1
|
Wang YL, Ikuma K, Brown AMV, Deonarine A. Global survey of hgcA-carrying genomes in marine and freshwater sediments: Insights into mercury methylation processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124117. [PMID: 38714231 DOI: 10.1016/j.envpol.2024.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/09/2024]
Abstract
Mercury (Hg) methylation is a microbially mediated process that produces methylmercury (MeHg), a bioaccumulative neurotoxin. A highly conserved gene pair, hgcAB, is required for Hg methylation, which provides a basis for identifying Hg methylators and evaluating their genomic composition. In this study, we conducted a large-scale omics analysis in which 281 metagenomic freshwater and marine sediment samples from 46 geographic locations across the globe were queried. Specific objectives were to examine the prevalence of Hg methylators, to identify horizontal gene transfer (HGT) events involving hgcAB within Hg methylator communities, and to identify associations between hgcAB and microbial biochemical functions/genes. Hg methylators from the phyla Desulfobacterota and Bacteroidota were dominant in both freshwater and marine sediments while Firmicutes and methanogens belonging to Euryarchaeota were identified only in freshwater sediments. Novel Hg methylators were found in the Phycisphaerae and Planctomycetia classes within the phylum Planctomycetota, including potential hgcA-carrying anammox metagenome-assembled genomes (MAGs) from Candidatus Brocadiia. HGT of hgcA and hgcB were identified in both freshwater and marine methylator communities. Spearman's correlation analysis of methylator genomes suggested that in addition to sulfide, thiosulfate, sulfite, and ammonia may be important parameters for Hg methylation processes in sediments. Overall, our results indicated that the biochemical drivers of Hg methylation vary between marine and freshwater sites, lending insight into the influence of environmental perturbances, such as a changing climate, on Hg methylation processes.
Collapse
Affiliation(s)
- Yong-Li Wang
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX, United States
| | - Kaoru Ikuma
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Amrika Deonarine
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
2
|
Scuvée D, Goñi-Urriza M, Tessier E, Gassie C, Ranchou-Peyruse M, Amouroux D, Guyoneaud R, Khalfaoui-Hassani B. Molybdate inhibits mercury methylation capacity of Pseudodesulfovibrio hydrargyri BerOc1 regardless of the growth metabolism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42686-42697. [PMID: 38878247 DOI: 10.1007/s11356-024-33901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024]
Abstract
Molybdate inhibits sulfate respiration in sulfate-reducing bacteria (SRB). It is used as an inhibitor to indirectly evaluate the role of SRB in mercury methylation in the environment. Here, the SRB Pseudodesulfovibrio hydrargyri BerOc1 was used to assess the effect of molybdate on cell growth and mercury methylation under various metabolic conditions. Geobacter sulfurreducens PCA was used as the non-SRB counterpart strain with the ability to methylate mercury. While PCA growth and methylation are not affected by molybdate, 1 mM of molybdate inhibits BerOc1 growth under sulfate respiration (50% inhibition) but also under fumarate respiration (complete inhibition). Even more surprising, mercury methylation of BerOc1 is totally inhibited at 0.1 mM of molybdate when grown under sulfate or fumarate respiration with pyruvate as the electron donor. As molybdate is expected to reduce cellular ATP level, the lower Hg methylation observed with pyruvate could be the consequence of lower energy production. Although molybdate alters the expression of hgcA (mercury methylation marker) and sat (involved in sulfate reduction and molybdate sensitivity) in a metabolism-dependent manner, no relationship with mercury methylation rates could be found. Our results show, for the first time, a specific mercury methylation inhibition by molybdate in SRB.
Collapse
Affiliation(s)
- Diva Scuvée
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Marisol Goñi-Urriza
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Claire Gassie
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | |
Collapse
|
3
|
Hao Z, Zhao L, Liu J, Pu Q, Chen J, Meng B, Feng X. Relative importance of aceticlastic methanogens and hydrogenotrophic methanogens on mercury methylation and methylmercury demethylation in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167601. [PMID: 37832685 DOI: 10.1016/j.scitotenv.2023.167601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
The accumulation of methylmercury (MeHg) in paddy soil results from a subtle balance between inorganic mercury (e.g., HgII) methylation and MeHg demethylation. Methanogens not only act as Hg methylators but may also facilitate MeHg demethylation. However, the diverse methanogen flora (e.g., aceticlastic and hydrogenotrophic types) that exists under ambient conditions has not previously been considered. Accordingly, the roles of different types of methanogens in HgII methylation and MeHg degradation in paddy soils were studied using the Hg isotope tracing technique combined with the application of methanogen inhibitors/stimulants. It was found that the response of HgII methylation to methanogen inhibitors or stimulants was site-dependent. Specifically, aceticlastic methanogens were suggested as the potential HgII methylators at the low Hg level background site, whereas hydrogenotrophic methanogens were potentially involved in MeHg production as Hg levels increased. In contrast, both aceticlastic and hydrogenotrophic methanogens facilitated MeHg degradation across the sampling sites. Additionally, competition between hydrogenotrophic and aceticlastic methanogens was observed in Hg-polluted paddy soils, implying that net MeHg production could be alleviated by promoting aceticlastic methanogens or inhibiting hydrogenotrophic methanogens. The findings gained from this study improve the understanding of the role of methanogens in net MeHg formation and link carbon turnover to Hg biogeochemistry in rice paddy ecosystems.
Collapse
Affiliation(s)
- Zhengdong Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhao
- School of Management Science, Guizhou University of Finance and Economics, Guiyang 550025, China; Guizhou Key Laboratory of Big Data Statistical Analysis (No. [2019]5103), Guiyang 550025, China.
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ji Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Deore KS, Dhakephalkar PK, Dagar SS. Phylogenetically and physiologically diverse methanogenic archaea inhabit the Indian hot spring environments. Arch Microbiol 2023; 205:332. [PMID: 37707605 DOI: 10.1007/s00203-023-03661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
Mesophilic and thermophilic methanogens belonging to the hydrogenotrophic, methylotrophic, and acetotrophic groups were isolated from Indian hot spring environments using BY and BCYT growth media. Following initial Hinf I-based PCR-RFLP screening, 70 methanogens were sequenced to ascertain their identity. These methanogens were phylogenetically and physiologically diverse and represented different taxa distributed across three physiological groups, i.e., hydrogenotrophs (53), methylotrophs (14) and acetotrophs (3). Overall, methanogens representing three families, five genera, and ten species, including two putative novel species, were recognized. The highest number and diversity of methanogens was observed at 40 ℃, dominated by Methanobacterium (10; 3 species), Methanosarcina (9; 3 species), Methanothermobacter (7; 2 species), Methanomethylovorans (5; 1 species) and Methanoculleus (3; 1 species). Both putative novel methanogen species were isolated at 40 ℃ and belonged to the genera Methanosarcina and Methanobacterium. At 55 ℃, limited diversity was observed, and resulted in the isolation of only two genera of methanogens, i.e., Methanothermobacter (28; 2 species) and Methanosarcina (4; 1 species). At 70 ℃, only members of the genus Methanothermobacter (5; 2 species) were isolated, whereas no methanogen could be cultured at 85 ℃. Ours is the first study that documents the extensive range of cultivable methanogenic archaea inhabiting hot springs across various geothermal provinces of India.
Collapse
Affiliation(s)
- Kasturi Shirish Deore
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Prashant K Dhakephalkar
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Sumit Singh Dagar
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India.
- Savitribai Phule Pune University, Ganeshkhind, Pune, India.
| |
Collapse
|
5
|
Wang B, Hu H, Bishop K, Buck M, Björn E, Skyllberg U, Nilsson MB, Bertilsson S, Bravo AG. Microbial communities mediating net methylmercury formation along a trophic gradient in a peatland chronosequence. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130057. [PMID: 36179622 DOI: 10.1016/j.jhazmat.2022.130057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Peatlands are generally important sources of methylmercury (MeHg) to adjacent aquatic ecosystems, increasing the risk of human and wildlife exposure to this highly toxic compound. While microorganisms play important roles in mercury (Hg) geochemical cycles where they directly and indirectly affect MeHg formation in peatlands, potential linkages between net MeHg formation and microbial communities involving these microorganisms remain unclear. To address this gap, microbial community composition and specific marker gene transcripts were investigated along a trophic gradient in a geographically constrained peatland chronosequence. Our results showed a clear spatial pattern in microbial community composition along the gradient that was highly driven by peat soil properties and significantly associated with net MeHg formation as approximated by MeHg concentration and %MeHg of total Hg concentration. Known fermentative, syntrophic, methanogenic and iron-reducing metabolic guilds had the strong positive correlations to net MeHg formation, while methanotrophic and methylotrophic microorganisms were negatively correlated. Our results indicated that sulfate reducers did not have a key role in net MeHg formation. Microbial activity as interpreted from 16S rRNA sequences was significantly correlated with MeHg and %MeHg. Our findings shed new light on the role of microbial community in net MeHg formation of peatlands that undergo ontogenetic change.
Collapse
Affiliation(s)
- Baolin Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China.
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta 37-49, E08003 Barcelona, Catalunya, Spain
| |
Collapse
|
6
|
Yu RQ, Barkay T. Microbial mercury transformations: Molecules, functions and organisms. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:31-90. [PMID: 35461663 DOI: 10.1016/bs.aambs.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mercury (Hg) methylation, methylmercury (MeHg) demethylation, and inorganic redox transformations of Hg are microbe-mediating processes that determine the fate and cycling of Hg and MeHg in many environments, and by doing so influence the health of humans and wild life. The discovery of the Hg methylation genes, hgcAB, in the last decade together with advances in high throughput and genome sequencing methods, have resulted in an expanded appreciation of the diversity of Hg methylating microbes. This review aims to describe experimentally confirmed and recently discovered hgcAB gene-carrying Hg methylating microbes; phylogenetic and taxonomic analyses are presented. In addition, the current knowledge on transformation mechanisms, the organisms that carry them out, and the impact of environmental parameters on Hg methylation, MeHg demethylation, and inorganic Hg reduction and oxidation is summarized. This knowledge provides a foundation for future action toward mitigating the impact of environmental Hg pollution.
Collapse
Affiliation(s)
- Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX, United States.
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
7
|
Wang J, Dai J, Chen G, Jiang F. Role of sulfur biogeochemical cycle in mercury methylation in estuarine sediments: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126964. [PMID: 34523493 DOI: 10.1016/j.jhazmat.2021.126964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Estuaries are sinks for mercury, in which the most toxic mercury form, neurotoxic methylmercury (MeHg), is produced by mercury methylators and accumulates in estuarine sediments. In the same area, the microbial sulfur cycle is triggered by sulfate-reducing bacteria (SRB), which is considered as the main mercury methylator. In this review, we analyzed the sulfur and mercury speciation in sediments from 70 estuaries globally. Abundant mercury and sulfur species were found in the global estuarine sediments. Up to 727 μg THg/g dw and 880 ng MeHg/g dw were found in estuarine sediments, showing the serious risk of mercury to aquatic ecological systems. Significant correlations between sulfur and MeHg concentrations were discovered. Especially, the porewater sulfate concentration positively correlated to MeHg production. The sulfur cycle affects MeHg formation via activating mercury methylator activities and limiting mercury bioavailability, leading to promote or inhibit MeHg formation at different sulfur speciation concentrations. These results suggest that sulfur biogeochemical cycle plays an important role in mercury methylation in estuarine sediments, and the effect of the sulfur cycle on mercury methylation deserves to be further explored in future research.
Collapse
Affiliation(s)
- Jinting Wang
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ji Dai
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Millera Ferriz L, Ponton DE, Storck V, Leclerc M, Bilodeau F, Walsh DA, Amyot M. Role of organic matter and microbial communities in mercury retention and methylation in sediments near run-of-river hydroelectric dams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145686. [PMID: 33609815 DOI: 10.1016/j.scitotenv.2021.145686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Run-of-river power plants (RoRs) are expected to triple in number over the next decades in Canada. These structures are not anticipated to considerably promote the mobilization and transport of mercury (Hg) and its subsequent microbial transformation to methylmercury (MeHg), a neurotoxin able to biomagnify in food webs up to humans. To test whether construction of RoRs had an effect on Hg transport and transformation, we studied Hg and MeHg concentrations, organic matter contents and methylating microbial community abundance and composition in the sediments of a section of the St. Maurice River (Quebec, Canada). This river section has been affected by the construction of two RoR dams and its watershed has been disturbed by a forest fire, logging, and the construction of wetlands. Higher total Hg (THg) and MeHg concentrations were observed in the surface sediments of the flooded sites upstream of the RoRs. These peaks in THg and MeHg were correlated with organic matter proportions in the sediments (r2 = 0.87 and 0.82, respectively). In contrast, the proportion of MeHg, a proxy for methylation potential, was best explained by the carbon to nitrogen ratio suggesting the importance of terrigenous organic matter as labile substrate for Hg methylation in this system. Metagenomic analysis of Hg-methylating communities based on the hgcA functional gene marker indicated an abundance of methanogens, sulfate reducers and fermenters, suggesting that these metabolic guilds may be primary Hg methylators in these surface sediments. We propose that RoR pondages act as traps for sediments, organic matter and Hg, and that this retention can be amplified by other disturbances of the watershed such as forest fire and logging. RoR flooded sites can be conducive to Hg methylation in sediments and may act as gateways for bioaccumulation and biomagnification of MeHg along food webs, particularly in disturbed watersheds.
Collapse
Affiliation(s)
- L Millera Ferriz
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; Biology Department, Concordia University, Montreal H4B 1R6, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada
| | - D E Ponton
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada
| | - V Storck
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; Biology Department, Concordia University, Montreal H4B 1R6, QC, Canada
| | - M Leclerc
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada
| | - F Bilodeau
- Hydro-Québec Production, Environment Department, Montreal, QC, Canada
| | - D A Walsh
- Biology Department, Concordia University, Montreal H4B 1R6, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada
| | - M Amyot
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada.
| |
Collapse
|
9
|
Schaefer JK, Kronberg R, Björn E, Skyllberg U. Anaerobic guilds responsible for mercury methylation in boreal wetlands of varied trophic status serving as either a methylmercury source or sink. Environ Microbiol 2020; 22:3685-3699. [DOI: 10.1111/1462-2920.15134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/16/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffra K Schaefer
- Department of Environmental Sciences Rutgers University 14 College Farm Road, New Brunswick NJ 08901 USA
| | - Rose‐Marie Kronberg
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå SE‐901 83 Sweden
| | - Erik Björn
- Department of Chemistry Umeå University Umeå SE‐901 87 Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå SE‐901 83 Sweden
| |
Collapse
|
10
|
Pathak A, Jaswal R, Xu X, White JR, Edwards B, Hunt J, Brooks S, Rathore RS, Agarwal M, Chauhan A. Characterization of Bacterial and Fungal Assemblages From Historically Contaminated Metalliferous Soils Using Metagenomics Coupled With Diffusion Chambers and Microbial Traps. Front Microbiol 2020; 11:1024. [PMID: 32655505 PMCID: PMC7325934 DOI: 10.3389/fmicb.2020.01024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/27/2020] [Indexed: 01/05/2023] Open
Abstract
The majority of environmental microbiomes are not amenable to cultivation under standard laboratory growth conditions and hence remain uncharacterized. For environmental applications, such as bioremediation, it is necessary to isolate microbes performing the desired function, which may not necessarily be the fast growing or the copiotroph microbiota. Toward this end, cultivation and isolation of microbial strains using diffusion chambers (DC) and/or microbial traps (MT) have both been recently demonstrated to be effective strategies because microbial enrichment is facilitated by soil nutrients and not by synthetically defined media, thus simulating their native habitat. In this study, DC/MT chambers were established using soils collected from two US Department of Energy (DOE) sites with long-term history of heavy metal contamination, including mercury (Hg). To characterize the contamination levels and nutrient status, soils were first analyzed for total mercury (THg), methylmercury (MeHg), total carbon (TC), total nitrogen (TN), and total phosphorus (TP). Multivariate statistical analysis on these measurements facilitated binning of soils under high, medium and low levels of contamination. Bacterial and fungal microbiomes that developed within the DC and MT chambers were evaluated using comparative metagenomics, revealing Chthoniobacter, Burkholderia and Bradyrhizobium spp., as the predominant bacteria while Penicillium, Thielavia, and Trichoderma predominated among fungi. Many of these core microbiomes were also retrieved as axenic isolates. Furthermore, canonical correspondence analysis (CCA) of biogeochemical measurements, metal concentrations and bacterial communities revealed a positive correlation of Chthoniobacter/Bradyrhizobium spp., to THg whereas Burkholderia spp., correlated with MeHg. Penicillium spp., correlated with THg whereas Trichoderma spp., and Aspergillus spp., correlated with MeHg, from the MT approach. This is the first metagenomics-based assessment, isolation and characterization of soil-borne bacterial and fungal communities colonizing the diffusion chambers (DC) and microbial traps (MT) established with long-term metal contaminated soils. Overall, this study provides proof-of-concept for the successful application of DC/MT based assessment of mercury resistant (HgR) microbiomes in legacy metal-contaminated soils, having complex contamination issues. Overall, this study brings out the significance of microbial communities and their relevance in context to heavy metal cycling for better stewardship and restoration of such historically contaminated systems.
Collapse
Affiliation(s)
- Ashish Pathak
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Rajneesh Jaswal
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Xiaoyu Xu
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| | - John R White
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Bobby Edwards
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Jaden Hunt
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Scott Brooks
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Rajesh Singh Rathore
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Meenakshi Agarwal
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Ashvini Chauhan
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
11
|
Villar E, Cabrol L, Heimbürger-Boavida LE. Widespread microbial mercury methylation genes in the global ocean. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020. [PMID: 32090489 DOI: 10.1101/648329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Methylmercury is a neurotoxin that bioaccumulates from seawater to high concentrations in marine fish, putting human and ecosystem health at risk. High methylmercury levels have been found in the oxic subsurface waters of all oceans, but only anaerobic microorganisms have been shown to efficiently produce methylmercury in anoxic environments. The microaerophilic nitrite-oxidizing bacteria Nitrospina have previously been suggested as possible mercury methylating bacteria in Antarctic sea ice. However, the microorganisms responsible for processing inorganic mercury into methylmercury in oxic seawater remain unknown. Here, we show metagenomic and metatranscriptomic evidence that the genetic potential for microbial methylmercury production is widespread in oxic seawater. We find high abundance and expression of the key mercury methylating genes hgcAB across all ocean basins, corresponding to the taxonomic relatives of known mercury methylating bacteria from Deltaproteobacteria, Firmicutes and Chloroflexi. Our results identify Nitrospina as the predominant and widespread microorganism carrying and actively expressing hgcAB. The highest hgcAB abundance and expression occurs in the oxic subsurface waters of the global ocean where the highest MeHg concentrations are typically observed.
Collapse
Affiliation(s)
- Emilie Villar
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
- Sorbonne Université, Université Pierre et Marie Curie - Paris 6, CNRS, UMR 7144 (AD2M), Station Biologique de Roscoff, Place Georges Teissier, CS90074, Roscoff, 29688, France
| | - Léa Cabrol
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
- Instituto de Ecologia y Biodiversidad, Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| |
Collapse
|
12
|
Villar E, Cabrol L, Heimbürger-Boavida LE. Widespread microbial mercury methylation genes in the global ocean. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:277-287. [PMID: 32090489 DOI: 10.1111/1758-2229.12829] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 05/16/2023]
Abstract
Methylmercury is a neurotoxin that bioaccumulates from seawater to high concentrations in marine fish, putting human and ecosystem health at risk. High methylmercury levels have been found in the oxic subsurface waters of all oceans, but only anaerobic microorganisms have been shown to efficiently produce methylmercury in anoxic environments. The microaerophilic nitrite-oxidizing bacteria Nitrospina have previously been suggested as possible mercury methylating bacteria in Antarctic sea ice. However, the microorganisms responsible for processing inorganic mercury into methylmercury in oxic seawater remain unknown. Here, we show metagenomic and metatranscriptomic evidence that the genetic potential for microbial methylmercury production is widespread in oxic seawater. We find high abundance and expression of the key mercury methylating genes hgcAB across all ocean basins, corresponding to the taxonomic relatives of known mercury methylating bacteria from Deltaproteobacteria, Firmicutes and Chloroflexi. Our results identify Nitrospina as the predominant and widespread microorganism carrying and actively expressing hgcAB. The highest hgcAB abundance and expression occurs in the oxic subsurface waters of the global ocean where the highest MeHg concentrations are typically observed.
Collapse
Affiliation(s)
- Emilie Villar
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
- Sorbonne Université, Université Pierre et Marie Curie - Paris 6, CNRS, UMR 7144 (AD2M), Station Biologique de Roscoff, Place Georges Teissier, CS90074, Roscoff, 29688, France
| | - Léa Cabrol
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
- Instituto de Ecologia y Biodiversidad, Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| |
Collapse
|
13
|
Hu H, Wang B, Bravo AG, Björn E, Skyllberg U, Amouroux D, Tessier E, Zopfi J, Feng X, Bishop K, Nilsson MB, Bertilsson S. Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121967. [PMID: 31901845 DOI: 10.1016/j.jhazmat.2019.121967] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/07/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Peatlands are globally important ecosystems where inorganic mercury is converted to bioaccumulating and highly toxic methylmercury, resulting in high risks of methylmercury exposure in adjacent aquatic ecosystems. Although biological mercury methylation has been known for decades, there is still a lack of knowledge about the organisms involved in mercury methylation and the drivers controlling their methylating capacity. In order to investigate the metabolisms responsible for mercury methylation and methylmercury degradation as well as the controls of both processes, we studied a chronosequence of boreal peatlands covering fundamentally different biogeochemical conditions. Potential mercury methylation rates decreased with peatland age, being up to 53 times higher in the youngest peatland compared to the oldest. Methylation in young mires was driven by sulfate reduction, while methanogenic and syntrophic metabolisms became more important in older systems. Demethylation rates were also highest in young wetlands, with a gradual shift from biotic to abiotic methylmercury degradation along the chronosequence. Our findings reveal how metabolic shifts drive mercury methylation and its ratio to demethylation as peatlands age.
Collapse
Affiliation(s)
- Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China; Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236 Uppsala, Sweden.
| | - Baolin Wang
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta 37-49, E08003 Barcelona, Catalunya, Spain
| | - Erik Björn
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - David Amouroux
- CNRS/Univ Pau & Pays Adour/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Materiaux-mira, UMR5254, 64000, Pau, France
| | - Emmanuel Tessier
- CNRS/Univ Pau & Pays Adour/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Materiaux-mira, UMR5254, 64000, Pau, France
| | - Jakob Zopfi
- Department of Environmental Sciences, Biogeochemistry, University of Basel, CH-4056 Basel, Switzerland
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236 Uppsala, Sweden; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| |
Collapse
|
14
|
Yoshimura KM, Todorova S, Biddle JF. Mercury geochemistry and microbial diversity in meromictic Glacier Lake, Jamesville, NY. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:195-202. [PMID: 32036624 DOI: 10.1111/1758-2229.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Meromictic lakes are stratified lakes that typically stimulate phototrophic anoxic microbial metabolism, including the transformation of sulphur. Less studied are the transformations of mercury in these environments, and the microorganisms, which mediate these reactions. In order to further an understanding of redox species, mercury and microbial populations in meromictic lakes, we examined the geochemistry and microbiology of Glacier Lake in Jamesville, NY. We found an anoxic transition at a depth of 6 m, followed by active nitrate and sulphate utilization. A chlorophyll a maximum was located at 11 m, coinciding with peaks of several photoautotrophic microbial lineages and total mercury and methyl mercury. Via amplicon sequencing, the microbial population showed pronounced peaks of cyanobacteria at 10 m, Chlorobi at 12 m and Chloroflexi at 14 m. Sulphate-reducing bacteria were also most abundant between 10 and 14 m depth. A functional gene indicating the potential for the production of methyl mercury, hgcA, was detected at several depths in the lake. Our work suggests that in addition to the sulphur cycle, the cycling of mercury may be indirectly coupled with phototrophic processes in Glacier Lake.
Collapse
Affiliation(s)
| | - Svetoslava Todorova
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, USA
| | - Jennifer F Biddle
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| |
Collapse
|
15
|
Sharma Ghimire P, Tripathee L, Zhang Q, Guo J, Ram K, Huang J, Sharma CM, Kang S. Microbial mercury methylation in the cryosphere: Progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134150. [PMID: 32380618 DOI: 10.1016/j.scitotenv.2019.134150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is one of the most toxic heavy metals, and its cycle is mainly controlled by oxidation-reduction reactions carried out by photochemical or microbial process under suitable conditions. The deposition and accumulation of methylmercury (MeHg) in various ecosystems, including the cryospheric components such as snow, meltwater, glaciers, and ice sheet, and subsequently in the food chain pose serious health concerns for living beings. Unlike the abundance of knowledge about the processes of MeHg production over land and oceans, little is known about the sources and production/degradation rate of MeHg in cryosphere systems. In addition, processes controlling the concentration of Hg and MeHg in the cryosphere remains poorly understood, and filling this scientific gap has been challenging. Therefore, it is essential to study and review the deposition and accumulation by biological, physical, and chemical mechanisms involved in Hg methylation in the cryosphere. This review attempts to address knowledge gaps in understanding processes, especially biotic and abiotic, applicable for Hg methylation in the cryosphere. First, we focus on the variability in Hg concentration and mechanisms of Hg methylation, including physical, chemical, microbial, and biological processes, and transportation in the cryosphere. Then, we elaborate on the mechanism of redox reactions and biotic and abiotic factors controlling Hg methylation and biogeochemistry of Hg in the cryosphere. We also present possible mechanisms of Hg methylation with an emphasis on microbial transformation and molecular function to understand variability in Hg concentration in the cryosphere. Recent advancements in the genetic and physicochemical mechanisms of Hg methylation are also presented. Finally, we summarize and propose a method to study the unsolved issues of Hg methylation in the cryosphere.
Collapse
Affiliation(s)
- Prakriti Sharma Ghimire
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal.
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Kirpa Ram
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Jie Huang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chhatra Mani Sharma
- Himalayan Environment Research Institute (HERI), Kathmandu, Nepal; Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China.
| |
Collapse
|
16
|
Evidence of Mercury Methylation and Demethylation by the Estuarine Microbial Communities Obtained in Stable Hg Isotope Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102141. [PMID: 30274240 PMCID: PMC6210349 DOI: 10.3390/ijerph15102141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022]
Abstract
Microbial activity is a critical factor controlling methylmercury formation in aquatic environments. Microbial communities were isolated from sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and differentiated according to their dependence on oxygen into three groups: aerobic, anaerobic, and sulphate-reducing microbial communities. Their potential to methylate mercury and demethylate methylmercury was evaluated through incubation with isotope-enriched Hg species (199HgCl and CH3201HgCl). The results showed that the isolated microbial communities are actively involved in methylation and demethylation processes. The production of CH3199Hg was positively correlated with sulphate-reducing microbial communities, methylating up to 0.07% of the added 199Hg within 48 h of incubation. A high rate of CH3201Hg degradation was observed and >20% of CH3201Hg was transformed. Mercury removal of inorganic forms was also observed. The results prove the simultaneous occurrence of microbial methylation and demethylation processes and indicate that microorganisms are mainly responsible for methylmercury formation and accumulation in the polluted Tagus Estuary.
Collapse
|
17
|
Bouchet S, Goñi-Urriza M, Monperrus M, Guyoneaud R, Fernandez P, Heredia C, Tessier E, Gassie C, Point D, Guédron S, Achá D, Amouroux D. Linking Microbial Activities and Low-Molecular-Weight Thiols to Hg Methylation in Biofilms and Periphyton from High-Altitude Tropical Lakes in the Bolivian Altiplano. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9758-9767. [PMID: 30037219 DOI: 10.1021/acs.est.8b01885] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The sources and factors controlling concentrations of monomethylmercury (MMHg) in aquatic ecosystems need to be better understood. Here, we investigated Hg transformations in sediments, periphyton associated with green algae's or aquatic plants, and benthic biofilms from the Lake Titicaca hydrosystem and compared them to the occurrence of active methylating microorganisms and extracellular Hg ligands. Intense Hg methylation was found in benthic biofilms and green algae's periphyton, while it remained low in sediments and aquatic plants' periphyton. Demethylation varied between compartments but remained overall in the same range. Hg methylation was mainly carried out by sulfate reducers, although methanogens also played a role. Its variability between compartments was first explained by the presence or absence of the hgcAB genes. Next, both benthic biofilm and green algae's periphyton exhibited a great diversity of extracellular low-molecular-weight (LMW) thiols (13 or 14 compounds) present at a range of a few nmol L-1 or μmol L-1 but clearly dominated by cysteine and 3-mercaptopropionic acid. Hg methylation was overall positively correlated to the total thiol concentrations, albeit to different extents according to the compartment and conditions. This work is the first examining the interplay between active methylating bacterial communities and extracellular ligands in heterotrophic biofilms and supports the involvement of LMW thiols in Hg methylation in real aquatic systems.
Collapse
Affiliation(s)
- Sylvain Bouchet
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Marisol Goñi-Urriza
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Mathilde Monperrus
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Rémy Guyoneaud
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Pablo Fernandez
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
| | - Carlos Heredia
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
| | - Emmanuel Tessier
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Claire Gassie
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - David Point
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
- Géosciences Environnement Toulouse, UMR5563, IRD UR 234 , Université Paul Sabatier , 14 Avenue Edouard Belin , 31400 Toulouse , France
| | - Stéphane Guédron
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre , 38000 Grenoble , France
- Laboratorio de Hidroquímica , Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, Campus Universitario de Cota-Cota , casilla 3161 , 00000 La Paz , Bolivia
| | - Dario Achá
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
| | - David Amouroux
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
- Géosciences Environnement Toulouse, UMR5563, IRD UR 234 , Université Paul Sabatier , 14 Avenue Edouard Belin , 31400 Toulouse , France
| |
Collapse
|
18
|
Vishnivetskaya TA, Hu H, Van Nostrand JD, Wymore AM, Xu X, Qiu G, Feng X, Zhou J, Brown SD, Brandt CC, Podar M, Gu B, Elias DA. Microbial community structure with trends in methylation gene diversity and abundance in mercury-contaminated rice paddy soils in Guizhou, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:673-685. [PMID: 29504614 DOI: 10.1039/c7em00558j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Paddy soils from mercury (Hg)-contaminated rice fields in Guizhou, China were studied with respect to total mercury (THg) and methylmercury (MeHg) concentrations as well as Bacterial and Archaeal community composition. Total Hg (0.25-990 μg g-1) and MeHg (1.3-30.5 ng g-1) varied between samples. Pyrosequencing (454 FLX) of the hypervariable v1-v3 regions of the 16S rRNA genes showed that Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, Euryarchaeota, and Crenarchaeota were dominant in all samples. The Bacterial α-diversity was higher in samples with relatively Low THg and MeHg and decreased with increasing THg and MeHg concentrations. In contrast, Archaeal α-diversity increased with increasing of MeHg concentrations but did not correlate with changes in THg concentrations. Overall, the methylation gene hgcAB copy number increased with both increasing THg and MeHg concentrations. The microbial communities at High THg and High MeHg appear to be adapted by species that are both Hg resistant and carry hgcAB genes for MeHg production. The relatively high abundance of both sulfate-reducing δ-Proteobacteria and methanogenic Archaea, as well as their positive correlations with increasing THg and MeHg concentrations, suggests that these microorganisms are the primary Hg-methylators in the rice paddy soils in Guizhou, China.
Collapse
|
19
|
Wang JT, Zhang L, Kang Y, Chen G, Jiang F. Long-Term Feeding of Elemental Sulfur Alters Microbial Community Structure and Eliminates Mercury Methylation Potential in Sulfate-Reducing Bacteria Abundant Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4746-4753. [PMID: 29617126 DOI: 10.1021/acs.est.7b06399] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study reported a novel observation that the long-term cultivation of sulfur-reducing bacteria (S0RB) from a sulfate-reducing bacteria (SRB)-abundant seeding sludge with elemental sulfur feeding significantly shaped the microbial community structure and eliminated the mercury methylation potential in the S0RB-enriched sludge. In this study, the enrichments of SRB and S0RB from activated sludge were obtained through long-term cultivations. Subsequently, the batch tests showed that approximately 5000 μg/L Hg (II) was completely removed from the solution by both the SRB-enriched and S0RB-enriched sludge. Extremely low or no MeHg production was observed in the S0RB-enriched sludge (less than the limit of detection, 0.01 μg/L), while 1.49 μg/L MeHg accumulated in the SRB-enriched sludge. Other batch tests using the sludge samples from a replication of the cultivation showed that the methylation capability of the S0RB-enriching sludge gradually diminished to a negligible level over a 6 month cultivation time. However, some mercury-methylation-related bacteria were present in the enrichment of S0RB such as Geobacter. The absence of MeHg in the S0RB-enriched sludge may be attributed to the dissolved organic matter (DOM) instead of the sulfur- and sulfate-reduction pathway or MeHg demethylation when exposed to Hg (II). The cultivated S0RB could be used for mercury-contaminated wastewater treatment without MeHg concern.
Collapse
Affiliation(s)
- Jin-Ting Wang
- School of Chemistry & Environment , South China Normal University , Guangzhou 510631 , China
| | - Liang Zhang
- Department of Bioscience , Aarhus University , Aarhus 8200 , Denmark
| | - Yuan Kang
- School of Chemistry & Environment , South China Normal University , Guangzhou 510631 , China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Feng Jiang
- School of Chemistry & Environment , South China Normal University , Guangzhou 510631 , China
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment , South China Normal University , Guangzhou 510006 , China
| |
Collapse
|
20
|
Syntrophic pathways for microbial mercury methylation. ISME JOURNAL 2018; 12:1826-1835. [PMID: 29599522 DOI: 10.1038/s41396-018-0106-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 01/13/2023]
Abstract
Exposure to dietary sources of methylmercury (MeHg) is the focus of public health concerns with environmental mercury (Hg) contamination. MeHg is formed in anoxic environments by anaerobic microorganisms. This process has been studied mostly with single-species culture incubations, although the relevance of such studies to Hg(II)-methylation in situ is limited because microbial activities in the environment are critically modulated by interactions among microbial functional groups. Here we describe experiments in which Hg(II)-methylation was examined within the context of various microbial syntrophies. We show enhanced Hg(II)-methylation under conditions that established syntrophy by interspecies hydrogen and acetate transfer. Relative to activity of monocultures, interactions of Hg(II) methylating sulfate-reducing bacteria with a methanogen stimulated potential Hg(II)-methylation rates 2-fold to 9-fold, and with Syntrophobacter sp. 1.7-fold to 1.8-fold; those of a Hg(II) methylating Syntrophobacter sp. with a methanogen increased Hg(II)-methylation 2-fold. Under sulfate-depleted conditions, higher Hg(II)-methylation rates in the syntrophic incubations corresponded to higher free energy yields (ΔG°') than in the monocultures. Based on energetic considerations, we therefore propose that syntrophic microbial interactions are likely a major source of MeHg in sulfate- and iron-limited anoxic environments while in sulfate-replete environments, MeHg formation via sulfate reduction dominates.
Collapse
|
21
|
Carbon Amendments Alter Microbial Community Structure and Net Mercury Methylation Potential in Sediments. Appl Environ Microbiol 2018; 84:AEM.01049-17. [PMID: 29150503 PMCID: PMC5772229 DOI: 10.1128/aem.01049-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023] Open
Abstract
Neurotoxic methylmercury (MeHg) is produced by anaerobic Bacteria and Archaea possessing the genes hgcAB, but it is unknown how organic substrate and electron acceptor availability impacts the distribution and abundance of these organisms. We evaluated the impact of organic substrate amendments on mercury (Hg) methylation rates, microbial community structure, and the distribution of hgcAB+ microbes with sediments. Sediment slurries were amended with short-chain fatty acids, alcohols, or a polysaccharide. Minimal increases in MeHg were observed following lactate, ethanol, and methanol amendments, while a significant decrease (∼70%) was observed with cellobiose incubations. Postincubation, microbial diversity was assessed via 16S rRNA amplicon sequencing. The presence of hgcAB+ organisms was assessed with a broad-range degenerate PCR primer set for both genes, while the presence of microbes in each of the three dominant clades of methylators (Deltaproteobacteria, Firmicutes, and methanogenic Archaea) was measured with clade-specific degenerate hgcA quantitative PCR (qPCR) primer sets. The predominant microorganisms in unamended sediments consisted of Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria Clade-specific qPCR identified hgcA+Deltaproteobacteria and Archaea in all sites but failed to detect hgcA+Firmicutes Cellobiose shifted the communities in all samples to ∼90% non-hgcAB-containing Firmicutes (mainly Bacillus spp. and Clostridium spp.). These results suggest that either expression of hgcAB is downregulated or, more likely given the lack of 16S rRNA gene presence after cellobiose incubation, Hg-methylating organisms are largely outcompeted by cellobiose degraders or degradation products of cellobiose. These results represent a step toward understanding and exploring simple methodologies for controlling MeHg production in the environment.IMPORTANCE Methylmercury (MeHg) is a neurotoxin produced by microorganisms that bioacummulates in the food web and poses a serious health risk to humans. Currently, the impact that organic substrate or electron acceptor availability has on the mercury (Hg)-methylating microorganisms is unclear. To study this, we set up microcosm experiments exposed to different organic substrates and electron acceptors and assayed for Hg methylation rates, for microbial community structure, and for distribution of Hg methylators. The sediment and groundwater was collected from East Fork Poplar Creek in Oak Ridge, TN. Amendment with cellobiose (a lignocellulosic degradation by-product) led to a drastic decrease in the Hg methylation rate compared to that in an unamended control, with an associated shift in the microbial community to mostly nonmethylating Firmicutes This, along with previous Hg-methylating microorganism identification methods, will be important for identifying strategies to control MeHg production and inform future remediation strategies.
Collapse
|
22
|
Strickman RJS, Fulthorpe RR, Coleman Wasik JK, Engstrom DR, Mitchell CPJ. Experimental sulfate amendment alters peatland bacterial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1289-1296. [PMID: 27267720 DOI: 10.1016/j.scitotenv.2016.05.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 06/06/2023]
Abstract
As part of a long-term, peatland-scale sulfate addition experiment, the impact of varying sulfate deposition on bacterial community responses was assessed using 16S tag encoded pyrosequencing. In three separate areas of the peatland, sulfate manipulations included an eight year quadrupling of atmospheric sulfate deposition (experimental), a 3-year recovery to background deposition following 5years of elevated deposition (recovery), and a control area. Peat concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, were measured, the production of which is attributable to a growing list of microorganisms, including many sulfate-reducing Deltaproteobacteria. The total bacterial and Deltaproteobacterial community structures in the experimental treatment differed significantly from those in the control and recovery treatments that were either indistinguishable or very similar to one another. Notably, the relatively rapid return (within three years) of bacterial community structure in the recovery treatment to a state similar to the control, demonstrates significant resilience of the peatland bacterial community to changes in atmospheric sulfate deposition. Changes in MeHg accumulation between sulfate treatments correlated with changes in the Deltaproteobacterial community, suggesting that sulfate may affect MeHg production through changes in the community structure of this group.
Collapse
Affiliation(s)
- R J S Strickman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - R R Fulthorpe
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - J K Coleman Wasik
- St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, MN, United States
| | - D R Engstrom
- St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, MN, United States
| | - C P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada.
| |
Collapse
|
23
|
Moreau JW, Gionfriddo CM, Krabbenhoft DP, Ogorek JM, DeWild JF, Aiken GR, Roden EE. The Effect of Natural Organic Matter on Mercury Methylation by Desulfobulbus propionicus 1pr3. Front Microbiol 2015; 6:1389. [PMID: 26733947 PMCID: PMC4683176 DOI: 10.3389/fmicb.2015.01389] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/23/2015] [Indexed: 11/13/2022] Open
Abstract
Methylation of tracer and ambient mercury ((200)Hg and (202)Hg, respectively) equilibrated with four different natural organic matter (NOM) isolates was investigated in vivo using the Hg-methylating sulfate-reducing bacterium Desulfobulbus propionicus 1pr3. Desulfobulbus cultures grown fermentatively with environmentally representative concentrations of dissolved NOM isolates, Hg[II], and HS(-) were assayed for absolute methylmercury (MeHg) concentration and conversion of Hg(II) to MeHg relative to total unfiltered Hg(II). Results showed the (200)Hg tracer was methylated more efficiently in the presence of hydrophobic NOM isolates than in the presence of transphilic NOM, or in the absence of NOM. Different NOM isolates were associated with variable methylation efficiencies for either the (202)Hg tracer or ambient (200)Hg. One hydrophobic NOM, F1 HpoA derived from dissolved organic matter from the Florida Everglades, was equilibrated for different times with Hg tracer, which resulted in different methylation rates. A 5 day equilibration with F1 HpoA resulted in more MeHg production than either the 4 h or 30 day equilibration periods, suggesting a time dependence for NOM-enhanced Hg bioavailability for methylation.
Collapse
Affiliation(s)
- John W Moreau
- School of Earth Sciences, University of Melbourne Melbourne, VIC, Australia
| | | | | | | | | | | | - Eric E Roden
- Department of Geology and Geophysics, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
24
|
Zomorrodi AR, Segrè D. Synthetic Ecology of Microbes: Mathematical Models and Applications. J Mol Biol 2015; 428:837-61. [PMID: 26522937 DOI: 10.1016/j.jmb.2015.10.019] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 12/29/2022]
Abstract
As the indispensable role of natural microbial communities in many aspects of life on Earth is uncovered, the bottom-up engineering of synthetic microbial consortia with novel functions is becoming an attractive alternative to engineering single-species systems. Here, we summarize recent work on synthetic microbial communities with a particular emphasis on open challenges and opportunities in environmental sustainability and human health. We next provide a critical overview of mathematical approaches, ranging from phenomenological to mechanistic, to decipher the principles that govern the function, dynamics and evolution of microbial ecosystems. Finally, we present our outlook on key aspects of microbial ecosystems and synthetic ecology that require further developments, including the need for more efficient computational algorithms, a better integration of empirical methods and model-driven analysis, the importance of improving gene function annotation, and the value of a standardized library of well-characterized organisms to be used as building blocks of synthetic communities.
Collapse
Affiliation(s)
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, MA; Department of Biology, Boston University, Boston, MA; Department of Biomedical Engineering, Boston University, Boston, MA.
| |
Collapse
|
25
|
The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles. MINERALS 2015. [DOI: 10.3390/min5030397] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Schartup AT, Ndu U, Balcom PH, Mason RP, Sunderland EM. Contrasting effects of marine and terrestrially derived dissolved organic matter on mercury speciation and bioavailability in seawater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5965-72. [PMID: 25877683 DOI: 10.1021/es506274x] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Methylmercury (MeHg) is the only species of mercury (Hg) to biomagnify in aquatic food-webs to levels that are a widespread concern for human and ecological health. Here we investigate the association between dissolved organic matter (DOM) in seawater and Hg speciation and uptake using experimental data and field measurements from Long Island Sound (LIS) and the Northwestern Atlantic continental margin. We measured differences in DOM composition across sampling stations using excitation emission matrix fluorescence spectroscopy and further separated DOM into terrestrial and marine components using Parallel Factor Analysis (PARAFAC). Highest MeHg concentrations were found in the estuarine stations (LIS) with highest DOM concentrations due to enhanced external inputs from the watershed and rivers. For stations on the shelf and slope, MeHg in plankton increased linearly with a decreasing fraction of fluorescence attributable to DOM components with a terrestrial rather than marine origin. These results are corroborated by experimental data showing higher MeHg uptake by cells in the presence of predominantly marine DOM compared to terrestrial DOM. Highest fractions of dissolved gaseous mercury were also found at stations with the highest marine DOM content, suggesting a greater reducible fraction of divalent inorganic Hg. These data suggest DOM composition is a critical driver of Hg reactivity and bioavailability in offshore marine waters.
Collapse
Affiliation(s)
- Amina T Schartup
- †Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02215, United States
| | - Udonna Ndu
- ‡Department of Environmental Science, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Prentiss H Balcom
- §Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, Connecticut 06340, United States
- ∥School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Robert P Mason
- §Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, Connecticut 06340, United States
| | - Elsie M Sunderland
- †Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02215, United States
- ∥School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
27
|
Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjöblom R, Kumpiene J. Sources and remediation techniques for mercury contaminated soil. ENVIRONMENT INTERNATIONAL 2015; 74:42-53. [PMID: 25454219 DOI: 10.1016/j.envint.2014.09.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 05/04/2023]
Abstract
Mercury (Hg) in soils has increased by a factor of 3 to 10 in recent times mainly due to combustion of fossil fuels combined with long-range atmospheric transport processes. Other sources as chlor-alkali plants, gold mining and cement production can also be significant, at least locally. This paper summarizes the natural and anthropogenic sources that have contributed to the increase of Hg concentration in soil and reviews major remediation techniques and their applications to control soil Hg contamination. The focus is on soil washing, stabilisation/solidification, thermal treatment and biological techniques; but also the factors that influence Hg mobilisation in soil and therefore are crucial for evaluating and optimizing remediation techniques are discussed. Further research on bioremediation is encouraged and future study should focus on the implementation of different remediation techniques under field conditions.
Collapse
Affiliation(s)
- Jingying Xu
- Department of Ecology and Genetics, Limnology, University of Uppsala, Uppsala 75236, Sweden; Waste Science and Technology, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 97187, Sweden
| | - Andrea Garcia Bravo
- Department of Ecology and Genetics, Limnology, University of Uppsala, Uppsala 75236, Sweden
| | - Anders Lagerkvist
- Waste Science and Technology, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 97187, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology, University of Uppsala, Uppsala 75236, Sweden
| | - Rolf Sjöblom
- Waste Science and Technology, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 97187, Sweden
| | - Jurate Kumpiene
- Waste Science and Technology, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 97187, Sweden
| |
Collapse
|
28
|
Regnell O, Elert M, Höglund LO, Falk AH, Svensson A. Linking cellulose fiber sediment methyl mercury levels to organic matter decay and major element composition. AMBIO 2014; 43:878-890. [PMID: 24420263 PMCID: PMC4190148 DOI: 10.1007/s13280-013-0487-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/25/2013] [Accepted: 12/16/2013] [Indexed: 05/30/2023]
Abstract
Methylation of mercury (Hg) to highly toxic methyl Hg (MeHg), a process known to occur when organic matter (OM) decomposition leads to anoxia, is considered a worldwide threat to aquatic ecosystems and human health. We measured temporal and spatial variations in sediment MeHg, total Hg (THg), and major elements in a freshwater lagoon in Sweden polluted with Hg-laden cellulose fibers. Fiber decomposition, confined to a narrow surface layer, resulted in loss of carbon (C), uptake of nitrogen (N), phosphorus (P), and sulfur (S), and increased MeHg levels. Notably, fiber decomposition and subsequent erosion of fiber residues will cause buried contaminants to gradually come closer to the sediment-water interface. At an adjacent site where decomposed fiber accumulated, there was a gain in C and a loss of S when MeHg increased. As evidenced by correlation patterns and vertical chemical profiles, reduced S may have fueled C-fixation and Hg methylation at this site.
Collapse
Affiliation(s)
- Olof Regnell
- />Department of Biology, Aquatic Ecology, University of Lund, Sölvegatan 37, 223 62 Lund, Sweden
| | - Mark Elert
- />Kemakta Konsult AB, Box 12655, 112 93 Stockholm, Sweden
| | | | - Anna Helena Falk
- />Akvaplan-niva AS, FRAM - High North Research Centre for Climate and the Environment, 9296 Tromsö, Norway
| | - Anders Svensson
- />Environmental Unit, Kalmar County Administration, 391 86 Kalmar, Sweden
| |
Collapse
|
29
|
Mathematical Modeling of Microbial Community Dynamics: A Methodological Review. Processes (Basel) 2014. [DOI: 10.3390/pr2040711] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
30
|
Liu YR, Zheng YM, Zhang LM, He JZ. Linkage between community diversity of sulfate-reducing microorganisms and methylmercury concentration in paddy soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1339-1348. [PMID: 23900947 DOI: 10.1007/s11356-013-1973-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/01/2013] [Indexed: 06/02/2023]
Abstract
Sulfate-reducing microorganisms (SRM) have been thought to play a key role in mercury (Hg) methylation in anoxic environments. The current study examined the linkage between SRM abundance and diversity and contents of methylmercury (MeHg) in paddy soils collected from a historical Hg mining area in China. Soil profile samples were collected from four sites over a distance gradient downstream the Hg mining operation. Results showed that MeHg content in the soil of each site significantly decreased with the extending distance away from Hg mine. Soil MeHg content was correlated positively with abundance of SRM and the contents of organic matter (OM), NH4(+), SO4(2-), and Hg. The abundances of SRM based on dissimilatory (bi) sulfite reductase (dsrAB) gene at 0-40 cm depths were higher than those at 40-80 cm depth at all sites. The SRM community composition varied in the soils of different sampling sites following terminal restriction fragment length polymorphism (T-RFLP) and phylogenetic analyses, which appeared to be correlated with contents of MeHg, OM, NH4(+), and SO4(2-) through canonical correspondence analysis. The dominant groups of SRM in the soils examined belonged to Deltaproteobacteria and some unknown SRM clusters that could have potential for Hg methylation. These results advance our understanding of the relationship between SRM and methylmercury concentration in paddy soil.
Collapse
Affiliation(s)
- Yu-Rong Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | | | | | | |
Collapse
|
31
|
Abstract
Methylmercury (MeHg), a neurotoxic substance that accumulates in aquatic food chains and poses a risk to human health, is synthesized by anaerobic microorganisms in the environment. To date, mercury (Hg) methylation has been attributed to sulfate- and iron-reducing bacteria (SRB and IRB, respectively). Here we report that a methanogen, Methanospirillum hungatei JF-1, methylated Hg in a sulfide-free medium at comparable rates, but with higher yields, than those observed for some SRB and IRB. Phylogenetic analyses showed that the concatenated orthologs of the Hg methylation proteins HgcA and HgcB from M. hungatei are closely related to those from known SRB and IRB methylators and that they cluster together with proteins from eight other methanogens, suggesting that these methanogens may also methylate Hg. Because all nine methanogens with HgcA and HgcB orthologs belong to the class Methanomicrobia, constituting the late-evolving methanogenic lineage, methanogenic Hg methylation could not be considered an ancient metabolic trait. Our results identify methanogens as a new guild of Hg-methylating microbes with a potentially important role in mineral-poor (sulfate- and iron-limited) anoxic freshwater environments.
Collapse
|
32
|
Abstract
Methylmercury (MeHg), a neurotoxic substance that accumulates in aquatic food chains and poses a risk to human health, is synthesized by anaerobic microorganisms in the environment. To date, mercury (Hg) methylation has been attributed to sulfate- and iron-reducing bacteria (SRB and IRB, respectively). Here we report that a methanogen, Methanospirillum hungatei JF-1, methylated Hg in a sulfide-free medium at comparable rates, but with higher yields, than those observed for some SRB and IRB. Phylogenetic analyses showed that the concatenated orthologs of the Hg methylation proteins HgcA and HgcB from M. hungatei are closely related to those from known SRB and IRB methylators and that they cluster together with proteins from eight other methanogens, suggesting that these methanogens may also methylate Hg. Because all nine methanogens with HgcA and HgcB orthologs belong to the class Methanomicrobia, constituting the late-evolving methanogenic lineage, methanogenic Hg methylation could not be considered an ancient metabolic trait. Our results identify methanogens as a new guild of Hg-methylating microbes with a potentially important role in mineral-poor (sulfate- and iron-limited) anoxic freshwater environments.
Collapse
|
33
|
Randall PM, Fimmen R, Lal V, Darlington R. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I-Bench-scale microcosm study to assess methylmercury production. ENVIRONMENTAL RESEARCH 2013; 125:30-40. [PMID: 23768845 DOI: 10.1016/j.envres.2013.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 02/09/2013] [Accepted: 03/02/2013] [Indexed: 06/02/2023]
Abstract
Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37ng/g-sediment dry weight) after only 48h of incubation and reached a maximum sediment concentration of 127ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10ng/L after 2 day, reaching a maximum observed concentration of 32.8ng/L after 14 days, and declining to 10.8ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production.
Collapse
Affiliation(s)
- Paul M Randall
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | | | | | | |
Collapse
|
34
|
Lin TY, Kampalath RA, Lin CC, Zhang M, Chavarria K, Lacson J, Jay JA. Investigation of mercury methylation pathways in biofilm versus planktonic cultures of Desulfovibrio desulfuricans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5695-5702. [PMID: 23634937 PMCID: PMC3965375 DOI: 10.1021/es400079n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Biofilms can methylate mercury (Hg) at higher rates than unattached bacteria and are increasingly recognized as important Hg methylation sites in the environment. Our previous study showed that methylation rates in biofilm cultures were up to 1 order of magnitude greater than those in planktonic cultures of a sulfate-reducing bacterium. To probe whether the differential Hg methylation rates resulted from metabolic differences between these two cultures, Hg methylation assays following molybdate or chloroform inhibition (a specific inhibitor of the acetyl-CoA pathway) were conducted on biofilm and planktonic cultures of Desulfovibrio desulfuricans strains M8 and ND132. Molybdate was as effective in inhibiting Hg methylation as well as growth in both planktonic and biofilm cultures. The addition of chloroform only impacted Hg methylation in biofilm cultures, suggesting that different pathways are used for methylation in biofilm compared to planktonic cultures. To investigate this further, expression of the cooS gene, which encodes for carbon monoxide dehydrogenase, a key enzyme in the acetyl-CoA pathway, was compared in biofilm and planktonic cultures of ND132. Biofilm cultures showed up to 4 times higher expression of cooS than planktonic cultures. On the basis of these results, the acetyl-CoA pathway appears to play an important role in methylation in biofilm cultures of this organism, possibly by supplying the methyl group to Hg methylating enzymes; methylation in planktonic cultures appears to be independent of this pathway. This observation has important implications, particularly in developing reliable models to predict Hg methylation rates in different environments and perhaps eventually in being able to control this undesirable chemical transformation.
Collapse
Affiliation(s)
| | | | - Chu-Ching Lin
- Corresponding Author. Phone: 886-3-422-7151 ext. 34654. Fax: 886-3-422-1602.
| | | | | | | | | |
Collapse
|
35
|
Progress in the study of mercury methylation and demethylation in aquatic environments. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5416-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Moberly JG, Miller CL, Brown SD, Biswas A, Brandt CC, Palumbo AV, Elias DA. Role of morphological growth state and gene expression in Desulfovibrio africanus strain Walvis Bay mercury methylation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4926-4932. [PMID: 22500779 DOI: 10.1021/es3000933] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The biogeochemical transformations of mercury are a complex process, with the production of methylmercury, a potent human neurotoxin, repeatedly demonstrated in sulfate- and Fe(III)-reducing as well as methanogenic bacteria. However, little is known regarding the morphology, genes, or proteins involved in methylmercury generation. Desulfovibrio africanus strain Walvis Bay is a Hg-methylating δ-proteobacterium with a sequenced genome and has unusual pleomorphic forms. In this study, a relationship between the pleomorphism and Hg methylation was investigated. Proportional increases in the sigmoidal (regular) cell form corresponded with increased net MeHg production but decreased when the pinched cocci (persister) form became the major morphotype. D. africanus microarrays indicated that the ferrous iron transport genes (feoAB), as well as ribosomal genes and several genes whose products are predicted to have metal binding domains (CxxC), were up-regulated during exposure to Hg in the exponential phase. Whereas no specific methylation pathways were identified, the finding that Hg may interfere with iron transport and the correlation of growth-phase-dependent morphology with MeHg production are notable. The identification of these relationships between differential gene expression, morphology, and the growth-phase dependence of Hg transformations suggests that actively growing cells are primarily responsible for methylation, and so areas with ample carbon and electron-acceptor concentrations may also generate a higher proportion of methylmercury than more oligotrophic environments. The observation of increased iron transporter expression also suggests that Hg methylation may interfere with iron biogeochemical cycles.
Collapse
Affiliation(s)
- James G Moberly
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Shao D, Kang Y, Wu S, Wong MH. Effects of sulfate reducing bacteria and sulfate concentrations on mercury methylation in freshwater sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 424:331-6. [PMID: 22444059 DOI: 10.1016/j.scitotenv.2011.09.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 05/20/2023]
Abstract
Methylmercury (MeHg) is the most poisonous form of mercury (Hg) and it enters the human body primarily through consumption of Hg contaminated fish. Sulfate reducing bacteria (SRB) are major producers of MeHg in anoxic sediments. The dsrAB gene was isolated from freshwater fish pond sediments. Sequence analyses showed that the SRB in sediments was mainly composed of Desulfobulbus propionicus and Desulfovibrio vulgaris. The two species of SRB were cultured from freshwater sediments. The addition of inorganic Hg to these freshwater sediments caused an increase in MeHg concentrations at 30 days incubation. MeHg levels were sensitive to sulfate concentrations; a medium sulfate level (0.11 mg/g) produced higher levels than treatments lacking sulfate addition or when amended with 0.55 mg/g. Assessment of bacterial levels by PCR measurements of microbial DNA indicated that the MeHg levels were correlated with cell growth.
Collapse
Affiliation(s)
- Dingding Shao
- School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Linan, PR China
| | | | | | | |
Collapse
|
38
|
Hamelin S, Amyot M, Barkay T, Wang Y, Planas D. Methanogens: principal methylators of mercury in lake periphyton. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:7693-700. [PMID: 21875053 DOI: 10.1021/es2010072] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Mercury methylation and demethylation rates were measured in periphyton biofilms growing on submerged plants from a shallow fluvial lake located along the St. Lawrence River (Quebec, Canada). Incubations were performed in situ within macrophytes beds using low-level spikes of (199)HgO and Me(200)Hg stable isotopes as tracers. To determine which microbial guilds are playing a role in these processes, methylation/demethylation experiments were performed in the absence and presence of different metabolic inhibitors: chloramphenicol (general bacteriostatic inhibitor), molybdate (sodium molybdate, a sulfate reduction inhibitor), BESA (2-bromoethane sulfonic acid, a methanogenesis inhibitor), and DCMU (3-(3,4-dichlorophenyl)-1,1 dimethyl urea, a photosynthesis inhibitor). Active microbes of the periphytic consortium were also characterized using 16S rRNA gene sequencing. Methylation rates in the absence of inhibitors varied from 0.0015 to 0.0180 d(-1) while demethylation rates ranged from 0.083 to 0.217 d(-1), which corresponds to a net methylmercury balance of -0.51 to 1.28 ng gDW periphyton(-1) d(-1). Methylation rates were significantly decreased by half by DCMU and chloramphenicol, totally inhibited by BESA, and were highly stimulated by molybdate. This suggests that methanogens rather than sulfate reducing bacteria were likely the primary methylators in the periphyton of a temperate fluvial lake, a conclusion supported by the detection of 16S rRNA gene sequences that were closely related to those of methanogens. This first clear demonstration of methanogens' role in mercury methylation in environmental periphyton samples expands the known diversity of microbial guilds that contribute to the formation of the neurotoxic substance methylmercury.
Collapse
Affiliation(s)
- Stéphanie Hamelin
- GEOTOP and Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Université du Québec à Montréal, C. P. 8888, Succursale Centre Ville, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|
39
|
Biswas A, Brooks SC, Miller CL, Mosher JJ, Yin XL, Drake MM. Bacterial growth phase influences methylmercury production by the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:3943-3948. [PMID: 21762955 DOI: 10.1016/j.scitotenv.2011.06.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/11/2011] [Accepted: 06/15/2011] [Indexed: 05/31/2023]
Abstract
The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate-fumarate media. This NOM did not affect MMHg production even under very low Hg:SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg-NOM to growing cultures 24 h before sampling (late addition) resulted in ~2× greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid- and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to ~3× more MMHg, indicating the potential importance of growth phase in studies of MMHg production.
Collapse
Affiliation(s)
- Abir Biswas
- Environmental Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | | | | | | | | | | |
Collapse
|
40
|
Genome sequence of the mercury-methylating and pleomorphic Desulfovibrio africanus Strain Walvis Bay. J Bacteriol 2011; 193:4037-8. [PMID: 21642452 DOI: 10.1128/jb.05223-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Desulfovibrio africanus strain Walvis Bay is an anaerobic sulfate-reducing bacterium capable of producing methylmercury (MeHg), a potent human neurotoxin. The mechanism of methylation by this and other organisms is unknown. We present the 4.2-Mb genome sequence to provide further insight into microbial mercury methylation and sulfate-reducing bacteria.
Collapse
|
41
|
Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 2011; 77:3938-51. [PMID: 21515733 DOI: 10.1128/aem.02993-10] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We propose the use of Desulfovibrio desulfuricans ND132 as a model species for understanding the mechanism of microbial Hg methylation. Strain ND132 is an anaerobic dissimilatory sulfate-reducing bacterium (DSRB), isolated from estuarine mid-Chesapeake Bay sediments. It was chosen for study because of its exceptionally high rates of Hg methylation in culture and its metabolic similarity to the lost strain D. desulfuricans LS, the only organism for which methylation pathways have been partially defined. Strain ND132 is an incomplete oxidizer of short-chain fatty acids. It is capable of respiratory growth using fumarate as an electron acceptor, supporting growth without sulfide production. We used enriched stable Hg isotopes to show that ND132 simultaneously produces and degrades methylmercury (MeHg) during growth but does not produce elemental Hg. MeHg produced by cells is mainly excreted, and no MeHg is produced in spent medium. Mass balances for Hg and MeHg during the growth of cultures, including the distribution between filterable and particulate phases, illustrate how medium chemistry and growth phase dramatically affect Hg solubility and availability for methylation. The available information on Hg methylation among strains in the genus Desulfovibrio is summarized, and we present methylation rates for several previously untested species. About 50% of Desulfovibrio strains tested to date have the ability to produce MeHg. Importantly, the ability to produce MeHg is constitutive and does not confer Hg resistance. A 16S rRNA-based alignment of the genus Desulfovibrio allows the very preliminary assessment that there may be some evolutionary basis for the ability to produce MeHg within this genus.
Collapse
|
42
|
Shao D, Liang P, Kang Y, Wang H, Cheng Z, Wu S, Shi J, Lo SCL, Wang W, Wong MH. Mercury species of sediment and fish in freshwater fish ponds around the Pearl River Delta, PR China: human health risk assessment. CHEMOSPHERE 2011; 83:443-448. [PMID: 21272914 DOI: 10.1016/j.chemosphere.2010.12.080] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 12/14/2010] [Accepted: 12/26/2010] [Indexed: 05/30/2023]
Abstract
This study investigated total mercury (THg) and methylmercury (MeHg) concentrations in five species of freshwater fish and their associated fish pond sediments collected from 18 freshwater fish ponds around the Pearl River Delta (PRD). The concentrations of THg and MeHg in fish pond surface sediments were 33.1-386 ng g(-1) dry wt and 0.18-1.25 ng g(-1) dry wt, respectively. The age of ponds affected the surface sediment MeHg concentration. The vertical distribution of MeHg in sediment cores showed that MeHg concentrations decreased with increasing depth in the top 10 cm. In addition, a significant correlation was observed between %MeHg and DNA from Desulfovibrionacaea or Desulfobulbus (p<0.05) in sediment cores. Concentrations of THg and MeHg in fish muscles ranged from 7.43-76.7 to 5.93-76.1 ng g(-1) wet wt, respectively, with significant linear relationships (r=0.97, p<0.01, n=122) observed between THg and MeHg levels in fish. A significant correlation between THg concentrations in fish (herbivorous: r=0.71, p<0.05, n=7; carnivorous: r=0.77, p<0.05, n=11) and corresponding sediments was also obtained. Risk assessment indicated that the consumption of largemouth bass and mandarin fish would result in higher estimated daily intakes (EDIs) of MeHg than reference dose (RfD) for both adults and children.
Collapse
Affiliation(s)
- Dingding Shao
- Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Perrot V, Epov VN, Pastukhov MV, Grebenshchikova VI, Zouiten C, Sonke JE, Husted S, Donard OFX, Amouroux D. Tracing sources and bioaccumulation of mercury in fish of Lake Baikal--Angara River using Hg isotopic composition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:8030-7. [PMID: 20942479 DOI: 10.1021/es101898e] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study presents the determination and comparison of isotopic compositions of Hg in sediments, plankton, roach, and perch of two freshwater systems in the Lake Baikal-Angara River aquatic ecosystem: the man-made Bratsk Water Reservoir contaminated by Hg from a chlor-alkali factory and the noncontaminated Lake Baikal. Isotopic ratios of biota exhibit both significant mass-independent fractionation (MIF) (Δ(199)Hg from 0.20 to 1.87‰) and mass-dependent fractionation (MDF) (δ(202)Hg from -0.97 to -0.16‰), whereas sediments exhibit high MDF (δ(202)Hg from -1.99 to -0.83‰) but no MIF. δ(15)N and δ(13)C are correlated with methylmercury in organisms from both sites, indicating bioaccumulation and biomagnification through food webs of both regions. Combining this with isotopic composition of samples shows that δ(202)Hg increases with the trophic level of organisms and also with methylmercury in fish from Lake Baikal. This study demonstrates that MIF in fish samples from Bratsk Water Reservoir allow to trace anthropogenic Hg, since fish with the highest levels of Hg in muscle have the same isotopic composition as the sediment in which anthropogenic Hg was deposited. Less contaminated fish do not exhibit this anthropogenic signature accumulating relatively lower Hg amount from the contaminated sediments. This work reveals that Hg isotopic composition can be used to track the contribution of anthropogenic sources in fish from a contaminated lake.
Collapse
Affiliation(s)
- Vincent Perrot
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, CNRS-UPPA-UMR-5254, Hélioparc, 2 Avenue du Président Pierre Angot, Pau, 64053, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yu RQ, Adatto I, Montesdeoca MR, Driscoll CT, Hines ME, Barkay T. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland. FEMS Microbiol Ecol 2010; 74:655-68. [DOI: 10.1111/j.1574-6941.2010.00978.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Bravo AG, Loizeau JL, Bouchet S, Richard A, Rubin JF, Ungureanu VG, Amouroux D, Dominik J. Mercury human exposure through fish consumption in a reservoir contaminated by a chlor-alkali plant: Babeni reservoir (Romania). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:1422-1432. [PMID: 20411344 DOI: 10.1007/s11356-010-0328-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/18/2010] [Indexed: 05/29/2023]
Abstract
PURPOSE Chlor-alkali plants are one of the most important point sources of mercury to aquatic environment. The problem of Hg contamination has been studied in a region, Rm Valcea (Romania), impacted by the wastewater discharge of a chlor-alkali plant. The purpose of the present study is to evaluate the current status of mercury pollution in the Babeni reservoir (Olt River) and the exposure of local population via fish consumption to mercury originating from the chlor-alkali plant. METHODS Sediments were collected from Valcea, Govora and Babeni reservoirs. Grain size distribution, organic content and total mercury (THg) concentrations were analysed in sediments. Fish were purchased from local anglers, and the scalp hair was collected from volunteers. THg in sediment, fish and hair samples was determined using an atomic absorption spectrophotometer for Hg determination. Monomethylmercury (MMHg) was analysed in the muscle and liver tissues by species-specific isotope dilution and capillary gas chromatography hyphenated to inductively coupled plasma mass spectrometer. RESULTS High mercury concentrations were found in the sediments and in fish from Babeni reservoir, with a median of 2.1 mg/kg (IQR = 3.2) in sediments and a mean value of 1.8 +/- 0.8 mg/kg_ww in fish muscle. MMHg concentrations in fish were well above the WHO guidelines for fish consumption. Local population consuming fish from the Babeni reservoir had THg concentrations in hair significantly higher than those consuming fish from upstream reservoirs and/or from the shops and reached a median value of 2.5 mg/kg (IQR = 3.6). CONCLUSIONS The remnant pollution in the fish of this reservoir, and probably many other lakes and reservoirs receiving Hg polluted wastewater, represents a considerable health risk for the local fish consumers.
Collapse
|
46
|
Abstract
We are becoming increasingly aware of the role played by archaea in the biogeochemical cycling of the elements. Metabolism of metals is linked to fundamental metabolic functions, including nitrogen fixation, energy production, and cellular processes based on oxidoreductions. Comparative genomic analyses have shown that genes for metabolism, resistance, and detoxification of metals are widespread throughout the archaeal domain. Archaea share with other organisms strategies allowing them to utilize essential metals and maintain metal ions within a physiological range, although comparative proteomics show, in a few cases, preferences for specific genetic traits related to metals. A more in-depth understanding of the physiology of acidophilic archaea might lead to the development of new strategies for the bioremediation of metal-polluted sites and other applications, such as biomining.
Collapse
Affiliation(s)
- Elisabetta Bini
- Department of Biochemistry and Microbiology, Rutgers-The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
47
|
Todorova SG, Driscoll CT, Matthews DA, Effler SW, Hines ME, Henry EA. Evidence for regulation of monomethyl mercury by nitrate in a seasonally stratified, eutrophic lake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:6572-8. [PMID: 19764219 DOI: 10.1021/es900887b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The accumulation of monomethyl mercury (CH3Hg+) in aquatic ecosystems is a redox sensitive process that is accelerated under sulfate-reducing conditions. While nitrate (NO3-) reduction is energetically favored over sulfate reduction, the influence of NO3 on the accumulation of CH3Hg+ has not been reported in the literature. We examined temporal and vertical patterns in redox constituents and CH3Hg+ concentrations in the hypolimnion of a dimictic lake, Onondaga Lake, prior to and following increases in NO3- inputs. Detailed water-column profiles and a long-term record revealed marked decreases in the accumulation of CH3Hg+ in the anoxic hypolimnion coinciding with long-term decreases in the deposition of organic matter coupled with recent increases in NO3-concentrations. CH3Hg+ concentrations in the hypolimnion were substantially abated when No3 was present above the sediment-water interface. A decrease in the peak hypolimnetic mass of CH3Hg+ and shortening of the period of elevated CH3Hg+ concentrations resulted in more than a 50% decline in the accumulated CH3Hg+. N03- regulation of CH3Hg+ accumulation may be a widespread phenomenon in oxygen-limited freshwater and terrestrial environments, and could have an important notpreviously recognized, effect on the biogeochemistry of mercury.
Collapse
Affiliation(s)
- Svetoslava G Todorova
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Duran R, Ranchou-Peyruse M, Menuet V, Monperrus M, Bareille G, Goñi MS, Salvado JC, Amouroux D, Guyoneaud R, Donard OFX, Caumette P. Mercury methylation by a microbial community from sediments of the Adour Estuary (Bay of Biscay, France). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 156:951-958. [PMID: 18508166 DOI: 10.1016/j.envpol.2008.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 03/29/2008] [Accepted: 05/07/2008] [Indexed: 05/26/2023]
Abstract
In order to study the influence of microorganisms on the mercury biogeochemistry, the metal content and the structure of microbial communities were determined in sediments from stations along the Adour Estuary. The comparison of the bacterial communities and their distribution in function of the environmental parameters by Canonical Correspondence Analysis (CCA) revealed the influence of metals on the bacterial communities structure. Sediments where the bacterial communities are mostly influenced by methylmercury were incubated in slurries with or without mercury, under oxic and anoxic conditions. Methylmercury production was detected in the anoxic biotic slurries with a net methylation yield of 0.3% after 24 h. CCA based on T-RFLP profiles revealed the impact of mercury addition on the bacterial communities structure. In addition, 17 bacterial strains, mainly sulphate-reducing bacteria involved in mercury methylation, were isolated and identified.
Collapse
Affiliation(s)
- R Duran
- Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR CNRS 5254, Université de Pau et des Pays de l'Adour, Avenue de l'Universite, IBEAS BP1155, 64013 Pau Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Raposo JC, Ozamiz G, Etxebarria N, Tueros I, Muñoz C, Muela A, Arana I, Barcina I. Mercury biomethylation assessment in the estuary of Bilbao (North of Spain). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 156:482-488. [PMID: 18313183 DOI: 10.1016/j.envpol.2008.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 11/29/2007] [Accepted: 01/12/2008] [Indexed: 05/26/2023]
Abstract
The relationship between the microbial methylation of mercury and the microbial activities in sediments and water collected from the estuary of Bilbao (North of Spain) was studied in three different sampling points and in two different seasons. Three different cultures were prepared with a sediment slurry to distinguish between biotic and abiotic methylation pathways and the variations of the methylmercury concentration and the variations of the population of total number of bacteria (TDC), anaerobic heterotrophic bacteria (AHB), sulphate-reducing bacteria (SRB) and Desulfovibrio were measured. From this work, it can be concluded that the variation of MeHg concentrations is a result of the methylation/demethylation processes in the sediments, and that the abiotic processes have a negligible contribution to those processes. According to the statistical analysis of the results (partial least squares analysis) a significant statistical correlation was established between methylmercury and the SRB counts.
Collapse
Affiliation(s)
- J C Raposo
- Department of Analytical Chemistry, University of the Basque Country, 644 PO, E-48080 Bilbao, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA. Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 2007; 3:92. [PMID: 17353934 PMCID: PMC1847946 DOI: 10.1038/msb4100131] [Citation(s) in RCA: 332] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 12/21/2006] [Indexed: 11/24/2022] Open
Abstract
The rate of production of methane in many environments depends upon mutualistic interactions between sulfate-reducing bacteria and methanogens. To enhance our understanding of these relationships, we took advantage of the fully sequenced genomes of Desulfovibrio vulgaris and Methanococcus maripaludis to produce and analyze the first multispecies stoichiometric metabolic model. Model results were compared to data on growth of the co-culture on lactate in the absence of sulfate. The model accurately predicted several ecologically relevant characteristics, including the flux of metabolites and the ratio of D. vulgaris to M. maripaludis cells during growth. In addition, the model and our data suggested that it was possible to eliminate formate as an interspecies electron shuttle, but hydrogen transfer was essential for syntrophic growth. Our work demonstrated that reconstructed metabolic networks and stoichiometric models can serve not only to predict metabolic fluxes and growth phenotypes of single organisms, but also to capture growth parameters and community composition of simple bacterial communities.
Collapse
Affiliation(s)
- Sergey Stolyar
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
- Civil and Environmental Engineering, University of Washington, 478 Benjamin Hall Interdisciplinary Research Building, Box 355014, Seattle, WA 98195, USA. Tel.: +1 206 543 2094; Fax: +1 206 685 3836;
| | - Steve Van Dien
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | | | - Nicolas Pinel
- Department of Microbiology, University of Washington, Seattle WA, USA
| | - Thomas J Lie
- Department of Microbiology, University of Washington, Seattle WA, USA
| | - John A Leigh
- Department of Microbiology, University of Washington, Seattle WA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
- Civil and Environmental Engineering, University of Washington, 302 More Hall, Seattle, WA, USA. Tel.: +1 206 685 3464; Fax: +1 206 685 3836;
| |
Collapse
|