1
|
García-Sánchez VJ, Sánchez-López KL, Esquivel Méndez JJ, Sánchez-Hernández D, Cervantes-Chávez JA, Landeros-Jaime F, Mendoza-Mendoza A, Vega-Arreguín JC, Esquivel-Naranjo EU. Carbon and Nitrogen Sources Influence Parasitic Responsiveness in Trichoderma atroviride NI-1. J Fungi (Basel) 2024; 10:671. [PMID: 39452623 PMCID: PMC11508198 DOI: 10.3390/jof10100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Parasitic species of Trichoderma use hydrolytic enzymes to destroy the host cell wall. Preferent carbon and nitrogen sources suppress the expression of genes related to parasitism. Here, different nutrients were evaluated in the parasitic isolated NI-1, which was identified as Trichoderma atroviride. The genes cbh1 and chb2 (cellobiohydrolases), bgl3.1 (endoglucanase), and pra1 and prb1 (proteinases) were poorly expressed during the interaction between NI-1 and Phytophthora capsici on PDA. However, gene expression improved on minimal medium with preferent and alternative carbon sources. Dextrin and glucose stimulated higher transcript levels than cellulose, sucrose, and glycerol. Also, ammonium stimulated a stronger parasitic responsiveness than the alternative nitrogen sources. During interaction against different phytopathogens, NI-1 detects their host differentially from a distance due to the cbh1 and cbh2 genes being only induced by P. capsici. The pra1 and ech42 genes were induced before contact with Botrytis cinerea and Rhizoctonia solani, while when confronted with P. capsici they were stimulated until contact and overgrowth. The prb1 and bgl3.1 genes were induced before contact against the three-host assayed. Overall, T. atroviride prefers to parasitize and has the capacity to distinguish between an oomycete and a fungus, but nutrient quality regulates its parasitic responsiveness.
Collapse
Affiliation(s)
- Víctor Javier García-Sánchez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76140, Mexico; (V.J.G.-S.); (K.L.S.-L.); (J.J.E.M.); (D.S.-H.); (J.A.C.-C.); (F.L.-J.)
| | - Karina Lizbeth Sánchez-López
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76140, Mexico; (V.J.G.-S.); (K.L.S.-L.); (J.J.E.M.); (D.S.-H.); (J.A.C.-C.); (F.L.-J.)
| | - Juana Jazmín Esquivel Méndez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76140, Mexico; (V.J.G.-S.); (K.L.S.-L.); (J.J.E.M.); (D.S.-H.); (J.A.C.-C.); (F.L.-J.)
| | - Daniel Sánchez-Hernández
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76140, Mexico; (V.J.G.-S.); (K.L.S.-L.); (J.J.E.M.); (D.S.-H.); (J.A.C.-C.); (F.L.-J.)
| | - José Antonio Cervantes-Chávez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76140, Mexico; (V.J.G.-S.); (K.L.S.-L.); (J.J.E.M.); (D.S.-H.); (J.A.C.-C.); (F.L.-J.)
| | - Fidel Landeros-Jaime
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76140, Mexico; (V.J.G.-S.); (K.L.S.-L.); (J.J.E.M.); (D.S.-H.); (J.A.C.-C.); (F.L.-J.)
| | | | - Julio Cesar Vega-Arreguín
- Laboratory of AgroGenomic Sciences, National School of Higher Studies, National Autonomous University of Mexico, Guanajuato 37684, Mexico;
| | - Edgardo Ulises Esquivel-Naranjo
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76140, Mexico; (V.J.G.-S.); (K.L.S.-L.); (J.J.E.M.); (D.S.-H.); (J.A.C.-C.); (F.L.-J.)
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| |
Collapse
|
2
|
Hu Y, Dong H, Chen H, Shen X, Li H, Wen Q, Wang F, Qi Y, Shen J. PoSnf1 affects cellulose utilization through interaction with cellobiose transporter in Pleurotus ostreatus. Int J Biol Macromol 2024; 275:133503. [PMID: 38944091 DOI: 10.1016/j.ijbiomac.2024.133503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Pleurotus ostreatus is one of the most cultivated edible fungi worldwide, but its lignocellulose utilization efficiency is relatively low (<50 %), which eventually affects the biological efficiency of P. ostreatus. Improving cellulase production and activity will contribute to enhancing the lignocellulose-degrading capacity of P. ostreatus. AMP-activated/Snf1 protein kinase plays important roles in regulating carbon and energy metabolism. The Snf1 homolog (PoSnf1) in P. ostreatus was obtained and analyzed using bioinformatics. The cellulose response of PoSnf1, the effect of the phosphorylation level of PoSnf1 on the expression of cellulose degradation-related genes, the putative proteins that interact with the phosphorylated PoSnf1 (P-PoSnf1), the cellobiose transport function of two sugar transporters (STP1 and STP2), and the interactions between PoSnf1 and STP1/STP2 were studied in this research. We found that cellulose treatment improved the phosphorylation level of PoSnf1, which further affected cellulase activity and the expression of most cellulose degradation-related genes. A total of 1, 024 proteins putatively interacting with P-PoSnf1 were identified, and they were enriched mainly in the substances transport and metabolism. Most of the putative cellulose degradation-related protein-coding genes could respond to cellulose. Among the P-PoSnf1-interacting proteins, the functions of two sugar transporters (STP1 and STP2) were further studied, and the results showed that both could transport cellobiose and were indirectly regulated by P-PoSnf1, and that STP2 could directly interact with PoSnf1. The results of this study indicated that PoSnf1 plays an important role in regulating the expression of cellulose degradation genes possibly by affecting cellobiose transport.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Haozhe Dong
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Haolan Chen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Xiaoye Shen
- College of Food Science and Technology, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Huihui Li
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Qing Wen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China.
| | - Fengqin Wang
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Yuancheng Qi
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Jinwen Shen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China.
| |
Collapse
|
3
|
Castañeda-Casasola CC, Nieto-Jacobo MF, Soares A, Padilla-Padilla EA, Anducho-Reyes MA, Brown C, Soth S, Esquivel-Naranjo EU, Hampton J, Mendoza-Mendoza A. Unveiling a Microexon Switch: Novel Regulation of the Activities of Sugar Assimilation and Plant-Cell-Wall-Degrading Xylanases and Cellulases by Xlr2 in Trichoderma virens. Int J Mol Sci 2024; 25:5172. [PMID: 38791210 PMCID: PMC11121469 DOI: 10.3390/ijms25105172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Functional microexons have not previously been described in filamentous fungi. Here, we describe a novel mechanism of transcriptional regulation in Trichoderma requiring the inclusion of a microexon from the Xlr2 gene. In low-glucose environments, a long mRNA including the microexon encodes a protein with a GAL4-like DNA-binding domain (Xlr2-α), whereas in high-glucose environments, a short mRNA that is produced encodes a protein lacking this DNA-binding domain (Xlr2-β). Interestingly, the protein isoforms differ in their impact on cellulase and xylanase activity. Deleting the Xlr2 gene reduced both xylanase and cellulase activity and growth on different carbon sources, such as carboxymethylcellulose, xylan, glucose, and arabinose. The overexpression of either Xlr2-α or Xlr2-β in T. virens showed that the short isoform (Xlr2-β) caused higher xylanase activity than the wild types or the long isoform (Xlr2-α). Conversely, cellulase activity did not increase when overexpressing Xlr2-β but was increased with the overexpression of Xlr2-α. This is the first report of a novel transcriptional regulation mechanism of plant-cell-wall-degrading enzyme activity in T. virens. This involves the differential expression of a microexon from a gene encoding a transcriptional regulator.
Collapse
Affiliation(s)
- Cynthia Coccet Castañeda-Casasola
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Laboratorio de AgroBiotecnología, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, ExHacienda de Santa Bárbara, Zempoala 43830, Mexico;
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Centro Nacional de Referencia Fitosanitaria, Tecamac 55740, Mexico
| | | | - Amanda Soares
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Emir Alejandro Padilla-Padilla
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 04510, Mexico
| | - Miguel Angel Anducho-Reyes
- Laboratorio de AgroBiotecnología, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, ExHacienda de Santa Bárbara, Zempoala 43830, Mexico;
| | - Chris Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
| | - Sereyboth Soth
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Edgardo Ulises Esquivel-Naranjo
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76230, Mexico
| | - John Hampton
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Artemio Mendoza-Mendoza
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| |
Collapse
|
4
|
Kislitsin VY, Chulkin AM, Dotsenko AS, Sinelnikov IG, Sinitsyn AP, Rozhkova AM. The role of intracellular β-glucosidase in cellulolytic response induction in filamentous fungus Penicillium verruculosum. Res Microbiol 2024; 175:104178. [PMID: 38160731 DOI: 10.1016/j.resmic.2023.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
In this study, CRISPR/Cas9 genome editing was used to knockout the bgl2 gene encoding intracellular β-glucosidase filamentous fungus Penicillium verruculosum. This resulted in a dramatic reduction of secretion of cellulolytic enzymes. The study of P. verruculosum Δbgl2 found that the transcription of the cbh1 gene, which encodes cellobiohydrolase 1, was impaired when induced by cellobiose and cellotriose. However, the transcription of the cbh1 gene remains at level of the host strain when induced by gentiobiose. This implies that gentiobiose is the true inducer of the cellulolytic response in P. verruculosum, in contrast to Neurospora crassa where cellobiose acts as an inducer.
Collapse
Affiliation(s)
- Valeriy Yu Kislitsin
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Andrey M Chulkin
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Anna S Dotsenko
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Igor G Sinelnikov
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Arkady P Sinitsyn
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Aleksandra M Rozhkova
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
5
|
Shangguan J, Qiao J, Liu H, Zhu L, Han X, Shi L, Zhu J, Liu R, Ren A, Zhao M. The CBS/H 2S signalling pathway regulated by the carbon repressor CreA promotes cellulose utilization in Ganoderma lucidum. Commun Biol 2024; 7:466. [PMID: 38632386 PMCID: PMC11024145 DOI: 10.1038/s42003-024-06180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Cellulose is an important abundant renewable resource on Earth, and the microbial cellulose utilization mechanism has attracted extensive attention. Recently, some signalling molecules have been found to regulate cellulose utilization and the discovery of underlying signals has recently attracted extensive attention. In this paper, we found that the hydrogen sulfide (H2S) concentration under cellulose culture condition increased to approximately 2.3-fold compared with that under glucose culture condition in Ganoderma lucidum. Further evidence shown that cellulase activities of G. lucidum were improved by 18.2-27.6% through increasing H2S concentration. Then, we observed that the carbon repressor CreA inhibited H2S biosynthesis in G. lucidum by binding to the promoter of cbs, a key gene for H2S biosynthesis, at "CTGGGG". In our study, we reported for the first time that H2S increased the cellulose utilization in G. lucidum, and analyzed the mechanism of H2S biosynthesis induced by cellulose. This study not only enriches the understanding of the microbial cellulose utilization mechanism but also provides a reference for the analysis of the physiological function of H2S signals.
Collapse
Affiliation(s)
- Jiaolei Shangguan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jinjin Qiao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - He Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Lei Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiaofei Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
6
|
Liu J, Chen M, Gu S, Fan R, Zhao Z, Sun W, Yao Y, Li J, Tian C. Independent metabolism of oligosaccharides is the keystone of synchronous utilization of cellulose and hemicellulose in Myceliophthora. PNAS NEXUS 2024; 3:pgae053. [PMID: 38380057 PMCID: PMC10877092 DOI: 10.1093/pnasnexus/pgae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
The effective utilization of cellulose and hemicellulose, the main components of plant biomass, is a key technical obstacle that needs to be overcome for the economic viability of lignocellulosic biorefineries. Here, we firstly demonstrated that the thermophilic cellulolytic fungus Myceliophthora thermophila can simultaneously utilize cellulose and hemicellulose, as evidenced by the independent uptake and intracellular metabolism of cellodextrin and xylodextrin. When plant biomass serviced as carbon source, we detected the cellodextrin and xylodextrin both in cells and in the culture medium, as well as high enzyme activities related to extracellular oligosaccharide formation and intracellular oligosaccharide hydrolysis. Sugar consumption assay revealed that in contrast to inhibitory effect of glucose on xylose and cellodextrin/xylodextrin consumption in mixed-carbon media, cellodextrin and xylodextrin were synchronously utilized in this fungus. Transcriptomic analysis also indicated simultaneous induction of the genes involved in cellodextrin and xylodextrin metabolic pathway, suggesting carbon catabolite repression (CCR) is triggered by extracellular glucose and can be eliminated by the intracellular hydrolysis and metabolism of oligosaccharides. The xylodextrin transporter MtCDT-2 was observed to preferentially transport xylobiose and tolerate high cellobiose concentrations, which helps to bypass the inhibition of xylobiose uptake. Furthermore, the expression of cellulase and hemicellulase genes was independently induced by their corresponding inducers, which enabled this strain to synchronously utilize cellulose and hemicellulose. Taken together, the data presented herein will further elucidate the degradation of plant biomass by fungi, with implications for the development of consolidated bioprocessing-based lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Meixin Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Shuying Gu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Rui Fan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Zhen Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Wenliang Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yonghong Yao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jingen Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Chaoguang Tian
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
7
|
Giwa AS, Ali N, Akhter MS. Cellulose Degradation Enzymes in Filamentous Fungi, A Bioprocessing Approach Towards Biorefinery. Mol Biotechnol 2023:10.1007/s12033-023-00900-1. [PMID: 37839042 DOI: 10.1007/s12033-023-00900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023]
Abstract
The economic exploration of renewable energy resources has hot fundamentals among the countries besides dwindling energy resources and increasing public pressure. Cellulose accumulation is a major bio-natural resource from agricultural waste. Cellulases are the most potential enzymes that systematically degrade cellulosic biomass into monomers which could be further processed into several efficient value-added products via chemical and biological reactions including useful biomaterial for human benefits. This could lower the environmental risks problems followed by an energy crisis. Cellulases are mainly synthesized by special fungal genotypes. The strain Trichoderma orientalis could highly express cellulases and was regarded as an ideal strain for further research, as the genetic tools have found compatibility for cellulose breakdown by producing effective cellulose-degrading enzymes. This strain has found a cellulase production of about 35 g/L that needs further studies for advancement. The enzyme activity of strain Trichoderma orientalis needed to be further improved from a molecular level which is one of the important methods. Considering synthetic biological approaches to unveil the genetic tools will boost the knowledge about commercial cellulases bioproduction. Several genetic transformation methods were significantly cited in this study. The transformation approaches that are currently researchers are exploring is transcription regulatory factors that are deeply explained in this study, that are considered essential regulators of gene expression.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- School of Environment and Civil Engineering, Nanchang Institute of Science and Technology, Nanchang, 330108, China
| | - Nasir Ali
- Institute of Biotechnology Genetic Engineering, The University of Agriculture, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan.
| | - Mohammed Salim Akhter
- Department of Chemistry, College of Science, University of Bahrain, Sakheer Campus Bahrain, Zallaq, Bahrain
| |
Collapse
|
8
|
Liu M, Hu M, Zhou H, Dong Z, Chen X. High-level production of Aspergillus niger prolyl endopeptidase from agricultural residue and its application in beer brewing. Microb Cell Fact 2023; 22:93. [PMID: 37143012 PMCID: PMC10161650 DOI: 10.1186/s12934-023-02087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Prolyl endopeptidase from Aspergillus niger (AN-PEP) is a prominent serine proteinase with various potential applications in the food and pharmaceutical industries. However, the availability of efficient and low-cost AN-PEP remains a challenge owing to its low yield and high fermentation cost. RESULTS Here, AN-PEP was recombinantly expressed in Trichoderma reesei (rAN-PEP) under the control of the cbh1 promoter and its secretion signal. After 4 days of shaking flask cultivation with the model cellulose Avicel PH101 as the sole carbon source, the extracellular prolyl endopeptidase activity reached up to 16.148 U/mL, which is the highest titer reported to date and the secretion of the enzyme is faster in T. reesei than in other eukaryotic expression systems including A. niger and Komagataella phaffii. Most importantly, when cultivated on the low-cost agricultural residue corn cob, the recombinant strain was found to secret a remarkable amount of rAN-PEP (37.125 U/mL) that is twice the activity under the pure cellulose condition. Furthermore, treatment with rAN-PEP during beer brewing lowered the content of gluten below the ELISA kit detection limit (< 10 mg/kg) and thereby, reduced turbidity, which would be beneficial for improving the non-biological stability of beer. CONCLUSION Our research provides a promising approach for industrial production of AN-PEP and other enzymes (proteins) from renewable lignocellulosic biomass, which provides a new idea with relevant researchers for the utilization of agricultural residues.
Collapse
Affiliation(s)
- Minglu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Zhang J, Hong Y, Li K, Sun Y, Yao C, Ling J, Zhong Y. Enhancing the production of a heterologous Trametes laccase (LacA) by replacement of the major cellulase CBH1 in Trichoderma reesei. J Ind Microbiol Biotechnol 2023; 50:kuad002. [PMID: 36690343 PMCID: PMC10124127 DOI: 10.1093/jimb/kuad002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
The laccases from white-rot fungi exhibit high redox potential in treating phenolic compounds. However, their application in commercial purposes has been limited because of the relatively low productivity of the native hosts. Here, the laccase A-encoding gene lacA of Trametes sp. AH28-2 was overexpressed under the control of the strong promoter of cbh1 (Pcbh1), the gene encoding the endogenous cellobiohydrolase 1 (CBH1), in the industrial workhorse fungus Trichoderma reesei. Firstly, the lacA expression cassette was randomly integrated into the T. reesei chromosome by genetic transformation. The lacA gene was successfully transcribed, but the laccase couldn't be detected in the liquid fermentation condition. Meanwhile, it was found that the endoplasmic reticulum-associated degradation (ERAD) was strongly activated, indicating that the expression of LacA probably triggered intense endoplasmic reticulum (ER) stress. Subsequently, the lacA expression cassette was added with the downstream region of cbh1 (Tcbh1) to construct the new expression cassette lacA::Δcbh1, which could replace the cbh1 locus in the genome via homologous recombination. After genetic transformation, the lacA gene was integrated into the cbh1 locus and transcribed. And the unfolded protein response (UPR) and ERAD were only slightly induced, for which the loss of endogenous cellulase CBH1 released the pressure of secretion. Finally, the maximum laccase activity of 168.3 U/l was obtained in the fermentation broth. These results demonstrated that the reduction of secretion pressure by deletion of endogenous protein-encoding genes would be an efficient strategy for the secretion of heterologous target proteins in industrial fungi. ONE-SENTENCE SUMMARY The reduction of the secretion pressure by deletion of the endogenous cbh1 gene can contribute to heterologous expression of the laccase (LacA) from Trametes sp. AH28-2 in Trichoderma reesei.
Collapse
Affiliation(s)
- Jiaxin Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Yu Hong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Kehang Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Yu Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Cheng Yao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Jianya Ling
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
10
|
Zhang X, Chen X, Li S, Bello A, Liu J, Gao L, Fan Z, Wang S, Liu L, Ma B, Li H. Mechanism of differential expression of β-glucosidase genes in functional microbial communities in response to carbon catabolite repression. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:3. [PMID: 35418139 PMCID: PMC8756671 DOI: 10.1186/s13068-021-02101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022]
Abstract
Abstract
Background
β-Glucosidase is the rate-limiting enzyme of cellulose degradation. It has been stipulated and established that β-glucosidase-producing microbial communities differentially regulate the expression of glucose/non-glucose tolerant β-glucosidase genes. However, it is still unknown if this differential expression of functional microbial community happens accidentally or as a general regulatory mechanism, and of what biological significance it has. To investigate the composition and function of microbial communities and how they respond to different carbon metabolism pressures and the transcriptional regulation of functional genes, the different carbon metabolism pressure was constructed by setting up the static chamber during composting.
Results
The composition and function of functional microbial communities demonstrated different behaviors under the carbon metabolism pressure. Functional microbial community up-regulated glucose tolerant β-glucosidase genes expression to maintain the carbon metabolism rate by enhancing the transglycosylation activity of β-glucosidase to compensate for the decrease of hydrolysis activity under carbon catabolite repression (CCR). Micrococcales play a vital role in the resistance of functional microbial community under CCR. The transcription regulation of GH1 family β-glucosidase genes from Proteobacteria showed more obvious inhibition than other phyla under CCR.
Conclusion
Microbial functional communities differentially regulate the expression of glucose/non-glucose tolerant β-glucosidase genes under CCR, which is a general regulatory mechanism, not accidental. Furthermore, the differentially expressed β-glucosidase gene exhibited species characteristics at the phylogenetic level.
Collapse
|
11
|
Effect of Different Inducer Sources on Cellulase Enzyme Production by White-Rot Basidiomycetes Pleurotus ostreatus and Phanerochaete chrysosporium under Submerged Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cellulase enzymes attract a lot of research due to their industrial application. Diverse cellulase-producing organisms and substances that induce cellulase are highly sought after. This study aimed to evaluate the effect of different inducer sources on cellulase production by white rot fungi P. ostreatus CGMCC 3.7292 and P. chrysosporium CGMCC 3.7212 under submerged fermentation employing a completely randomized experimental design. The different inducer sources tested were nitrogen (yeast, potassium nitrate, sodium nitrate, ammonium sulphate, aqueous ammonia and urea), carbon (malt extract, glucose, fructose, carboxymethylcellulose, starch and xylose) and agro-biomass (stevia straw, wheat straw, oat straw, alfalfa straw, corn cobs and corn stover). These inducer sources strongly impacted enzyme activities by P. ostreatus CGMCC 3.7292 and P. chrysosporium CGMCC 3.7212. The suitable nitrogen and carbon inducer sources for cellulase activity by P. ostreatus and P. chrysosporium were yeast (1.354 U/mL and 1.154 U/mL) and carboxymethylcellulose (0.976 U/mL and 0.776 U/mL) while the suitable agro-biomass were wheat straw (6.880 U/mL) and corn stover (6.525 U/mL), respectively. The least inducer sources in terms of nitrogen, carbon and agro-biomass for cellulase activity by P. ostreatus and P. chrysosporium were urea (0.213 U/mL and 0.081 U/mL), glucose (0.042 U/mL and 0.035), xylose (0.042 U/mL and 0.035 U/mL) and stevia straw (1.555 U/mL and 0.960 U/mL). In submerged fermentation, the cellulase enzyme activity of P. ostreatus in response to various inducer sources was relatively higher than P. chrysosporium.
Collapse
|
12
|
Chen Z, He Y, Wu X, Wang L, Dong Z, Chen X. Toward more efficient ergothioneine production using the fungal ergothioneine biosynthetic pathway. Microb Cell Fact 2022; 21:76. [PMID: 35525939 PMCID: PMC9077841 DOI: 10.1186/s12934-022-01807-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/27/2022] [Indexed: 12/23/2022] Open
Abstract
Background Ergothioneine (ERG) is a potent histidine-derived antioxidant that confers health-promoting effects. Only certain bacteria and fungi can biosynthesize ERG, but the ERG productivity in natural producers is low. ERG overproduction through genetic engineering represents an efficient and cost-effective manufacturing strategy. Results Here, we showed that Trichoderma reesei can synthesize ERG during conidiogenesis and hyphal growth. Co-expression of two ERG biosynthesis genes (tregt1 and tregt2) from T. reesei enabled E. coli to generate 70.59 mg/L ERG at the shaking flask level after 48 h of whole-cell biocatalysis, whereas minor amounts of ERG were synthesized by the recombinant E. coli strain bearing only the tregt1 gene. By fed-batch fermentation, the extracellular ERG production reached 4.34 g/L after 143 h of cultivation in a 2-L jar fermenter, which is the highest level of ERG production reported thus far. Similarly, ERG synthesis also occurred in the E. coli strain engineered with the two well-characterized genes from N. crassa and the ERG productivity was up to 4.22 g/L after 143 h of cultivation under the above-mentioned conditions. Conclusions Our results showed that the overproduction of ERG in E. coli could be achieved through two-enzymatic steps, demonstrating high efficiency of the fungal ERG biosynthetic pathway. Meanwhile, this work offers a more promising approach for the industrial production of ERG. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01807-3.
Collapse
Affiliation(s)
- Zhihui Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongzhi He
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinyu Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
13
|
Adsul MG, Dixit P, Saini JK, Gupta RP, Ramakumar SSV, Mathur AS. Morphologically favorable mutant of Trichoderma reesei for low viscosity cellulase production. Biotechnol Bioeng 2022; 119:2167-2181. [PMID: 35470437 DOI: 10.1002/bit.28121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/07/2022]
Abstract
Metabolite production by filamentous fungi hampered because of high viscosity generated during growth. Low viscosity fermentation by mold is one of the preferred ways of large scale enzymes production. Cellulolytic enzymes play a key role during the process of lignocellulosic biomass conversion. In this study a mutant RC-23-1 was isolated through mutagenesis (diethyl sulfate followed by UV) of T. reesei RUT-C30. RC-23-1 not only gave higher cellulase production but also generated lower viscosity during enzyme production. Viscosity of mutant growth was more than three times lower than parent strain. RC-23-1 shows unique, yeast like colony morphology on solid media and small pellet like growth in liquid media. This mutant did not spread like mold on solid media. This mutant produces cellulases constitutively when grown in sugars. Using only glucose, the cellulase production was 4.1 FPU/ml. Among polysaccharides (avicel, xylan and pectin), avicel gave maximum of 6.2 FPU/ml and pretreated biomass (rice straw, wheat straw and sugarcane bagasse) produced 5.1-5.8 FPU/ml. At 7L scale reactor, fed-batch process was designed for cellulase production using different carbon and nitrogen sources. Maximum yield of cellulases was 182 FPU/g of lactose consumed was observed in fed-batch process. The produced enzyme used for hydrolysis of acid pretreated rice straw (20% solid loading) and maximum of 60 % glucan conversion was observed. RC-23-1 mutant is good candidate for large scale cellulase production and could be a model strain to study mold to yeast-like transformation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mukund G Adsul
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007, India
| | - Pooja Dixit
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007, India
| | - Jitendra K Saini
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007, India
| | - Ravi P Gupta
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007, India
| | - S S V Ramakumar
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007, India
| | - Anshu S Mathur
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007, India
| |
Collapse
|
14
|
Conlon BH, O'Tuama D, Michelsen A, Crumière AJJ, Shik JZ. A fungal symbiont converts provisioned cellulose into edible yield for its leafcutter ant farmers. Biol Lett 2022; 18:20220022. [PMID: 35440234 PMCID: PMC9019514 DOI: 10.1098/rsbl.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
While ants are dominant consumers in terrestrial habitats, only the leafcutters practice herbivory. Leafcutters do this by provisioning a fungal cultivar (Leucoagaricus gongylophorus) with freshly cut plant fragments and harnessing its metabolic machinery to convert plant mulch into edible fungal tissue (hyphae and swollen hyphal cells called gongylidia). The cultivar is known to degrade cellulose, but whether it assimilates this ubiquitous but recalcitrant molecule into its nutritional reward structures is unknown. We use in vitro experiments with isotopically labelled cellulose to show that fungal cultures from an Atta colombica leafcutter colony convert cellulose-derived carbon into gongylidia, even when potential bacterial symbionts are excluded. A laboratory feeding experiment showed that cellulose assimilation also occurs in vivo in A. colombica colonies. Analyses of publicly available transcriptomic data further identified a complete, constitutively expressed, cellulose-degradation pathway in the fungal cultivar. Confirming leafcutters use cellulose as a food source sheds light on the eco-evolutionary success of these important herbivores.
Collapse
Affiliation(s)
- Benjamin H Conlon
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark
| | - David O'Tuama
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark
| | - Anders Michelsen
- Section for Terrestrial Ecology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Antonin J J Crumière
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark
| | - Jonathan Z Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark.,Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Panama
| |
Collapse
|
15
|
Cai LN, Lu T, Lin DQ, Yao SJ. Discovery of extremophilic cellobiohydrolases from marine Aspergillus niger with computational analysis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Zhang J, Meng Markillie L, Mitchell HD, Gaffrey MJ, Orr G, Schilling JS. Distinctive carbon repression effects in the carbohydrate-selective wood decay fungus Rhodonia placenta. Fungal Genet Biol 2022; 159:103673. [PMID: 35150839 DOI: 10.1016/j.fgb.2022.103673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/19/2022]
Abstract
Brown rot fungi dominate the carbon degradation of northern terrestrial conifers. These fungi adapted unique genetic inventories to degrade lignocellulose and to rapidly release a large quantity of carbohydrates for fungal catabolism. We know that brown rot involves "two-step" gene regulation to delay most hydrolytic enzyme expression until after harsh oxidative pretreatments. This implies the crucial role of concise gene regulation to brown rot efficacy, but the underlying regulatory mechanisms remain uncharacterized. Here, using the combined transcriptomic and enzyme analyses we investigated the roles of carbon catabolites in controlling gene expression in model brown rot fungus Rhodonia placenta. We identified co-regulated gene regulons as shared transcriptional responses to no-carbon controls, glucose, cellobiose, or aspen wood (Populus sp.). We found that cellobiose, a common inducing catabolite for fungi, induced expression of main chain-cleaving cellulases in GH5 and GH12 families (cellobiose vs. no-carbon > 4-fold, Padj < 0.05), whereas complex aspen was a universal inducer for Carbohydrate Active Enzymes (CAZymes) expression. Importantly, we observed the attenuated glucose-mediated repression effects on cellulases expression, but not on hemicellulases and lignin oxidoreductases, suggesting fungi might have adapted diverged regulatory routes to boost cellulase production for the fast carbohydrate release. Using carbon regulons, we further predicted the cis- and trans-regulatory elements and assembled a network model of the distinctive regulatory machinery of brown rot. These results offer mechanistic insights into the energy efficiency traits of a common group of decomposer fungi with enormous influence on the carbon cycle.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, United States.
| | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Hugh D Mitchell
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Matthew J Gaffrey
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States.
| |
Collapse
|
17
|
Kislitsin VY, Chulkin AM, Zorov IN, Shashkov IA, Satrutdinov AD, Sinitsyn AP, Rozhkova AM. Influence of Mono- and Oligosaccharides on cbh1 Gene Transcription in the Filamentous Fungus Penicillium verruculosum. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821090040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Havukainen S, Pujol-Giménez J, Valkonen M, Hediger MA, Landowski CP. Functional characterization of a highly specific L-arabinose transporter from Trichoderma reesei. Microb Cell Fact 2021; 20:177. [PMID: 34496831 PMCID: PMC8425032 DOI: 10.1186/s12934-021-01666-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lignocellulose biomass has been investigated as a feedstock for second generation biofuels and other value-added products. Some of the processes for biofuel production utilize cellulases and hemicellulases to convert the lignocellulosic biomass into a range of soluble sugars before fermentation with microorganisms such as yeast Saccharomyces cerevisiae. One of these sugars is L-arabinose, which cannot be utilized naturally by yeast. The first step in L-arabinose catabolism is its transport into the cells, and yeast lacks a specific transporter, which could perform this task. RESULTS We identified Trire2_104072 of Trichoderma reesei as a potential L-arabinose transporter based on its expression profile. This transporter was described already in 2007 as D-xylose transporter XLT1. Electrophysiology experiments with Xenopus laevis oocytes and heterologous expression in yeast revealed that Trire2_104072 is a high-affinity L-arabinose symporter with a Km value in the range of [Formula: see text] 0.1-0.2 mM. It can also transport D-xylose but with low affinity (Km [Formula: see text] 9 mM). In yeast, L-arabinose transport was inhibited slightly by D-xylose but not by D-glucose in an assay with fivefold excess of the inhibiting sugar. Comparison with known L-arabinose transporters revealed that the expression of Trire2_104072 enabled yeast to uptake L-arabinose at the highest rate in conditions with low extracellular L-arabinose concentration. Despite the high specificity of Trire2_104072 for L-arabinose, the growth of its T. reesei deletion mutant was only affected at low L-arabinose concentrations. CONCLUSIONS Due to its high affinity for L-arabinose and low inhibition by D-glucose or D-xylose, Trire2_104072 could serve as a good candidate for improving the existing pentose-utilizing yeast strains. The discovery of a highly specific L-arabinose transporter also adds to our knowledge of the primary metabolism of T. reesei. The phenotype of the deletion strain suggests the involvement of other transporters in L-arabinose transport in this species.
Collapse
Affiliation(s)
- Sami Havukainen
- VTT Technical Research Center of Finland Ltd, Tietotie 2, 02150, Espoo, Finland
| | - Jonai Pujol-Giménez
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Mari Valkonen
- VTT Technical Research Center of Finland Ltd, Tietotie 2, 02150, Espoo, Finland
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | | |
Collapse
|
19
|
Chen X, Song B, Liu M, Qin L, Dong Z. Understanding the Role of Trichoderma reesei Vib1 in Gene Expression during Cellulose Degradation. J Fungi (Basel) 2021; 7:jof7080613. [PMID: 34436152 PMCID: PMC8397228 DOI: 10.3390/jof7080613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Vib1, a member of the Ndt80/PhoG-like transcription factor family, has been shown to be essential for cellulase production of Trichoderma reesei. Here, we combined transcriptomic and genetic analyses to gain mechanistic insights into the roles of Vib1 during cellulose degradation. Our transcriptome analysis showed that the vib1 deletion caused 586 genes with decreased expression and 431 genes with increased expression on cellulose. The downregulated genes were enriched for Gene Ontology terms associated with carbohydrate metabolism, transmembrane transport, oxidoreductase activity, and transcription factor activity. Of the 258 genes induced by cellulose, 229 showed no or decreased expression in Δvib1 on cellulose, including almost all (hemi)cellulase genes, crucial sugar transporter genes (IDs:69957, 3405), and the genes encoding main transcriptional activators Xyr1 and Ace3. Additionally, Vib1 also regulated the expression of genes involved in secondary metabolism. Further comparison of the transcriptomes of Δvib1 and Δxyr1 in cellulose revealed that the genes regulated by Vib1 had much overlap with Xyr1 targets especially for the gene set induced by cellulose, presumably whose expression requires the cooperativity between Vib1 and Xyr1. Genetic evidence indicated that Vib1 regulates cellulase gene expression partially via Xyr1. Our results will provide new clues for strain improvement.
Collapse
Affiliation(s)
- Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
| | - Bingran Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
| | - Minglu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
| | - Lina Qin
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China;
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
- Correspondence:
| |
Collapse
|
20
|
Novy V, Nielsen F, Cullen D, Sabat G, Houtman CJ, Hunt CG. The characteristics of insoluble softwood substrates affect fungal morphology, secretome composition, and hydrolytic efficiency of enzymes produced by Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:105. [PMID: 33902680 PMCID: PMC8074412 DOI: 10.1186/s13068-021-01955-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/11/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND On-site enzyme production using Trichoderma reesei can improve yields and lower the overall cost of lignocellulose saccharification by exploiting the fungal gene regulatory mechanism that enables it to continuously adapt enzyme secretion to the substrate used for cultivation. To harness this, the interrelation between substrate characteristics and fungal response must be understood. However, fungal morphology or gene expression studies often lack structural and chemical substrate characterization. Here, T. reesei QM6a was cultivated on three softwood substrates: northern bleached softwood Kraft pulp (NBSK) and lodgepole pine pretreated either by dilute-acid-catalyzed steam pretreatment (LP-STEX) or mild alkaline oxidation (LP-ALKOX). With different pretreatments of similar starting materials, we presented the fungus with systematically modified substrates. This allowed the elucidation of substrate-induced changes in the fungal response and the testing of the secreted enzymes' hydrolytic strength towards the same substrates. RESULTS Enzyme activity time courses correlated with hemicellulose content and cellulose accessibility. Specifically, increased amounts of side-chain-cleaving hemicellulolytic enzymes in the protein produced on the complex substrates (LP-STEX; LP-ALKOX) was observed by secretome analysis. Confocal laser scanning micrographs showed that fungal micromorphology responded to changes in cellulose accessibility and initial culture viscosity. The latter was caused by surface charge and fiber dimensions, and likely restricted mass transfer, resulting in morphologies of fungi in stress. Supplementing a basic cellulolytic enzyme mixture with concentrated T. reesei supernatant improved saccharification efficiencies of the three substrates, where cellulose, xylan, and mannan conversion was increased by up to 27, 45, and 2800%, respectively. The improvement was most pronounced for proteins produced on LP-STEX and LP-ALKOX on those same substrates, and in the best case, efficiencies reached those of a state-of-the-art commercial enzyme preparation. CONCLUSION Cultivation of T. reesei on LP-STEX and LP-ALKOX produced a protein mixture that increased the hydrolytic strength of a basic cellulase mixture to state-of-the-art performance on softwood substrates. This suggests that the fungal adaptation mechanism can be exploited to achieve enhanced performance in enzymatic hydrolysis without a priori knowledge of specific substrate requirements.
Collapse
Affiliation(s)
- Vera Novy
- US Department of Agriculture, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI, 53726, USA.
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Göteborg, Sweden.
| | - Fredrik Nielsen
- US Department of Agriculture, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI, 53726, USA
| | - Daniel Cullen
- US Department of Agriculture, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI, 53726, USA
| | - Grzegorz Sabat
- University of Wisconsin Biotechnology Center, Madison, WI, 53706, USA
| | - Carl J Houtman
- US Department of Agriculture, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI, 53726, USA
| | - Christopher G Hunt
- US Department of Agriculture, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI, 53726, USA
| |
Collapse
|
21
|
Arntzen MØ, Bengtsson O, Várnai A, Delogu F, Mathiesen G, Eijsink VGH. Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Sci Rep 2020; 10:20267. [PMID: 33219291 PMCID: PMC7679414 DOI: 10.1038/s41598-020-75217-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/07/2020] [Indexed: 12/26/2022] Open
Abstract
The efficiency of microorganisms to degrade lignified plants is of great importance in the Earth's carbon cycle, but also in industrial biorefinery processes, such as for biofuel production. Here, we present a large-scale proteomics approach to investigate and compare the enzymatic response of five filamentous fungi when grown on five very different substrates: grass (sugarcane bagasse), hardwood (birch), softwood (spruce), cellulose and glucose. The five fungi included the ascomycetes Aspergillus terreus, Trichoderma reesei, Myceliophthora thermophila, Neurospora crassa and the white-rot basidiomycete Phanerochaete chrysosporium, all expressing a diverse repertoire of enzymes. In this study, we present comparable quantitative protein abundance values across five species and five diverse substrates. The results allow for direct comparison of fungal adaptation to the different substrates, give indications as to the substrate specificity of individual carbohydrate-active enzymes (CAZymes), and reveal proteins of unknown function that are co-expressed with CAZymes. Based on the results, we present a quantitative comparison of 34 lytic polysaccharide monooxygenases (LPMOs), which are crucial enzymes in biomass deconstruction.
Collapse
Affiliation(s)
- Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Oskar Bengtsson
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Francesco Delogu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| |
Collapse
|
22
|
Gelain L, van der Wielen L, van Gulik WM, Geraldo da Cruz Pradella J, Carvalho da Costa A. Mathematical modelling for the optimization of cellulase production using glycerol for cell growth and cellulose as the inducer substrate. CHEMICAL ENGINEERING SCIENCE: X 2020. [DOI: 10.1016/j.cesx.2020.100085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Delabona PDS, Codima CA, Ramoni J, Zubieta MP, de Araújo BM, Farinas CS, Pradella JGDC, Seiboth B. The impact of putative methyltransferase overexpression on the Trichoderma harzianum cellulolytic system for biomass conversion. BIORESOURCE TECHNOLOGY 2020; 313:123616. [PMID: 32563792 DOI: 10.1016/j.biortech.2020.123616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Trichoderma harzianum has attracting attention for its potential alternative use in biofuel production, due to a recognized competence for high diversity glycoside hydrolases (GH) enzyme complex, including higher β-glucosidases and auxiliary proteins, using low-cost carbon sources. This strain constitutively overexpressed the global regulator putative methyltransferase - LAE1, in order to improve the GHs production. The recombinant strain achieved 79-fold increase in lae1 expression and high GHs productivity. The evaluation of the LAE1 impact to induce the GHs used soluble and lignocellulose inexpensive carbon sources in a stirred-tank bioreactor. Using sugarcane bagasse with sucrose, the overexpression of lae1 resulted in significantly increment of gh61b (31x), cel7a (25x), bgl1(20x) and xyn3 (20x) genes expression. Reducing sugar released from pretreated sugarcane bagasse, which hydrolyzed by recombinant crude enzyme cocktail, achieved 41% improvement. Therefore, lae1 overexpression effectively is a promising improving GHs target for biomass degradation by T. harzianum.
Collapse
Affiliation(s)
- Priscila da Silva Delabona
- National Centre of Research in Energy and Materials, High-tech Pole II, 10000 Giuseppe Maximo Scolfaro St, P.O Box 6192, Campinas, SP, Brazil; Synthetic Biology and Molecular Biotechnology, Research Division Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstrasse 1a, A-1060 Vienna, Austria; Federal University of Goiás (UFG), Samambaia Campus, Goiânia, GO, Brazil.
| | - Carla Aloia Codima
- National Centre of Research in Energy and Materials, High-tech Pole II, 10000 Giuseppe Maximo Scolfaro St, P.O Box 6192, Campinas, SP, Brazil
| | - Jonas Ramoni
- Synthetic Biology and Molecular Biotechnology, Research Division Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstrasse 1a, A-1060 Vienna, Austria
| | - Mariane Paludetti Zubieta
- National Centre of Research in Energy and Materials, High-tech Pole II, 10000 Giuseppe Maximo Scolfaro St, P.O Box 6192, Campinas, SP, Brazil
| | | | | | - José Geraldo da Cruz Pradella
- National Centre of Research in Energy and Materials, High-tech Pole II, 10000 Giuseppe Maximo Scolfaro St, P.O Box 6192, Campinas, SP, Brazil
| | - Bernhard Seiboth
- Synthetic Biology and Molecular Biotechnology, Research Division Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstrasse 1a, A-1060 Vienna, Austria
| |
Collapse
|
24
|
Identification of an intracellular β-glucosidase in Aspergillus niger with transglycosylation activity. Appl Microbiol Biotechnol 2020; 104:8367-8380. [DOI: 10.1007/s00253-020-10840-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
|
25
|
He J, Liu X, Xia J, Xu J, Xiong P, Qiu Z. One-step utilization of non-detoxified pretreated lignocellulose for enhanced cellulolytic enzyme production using recombinant Trichoderma reesei RUT C30 carrying alcohol dehydrogenase and nicotinate phosphoribosyltransferase. BIORESOURCE TECHNOLOGY 2020; 310:123458. [PMID: 32380436 DOI: 10.1016/j.biortech.2020.123458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Cell growth of Trichoderma reesei is greatly inhibited by furan derivatives (furfural and HMF) generated during pretreatment of lignocellulose, and the cellulase production is hence suppressed. In this study, a novel recombinant strain of T. reesei with high tolerance to furans was constructed by homologously co-expressing nicotinate phosphoribosyltransferase and alcohol dehydrogenase. We observed that furfural had a stronger inhibitory effect than HMF and cellulase production was decreased by 35% in T. reesei with the stress of 2.5 mM furfural. The activities of nicotinate phosphoribosyltransferase and alcohol dehydrogenase increased 8.6-fold and 2.9-fold in the recombinant strain, respectively. Furfural was effectively converted into furfuryl alcohol which was then depleted, thus the production of cellulase could be recovered when the recombinant strain was grown in 5% (w/v) two-step stem explosion pretreated rice straw without detoxification. This work presents an important strategy for efficient enzyme production in T. reesei from non-detoxified pretreated lignocellulose feedstocks.
Collapse
Affiliation(s)
- Jianlong He
- Department of Chemistry and Chemical Engineering, Huaiyin Normal University, 111 Changjiang West Road, Huaian 223300, Jiangsu Province, China
| | - Xiaoyan Liu
- Department of Chemistry and Chemical Engineering, Huaiyin Normal University, 111 Changjiang West Road, Huaian 223300, Jiangsu Province, China
| | - Jun Xia
- Department of Chemistry and Chemical Engineering, Huaiyin Normal University, 111 Changjiang West Road, Huaian 223300, Jiangsu Province, China
| | - Jiaxing Xu
- Department of Chemistry and Chemical Engineering, Huaiyin Normal University, 111 Changjiang West Road, Huaian 223300, Jiangsu Province, China
| | - Peng Xiong
- Huai'an Biomass Green Energy Co., Ltd, 9 Haikou Road, Huaian 223300, Jiangsu Province, China
| | - Zhongyang Qiu
- Department of Chemistry and Chemical Engineering, Huaiyin Normal University, 111 Changjiang West Road, Huaian 223300, Jiangsu Province, China.
| |
Collapse
|
26
|
Ren M, Wang Y, Liu G, Zuo B, Zhang Y, Wang Y, Liu W, Liu X, Zhong Y. The effects of deletion of cellobiohydrolase genes on carbon source-dependent growth and enzymatic lignocellulose hydrolysis in Trichoderma reesei. J Microbiol 2020; 58:687-695. [PMID: 32524344 DOI: 10.1007/s12275-020-9630-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
The saprophytic fungus Trichoderma reesei has long been used as a model to study microbial degradation of lignocellulosic biomass. The major cellulolytic enzymes of T. reesei are the cellobiohydrolases CBH1 and CBH2, which constitute more than 70% of total proteins secreted by the fungus. However, their physiological functions and effects on enzymatic hydrolysis of cellulose substrates are not sufficiently elucidated. Here, the cellobiohydrolase-encoding genes cbh1 and cbh2 were deleted, individually or combinatively, by using an auxotrophic marker-recycling technique in T. reesei. When cultured on media with different soluble carbon sources, all three deletion strains (Δcbh1, Δcbh2, and Δcbh1Δcbh2) exhibited no dramatic variation in morphological phenotypes, but their growth rates increased apparently when cultured on soluble cellulase-inducing carbon sources. In addition, Δcbh1 showed dramatically reduced growth and Δcbh1Δcbh2 could hardly grew on microcrystalline cellulose (MCC), whereas all strains grew equally on sodium carboxymethyl cellulose (CMC-Na), suggesting that the influence of the CBHs on growth was carbon source-dependent. Moreover, five representative cellulose substrates were used to analyse the influence of the absence of CBHs on saccharification efficiency. CBH1 deficiency significantly affected the enzymatic hydrolysis rates of various cellulose substrates, where acid pre-treated corn stover (PCS) was influenced the least. CBH2 deficiency reduced the hydrolysis of MCC, PCS, and acid pre-treated and delignified corncob but improved the hydrolysis ability of filter paper. These results demonstrate the specific contributions of CBHs to the hydrolysis of different types of biomass, which could facilitate the development of tailor-made strains with highly efficient hydrolysis enzymes for certain biomass types in the biofuel industry.
Collapse
Affiliation(s)
- Meibin Ren
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Yifan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Guoxin Liu
- Zibo Center Hospital, Zi Bo, 255036, P. R. China
| | - Bin Zuo
- Leling Shengli New Energy Co., Ltd., Leling, 253600, P. R. China
| | - Yuancheng Zhang
- Leling Shengli New Energy Co., Ltd., Leling, 253600, P. R. China
| | - Yunhe Wang
- Leling Shengli New Energy Co., Ltd., Leling, 253600, P. R. China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Xiangmei Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China.
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China.
| |
Collapse
|
27
|
Banerjee S, Maiti TK, Roy RN. Production, purification, and characterization of cellulase from Acinetobacter junii GAC 16.2, a novel cellulolytic gut isolate of Gryllotalpa africana, and its effects on cotton fiber and sawdust. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01569-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
28
|
Wang BT, Hu S, Yu XY, Jin L, Zhu YJ, Jin FJ. Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Polymers (Basel) 2020; 12:polym12030530. [PMID: 32121667 PMCID: PMC7182937 DOI: 10.3390/polym12030530] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022] Open
Abstract
Polysaccharides are biopolymers made up of a large number of monosaccharides joined together by glycosidic bonds. Polysaccharides are widely distributed in nature: Some, such as peptidoglycan and cellulose, are the components that make up the cell walls of bacteria and plants, and some, such as starch and glycogen, are used as carbohydrate storage in plants and animals. Fungi exist in a variety of natural environments and can exploit a wide range of carbon sources. They play a crucial role in the global carbon cycle because of their ability to break down plant biomass, which is composed primarily of cell wall polysaccharides, including cellulose, hemicellulose, and pectin. Fungi produce a variety of enzymes that in combination degrade cell wall polysaccharides into different monosaccharides. Starch, the main component of grain, is also a polysaccharide that can be broken down into monosaccharides by fungi. These monosaccharides can be used for energy or as precursors for the biosynthesis of biomolecules through a series of enzymatic reactions. Industrial fermentation by microbes has been widely used to produce traditional foods, beverages, and biofuels from starch and to a lesser extent plant biomass. This review focuses on the degradation and utilization of plant homopolysaccharides, cellulose and starch; summarizes the activities of the enzymes involved and the regulation of the induction of the enzymes in well-studied filamentous fungi.
Collapse
|
29
|
Sun X, Zhang X, Huang H, Wang Y, Tu T, Bai Y, Wang Y, Zhang J, Luo H, Yao B, Su X. Engineering the cbh1 Promoter of Trichoderma reesei for Enhanced Protein Production by Replacing the Binding Sites of a Transcription Repressor ACE1 to Those of the Activators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1337-1346. [PMID: 31933359 DOI: 10.1021/acs.jafc.9b05452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The strong and inducible cbh1 promoter is most widely used to express heterologous proteins, useful in food and feed industries, in Trichoderma reesei. Enhancing its ability to direct transcription provides a general strategy to improve protein production in T. reesei. The cbh1 promoter was engineered by replacing eight binding sites of the transcription repressor ACE1 to those of the activators ACE2, Hap2/3/5, and Xyr1. While changing ACE1 to Hap2/3/5-binding sites completely abolished the transcription ability, replacements with ACE2- and Xyr1-binding sites (designated cbh1pA and cbh1pX promoters, respectively) largely improved the promoter transcription efficiency, as reflected by expression of a reporter gene DsRed. The cbh1pA and cbh1pX promoters were applied to improve secretory expression of a codon-optimized mannanase from Aspergillus niger to 3.6- and 5.0-fold higher, respectively, which has high application potential in feed industry.
Collapse
Affiliation(s)
- Xianhua Sun
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Xuhuan Zhang
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Yaru Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Jie Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| |
Collapse
|
30
|
|
31
|
Genetically Modified Microbes for Second-Generation Bioethanol Production. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
The Putative Transcription Factor Gene thaB Regulates Cellulase and Xylanase Production at the Enzymatic and Transcriptional Level in the Fungus Talaromyces cellulolyticus. Appl Biochem Biotechnol 2019; 190:1360-1370. [PMID: 31773396 DOI: 10.1007/s12010-019-03190-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
Abstract
Talaromyces cellulolyticus is a promising strain for industrial cellulase production. In this study, the thaB gene, which is a homologue of the hap2/B gene in other filamentous fungi, was isolated and characterized. When grown in the presence of cellulose, culture supernatants of a thaB-disrupted strain (YDTha) exhibited decreased cellulase and xylanase enzymatic activities compared to the control strain. Furthermore, YDTha exhibited lower expression of the genes encoding cellulases and xylanases compared to the control strain. When cellobiose and lactose (soluble carbon sources) were used as carbon sources, the expression of the genes encoding cellulases and xylanases was decreased in both the YDTha and the control strains, though the expression levels in YDTha remained lower than those in the control strain. These results suggested that thaB has a positive role in cellulase and xylanase production in T. cellulolyticus.
Collapse
|
33
|
Silva JCR, Salgado JCS, Vici AC, Ward RJ, Polizeli MLTM, Guimarães LHS, Furriel RPM, Jorge JA. A novel Trichoderma reesei mutant RP698 with enhanced cellulase production. Braz J Microbiol 2019; 51:537-545. [PMID: 31667801 DOI: 10.1007/s42770-019-00167-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/27/2019] [Indexed: 01/13/2023] Open
Abstract
A new strain of Trichoderma reesei (teleomorph Hypocrea jecorina) with high cellulase production was obtained by exposing the spores from T. reesei QM9414 to an ultraviolet light followed by selecting fast-growing colonies on plates containing CMC (1% w/v) as the carbon source. The mutant T. reesei RP698 reduced cultivation period to 5 days and increased tolerance to the end-products of enzymatic cellulose digestion. Under submerged fermentation conditions, FPase, CMCase, and Avicelase production increased up to 2-fold as compared to the original QM9414 strain. The highest levels of cellulase activity were obtained at 27 °C after 72 h with Avicel®, cellobiose, and sugarcane bagasse as carbon sources. The temperature and pH activity optima of the FPase, CMCase, and Avicelase were approximately 60 °C and 5.0, respectively. The cellulase activity was unaffected by the addition of 140 mM glucose in the enzyme assay. When T. reesei RP698 crude extract was supplemented by the addition of β-glucosidase from Scytalidium thermophilum, a 2.3-fold increase in glucose release was observed, confirming the low inhibition by the end-product of cellulose hydrolysis. These features indicate the utility of this mutant strain in the production of enzymatic cocktails for biomass degradation.
Collapse
Affiliation(s)
- Jean Carlos Rodrigues Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, campus Sertãozinho, Rua Américo Ambrósio, 269, Sertãozinho, 14169-263, São Paulo, Brazil
| | - José Carlos Santos Salgado
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil.
| | - Ana Claudia Vici
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Maria Lourdes Teixeira Moraes Polizeli
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Luis Henrique Souza Guimarães
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Rosa Prazeres Melo Furriel
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - João Atílio Jorge
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil
| |
Collapse
|
34
|
Hu Y, Xu W, Hu S, Lian L, Zhu J, Shi L, Ren A, Zhao M. InGanoderma lucidum, Glsnf1 regulates cellulose degradation by inhibiting GlCreA during the utilization of cellulose. Environ Microbiol 2019; 22:107-121. [DOI: 10.1111/1462-2920.14826] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/05/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Yanru Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Wenzhao Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Shishan Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Lingdan Lian
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - MingWen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| |
Collapse
|
35
|
Novy V, Nielsen F, Seiboth B, Nidetzky B. The influence of feedstock characteristics on enzyme production in Trichoderma reesei: a review on productivity, gene regulation and secretion profiles. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:238. [PMID: 31624500 PMCID: PMC6781402 DOI: 10.1186/s13068-019-1571-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/20/2019] [Indexed: 05/21/2023]
Abstract
Biorefineries, designed for the production of lignocellulose-based chemicals and fuels, are receiving increasing attention from the public, governments, and industries. A major obstacle for biorefineries to advance to commercial scale is the high cost of the enzymes required to derive the fermentable sugars from the feedstock used. As summarized in this review, techno-economic studies suggest co-localization and integration of enzyme manufacturing with the cellulosic biorefinery as the most promising alternative to alleviate this problem. Thus, cultivation of Trichoderma reesei, the principal producer of lignocellulolytic enzymes, on the lignocellulosic biomass processed on-site can reduce the cost of enzyme manufacturing. Further, due to a complex gene regulation machinery, the fungus can adjust the gene expression of the lignocellulolytic enzymes towards the characteristics of the feedstock, increasing the hydrolytic efficiency of the produced enzyme cocktail. Despite extensive research over decades, the underlying regulatory mechanisms are not fully elucidated. One aspect that has received relatively little attention in literature is the influence the characteristics of a lignocellulosic substrate, i.e., its chemical and physical composition, has on the produced enzyme mixture. Considering that the fungus is dependent on efficient enzymatic degradation of the lignocellulose for continuous supply of carbon and energy, a relationship between feedstock characteristics and secretome composition can be expected. The aim of this review was to systematically collect, appraise, and aggregate data and integrate results from studies analyzing enzyme production by T. reesei on insoluble cellulosic model substrates and lignocellulosic biomass. The results show that there is a direct effect of the substrate's complexity (rated by structure, composition of the lignin-carbohydrate complex, and recalcitrance in enzymatic saccharification) on enzyme titers and the composition of specific activities in the secretome. It further shows that process-related factors, such as substrate loading and cultivation set-up, are direct targets for increasing enzyme yields. The literature on transcriptome and secretome composition further supports the proposed influence of substrate-related factors on the expression of lignocellulolytic enzymes. This review provides insights into the interrelation between the characteristics of the substrate and the enzyme production by T. reesei, which may help to advance integrated enzyme manufacturing of substrate-specific enzymes cocktails at scale.
Collapse
Affiliation(s)
- Vera Novy
- Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Graz, Austria
- Present Address: Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, Canada
| | - Fredrik Nielsen
- Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Graz, Austria
- Present Address: Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, Canada
| | - Bernhard Seiboth
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Graz, Austria
| |
Collapse
|
36
|
Draft Genome Sequence of Rummeliibacillus sp. Strain TYF005, a Physiologically Recalcitrant Bacterium with High Ethanol and Salt Tolerance Isolated from Spoilage Vinegar. Microbiol Resour Announc 2019; 8:8/31/e00244-19. [PMID: 31371531 PMCID: PMC6675979 DOI: 10.1128/mra.00244-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rummeliibacillus sp. strain TYF005 is a thermophilic bacterium with high ethanol (8% vol/vol) and salt (13% wt/vol) tolerance that was isolated from spoilage vinegar. Here, we report the draft genome sequence of this strain, which has 117 scaffolds with a total genome size of 3.7 Mb and a 34.4% GC content.
Collapse
|
37
|
Purification and Characterization of Cellulase from Obligate Halophilic Aspergillus flavus (TISTR 3637) and Its Prospects for Bioethanol Production. Appl Biochem Biotechnol 2019; 189:1327-1337. [DOI: 10.1007/s12010-019-03086-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
|
38
|
Anasontzis GE, Lebrun MH, Haon M, Champion C, Kohler A, Lenfant N, Martin F, O'Connell RJ, Riley R, Grigoriev IV, Henrissat B, Berrin JG, Rosso MN. Broad-specificity GH131 β-glucanases are a hallmark of fungi and oomycetes that colonize plants. Environ Microbiol 2019; 21:2724-2739. [PMID: 30887618 DOI: 10.1111/1462-2920.14596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 02/17/2019] [Accepted: 03/17/2019] [Indexed: 12/21/2022]
Abstract
Plant-tissue-colonizing fungi fine-tune the deconstruction of plant-cell walls (PCW) using different sets of enzymes according to their lifestyle. However, some of these enzymes are conserved among fungi with dissimilar lifestyles. We identified genes from Glycoside Hydrolase family GH131 as commonly expressed during plant-tissue colonization by saprobic, pathogenic and symbiotic fungi. By searching all the publicly available genomes, we found that GH131-coding genes were widely distributed in the Dikarya subkingdom, except in Taphrinomycotina and Saccharomycotina, and in phytopathogenic Oomycetes, but neither other eukaryotes nor prokaryotes. The presence of GH131 in a species was correlated with its association with plants as symbiont, pathogen or saprobe. We propose that GH131-family expansions and horizontal-gene transfers contributed to this adaptation. We analysed the biochemical activities of GH131 enzymes whose genes were upregulated during plant-tissue colonization in a saprobe (Pycnoporus sanguineus), a plant symbiont (Laccaria bicolor) and three hemibiotrophic-plant pathogens (Colletotrichum higginsianum, C. graminicola, Zymoseptoria tritici). These enzymes were all active on substrates with β-1,4, β-1,3 and mixed β-1,4/1,3 glucosidic linkages. Combined with a cellobiohydrolase, GH131 enzymes enhanced cellulose degradation. We propose that secreted GH131 enzymes unlock the PCW barrier and allow further deconstruction by other enzymes during plant tissue colonization by symbionts, pathogens and saprobes.
Collapse
Affiliation(s)
- George E Anasontzis
- INRA, Aix-Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France.,CNRS, Aix-Marseille Univ, UMR7257, Architecture et Fonction des Macromolecules Biologiques, Marseille, France
| | - Marc-Henri Lebrun
- INRA, AgroParisTech, Université Paris-Saclay, BIOGER, Thiverval-Grignon, France
| | - Mireille Haon
- INRA, Aix-Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Charlotte Champion
- INRA, Aix-Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Annegret Kohler
- INRA, University of Lorraine, Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE), UMR 1136, Champenoux, France
| | - Nicolas Lenfant
- CNRS, Aix-Marseille Univ, UMR7257, Architecture et Fonction des Macromolecules Biologiques, Marseille, France
| | - Francis Martin
- INRA, University of Lorraine, Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE), UMR 1136, Champenoux, France
| | - Richard J O'Connell
- INRA, AgroParisTech, Université Paris-Saclay, BIOGER, Thiverval-Grignon, France
| | - Robert Riley
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94598, USA
| | - Bernard Henrissat
- CNRS, Aix-Marseille Univ, UMR7257, Architecture et Fonction des Macromolecules Biologiques, Marseille, France.,INRA, USC 1408, AFMB, Marseille, France
| | - Jean-Guy Berrin
- INRA, Aix-Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Marie-Noëlle Rosso
- INRA, Aix-Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| |
Collapse
|
39
|
Novel genetic tools that enable highly pure protein production in Trichoderma reesei. Sci Rep 2019; 9:5032. [PMID: 30902998 PMCID: PMC6430808 DOI: 10.1038/s41598-019-41573-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/08/2019] [Indexed: 01/31/2023] Open
Abstract
Trichoderma reesei is an established protein production host with high natural capacity to secrete enzymes. The lack of efficient genome engineering approaches and absence of robust constitutive gene expression systems limits exploitation of this organism in some protein production applications. Here we report engineering of T. reesei for high-level production of highly enriched lipase B of Candida antarctica (calB) using glucose as a carbon source. Multiplexed CRISPR/Cas9 in combination with the use of our recently established synthetic expression system (SES) enabled accelerated construction of strains, which produced high amounts of highly pure calB. Using SES, calB production levels in cellulase-inducing medium were comparable to the levels obtained by using the commonly employed inducible cbh1 promoter, where a wide spectrum of native enzymes were co-produced. Due to highly constitutive expression provided by the SES, it was possible to carry out the production in cellulase-repressing glucose medium leading to around 4 grams per liter of fully functional calB and simultaneous elimination of unwanted background enzymes.
Collapse
|
40
|
Delabona PDS, Silva MR, Paixão DAA, Lima DJ, Rodrigues GN, Lee MDS, Souza MGDS, Bussamra BC, Santos AS, Pradella JGDC. A NOVEL Scytalidium SPECIES: UNDERSTAND THE CELLULOLYTIC SYSTEM FOR BIOMASS SACCHARIFICATION. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190361s20170495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Priscila da S. Delabona
- Centro Nacional de Pesquisa em Energia e Materiais, Brasil; Universidade Estadual de Campinas, Brasil
| | | | | | - Deise J. Lima
- Centro Nacional de Pesquisa em Energia e Materiais, Brasil
| | | | | | | | | | | | | |
Collapse
|
41
|
Functional characterisation of cellobiohydrolase I (Cbh1) from Trichoderma virens UKM1 expressed in Aspergillus niger. Protein Expr Purif 2019; 154:52-61. [DOI: 10.1016/j.pep.2018.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/12/2018] [Accepted: 09/20/2018] [Indexed: 11/20/2022]
|
42
|
Llanos A, Déjean S, Neugnot-Roux V, François JM, Parrou JL. Carbon sources and XlnR-dependent transcriptional landscape of CAZymes in the industrial fungus Talaromyces versatilis: when exception seems to be the rule. Microb Cell Fact 2019; 18:14. [PMID: 30691469 PMCID: PMC6348686 DOI: 10.1186/s12934-019-1062-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/13/2019] [Indexed: 11/19/2022] Open
Abstract
Background Research on filamentous fungi emphasized the remarkable redundancy in genes encoding hydrolytic enzymes, the similarities but also the large differences in their expression, especially through the role of the XlnR/XYR1 transcriptional activator. The purpose of this study was to evaluate the specificities of the industrial fungus Talaromyces versatilis, getting clues into the role of XlnR and the importance of glucose repression at the transcriptional level, to provide further levers for cocktail production. Results By studying a set of 62 redundant genes representative of several categories of enzymes, our results underlined the huge plasticity of transcriptional responses when changing nutritional status. As a general trend, the more heterogeneous the substrate, the more efficient to trigger activation. Genetic modifications of xlnR led to significant reorganisation of transcriptional patterns. Just a minimal set of genes actually fitted in a simplistic model of regulation by a transcriptional activator, and this under specific substrates. On the contrary, the diversity of xlnR+ versus ΔxlnR responses illustrated the existence of complex and unpredicted patterns of co-regulated genes that were highly dependent on the culture condition, even between genes that encode members of a functional category of enzymes. They notably revealed a dual, substrate-dependant repressor-activator role of XlnR, with counter-intuitive transcripts regulations that targeted specific genes. About glucose, it appeared as a formal repressive sugar as we observed a massive repression of most genes upon glucose addition to the mycelium grown on wheat straw. However, we also noticed a positive role of this sugar on the basal expression of a few genes, (notably those encoding cellulases), showing again the strong dependence of these regulatory mechanisms upon promoter and nutritional contexts. Conclusions The diversity of transcriptional patterns appeared to be the rule, while common and stable behaviour, both within gene families and with fungal literature, the exception. The setup of a new biotechnological process to reach optimized, if not customized expression patterns of enzymes, hence appeared tricky just relying on published data that can lead, in the best scenario, to approximate trends. We instead encourage preliminary experimental assays, carried out in the context of interest to reassess gene responses, as a mandatory step before thinking in (genetic) strategies for the improvement of enzyme production in fungi.![]() Electronic supplementary material The online version of this article (10.1186/s12934-019-1062-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agustina Llanos
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France.,Adisseo France S.A.S, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, UMR5219-Université de Toulouse; CNRS-UPS, 31062, Toulouse Cedex 9, France
| | | | - Jean M François
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France
| | - Jean-Luc Parrou
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France.
| |
Collapse
|
43
|
Hao Z, Su X. Fast gene disruption in Trichoderma reesei using in vitro assembled Cas9/gRNA complex. BMC Biotechnol 2019; 19:2. [PMID: 30626373 PMCID: PMC6325762 DOI: 10.1186/s12896-018-0498-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/27/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND CRISPR/Cas9 has wide application potentials in a variety of biological species including Trichoderma reesei, a filamentous fungus workhorse for cellulase production. However, expression of Cas9 heterologously in the host cell could be time-consuming and sometimes even troublesome. RESULTS We tested two gene disruption methods in T. reesei using CRISPR/Cas9 in this study. The intracellularly expressed Cas9 led to unexpected off-target gene disruption in T. reesei QM9414, favoring inserting 9- or 12-bp at 70- and 100-bp downstream of the targeted ura5. An alternative method was, therefore, established by assembling Cas9 and gRNA in vitro, followed by transformation of the ribonucleoprotein complex with a plasmid containing the pyr4 marker gene into T. reesei TU-6. When the gRNA targeting cbh1 was used, eight among the twenty seven transformants were found to lose the ability to express CBH1, indicative of successful cbh1 disruption through genome editing. Large DNA fragments including the co-transformed plasmid, chromosomal genes, or a mixture of these nucleotides, were inserted in the disrupted cbh1 locus. CONCLUSIONS Direct transformation of Cas9/gRNA complex into the cell is a fast means to disrupt a gene in T. reesei and may find wide applications in strain improvement and functional genomics study.
Collapse
Affiliation(s)
- Zhenzhen Hao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
44
|
Zhang F, Bunterngsook B, Li JX, Zhao XQ, Champreda V, Liu CG, Bai FW. Regulation and production of lignocellulolytic enzymes from Trichoderma reesei for biofuels production. ADVANCES IN BIOENERGY 2019. [DOI: 10.1016/bs.aibe.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
|
46
|
Xia Y, Yang L, Xia L. Preparation of a novel soluble inducer by cellobiase-release microcapsules and its application in cellulase production. J Biotechnol 2018; 279:22-26. [DOI: 10.1016/j.jbiotec.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 01/05/2023]
|
47
|
Xia Y, Yang L, Xia L. High-level production of a fungal β-glucosidase with application potentials in the cost-effective production of Trichoderma reesei cellulase. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Liu H, Wang G, Li W, Liu X, Li E, Yin WB. A highly efficient genetic system for the identification of a harzianum B biosynthetic gene cluster in Trichoderma hypoxylon. MICROBIOLOGY-SGM 2018; 164:769-778. [PMID: 29557773 DOI: 10.1099/mic.0.000649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trichoderma hypoxylon is a fungicolous species which produces rich secondary metabolites. However, no genetic transformation method is available for further studies. Here, we developed a marker-less transformation system based on the complementation of an uridine/uracil biosynthetic gene by protoplast transformation. An uridine/uracil auxotrophic mutant of Δthpyr4 was obtained by using a positive screening protocol with 5'-fluoroorotic acid as a selective reagent. To improve the homologous integration rates, the orthologues of ku70 and lig4 which play critical roles in non-homologous end-joining recombination were disrupted. The resulting thlig4 mutant showed remarkable transformation rates of 89 %, while no change was found in the thku70 deletion mutant compared with the WT strain. This suggests that thlig4 play a key role in the non-homologous recombination in this strain. Using this system, the biosynthetic gene cluster of trichothecene (tri) harzianum B was identified by deletion of the thtri5 in T. hypoxylon. Comparative genome analysis revealed that the trichothecene biosynthetic gene cluster in T. hypoxylon shared similar organizations with T. arundinaceum and T. brevicompactum, even though their encoded products are different in structures. Taken together, the highly efficient genetic system provides a convenient tool for studying the biosynthetic diversity and mining the novel natural product from the fungi.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Gang Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Wei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Erwei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| |
Collapse
|
49
|
Sinitsyn AP, Volkov PV, Rubtsova EA, Shashakov IA, Rozhkova AM, Sinitsyna OA, Kondrat’eva EG, Zorov IN, Satrudinov AD, Merzlov DA, Matys VY. Using an Inducible Promoter of the Glucoamylase Gene to Construct New Multienzyme Complexes from Penicillium verruculosum. CATALYSIS IN INDUSTRY 2018. [DOI: 10.1134/s2070050418010105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Schneider WDH, Gonçalves TA, Uchima CA, Reis LD, Fontana RC, Squina FM, Dillon AJP, Camassola M. Comparison of the production of enzymes to cell wall hydrolysis using different carbon sources by Penicillium echinulatum strains and its hydrolysis potential for lignocelullosic biomass. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|