sharma
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, NC, United States of America
| | - Kiran Subedi
- Analytical Services Laboratory, College of Agriculture and Environmental Sciences, North Carolina A&T State University, Greensboro, NC, United States of America
| | - Chyi-Lyi (Kathleen) Liang
- Center for Environmental Farming Systems, North Carolina A&T State University, Greensboro, NC, United States of America
| | - Abolghasem Shahbazi
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, NC, United States of America
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, NC, United States of America
| |
Collapse
|
6
|
Ren Z, Fu X, Zhang G, Li Y, Qin Y, Wang P, Liu X, Lv L. Study on performance and mechanism of enhanced low-concentration ammonia nitrogen removal from low-temperature wastewater by iron-loaded biological activated carbon filter. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113859. [PMID: 34597949 DOI: 10.1016/j.jenvman.2021.113859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
In order to strengthen the treatment of low-concentration ammonia nitrogen wastewater at low temperature, iron-loaded activated carbon (Fe-AC) with ultrasonic impregnation method was used as the filter material of biofilter process. The performance and mechanism of ammonia nitrogen removal from simulated secondary wastewater by iron-loaded biological activated carbon filter (Fe-BACF) were studied at 10 °C. The characterization results showed that iron was loaded on the surface of AC in the form of Fe2O3, and the specific surface area, total pore volume, pore size and alkaline functional group content of Fe-AC were obviously increased. After the formation of biofilm on the surface of filter media, the average removal rate of ammonia nitrogen by Fe-BACF (97.9%) was significantly higher than that of conventional BACF (87.8%). The improved surface properties increased the number and metabolic activity of microorganisms, and promoted the secretion of EPS on the surface of Fe-BAC. The results of high-throughput sequencing showed that the existence of Fe optimized the bacterial community structure on the surface of Fe-BAC, with the increase of the abundances of psychrophilic bacteria and ammonia nitrogen removal bacteria. The mechanism of enhanced ammonia nitrogen removal by Fe-BACF was the joint action of many factors, among which the main causal relationship was that modification of iron could optimize the number and category of microorganisms on Fe-BAC surface by improving the surface properties, thus improving the biological nitrogen removal ability. Results of this study provided a practical way for the treatment of low ammonia nitrogen wastewater in cold regions.
Collapse
Affiliation(s)
- Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Xiaolin Fu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China.
| |
Collapse
|
7
|
de Carvalho CCCR, Taglialegna A, Rosato AE. Impact of PrsA on membrane lipid composition during daptomycin-resistance-mediated β-lactam sensitization in clinical MRSA strains. J Antimicrob Chemother 2021; 77:135-147. [PMID: 34618036 PMCID: PMC8730685 DOI: 10.1093/jac/dkab356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/28/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The cyclic anionic lipopeptide daptomycin is used in the treatment of severe infections caused by Gram-positive pathogens, including MRSA. Daptomycin resistance, although rare, often results in treatment failure. Paradoxically, in MRSA, daptomycin resistance is usually accompanied by a concomitant decrease in β-lactam resistance in what is known as the 'see-saw effect'. This resensitization is extensively used for the treatment of MRSA infections, by combining daptomycin and a β-lactam antibiotic, such as oxacillin. OBJECTIVES We aimed: (i) to investigate the combined effects of daptomycin and oxacillin on the lipid composition of the cellular membrane of both daptomycin-resistant and -susceptible MRSA strains; and (ii) to assess the involvement of the post-translocational protein PrsA, which plays an important role in oxacillin resistance in MRSA, in membrane lipid composition and remodelling during daptomycin resistance/β-lactam sensitization. RESULTS The combination of microbiological and biochemical studies, with fluorescence microscopy using lipid probes, showed that the lipid composition and surface charge of the daptomycin-resistant cells exposed to daptomycin/oxacillin were dependent on antibiotic concentration and directly associated with PrsA, which influenced cardiolipin remodelling/relocation. CONCLUSIONS Our findings show that PrsA, in addition to its post-transcriptional role in the maturation of PBP 2a, is a key mediator of cell membrane remodelling connected to the see-saw effect and may have a key role in the resensitization of daptomycin-resistant strains to β-lactams, such as oxacillin.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Agustina Taglialegna
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Adriana E Rosato
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Molecular Microbiology Diagnostics-Research, Riverside University Health System, 26520 Cactus Avenue, Moreno Valley, CA 92555, USA
- University of California, Riverside, CA, USA
| |
Collapse
|
8
|
Spatial Variability in Streambed Microbial Community Structure across Two Watersheds. Microbiol Spectr 2021; 9:e0197221. [PMID: 34908462 PMCID: PMC8672884 DOI: 10.1128/spectrum.01972-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both spatial and temporal variability are key attributes of sedimentary microbial communities, and while spatial effects on beta-diversity appear to dominate at larger distances, the character of spatial variability at finer scales remains poorly understood, especially for headwater stream communities. We investigated patterns of microbial community structure (MCS) in biofilms attached to streambed sediments from two watersheds across spatial scales spanning <1 m within a single stream to several hundred kilometers between watersheds. Analyses of phospholipid fatty acid (PLFA) profiles indicated that the variations in MCS were driven by increases in the relative abundance of microeukaryotic photoautotrophs and their contribution to total microbial biomass. Furthermore, streams within watersheds had similar MCS, underscoring watershed-level controls of microbial communities. Moreover, bacterial community structure assayed as either PCR-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints or PLFA profiles edited to remove microeukaryotes indicated a distinct watershed-level biogeography. No distinct stream order-level distributions were identified, although DGGE analyses clearly indicated that there was greater variability in community structure among 1st-order streams than among 2nd- and 3rd-order streams. Longitudinal gradients in microbial biomass and structure showed that the greatest variations were associated with 1st-order streams within a watershed, and 68% of the variation in total microbial biomass was explained by sediment atomic carbon-to-nitrogen ratio (C:N ratio), percent carbon, sediment surface area, and percent water content. This study confirms a distinct microbial biogeography for headwater stream communities driven by environmental heterogeneity across distant watersheds and suggests that eukaryotic photoautotrophs play a key role in structuring bacterial communities on streambed sediments. IMPORTANCE Microorganisms in streams drive many biogeochemical reactions of global significance, including nutrient cycling and energy flow; yet, the mechanisms responsible for the distribution and composition of streambed microbial communities are not well known. We sampled sediments from multiple streams in two watersheds (Neversink River [New York] and White Clay Creek [WCC; Pennsylvania] watersheds) and measured microbial biomass and total microbial and bacterial community structures using phospholipid and molecular methods. Microbial and bacterial community structures displayed a distinct watershed-level biogeography. The smallest headwater streams within a watershed showed the greatest variation in microbial biomass, and 68% of that variation was explained by the atomic carbon-to-nitrogen ratio (C:N ratio), percent carbon, sediment surface area, and percent water content. Our study revealed a nonrandom distribution of microbial communities in streambeds, and showed that microeukaryotic photoautotrophs, environmental heterogeneity, and geographical distance influence microbial composition and spatial distribution.
Collapse
|
9
|
Akinwole P, Guta A, Draper M, Atkinson S. Spatio-temporal variations in the physiological profiles of streambed bacterial communities: implication of wastewater treatment plant effluents. World J Microbiol Biotechnol 2021; 37:136. [PMID: 34273007 DOI: 10.1007/s11274-021-03106-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
The effluents of wastewater treatment plants (WWTPs) represent a complex mixture of nutrients and toxic substances, thus, the potential exists for the effluents to significantly impact the biochemical characteristics and bacterial communities of the receiving water. We examined spatial and seasonal patterns, and the impact of effluents on microbial biomass, bacterial community structure, and metabolic diversity on a fourth-order stream. We took triplicate sediment samples at five different locations along a 5000 m transect over three sampling periods. We quantified bacterial community structure as community-level physiological profiles and microbial biomass with phospholipid phosphate analysis. Our findings highlight the worrisome impacts of effluents on microbial biomass and bacterial metabolic diversity on the receiving water. Microbial biomass was significantly higher at the WWTP outfall compared to upstream and downstream sites and correlated positively with sediment physicochemical parameters. Furthermore, our data revealed significant spatial differences in bacterial community structure in the context of WWTP impact. High nutrient availability (lower carbon/nitrogen ratios) at the outfall increased site-specific bacterial metabolic diversity in winter but decreased the same in fall. Seasonal changes in the sedimentary microbial biomass and bacterial carbon substrate utilization were evident regardless of the spatial variations or impacts of the wastewater effluents. Communities in fall showed more versatile substrate utilization patterns than the winter communities. These results suggest that WWTP effluents significantly increased microbial biomass and highlight its mixed effects on bacterial community structure and metabolic diversity. Also, our data underscore a close association between sedimentary physicochemical parameters and the associated microbial functional activities.
Collapse
Affiliation(s)
- Philips Akinwole
- Biology Department, DePauw University, Greencastle, IN, 46135, USA.
| | - Amerti Guta
- Biology Department, DePauw University, Greencastle, IN, 46135, USA
| | - Madeline Draper
- Biology Department, DePauw University, Greencastle, IN, 46135, USA
| | - Sophia Atkinson
- Biology Department, DePauw University, Greencastle, IN, 46135, USA
| |
Collapse
|
10
|
Achinas S, Yska SK, Charalampogiannis N, Krooneman J, Euverink GJW. A Technological Understanding of Biofilm Detection Techniques: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3147. [PMID: 32679710 PMCID: PMC7412299 DOI: 10.3390/ma13143147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Biofouling is a persistent problem in almost any water-based application in several industries. To eradicate biofouling-related problems in bioreactors, the detection of biofilms is necessary. The current literature does not provide clear supportive information on selecting biofilm detection techniques that can be applied to detect biofouling within bioreactors. Therefore, this research aims to review all available biofilm detection techniques and analyze their characteristic properties to provide a comparative assessment that researchers can use to find a suitable biofilm detection technique to investigate their biofilms. In addition, it discusses the confluence of common bioreactor fabrication materials in biofilm formation.
Collapse
Affiliation(s)
- Spyridon Achinas
- Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; (S.K.Y.); (J.K.); (G.J.W.E.)
| | - Stijn Keimpe Yska
- Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; (S.K.Y.); (J.K.); (G.J.W.E.)
| | | | - Janneke Krooneman
- Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; (S.K.Y.); (J.K.); (G.J.W.E.)
| | - Gerrit Jan Willem Euverink
- Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; (S.K.Y.); (J.K.); (G.J.W.E.)
| |
Collapse
|
11
|
Spatial and Temporal Variation in Deep-Sea Meiofauna at the LTER Observatory HAUSGARTEN in the Fram Strait (Arctic Ocean). DIVERSITY 2020. [DOI: 10.3390/d12070279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Time-series studies at the LTER (Long-Term Ecological Research) observatory HAUSGARTEN have yielded the world’s longest time-series on deep-sea meiofauna and thus provide a decent basis to investigate the variability in deep-sea meiobenthic communities at different spatial and temporal scales. The main objective of the present study was to investigate whether the sediment-dwelling meiofauna (size range: 32–1000 µm) is controlled by small-scale local environmental conditions, rather than large-scale differences between water depths. Univariate and multivariate statistical analyses, including distance-based linear models (DistLM) and redundancy analysis (dbRDA), revealed that due to their small size, meiofauna tend to mainly respond to micro-scale (centimeter) variations in environmental conditions in surface and subsurface sediment layers. Inter-annual temporal patterns among metazoan meiofauna at higher taxon levels revealed only a weak effect of time, and merely on the rare meiofauna taxa (<2% of the total meiofauna community) at HAUSGARTEN.
Collapse
|
12
|
Li WG, Qin W, Song Y, Zheng ZJ, Lv LY. Impact of ozonation and biologically enhanced activated carbon filtration on the composition of micropollutants in drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33927-33935. [PMID: 30003486 DOI: 10.1007/s11356-018-2700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
A pilot-scale drinking water treatment process for Songhua River, including conventional treatment (coagulation-settlement and rapid sand filtration), ozonation, biological enhanced activated carbon (BEAC) filtration, and chlorination disinfection, was carried out in this study. To investigate the impact of ozonation and BEAC filtration on removing the composition of micropollutants in drinking water, we detected the micropollutant composition from each stage of the treatment process by non-targeted analysis using a GC-MS technique and compared the results between effluents of single BEAC and O3-BEAC processes. Aromatic compounds and esters could be abated efficiently during single BEAC filtration via biodegradation and adsorption; however, possible metabolic products (i.e., alkenes) were formed by biodegradation. Comparatively, O3-BEAC process could reduce micropollutants much more significantly than single BEAC process especially for aromatic compounds including substituted benzenes and polycyclic aromatic hydrocarbons (PAHs) without the formation of metabolic products through the coupling effect of oxidation, biodegradation, and adsorption, suggesting that ozonation improved the removal potential of micropollutants in the BEAC process. In addition, conventional and novel chlorinated disinfection by-products were also measured during post-chlorination.
Collapse
Affiliation(s)
- Wei-Guang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin, China.
- School of Environment, Harbin Institute of Technology, Harbin, China.
| | - Wen Qin
- School of Environment, Harbin Institute of Technology, Harbin, China.
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Yang Song
- School of Environment, Harbin Institute of Technology, Harbin, China
- Research Institute of Environmental Studies at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| | - Ze-Jia Zheng
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Long-Yi Lv
- School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
13
|
Fu J, Lin Z, Zhao P, Wang Y, He L, Zhou J. Establishment and efficiency analysis of a single-stage denitrifying phosphorus removal system treating secondary effluent. BIORESOURCE TECHNOLOGY 2019; 288:121520. [PMID: 31132597 DOI: 10.1016/j.biortech.2019.121520] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
For advanced phosphorus and nitrogen removal, denitrifying phosphorus removal (DPR) was used to treat secondary effluent of sewage plants based on alternating anoxic/anaerobic process within single-stage biofilter. Under the hydraulic load of 3 m3/(m2·h), average removal rates of TP and TN in the system were 61.05% and 90.54%. 82.7% of the NO3--N removal occurred in the upper of the packing layer. TP removal occurred in upper and lower of the packing layer, accounting for 42.02% and 57.98% of the total removal, respectively. Biomass and bioactivity decreased proportional to the height incensement of packing layer. Nitrogen and phosphorus removal rates increased with anaerobic time while decreased with hydraulic load. 16S rDNA sequencing results showed dominant DNPAOs in the system included Acinetobacter and Dechloromonas, while dominant denitrifying bacteria included Flavobacterium, Comamonadaceae, Hydrogenophaga, Thauera and Azospira. The study further provided an effective and feasible way for advanced wastewater treatment.
Collapse
Affiliation(s)
- Jiahao Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Pengcheng Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
14
|
Chen Y, Lin T, Chen W. Enhanced removal of organic matter and typical disinfection byproduct precursors in combined iron-carbon micro electrolysis-UBAF process for drinking water pre-treatment. J Environ Sci (China) 2019; 78:315-327. [PMID: 30665651 DOI: 10.1016/j.jes.2018.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
The organic matter and two types of disinfection byproduct (DBP) precursors in micro-polluted source water were removed using an iron-carbon micro-electrolysis (ICME) combined with up-flow biological aerated filter (UBAF) process. Two pilot-scale experiments (ICME-UBAF and UBAF alone) were used to investigate the effect of the ICME system on the removal of organic matter and DBP precursors. The results showed that ICME pretreatment removed 15.6% of dissolved organic matter (DOM) and significantly improved the removal rate in the subsequent UBAF process. The ICME system removed 31% of trichloromethane (TCM) precursors and 20% of dichloroacetonitrile (DCAN) precursors. The results of measurements of the molecular weight distribution and hydrophilic fractions of DOM and DBP precursors showed that ICME pretreatment played a key role in breaking large-molecular-weight organic matter into low-molecular-weight components, and the hydrophobic fraction into hydrophilic compounds, which was favorable for subsequent biodegradation by UBAF. Three-dimensional fluorescence spectroscopy (3D-EEM) further indicated that the ICME system improved the removal of TCM and DCAN precursors. The biomass analysis indicated the presence of a larger and more diverse microbial community in the ICME-UBAF system than for the UBAF alone. The high-throughput sequencing results revealed that domination of the genera Sphingomonas, Brevundimonas and Sphingorhabdus contributed to the better removal of organic matter and two types of DBP precursors. Also, Nitrosomonas and Pseudomonas were beneficial for ammonia removal.
Collapse
Affiliation(s)
- Yinghan Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
15
|
Xie H, Wang H, Ji F, Liang Y, Song M, Zhang J. Tetrabromobisphenol A alters soil microbial community via selective antibacterial activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:597-603. [PMID: 30153641 DOI: 10.1016/j.ecoenv.2018.08.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant. Most studies regarding TBBPA have concentrated on its occurrence, distribution, toxicity and degradation in the environment. However, little is known about its ecological effects on soil microbial communities. In this study, we investigated the effect of TBBPA on soil microbial community. Overall, the data suggested that the growth and composition of soil microorganisms were correlated to the TBBPA concentration and exposure time. Phospholipid-derived fatty acid analysis (PLFAs) showed that significant microbial growth inhibitions were 46.1% and 46.9% in 40 mg/kg TBBPA-treated soils after 45-day incubation under aerobic and anaerobic conditions, respectively. Results of PLFAs and llumina sequencing indicated that TBBPA mainly inhibited Gram-positive bacteria, but not Gram-negative bacteria. The selective antibacterial activity of TBBPA toward Gram-positive bacteria was further confirmed in pure bacteria cultures. These data suggested that, in addition to their effect on microbial growth and composition, TBBPA may affect the microbial ecology. Additional research should be carried out to identify the ecological risk of TBBPA in soil.
Collapse
Affiliation(s)
- Huijun Xie
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Haijing Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, China
| | - Fang Ji
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
16
|
Ding Y, Lyu T, Bai S, Li Z, Ding H, You S, Xie Q. Effect of multilayer substrate configuration in horizontal subsurface flow constructed wetlands: assessment of treatment performance, biofilm development, and solids accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1883-1891. [PMID: 29103118 DOI: 10.1007/s11356-017-0636-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
This study investigates the influence of multilayer substrate configuration in horizontal subsurface flow constructed wetlands (HSCWs) on their treatment performance, biofilm development, and solids accumulation. Three pilot-scale HSCWs were built to treat campus sewage and have been operational for 3 years. The HSCWs included monolayer (CW1), three-layer (CW3), and six-layer (CW6) substrate configurations with hydraulic conductivity of the substrate increasing from the surface to bottom in the multilayer CWs. It was demonstrated the pollutant removal performance after a 3-year operation improved in the multilayer HSCWs (49-80%) compared to the monolayer HSCW (29-41%). Simultaneously, the multilayer HSCWs exhibited significant features that prevented clogging compared to the monolayer configuration. The amount of accumulated solids was notably higher in the monolayer CW compared to multilayer CWs. Further, multilayer HSCWs could delay clogging by providing higher biofilm development for organics removal and consequently, lesser solids accumulations. Principal component analysis strongly supported the visualization of the performance patterns in the present study and showed that multilayer substrate configuration, season, and sampling locations significantly influenced biofilm growth and solids accumulation. Finally, the present study provided important information to support the improved multilayer configured HSCW implication in the future.
Collapse
Affiliation(s)
- Yanli Ding
- College of Earth Sciences, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Tao Lyu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent Universit, Nottinghamshire, NG25 0QF, UK.
| | - Shaoyuan Bai
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Zhenling Li
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Haijing Ding
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Shaohong You
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Qinglin Xie
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
17
|
Liu T, Zhang Z, Dong W, Wu X, Wang H. Bioremediation of PAHs contaminated river sediment by an integrated approach with sequential injection of co-substrate and electron acceptor: Lab-scale study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:413-421. [PMID: 28675851 DOI: 10.1016/j.envpol.2017.06.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
In this study, the feasibility of employing an integrated bioremediation approach in contaminated river sediment was evaluated. Sequential addition of co-substrate (acetate) and electron acceptor (NO3-) in a two-phase treatment was capable of effectively removing polycyclic aromatic hydrocarbons (PAHs) in river sediment. The residual concentration of total PAHs decreased to far below effect range low (ERL) value within 91 days of incubation, at which concentration it could rarely pose biological impairment. The biodegradation of high molecular weight PAHs were found to be mainly occurred in the sediment treated with co-substrates (i.e. acetate or methanol), in which acetate was found to be more suitable for PAHs degradation. The role of co-substrates in influencing PAHs biodegradation was tentatively discussed herein. Additionally, the sediment odorous problem and blackish appearance were intensively addressed by NO3- injection. The results of this study demonstrated that integrating two or more approaches/processes would be a helpful option in sediment remediation. It can lead to a more effective remediation performance, handle multiple contamination issues, as well as mitigate environmental risks caused by one of the single methods.
Collapse
Affiliation(s)
- Tongzhou Liu
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Zhen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Wenyi Dong
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Xiaojing Wu
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Hongjie Wang
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| |
Collapse
|
18
|
Qin W, Li WG, Gong XJ, Huang XF, Fan WB, Zhang D, Yao P, Wang XJ, Song Y. Seasonal-related effects on ammonium removal in activated carbon filter biologically enhanced by heterotrophic nitrifying bacteria for drinking water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19569-19582. [PMID: 28681296 DOI: 10.1007/s11356-017-9522-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
To determine the potential effects of seasonal changes on water temperature and water quality upon removal of ammonium and organic carbon pollutants and to characterize the variations in microbial characteristics, a pilot-scale activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria was investigated for 528 days. The results show that 69.2 ± 28.6% of ammonium and 23.1 ± 11.6% of the dissolved organic carbon were removed by the biologically enhanced activated carbon (BEAC) reactor. It is shown that higher biodegradable dissolved organic carbon enhances ammonium removal, even at low temperatures. The C/N ratio consumed by the BEAC reactor reached a steady value (i.e., 3.3) after 2 months of operation. Despite seasonal fluctuations and competition of the indigenous community, the heterotrophic nitrifying bacteria (Acinetobacter sp. HRBLi 16 and Acinetobacter harbinensis strain HITLi 7) remained relatively stable. The amount of carbon source was the most significant environmental parameter and dramatically affected the microbial community compositions in the BEAC reactor. The present study provides new insights into the application of a BEAC reactor for ammonium removal from drinking water, resisting strong seasonal changes.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Wei-Guang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| | - Xu-Jin Gong
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, 150028, People's Republic of China
| | - Xiao-Fei Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Wen-Biao Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Duoying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Peng Yao
- China Railway Siyuan Survey and Design Group Co., Ltd, Wuhan, 430063, People's Republic of China
| | - Xiao-Ju Wang
- Beijing Institute of Water, Beijing, 100048, People's Republic of China
| | - Yang Song
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| |
Collapse
|
19
|
Oates LG, Read HW, Gutknecht JLM, Duncan DS, Balser TB, Jackson RD. A Lipid Extraction and Analysis Method for Characterizing Soil Microbes in Experiments with Many Samples. J Vis Exp 2017:55310. [PMID: 28745639 PMCID: PMC5553326 DOI: 10.3791/55310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Microbial communities are important drivers and regulators of ecosystem processes. To understand how management of ecosystems may affect microbial communities, a relatively precise but effort-intensive technique to assay microbial community composition is phospholipid fatty acid (PLFA) analysis. PLFA was developed to analyze phospholipid biomarkers, which can be used as indicators of microbial biomass and the composition of broad functional groups of fungi and bacteria. It has commonly been used to compare soils under alternative plant communities, ecology, and management regimes. The PLFA method has been shown to be sensitive to detecting shifts in microbial community composition. An alternative method, fatty acid methyl ester extraction and analysis (MIDI-FA) was developed for rapid extraction of total lipids, without separation of the phospholipid fraction, from pure cultures as a microbial identification technique. This method is rapid but is less suited for soil samples because it lacks an initial step separating soil particles and begins instead with a saponification reaction that likely produces artifacts from the background organic matter in the soil. This article describes a method that increases throughput while balancing effort and accuracy for extraction of lipids from the cell membranes of microorganisms for use in characterizing both total lipids and the relative abundance of indicator lipids to determine soil microbial community structure in studies with many samples. The method combines the accuracy achieved through PLFA profiling by extracting and concentrating soil lipids as a first step, and a reduction in effort by saponifying the organic material extracted and processing with the MIDI-FA method as a second step.
Collapse
Affiliation(s)
- Lawrence G Oates
- Department of Agronomy and Great Lakes Bioenergy Research Center, University of Wisconsin - Madison;
| | - Harry W Read
- Department of Soil Science, University of Wisconsin - Madison
| | | | - David S Duncan
- Department of Agronomy and Great Lakes Bioenergy Research Center, University of Wisconsin - Madison
| | - Teri B Balser
- Faculty of Science and Engineering, Curtin University
| | - Randall D Jackson
- Department of Agronomy and Great Lakes Bioenergy Research Center, University of Wisconsin - Madison
| |
Collapse
|
20
|
van Houcke J, Medina I, Maehre HK, Cornet J, Cardinal M, Linssen J, Luten J. The effect of algae diets (Skeletonema costatum and Rhodomonas baltica) on the biochemical composition and sensory characteristics of Pacific cupped oysters (Crassostrea gigas) during land-based refinement. Food Res Int 2017; 100:151-160. [PMID: 28873674 DOI: 10.1016/j.foodres.2017.06.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/13/2017] [Accepted: 06/17/2017] [Indexed: 10/19/2022]
Abstract
Oyster refinement, a common practice in France, is aimed at increasing the weight of oyster tissue and influencing the taste properties of the refined oysters. Refinement usually takes place in land-based systems where the oysters are fed with relatively high concentrations of microalgae. In this study the impact of feeding Skeletonema costatum and Rhodomonas baltica on the biochemical composition and sensory characteristics of Pacific cupped oysters (Crassostrea gigas) from the Eastern Scheldt during land-based refinement was studied. After a feeding period of four and seven weeks market-sized oysters were sampled for the analysis of fatty acids, free amino acids and volatile organic compounds and for a sensory evaluation by consumers and an expert panel. The algae Skeletonema costatum showed a lower ∑PUFA, ∑n-3, ∑n-6, C18:2n6, C18:3n3, C18:4n3, C22:6n3 content as compared with Rhodomonas baltica. These differences were also reflected in the fatty acid profile of the oysters fed with the corresponding algae diets. Furthermore, general linear model and principal component analysis showed marked differences in free amino acids and volatile organic compound content between Skeletonema, Rhodomonas fed oysters and reference oysters. For example, threonine, glutamine, leucine, histidine, (E)-2-hexenal, (E)-2octenal, (E)-2-octen-1-ol, (E,E)-2,4-octadien-1-ol, (E,Z)-3,6-nonadien-1-ol and (Z,E)-2,6-nonadienal contents were higher in Skeletonema fed oysters compared to Rhodomonas fed oysters. Sensory differences between the experimental oyster groups were shown. Skeletonema fed Pacific cupped oysters were characterized by a stronger seaweed flavor, higher perceived sweetness and a firmer texture in comparison with Rhodomonas fed oysters. Naïve consumers were only able to differentiate between Rhodomonas fed oysters and reference oysters.
Collapse
Affiliation(s)
- Jasper van Houcke
- HZ University of Applied Sciences, P.O. Box 364, 4380 AJ Vlissingen, The Netherlands; Wageningen University, Department of Agrotechnology and Food Sciences, Food Quality and Design, P.O. Box 8129, 6700 EV Wageningen, The Netherlands.
| | - Isabel Medina
- Instituto de Investigaciones Marinas del CSIC, Eduardo Cabello 6, E-36208 Vigo, Spain
| | - Hanne K Maehre
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UIT The Arctic University of Norway, Breivika, N-9037 Tromso, Norway
| | - Josiane Cornet
- Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies (EM3B), Ifremer, Rue de l'Ile d'Yeu, 44311 Nantes Cedex 03, France
| | - Mireille Cardinal
- Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies (EM3B), Ifremer, Rue de l'Ile d'Yeu, 44311 Nantes Cedex 03, France
| | - Jozef Linssen
- Wageningen University, Department of Agrotechnology and Food Sciences, Food Quality and Design, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Joop Luten
- Wageningen University, Department of Agrotechnology and Food Sciences, Food Quality and Design, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| |
Collapse
|
21
|
Li J, Li H, Zheng J, Zhang L, Fu Q, Zhu X, Liao Q. Response of anodic biofilm and the performance of microbial fuel cells to different discharging current densities. BIORESOURCE TECHNOLOGY 2017; 233:1-6. [PMID: 28258990 DOI: 10.1016/j.biortech.2017.02.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
To better understand the responses of anodic biofilm and MFC performance, five identical MFCs started at 100Ω were operated with different discharging current densities (0.3, 1.6, 3.0, 3.6 and 4.8A/m2, denoted as MFC-0.3, MFC-1.6, MFC-3.0, MFC-3.6 and MFC-4.8, respectively). It was demonstrated that the discharging current would significantly influence biofilm development and MFC performance. Compared with the original MFC started at 100Ω, the performance of MFC-0.3 and MFC-1.6 decreased, whereas MFC-3.0 and MFC-3.6 exhibited improved maximum power densities. This was attributed to the reduced charge transfer resistance resulting from the increased active biomass after increasing discharging current. This indicated that the increasing discharging current could enhance active biomass and performance. However, a high discharging current density (4.8A/m2) caused the exfoliation of carbon particles from the carbon cloth and then the detachment of the anode biofilm, resulting in the cell failure of MFC-4.8.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, PR China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, PR China
| | - Hejing Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, PR China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, PR China
| | - Jili Zheng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, PR China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, PR China
| | - Liang Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, PR China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, PR China.
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, PR China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, PR China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, PR China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, PR China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, PR China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, PR China
| |
Collapse
|
22
|
Yuvraj C, Aranganathan V. MFC—An Approach in Enhancing Electricity Generation Using Electroactive Biofilm of Dissimilatory Iron-Reducing (DIR) Bacteria. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2529-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Li J, Hu L, Zhang L, Ye DD, Zhu X, Liao Q. Uneven biofilm and current distribution in three-dimensional macroporous anodes of bio-electrochemical systems composed of graphite electrode arrays. BIORESOURCE TECHNOLOGY 2017; 228:25-30. [PMID: 28056366 DOI: 10.1016/j.biortech.2016.12.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
A 3-D macroporous anode was constructed using different numbers of graphite rod arrays in fixed-volume bio-electrochemical systems (BESs), and the current and biofilm distribution were investigated by dividing the 3-D anode into several subunits. In the fixed-volume chamber, current production was not significantly improved after the electrode number increased to 36. In the case of 100 electrodes, a significant uneven current distribution was found in the macroporous anode. This was attributed to a differential pH distribution, which resulted from proton accumulation inside the macroporous anode. The pH distribution influenced the biofilm development and led to an uneven biofilm distribution. With respect to current generation, the uneven distribution of both the pH and biofilm contributed to the uneven current distribution. The center had a low pH, which led to less biofilm and a lower contribution to the total current, limiting the performance of the BESs.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 40003, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Linbin Hu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 40003, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Liang Zhang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 40003, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China.
| | - Ding-Ding Ye
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 40003, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 40003, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 40003, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| |
Collapse
|
24
|
Effects of Actinomycete Secondary Metabolites on Sediment Microbial Communities. Appl Environ Microbiol 2017; 83:AEM.02676-16. [PMID: 27986719 DOI: 10.1128/aem.02676-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
Marine sediments harbor complex microbial communities that remain poorly studied relative to other biomes such as seawater. Moreover, bacteria in these communities produce antibiotics and other bioactive secondary metabolites, yet little is known about how these compounds affect microbial community structure. In this study, we used next-generation amplicon sequencing to assess native microbial community composition in shallow tropical marine sediments. The results revealed complex communities comprised of largely uncultured taxa, with considerable spatial heterogeneity and known antibiotic producers comprising only a small fraction of the total diversity. Organic extracts from cultured strains of the sediment-dwelling actinomycete genus Salinispora were then used in mesocosm studies to address how secondary metabolites shape sediment community composition. We identified predatory bacteria and other taxa that were consistently reduced in the extract-treated mesocosms, suggesting that they may be the targets of allelopathic interactions. We tested related taxa for extract sensitivity and found general agreement with the culture-independent results. Conversely, several taxa were enriched in the extract-treated mesocosms, suggesting that some bacteria benefited from the interactions. The results provide evidence that bacterial secondary metabolites can have complex and significant effects on sediment microbial communities. IMPORTANCE Ocean sediments represent one of Earth's largest and most poorly studied biomes. These habitats are characterized by complex microbial communities where competition for space and nutrients can be intense. This study addressed the hypothesis that secondary metabolites produced by the sediment-inhabiting actinomycete Salinispora arenicola affect community composition and thus mediate interactions among competing microbes. Next-generation amplicon sequencing of mesocosm experiments revealed complex communities that shifted following exposure to S. arenicola extracts. The results reveal that certain predatory bacteria were consistently less abundant following exposure to extracts, suggesting that microbial metabolites mediate competitive interactions. Other taxa increased in relative abundance, suggesting a benefit from the extracts themselves or the resulting changes in the community. This study takes a first step toward assessing the impacts of bacterial metabolites on sediment microbial communities. The results provide insight into how low-abundance organisms may help structure microbial communities in ocean sediments.
Collapse
|
25
|
Mondal PK, Lima G, Zhang D, Lomheim L, Tossell RW, Patel P, Sleep BE. Evaluation of peat and sawdust as permeable reactive barrier materials for stimulating in situ biodegradation of trichloroethene. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:37-48. [PMID: 27054663 DOI: 10.1016/j.jhazmat.2016.03.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/29/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
Two low cost solid organic materials, sawdust and peat, were tested in laboratory batch microcosm and flow-through column experiments to determine their suitability for application in permeable reactive barriers (PRBs) supporting biodegradation of trichloroethene (TCE). In microcosms with peat, TCE (∼30μM) was sequentially and completely degraded to cis-dichloroethene (cDCE), vinyl chloride, and ethene through reductive dechlorination. In microcosms with sawdust, reductive dechlorination of TCE stopped at cDCE and high methane production (up to 3000μM) was observed. 16S rRNA gene copy numbers of Dehalobacter and Archaea were higher (1000 and 10 times, respectively) in sawdust microcosms than those in peat microcosms. Dehalococcoides and vcrA gene copy numbers were 10 times higher in peat microcosms than in sawdust microcosms. These gene copy number differences are consistent with the extent of TCE degradation and production of methane in the microcosms. Flow-through column experiments showed that hydraulic conductivity reduction with time was consistently greater in the sawdust column compared to the peat column. The greater conductivity reduction was likely due to biofouling and methane gas bubble formation. The experimental observations indicate that peat has potential to be a better solid organic material than sawdust to support reductive dechlorination of TCE in PRB applications.
Collapse
Affiliation(s)
- Pulin K Mondal
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Glaucia Lima
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - David Zhang
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Line Lomheim
- BioZone, University of Toronto, 200 College Avenue, Toronto, Ontario M5S 3E5, Canada
| | - Robert W Tossell
- Pinchin Ltd., 2470 Milltower Court, Mississauga, Ontario L5 N 7W5, Canada
| | - Paresh Patel
- Pinchin Ltd., 2470 Milltower Court, Mississauga, Ontario L5 N 7W5, Canada
| | - Brent E Sleep
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| |
Collapse
|
26
|
Song RB, Zhao CE, Jiang LP, Abdel-Halim ES, Zhang JR, Zhu JJ. Bacteria-Affinity 3D Macroporous Graphene/MWCNTs/Fe3O4 Foams for High-Performance Microbial Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:16170-16177. [PMID: 27266894 DOI: 10.1021/acsami.6b03425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Promoting the performance of microbial fuel cells (MFCs) relies heavily on the structure design and composition tailoring of electrode materials. In this work, three-dimensional (3D) macroporous graphene foams incorporated with intercalated spacer of multiwalled carbon nanotubes (MWCNTs) and bacterial anchor of Fe3O4 nanospheres (named as G/MWCNTs/Fe3O4 foams) were first synthesized and used as anodes for Shewanella-inoculated microbial fuel cells (MFCs). Thanks to the macroporous structure of 3D graphene foams, the expanded electrode surface by MWCNTs spacing, as well as the high affinity of Fe3O4 nanospheres toward Shewanella oneidensis MR-1, the anode exhibited high bacterial loading capability. In addition to spacing graphene nanosheets for accommodating bacterial cells, MWCNTs paved a smoother way for electron transport in the electrode substrate of MFCs. Meanwhile, the embedded bioaffinity Fe3O4 nanospheres capable of preserving the bacterial metabolic activity provided guarantee for the long-term durability of the MFCs. With these merits, the constructed MFC possessed significantly higher power output and stronger stability than that with conventional graphite rod anode.
Collapse
Affiliation(s)
- Rong-Bin Song
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Cui-E Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications , Nanjing 210023, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Essam Sayed Abdel-Halim
- Chemistry Department, College of Science, King Saud University , Riyadh 11451, P. O. Box2455, Kingdom of Saudi Arabia
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
- School of Chemistry and Life Science, Nanjing University Jinling College , Nanjing 210089, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| |
Collapse
|
27
|
Zhao Y, Qu D, Zhou R, Yang S, Ren H. Efficacy of forming biofilms by Pseudomonas migulae AN-1 toward in situ bioremediation of aniline-contaminated aquifer by groundwater circulation wells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:11568-11573. [PMID: 27115704 DOI: 10.1007/s11356-016-6737-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
The formation and activity of aniline-degrading biofilms developed by the psychrotrophic Pseudomonas migulae AN-1 were studied for the in situ remediation of contaminated aquifer using in-well bioreactor of groundwater circulating wells (GCWs). Biofilms grown in mineral salt medium with aniline exhibited tolerance to high concentrations of aniline. In aniline degradation rate, AN-1 biofilms exhibited slight differences compared with planktonic cells. The effectiveness and bio-implication of AN-1 biofilms in GCWs were investigated to treat aniline-contaminated aquifer. The results demonstrate that AN-1 biofilms survived the GCWs treatment process with high aniline-degrading efficiency. This system provides a novel environmentally friendly technology for the in situ bioremediation of low-volatile contaminants.
Collapse
Affiliation(s)
- Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China
| | - Dan Qu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China
| | - Rui Zhou
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China
| | - Shuai Yang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China
| | - Hejun Ren
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|
28
|
Temperature-induced changes in fatty acid dynamics of the intertidal grazer Platychelipus littoralis (Crustacea, Copepoda, Harpacticoida): Insights from a short-term feeding experiment. J Therm Biol 2016; 57:44-53. [DOI: 10.1016/j.jtherbio.2016.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/19/2022]
|
29
|
Ma X, Xing M, Wang Y, Xu Z, Yang J. Microbial enzyme and biomass responses: Deciphering the effects of earthworms and seasonal variation on treating excess sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 170:207-214. [PMID: 26840985 DOI: 10.1016/j.jenvman.2016.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
This paper reports on a seasonal pattern comparison of microbial enzymatic activities and biomass responses based on a conventional biofilter (BF, without earthworm) and a vermifilter (VF, with earthworm, Eisenia fetida) for excess sludge treatment. The volatile suspended solids (VSS) reduction, viable cell number and enzyme activities were assayed to probe what made the VF operate stably. The results indicated that the earthworm activities can polish the VSS reduction with 27.17% more than the BF. Though the VF had a lower level in the viable cell number compared with the BF, the earthworm strongly improved the microbial enzymatic activities such as INT-dehydrogenase, protease, β-glucosidase and amylase, which can explain the excellent performance of VSS reduction. The correlation analysis documented that the VSS reduction was positively correlated with microbial enzyme activities. More importantly, the earthworm enabled the VF to avoid the detrimental influence of temperature, which guaranteed a stable performance during seasonal variations.
Collapse
Affiliation(s)
- Xiaojie Ma
- The Institute of Biofilm Technology, Key Laboratory of Yangtze River Water Environment, Ministry of Education, 1239 Siping Road, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Urban Constitution Designed & Research Institute, Shanghai 200011, China
| | - Meiyan Xing
- The Institute of Biofilm Technology, Key Laboratory of Yangtze River Water Environment, Ministry of Education, 1239 Siping Road, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yin Wang
- The Institute of Biofilm Technology, Key Laboratory of Yangtze River Water Environment, Ministry of Education, 1239 Siping Road, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhe Xu
- The Institute of Biofilm Technology, Key Laboratory of Yangtze River Water Environment, Ministry of Education, 1239 Siping Road, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jian Yang
- The Institute of Biofilm Technology, Key Laboratory of Yangtze River Water Environment, Ministry of Education, 1239 Siping Road, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
30
|
Liu T, Zhang Z, Mao Y, Yan DYS. Induced metal redistribution and bioavailability enhancement in contaminated river sediment during in situ biogeochemical remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6353-6362. [PMID: 26620860 DOI: 10.1007/s11356-015-5842-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
In situ sediment remediation using Ca(NO3)2 or CaO2 for odor mitigation and acid volatile sulfide (AVS) and organic pollutant (such as TPH and PAHs) removal was reported in many studies and fieldwork. Yet, the associated effects on metal mobilization and potential distortion in bioavailability were not well documented. In this study, contaminated river sediment was treated by Ca(NO3)2 and CaO2 in bench studies. Through the investigation of AVS removal, organic matter removal, the changes in sediment oxidation-reduction potential (ORP), microbial activity, and other indigenous parameters, the effects on metal bioavailability, bioaccessibility, and fraction redistribution in sediment were evaluated. The major mechanisms for sediment treated by Ca(NO3)2 and CaO2 are biostimulation with indigenous denitrifying bacteria and chemical oxidation, respectively. After applying Ca(NO3)2 and CaO2, the decreases of metal concentrations in the treated sediment were insignificant within a 35-day incubation period. However, the [SEMtot-AVS]/f OC increased near to the effective boundary of toxicity (100 μmol g(-1) organic carbon (OC)), indicating that both bioavailability and bioaccessibility of metals (Cu, Zn, and Ni) to benthic organisms are enhanced after remediation. Metals were found redistributed from relatively stable fractions (oxidizable and residual fractions) to weakly bound fractions (exchangeable and reducible fractions), and the results are in line with the enhanced metal bioavailability. Compared with Ca(NO3)2, CaO2 led to higher enhancement in metal bioavailability and bioaccessibility, and more significant metal redistribution, probably due to its stronger chemical reactive capacity to AVS and sediment organic matter. The reactions in CaO2-treated sediment would probably shift from physicochemical to biochemical heterotrophic oxidation for sediment organic matter degradation. Therefore, further investigation on the long-term metal redistribution and associated mobility as well as bioavailability is recommended.
Collapse
Affiliation(s)
- Tongzhou Liu
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China
| | - Zhen Zhang
- School of Environment and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, China
| | - Yanqing Mao
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China
| | - Dickson Y S Yan
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Werbrouck E, Van Gansbeke D, Vanreusel A, De Troch M. Temperature Affects the Use of Storage Fatty Acids as Energy Source in a Benthic Copepod (Platychelipus littoralis, Harpacticoida). PLoS One 2016; 11:e0151779. [PMID: 26986852 PMCID: PMC4795710 DOI: 10.1371/journal.pone.0151779] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/03/2016] [Indexed: 11/18/2022] Open
Abstract
The utilization of storage lipids and their associated fatty acids (FA) is an important means for organisms to cope with periods of food shortage, however, little is known about the dynamics and FA mobilization in benthic copepods (order Harpacticoida). Furthermore, lipid depletion and FA mobilization may depend on the ambient temperature. Therefore, we subjected the temperate copepod Platychelipus littoralis to several intervals (3, 6 and 14 days) of food deprivation, under two temperatures in the range of the normal habitat temperature (4, 15 °C) and under an elevated temperature (24 °C), and studied the changes in FA composition of storage and membrane lipids. Although bulk depletion of storage FA occurred after a few days of food deprivation under 4 °C and 15 °C, copepod survival remained high during the experiment, suggesting the catabolization of other energy sources. Ambient temperature affected both the degree of FA depletion and the FA mobilization. In particular, storage FA were more exhausted and FA mobilization was more selective under 15 °C compared with 4 °C. In contrast, depletion of storage FA was limited under an elevated temperature, potentially due to a switch to partial anaerobiosis. Food deprivation induced selective DHA retention in the copepod's membrane, under all temperatures. However, prolonged exposure to heat and nutritional stress eventually depleted DHA in the membranes, and potentially induced high copepod mortality. Storage lipids clearly played an important role in the short-term response of the copepod P. littoralis to food deprivation. However, under elevated temperature, the use of storage FA as an energy source is compromised.
Collapse
Affiliation(s)
- Eva Werbrouck
- Department of Biology, Marine Biology Research Group, Ghent University, Ghent, Belgium
- * E-mail:
| | - Dirk Van Gansbeke
- Department of Biology, Marine Biology Research Group, Ghent University, Ghent, Belgium
| | - Ann Vanreusel
- Department of Biology, Marine Biology Research Group, Ghent University, Ghent, Belgium
| | - Marleen De Troch
- Department of Biology, Marine Biology Research Group, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Zhao YN, Li XF, Ren YP, Wang XH. Effect of static magnetic field on the performances of and anode biofilms in microbial fuel cells. RSC Adv 2016. [DOI: 10.1039/c6ra15844g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electricity production and substrate removal rate of microbial fuel cells (MFCs) could be improved by the application of a static magnetic field (SMF).
Collapse
Affiliation(s)
- Y. N. Zhao
- School of Environmental and Civil Engineering
- Jiangnan University
- Wuxi
- China
- Jiangsu Key Laboratory of Anaerobic Biotechnology
| | - X. F. Li
- School of Environmental and Civil Engineering
- Jiangnan University
- Wuxi
- China
- Jiangsu Key Laboratory of Anaerobic Biotechnology
| | - Y. P. Ren
- School of Environmental and Civil Engineering
- Jiangnan University
- Wuxi
- China
- Jiangsu Key Laboratory of Anaerobic Biotechnology
| | - X. H. Wang
- School of Environmental and Civil Engineering
- Jiangnan University
- Wuxi
- China
- Jiangsu Key Laboratory of Anaerobic Biotechnology
| |
Collapse
|
33
|
Zhao YN, Li XF, Ren YP, Wang XH. Effect of Fe(iii) on the performance of sediment microbial fuel cells in treating waste-activated sludge. RSC Adv 2016. [DOI: 10.1039/c6ra02532c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chemical energy stored in sludge can be directly converted into electricity using sediment microbial fuel cell (SMFC) technology.
Collapse
Affiliation(s)
- Y. N. Zhao
- School of Environmental and Civil Engineering
- Jiangnan University
- Wuxi
- China
- Jiangsu Key Laboratory of Anaerobic Biotechnology
| | - X. F. Li
- School of Environmental and Civil Engineering
- Jiangnan University
- Wuxi
- China
- Jiangsu Key Laboratory of Anaerobic Biotechnology
| | - Y. P. Ren
- School of Environmental and Civil Engineering
- Jiangnan University
- Wuxi
- China
- Jiangsu Key Laboratory of Anaerobic Biotechnology
| | - X. H. Wang
- School of Environmental and Civil Engineering
- Jiangnan University
- Wuxi
- China
- Jiangsu Key Laboratory of Anaerobic Biotechnology
| |
Collapse
|
34
|
Bai X, Ma X, Xu F, Li J, Zhang H, Xiao X. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 533:24-31. [PMID: 26150304 DOI: 10.1016/j.scitotenv.2015.06.082] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/21/2015] [Accepted: 06/21/2015] [Indexed: 06/04/2023]
Abstract
Two waterworks, with source water derived from the Huangpu or Yangtze River in Shanghai, were investigated, and the effluents were plate-screened for antibiotic-resistant bacteria (ARB) using five antibiotics: ampicillin (AMP), kanamycin (KAN), rifampicin (RFP), chloramphenicol (CM) and streptomycin (STR). The influence of water treatment procedures on the bacterial antibiotic resistance rate and the changes that bacteria underwent when exposed to the five antibiotics at concentration levels ranging from 1 to 100 μg/mL were studied. Multi-drug resistance was also analyzed using drug sensitivity tests. The results indicated that bacteria derived from water treatment plant effluent that used the Huangpu River rather than the Yangtze River as source water exhibited higher antibiotic resistance rates against AMP, STR, RFP and CM but lower antibiotic resistance rates against KAN. When the antibiotic concentration levels ranged from 1 to 10 μg/mL, the antibiotic resistance rates of the bacteria in the water increased as water treatment progressed. Biological activated carbon (BAC) filtration played a key role in increasing the antibiotic resistance rate of bacteria. Chloramine disinfection can enhance antibiotic resistance. Among the isolated ARB, 75% were resistant to multiple antibiotics. Ozone oxidation, BAC filtration and chloramine disinfection can greatly affect the relative abundance of bacteria in the community.
Collapse
Affiliation(s)
- Xiaohui Bai
- State Key Laboratory of MicrobialMetabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Xiaolin Ma
- State Key Laboratory of MicrobialMetabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Fengming Xu
- State Key Laboratory of MicrobialMetabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jing Li
- State Key Laboratory of MicrobialMetabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hang Zhang
- State Key Laboratory of MicrobialMetabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiang Xiao
- State Key Laboratory of MicrobialMetabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
35
|
Dick RP, Breakwell DP, Turco RF. Soil Enzyme Activities and Biodiversity Measurements as Integrative Microbiological Indicators. SSSA SPECIAL PUBLICATIONS 2015. [DOI: 10.2136/sssaspecpub49.c15] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
36
|
Turco RF, Kennedy AC, Jawson MD. Microbial Indicators of Soil Quality. SSSA SPECIAL PUBLICATIONS 2015. [DOI: 10.2136/sssaspecpub35.c5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- R. F. Turco
- Laboratory for Soil Microbiology Purdue University; West Lafayette Indiana
| | | | | |
Collapse
|
37
|
Benthic Oxygen Uptake in the Arctic Ocean Margins - A Case Study at the Deep-Sea Observatory HAUSGARTEN (Fram Strait). PLoS One 2015; 10:e0138339. [PMID: 26465885 PMCID: PMC4605737 DOI: 10.1371/journal.pone.0138339] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 08/28/2015] [Indexed: 11/19/2022] Open
Abstract
The past decades have seen remarkable changes in the Arctic, a hotspot for climate change. Nevertheless, impacts of such changes on the biogeochemical cycles and Arctic marine ecosystems are still largely unknown. During cruises to the deep-sea observatory HAUSGARTEN in July 2007 and 2008, we investigated the biogeochemical recycling of organic matter in Arctic margin sediments by performing shipboard measurements of oxygen profiles, bacterial activities and biogenic sediment compounds (pigment, protein, organic carbon, and phospholipid contents). Additional in situ oxygen profiles were performed at two sites. This study aims at characterizing benthic mineralization activity along local bathymetric and latitudinal transects. The spatial coverage of this study is unique since it focuses on the transition from shelf to Deep Ocean, and from close to the ice edge to more open waters. Biogeochemical recycling across the continental margin showed a classical bathymetric pattern with overall low fluxes except for the deepest station located in the Molloy Hole (5500 m), a seafloor depression acting as an organic matter depot center. A gradient in benthic mineralization rates arises along the latitudinal transect with clearly higher values at the southern stations (average diffusive oxygen uptake of 0.49 ± 0.18 mmol O2 m-2 d-1) compared to the northern sites (0.22 ± 0.09 mmol O2 m-2 d-1). The benthic mineralization activity at the HAUSGARTEN observatory thus increases southward and appears to reflect the amount of organic matter reaching the seafloor rather than its lability. Although organic matter content and potential bacterial activity clearly follow this gradient, sediment pigments and phospholipids exhibit no increase with latitude whereas satellite images of surface ocean chlorophyll a indicate local seasonal patterns of primary production. Our results suggest that predicted increases in primary production in the Arctic Ocean could induce a larger export of more refractory organic matter due to the longer production season and the extension of the ice-free zone.
Collapse
|
38
|
Zhang Q, Sun FY, Dong WY, Zhang GM, Han RB. Micro-polluted surface water treatment and trace-organics removal pathway in a PAC-MBR system. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Willers C, Jansen van Rensburg P, Claassens S. Phospholipid fatty acid profiling of microbial communities-a review of interpretations and recent applications. J Appl Microbiol 2015; 119:1207-18. [PMID: 26184497 DOI: 10.1111/jam.12902] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 11/29/2022]
Affiliation(s)
- C. Willers
- Unit for Environmental Sciences and Management; North-West University; Potchefstroom South Africa
| | | | - S. Claassens
- Unit for Environmental Sciences and Management; North-West University; Potchefstroom South Africa
| |
Collapse
|
40
|
Hallé C, Huck PM, Peldszus S. Emerging Contaminant Removal by Biofiltration: Temperature, Concentration, and EBCT Impacts. ACTA ACUST UNITED AC 2015. [DOI: 10.5942/jawwa.2015.107.0086] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Cynthia Hallé
- Department of Hydraulic and Environmental Engineering; Norwegian University of Science and Technology; Trondheim Norway
| | - Peter M. Huck
- Department of Civil and Environmental Engineering; University of Waterloo; Ont. Canada
| | - Sigrid Peldszus
- Department of Civil and Environmental Engineering; University of Waterloo; Ont. Canada
| |
Collapse
|
41
|
Zhong H, Liu F, Lu J, Yang W, Zhao C. Effect of diesel leakage in circulating cooling water system on preponderant bacteria diversity and bactericidal effect of biocides. ENVIRONMENTAL TECHNOLOGY 2015; 36:1147-1159. [PMID: 25362892 DOI: 10.1080/09593330.2014.982720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Petroleum products leakage results in adverse effect on the normal operation of a circulating cooling water system. However, relatively little research has been done to explore the effect of petroleum products leakage on circulating cooling water quality and biofilm preponderant bacteria diversity. Also, normal biocides application modes cannot fulfil the need for biofilm control. In this study, diesel oil was used as the experimental subject representing leaking petroleum products; the effect of diesel addition on biofilm preponderant bacteria diversity and the bactericidal effect of chlorine dioxide and tetradecyl dimethyl benzyl ammonium chloride (1427) was investigated. Bacterial community structures were examined by PCR-denaturing gradient gel electrophoresis and PCR cloning of 16S rDNA genes. Except for 100 mg/L diesel, increasing diesel concentration enhanced the biofilm detachment ratio compared with the control test. The microstructure of biofilm samples with 0, 300 and 900 mg/L diesel addition was observed. The species of preponderant bacteria in the biofilm sample with 300 mg/L diesel addition were more and the bacterial distribution was more uniform than those in the biofilm sample with 900 mg/L diesel addition. With ClO2 and 1427 addition, chemical oxygen demand increased, lipid phosphorus and bacterial count first decreased and then remained stable, and the bactericidal ratio first increased and then remained stable. Diesel addition variation has more obvious effect on ClO2 than 1427.
Collapse
Affiliation(s)
- Huiyun Zhong
- a College of Chemical Engineering , China University of Petroleum , 66 Changjiang West Road, Qingdao 266580 , People's Republic of China
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Pharand L, Van Dyke MI, Anderson WB, Huck PM. Assessment of biomass in drinking water biofilters by adenosine triphosphate. ACTA ACUST UNITED AC 2014. [DOI: 10.5942/jawwa.2014.106.0107] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Lizanne Pharand
- Department of Civil and Environmental Engineering; University of Waterloo; Waterloo Ont
| | - Michele I. Van Dyke
- Department of Civil and Environmental Engineering; University of Waterloo; Waterloo Ont
| | - William B. Anderson
- Department of Civil and Environmental Engineering; University of Waterloo; Waterloo Ont
| | - Peter M. Huck
- Department of Civil and Environmental Engineering; University of Waterloo; Waterloo Ont
| |
Collapse
|
44
|
Effect of carbon nanotube modified cathode by electrophoretic deposition method on the performance of sediment microbial fuel cells. Biotechnol Lett 2014; 37:101-7. [DOI: 10.1007/s10529-014-1671-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
|
45
|
Wilkins MJ, Daly RA, Mouser PJ, Trexler R, Sharma S, Cole DR, Wrighton KC, Biddle JF, Denis EH, Fredrickson JK, Kieft TL, Onstott TC, Peterson L, Pfiffner SM, Phelps TJ, Schrenk MO. Trends and future challenges in sampling the deep terrestrial biosphere. Front Microbiol 2014; 5:481. [PMID: 25309520 PMCID: PMC4162470 DOI: 10.3389/fmicb.2014.00481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/27/2014] [Indexed: 11/28/2022] Open
Abstract
Research in the deep terrestrial biosphere is driven by interest in novel biodiversity and metabolisms, biogeochemical cycling, and the impact of human activities on this ecosystem. As this interest continues to grow, it is important to ensure that when subsurface investigations are proposed, materials recovered from the subsurface are sampled and preserved in an appropriate manner to limit contamination and ensure preservation of accurate microbial, geochemical, and mineralogical signatures. On February 20th, 2014, a workshop on "Trends and Future Challenges in Sampling The Deep Subsurface" was coordinated in Columbus, Ohio by The Ohio State University and West Virginia University faculty, and sponsored by The Ohio State University and the Sloan Foundation's Deep Carbon Observatory. The workshop aims were to identify and develop best practices for the collection, preservation, and analysis of terrestrial deep rock samples. This document summarizes the information shared during this workshop.
Collapse
Affiliation(s)
- Michael J. Wilkins
- School of Earth Sciences, The Ohio State UniversityColumbus, OH, USA
- Department of Microbiology, The Ohio State UniversityColumbus, OH, USA
| | - Rebecca A. Daly
- Department of Microbiology, The Ohio State UniversityColumbus, OH, USA
| | - Paula J. Mouser
- Department of Engineering, The Ohio State UniversityColumbus, OH, USA
| | - Ryan Trexler
- Department of Engineering, The Ohio State UniversityColumbus, OH, USA
| | - Shihka Sharma
- Department of Geology and Geography, West Virginia UniversityMorgantown, WV, USA
| | - David R. Cole
- School of Earth Sciences, The Ohio State UniversityColumbus, OH, USA
| | - Kelly C. Wrighton
- Department of Microbiology, The Ohio State UniversityColumbus, OH, USA
| | - Jennifer F. Biddle
- College of Earth, Ocean, and Environment, University of DelawareLewes, DE, USA
| | | | - Jim K. Fredrickson
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
| | | | | | | | - Susan M. Pfiffner
- Center for Environmental Biotechnology, University of TennesseeKnoxville, TN, USA
| | - Tommy J. Phelps
- Center for Environmental Biotechnology, University of TennesseeKnoxville, TN, USA
| | - Matthew O. Schrenk
- Department of Geological Sciences, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
46
|
Akinwole PO, Lefevre E, Powell MJ, Findlay RH. Unique odd-chain polyenoic phospholipid fatty acids present in chytrid fungi. Lipids 2014; 49:933-42. [PMID: 25119485 DOI: 10.1007/s11745-014-3934-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022]
Abstract
Chytrid fungi are ubiquitous components of aquatic and terrestrial ecosystems yet they remain understudied. To investigate the use of phospholipid fatty acids as phenotypic characteristics in taxonomic studies and biomarkers for ecological studies, 18 chytrid fungi isolated from soil to freshwater samples were grown in defined media and their phospholipid fatty acid profile determined. Gas chromatographic/mass spectral analysis indicated the presence of fatty acids typically associated with fungi, such as 16:1(n-7), 16:0, 18:2(n-6), 18:3(n-3) 18:1(n-9), and 18:0, as well as, a number of odd-chain length fatty acids, including two polyunsaturated C-17 fatty acids. Conversion to their 3-pyridylcarbinol ester facilitated GC-MS determination of double-bond positions and these fatty acid were identified as 6,9-17:2 [17:2(n-8)] and 6,9,12-17:3 [17:3(n-5)]. To the best of our knowledge, this is the first report of polyunsaturated C-17 fatty acids isolated from the phospholipids of chytrid fungi. Cluster analysis of PLFA profiles showed sufficient correlation with chytrid phylogeny to warrant inclusion of lipid analysis in species descriptions and the presence of several phospholipid fatty acids of restricted phylogenetic distributions suggests their usefulness as biomarkers for ecological studies.
Collapse
Affiliation(s)
- Philips O Akinwole
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | | | | | | |
Collapse
|
47
|
Mehdinia A, Ziaei E, Jabbari A. Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
de Carvalho CCCR, Caramujo MJ. Fatty acids as a tool to understand microbial diversity and their role in food webs of Mediterranean temporary ponds. Molecules 2014; 19:5570-98. [PMID: 24786844 PMCID: PMC6271346 DOI: 10.3390/molecules19055570] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 11/18/2022] Open
Abstract
Temporary Mediterranean ponds are complex ecosystems which support a high diversity of organisms that include heterotrophic microorganisms, algae, crustaceans, amphibians and higher plants, and have the potential to supply food and a resting place to migratory birds. The role of heterotrophs at the base of the food web in providing energy to the higher trophic levels was studied in temporary ponds in Central and Southern Portugal. The relative quantification of the hetero and autotrophic biomass at the base of the food web in each pond was derived from the polar fatty acid (PLFA) composition of seston through the application of the matrix factorization program CHEMTAX that used specific PLFA and their relative proportion as markers for e.g., classes of bacteria, algae and fungi. The species composition of the culturable microbial communities was identified through their fatty acid profiles. The biomass in the lower trophic level of some ponds presented an even proportion of auto to heterotrophic organisms whilst either bacteria or algae dominated in others. In a selected subset of ponds, the incorporation of bacterial fatty acids was observed to occur in potentially herbivorous zooplankton crustacean. Zooplankton consumed and incorporated bacterial fatty acids into their body tissues, including into their phospholipids, which indicates that energy of heterotrophic origin contributes to the aquatic food webs of temporary ponds.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal.
| | - Maria-José Caramujo
- Centre for Environmental Biology, Faculty of Sciences, Universidade de Lisboa, Campo Grande C2, Lisbon 1749-016, Portugal.
| |
Collapse
|
49
|
Li R, Yuan Y, Zhan X, Liu B. Phosphorus removal in a sulfur-limestone autotrophic denitrification (SLAD) biofilter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:972-978. [PMID: 23846955 DOI: 10.1007/s11356-013-1966-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
The sulfur-limestone autotrophic denitrification (SLAD) biofilter was able to remove phosphorous from wastewater during autotrophic denitrification. Parameters influencing autotrophic denitrification in the SLAD biofilter, such as hydraulic retention time (HRT), influent nitrate (NO3(-)), and influent PO4(3-) concentrations, had significant effects on P removal. P removal was well correlated with total oxidized nitrogen (TON) removed in the SLAD biofilter; the more TON removed, the more efficient P removal was achieved. When treating the synthetic wastewater containing NO3(-)-N of 30 mg L(-1) and PO4(3-)-P of 15 mg L(-1), the SLAD biofilter removed phosphorus of 45% when the HRT was 6 h, in addition with TN removal of nearly 100%. The optimal phosphorus removal in the SLAD biofilter was around 60%. For the synthetic wastewater containing a PO4(3-)-P concentration of 15 mg L(-1), the main mechanism of phosphorus removal was the formation of calcium phosphate precipitates.
Collapse
Affiliation(s)
- Ruihua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China,
| | | | | | | |
Collapse
|
50
|
Paraskova JV, Rydin E, Sjöberg PJ. Extraction and quantification of phosphorus derived from DNA and lipids in environmental samples. Talanta 2013; 115:336-41. [DOI: 10.1016/j.talanta.2013.05.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
|