1
|
AFFINITY OF BRAZILIAN WILD MAMMAL IMMUNOGLOBULINS TO BACTERIAL PROTEINS A AND G. J Zoo Wildl Med 2023; 53:832-837. [PMID: 36640087 DOI: 10.1638/2021-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 01/09/2023] Open
Abstract
Staphylococcal A and streptococcal G proteins are widely used in immunoassays when specific immunological reagents are unavailable, such as for wild animals. The affinity of bacterial proteins A and G to the immunoglobulins of seven Brazilian mammals were tested, including black-tufted marmoset (Callithrix penicillata, n = 5), golden-bellied capuchin (Sapajus xanthosternos, n = 13), woolly mouse opossum (Micoureus demerarae, n = 6), long-nosed armadillo (Dasypus novemcinctus, n = 5), collared anteater (Tamandua tetradactyla, n = 5), ocelot (Leopardus pardalis, n = 6), and vampire bat (Desmodus rotundus, n = 5). Blood samples were collected from animals that were rescued in peri-urban rainforest fragments. Sera pools of each species were tested by ELISA to determine the intensity of each bacterial protein affinity to the immunoglobulins. When comparing the affinity to both proteins, immunoglobulins from D. rotundus, S. xanthosternos, and T. tetradactyla presented a higher affinity to protein G, whereas a higher affinity to protein A was found for immunoglobulins of C. penicillata and L. pardalis. The only species that presented a very low affinity to both bacterial proteins was M. demerarae. This study can be used as a reference for further studies on the development of sensitive and specific immunodiagnostic assays to be used for the monitoring of the health of these wild mammals.
Collapse
|
2
|
Gurung S, Reuter D, Norris A, Dubois M, Maxted M, Singleton K, Castillo-Castrejon M, Papin JF, Myers DA. Early and mid-gestation Zika virus (ZIKV) infection in the olive baboon (Papio anubis) leads to fetal CNS pathology by term gestation. PLoS Pathog 2022; 18:e1010386. [PMID: 35969617 PMCID: PMC9410558 DOI: 10.1371/journal.ppat.1010386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/25/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
Zika virus (ZIKV) infection in pregnancy can produce catastrophic teratogenic damage to the developing fetus including microcephaly and congenital Zika syndrome (CZS). We previously described fetal CNS pathology occurring by three weeks post-ZIKV inoculation in Olive baboons at mid-gestation, including neuroinflammation, loss of radial glia (RG), RG fibers, neuroprogenitor cells (NPCs) resulting in disrupted NPC migration. In the present study, we explored fetal brain pathologies at term gestation resulting from ZIKV exposure during either first or second trimester in the Olive baboon. In all dams, vRNA in whole blood resolved after 7 days post inoculation (dpi). One first trimester infected dam aborted at 5 dpi. All dams developed IgM and IgG response to ZIKV with ZIKV IgG detected in fetal serum. Placental pathology and inflammation were observed including disruption of syncytiotrophoblast layers, delayed villous maturation, partially or fully thrombosed vessels, calcium mineralization and fibrin deposits. In the uterus, ZIKV was detected in ¾ first trimester but not in second trimester infected dams. While ZIKV was not detected in any fetal tissue at term, all fetuses exhibited varying degrees of neuropathology. Fetal brains from ZIKV inoculated dams exhibited a range of gross brain pathologies including irregularities of the major gyri and sulci of the cerebral cortex and cerebellar pathology. Frontal cortices of ZIKV fetuses showed a general disorganization of the six-layered cortex with degree of disorganization varying among the fetuses from the two groups. Frontal cortices from ZIKV inoculation in the first but not second trimester exhibited increased microglia, and in both trimester ZIKV inoculation, increased astrocyte numbers (white matter). In the cerebellum, increased microglia were observed in fetuses from both first and second trimester inoculation. In first trimester ZIKV inoculation, decreased oligodendrocyte precursor cell populations were observed in fetal cerebellar white matter. In general, our observations are in accordance with those described in human ZIKV infected fetuses.
Collapse
Affiliation(s)
- Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Darlene Reuter
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Abby Norris
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Molly Dubois
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Marta Maxted
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Krista Singleton
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - James F. Papin
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
- * E-mail:
| |
Collapse
|
3
|
Chu TH, Patz EF, Ackerman ME. Coming together at the hinges: Therapeutic prospects of IgG3. MAbs 2021; 13:1882028. [PMID: 33602056 PMCID: PMC7899677 DOI: 10.1080/19420862.2021.1882028] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 01/22/2023] Open
Abstract
The human IgG3 subclass is conspicuously absent among the formats for approved monoclonal antibody therapies and Fc fusion protein biologics. Concern about the potential for rapid degradation, reduced plasma half-life, and increased immunogenicity due to marked variation in allotypes has apparently outweighed the potential advantages of IgG3, which include high affinity for activating Fcγ receptors, effective complement fixation, and a long hinge that appears better suited for low abundance targets. This review aims to highlight distinguishing features of IgG3 and to explore its functional role in the immune response. We present studies of natural immunity and recombinant antibody therapies that elucidate key contributions of IgG3 and discuss historical roadblocks that no longer remain clearly relevant. Collectively, this body of evidence motivates thoughtful reconsideration of the clinical advancement of this distinctive antibody subclass for treatment of human diseases. Abbreviations: ADCC - Antibody-Dependent Cell-mediated CytotoxicityADE - Antibody-dependent enhancementAID - Activation-Induced Cytidine DeaminaseCH - Constant HeavyCHF - Complement factor HCSR - Class Switch RecombinationEM - Electron MicroscopyFab - Fragment, antigen bindingFc - Fragment, crystallizableFcRn - Neonatal Fc ReceptorFcγR - Fc gamma ReceptorHIV - Human Immunodeficiency VirusIg - ImmunoglobulinIgH - Immunoglobulin Heavy chain geneNHP - Non-Human Primate.
Collapse
Affiliation(s)
- Thach H. Chu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Edward F. Patz
- Department of Radiology and Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
4
|
Aglas L, Bethanis A, Chrusciel P, Stolz F, Gruen M, Jaakkola UM, Jongejan L, Yatkin E, Van Ree R. In vivo Induction of Functional Inhibitory IgG Antibodies by a Hypoallergenic Bet v 1 Variant. Front Immunol 2020; 11:2118. [PMID: 33013894 PMCID: PMC7494741 DOI: 10.3389/fimmu.2020.02118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/05/2020] [Indexed: 01/27/2023] Open
Abstract
Allergic sensitization to the major allergen Bet v 1 represents the dominating factor inducing a vast variety of allergic symptoms in birch pollen allergic patients worldwide, including the pollen food allergy syndrome. In order to overcome the huge socio-economic burden associated with allergic diseases, allergen-specific immunotherapy (AIT) as a curative strategy to manage the disease was introduced. Still, many hurdles related to this treatment exist making AIT not the patients’ first choice. To improve the current situation, the development of hypoallergen-based drug products has raised attention in the last decade. Herein, we investigated the efficacy of the novel AIT candidate BM4, a hypoallergenic variant of Bet v 1, to induce treatment-relevant cross-reactive Bet v 1-specific IgG antibodies in two different mammals, Wistar rats and New Zealand White rabbits. We further analyzed the cross-reactivity of BM4-induced Wistar rat antibodies with the birch pollen-associated food allergens Mal d 1 and Cor a 1, and the functional capability of the induced antibodies to act as IgE-blocking IgG antibodies. Enzyme-linked immunosorbent assay (ELISA) was used to determine the titers of rat IgG1, IgG2a, IgG2b, and IgE, as well as rabbit IgG and IgE antibodies. To address the functional relevance of the induced IgG antibodies, the capacity of rat sera to suppress binding of human IgE to Bet v 1 was investigated by using an inhibition ELISA and an IgE-facilitated allergen-binding inhibition assay. We found that the treatment with BM4 induced elevated Bet v 1-specific IgG antibody titers in both mammalian species. In Wistar rats, high BM4-specific IgG1, IgG2a, and IgG2b titers (104 to 106) were induced, which cross-reacted with wild-type Bet v 1, and the homologous allergens Mal d 1 and Cor a 1. Rat allergen-specific IgG antibodies sustained upon treatment discontinuation. Sera of rats immunized with BM4 were able to significantly suppress binding of human IgE to the wild-type allergens and CD23-mediated human IgE-facilitated Bet v 1 binding on B cells. By contrast, treatment-induced IgE antibody levels were low or undetectable. In summary, BM4 induced a robust IgG immune response that efficiently blocked human IgE-binding to wild-type allergens, underscoring its potential therapeutic value in AIT.
Collapse
Affiliation(s)
- Lorenz Aglas
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | | | - Frank Stolz
- Biomay AG, Vienna Competence Center, Vienna, Austria
| | - Melanie Gruen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | | | - Emrah Yatkin
- Central Animal Laboratory, University of Turku, Turku, Finland
| | - Ronald Van Ree
- Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
5
|
Magden ER, Nehete BP, Chitta S, Williams LE, Simmons JH, Abee CR, Nehete PN. Comparative Analysis of Cellular Immune Responses in Conventional and SPF Olive Baboons ( Papio anubis). Comp Med 2020; 70:160-169. [PMID: 32014083 DOI: 10.30802/aalas-cm-19-000035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Olive baboons (P. anubis) have provided a useful model of human diseases and conditions, including cardiac, respiratory, and infectious diseases; diabetes; and involving genetics, immunology, aging, and xenotransplantation. The development of a immunologically defined SPF baboons has advanced research further, especially for studies involving the immune system and immunosuppression. In this study, we compare normal immunologic changes of PBMC subsets, and their function in age-matched conventional and SPF baboons. Our results revealed that both groups have comparable numbers of different lymphocyte subsets, but phenotypic differences in central and effector memory T-cell subsets are more pronounced in CD4+ T cells. Despite equal proportions of CD3+ T cells among the conventional and SPF baboons, PBMC from the conventional group showed greater proliferative responses to phytohemagglutinin and pokeweed mitogen and higher numbers of IFNγ-producing cells after stimulation with concanavalin A or pokeweed mitogen, whereas plasma levels of the inflammatory cytokine TNFα were significantly higher in SPF baboons. Exposure of PBMC from conventional baboons to various Toll-like (TLR) ligands, including TLR3, TLR4, and TLR8, yielded increased numbers of IFNγ producing cells, whereas PBMC from SPF baboons stimulated with TLR5 or TLR6 ligand had more IFNγ-producing cells. These findings suggest that although lymphocyte subsets share many phenotypic and functional similarities in conventional and SPF baboons, specific differences in the immune function of lymphocytes could differentially influence the quality and quantity of their innate and adaptive immune responses. These differences should be considered in interpreting experimental outcomes, specifically in studies measuring immunologic endpoints.
Collapse
Affiliation(s)
- Elizabeth R Magden
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Bharti P Nehete
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas;,
| | - Sriram Chitta
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Lawrence E Williams
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Joe H Simmons
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Christian R Abee
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Pramod N Nehete
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
6
|
Kim SC, Mathews DV, Breeden CP, Higginbotham LB, Ladowski J, Martens G, Stephenson A, Farris AB, Strobert EA, Jenkins J, Walters EM, Larsen CP, Tector M, Tector AJ, Adams AB. Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion. Am J Transplant 2019; 19:2174-2185. [PMID: 30821922 PMCID: PMC6658347 DOI: 10.1111/ajt.15329] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 01/22/2019] [Accepted: 02/04/2019] [Indexed: 01/25/2023]
Abstract
The shortage of available organs remains the greatest barrier to expanding access to transplant. Despite advances in genetic editing and immunosuppression, survival in experimental models of kidney xenotransplant has generally been limited to <100 days. We found that pretransplant selection of recipients with low titers of anti-pig antibodies significantly improved survival in a pig-to-rhesus macaque kidney transplant model (6 days vs median survival time 235 days). Immunosuppression included transient pan-T cell depletion and an anti-CD154-based maintenance regimen. Selective depletion of CD4+ T cells but not CD8+ T cells resulted in long-term survival (median survival time >400 days vs 6 days). These studies suggested that CD4+ T cells may have a more prominent role in xenograft rejection compared with CD8+ T cells. Although animals that received selective depletion of CD8+ T cells showed signs of early cellular rejection (marked CD4+ infiltrates), animals receiving selective CD4+ depletion exhibited normal biopsy results until late, when signs of chronic antibody rejection were present. In vitro study results suggested that rhesus CD4+ T cells required the presence of SLA class II to mount an effective proliferative response. The combination of low pretransplant anti-pig antibody and CD4 depletion resulted in consistent, long-term xenograft survival.
Collapse
Affiliation(s)
- SC Kim
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - DV Mathews
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - CP Breeden
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - LB Higginbotham
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - J Ladowski
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - G Martens
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - A Stephenson
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - AB Farris
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - EA Strobert
- Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| | - J Jenkins
- Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| | - EM Walters
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - CP Larsen
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia,Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| | - M Tector
- Comprehensive Transplant Institute, University of Alabama Birmingham School of Medicine, Birmingham, Alabama
| | - AJ Tector
- Comprehensive Transplant Institute, University of Alabama Birmingham School of Medicine, Birmingham, Alabama
| | - AB Adams
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia,Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
7
|
Rodriguez-Polo I, Stauske M, Becker A, Bartels I, Dressel R, Behr R. Baboon induced pluripotent stem cell generation by piggyBac transposition of reprogramming factors. Primate Biol 2019; 6:75-86. [PMID: 32110718 PMCID: PMC7041535 DOI: 10.5194/pb-6-75-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
Clinical application of regenerative therapies using embryonic or induced pluripotent stem cells is within reach. Progress made during recent years has encouraged researchers to address remaining open questions in order to finally translate experimental cell replacement therapies into application in patients. To achieve this, studies in translationally relevant animal models are required to make the final step to the clinic. In this context, the baboon (Papio anubis) may represent a valuable nonhuman primate (NHP) model to test cell replacement therapies because of its close evolutionary relationship to humans and its large body size. In this study, we describe the reprogramming of adult baboon skin fibroblasts using the piggyBac transposon system. Via transposon-mediated overexpression of six reprogramming factors, we generated five baboon induced pluripotent stem cell (iPSC) lines. The iPSC lines were characterized with respect to alkaline phosphatase activity, pluripotency factor expression analysis, teratoma formation potential, and karyotype. Furthermore, after initial cocultivation with mouse embryonic fibroblasts, we were able to adapt iPSC lines to feeder-free conditions. In conclusion, we established a robust and efficient protocol for iPSC generation from adult baboon fibroblasts.
Collapse
Affiliation(s)
- Ignacio Rodriguez-Polo
- Research Platform Degenerative Diseases, German Primate Center –
Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen,
Germany
- German Center for Cardiovascular Research (DZHK), Partner site,
Göttingen, Germany
| | - Michael Stauske
- Research Platform Degenerative Diseases, German Primate Center –
Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen,
Germany
- German Center for Cardiovascular Research (DZHK), Partner site,
Göttingen, Germany
- current address: BlueRock Therapeutics, 101 College St, PMCRT 14-301,
Toronto, ON M5G 1L7, Canada
| | - Alexander Becker
- Research Platform Degenerative Diseases, German Primate Center –
Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen,
Germany
| | - Iris Bartels
- Institute of Human Genetics, University Medical Center Göttingen,
Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Ralf Dressel
- German Center for Cardiovascular Research (DZHK), Partner site,
Göttingen, Germany
- Institute of Cellular and Molecular Immunology, University Medical
Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Rüdiger Behr
- Research Platform Degenerative Diseases, German Primate Center –
Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen,
Germany
- German Center for Cardiovascular Research (DZHK), Partner site,
Göttingen, Germany
| |
Collapse
|
8
|
Gurung S, Reuter N, Preno A, Dubaut J, Nadeau H, Hyatt K, Singleton K, Martin A, Parks WT, Papin JF, Myers DA. Zika virus infection at mid-gestation results in fetal cerebral cortical injury and fetal death in the olive baboon. PLoS Pathog 2019; 15:e1007507. [PMID: 30657788 PMCID: PMC6355048 DOI: 10.1371/journal.ppat.1007507] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/31/2019] [Accepted: 12/05/2018] [Indexed: 11/21/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy in humans is associated with an increased incidence of congenital anomalies including microcephaly as well as fetal death and miscarriage and collectively has been referred to as Congenital Zika Syndrome (CZS). Animal models for ZIKV infection in pregnancy have been developed including mice and non-human primates (NHPs). In macaques, fetal CZS outcomes from maternal ZIKV infection range from none to significant. In the present study we develop the olive baboon (Papio anubis), as a model for vertical transfer of ZIKV during pregnancy. Four mid-gestation, timed-pregnant baboons were inoculated with the French Polynesian ZIKV isolate (104 ffu). This study specifically focused on the acute phase of vertical transfer. Dams were terminated at 7 days post infection (dpi; n = 1), 14 dpi (n = 2) and 21 dpi (n = 1). All dams exhibited mild to moderate rash and conjunctivitis. Viremia peaked at 5–7 dpi with only one of three dams remaining mildly viremic at 14 dpi. An anti-ZIKV IgM response was observed by 14 dpi in all three dams studied to this stage, and two dams developed a neutralizing IgG response by either 14 dpi or 21 dpi, the latter included transfer of the IgG to the fetus (cord blood). A systemic inflammatory response (increased IL2, IL6, IL7, IL15, IL16) was observed in three of four dams. Vertical transfer of ZIKV to the placenta was observed in three pregnancies (n = 2 at 14 dpi and n = 1 at 21 dpi) and ZIKV was detected in fetal tissues in two pregnancies: one associated with fetal death at ~14 dpi, and the other in a viable fetus at 21 dpi. ZIKV RNA was detected in the fetal cerebral cortex and other tissues of both of these fetuses. In the fetus studied at 21 dpi with vertical transfer of virus to the CNS, the frontal cerebral cortex exhibited notable defects in radial glia, radial glial fibers, disorganized migration of immature neurons to the cortical layers, and signs of pathology in immature oligodendrocytes. In addition, indices of pronounced neuroinflammation were observed including astrogliosis, increased microglia and IL6 expression. Of interest, in one fetus examined at 14 dpi without detection of ZIKV RNA in brain and other fetal tissues, increased neuroinflammation (IL6 and microglia) was observed in the cortex. Although the placenta of the 14 dpi dam with fetal death showed considerable pathology, only minor pathology was noted in the other three placentas. ZIKV was detected immunohistochemically in two placentas (14 dpi) and one placenta at 21 dpi but not at 7 dpi. This is the first study to examine the early events of vertical transfer of ZIKV in a NHP infected at mid-gestation. The baboon thus represents an additional NHP as a model for ZIKV induced brain pathologies to contrast and compare to humans as well as other NHPs. Zika virus is endemic in the Americas, primarily spread through mosquitos and sexual contact. Zika virus infection during pregnancy in women is associated with a variety of fetal pathologies now referred to as Congenital Zika Syndrome (CZS), with the most severe pathology being fetal microcephaly. Developing model organisms that faithfully recreate Zika infection in humans is critical for future development of treatments and preventions. In our present study, we infected Olive baboons at mid-gestation with Zika virus and studied the acute period of viremia and transfer of Zika virus to the fetus during the first three weeks after infection to better understand the timing and mechanisms of transfer of ZIKV across the placenta, leading to CZS. We observed Zika virus transfer to fetuses resulting in fetal death in one pregnancy and in a second pregnancy, significant damage to the frontal cortex of the fetal brain at a critical period of neurodevelopment in primates. Thus, the baboon provides a promising new non-human primate model to further compare and contrast the consequences of Zika virus infection in pregnancy to humans and other non-human primates.
Collapse
Affiliation(s)
- Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Nicole Reuter
- Division of Comparative Medicine, Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Alisha Preno
- Division of Comparative Medicine, Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jamie Dubaut
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Hugh Nadeau
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Kimberly Hyatt
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Krista Singleton
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Ashley Martin
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - W. Tony Parks
- Department of Pathology, University of Toronto, Toronto, Ontario, Canada
| | - James F. Papin
- Division of Comparative Medicine, Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- * E-mail:
| |
Collapse
|
9
|
Sunagar R, Kumar S, Namjoshi P, Rosa SJ, Hazlett KRO, Gosselin EJ. Evaluation of an outbred mouse model for Francisella tularensis vaccine development and testing. PLoS One 2018; 13:e0207587. [PMID: 30533047 PMCID: PMC6289435 DOI: 10.1371/journal.pone.0207587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/03/2018] [Indexed: 01/06/2023] Open
Abstract
Francisella tularensis (Ft) is a biothreat agent for which there is no FDA-approved human vaccine. Currently, there are substantial efforts underway to develop both vaccines and the tools to assess these vaccines. Tularemia laboratory research has historically relied primarily upon a small number of inbred mouse strains, but the utility of such findings to outbred animals may be limited. Specifically, C57BL/6 mice are more susceptible than BALB/c mice to Ft infection and less easily protected against challenge with highly virulent type A Ft. Thus, depending on the inbred mouse strain used, one could be misled as to which immunogen(s)/vaccine will ultimately be effective in an outbred human population. Accordingly, we evaluated an outbred Swiss Webster (SW) mouse model in direct comparison to a well-established, inbred C57BL/6 mouse model. Mucosal vaccination with the live, attenuated Ft LVS superoxide dismutase (sodB) mutant demonstrated significantly higher protection in outbred SW mice compared to inbred C57BL/6 mice against Ft SchuS4 respiratory challenge. The protection observed in vaccinated outbred mice correlated with lower bacterial density, reduced tissue inflammation, and reduced levels of pro-inflammatory cytokine production. This protection was CD4+ and CD8+ T cell-dependent and characterized by lower titers of serum antibody (Ab) that qualitatively differed from vaccinated inbred mice. Enhanced protection of vaccinated outbred mice correlated with early and robust production of IFN-γ and IL-17A. Neutralizing Ab administered at the time of challenge revealed that IFN-γ was central to this protection, while IL-17A neutralization did not alter bacterial burden or survival. The present study demonstrates the utility of the outbred mouse as an alternative vaccination model for testing tularemia vaccines. Given the limited MHC repertoire in inbred mice, this outbred model is more analogous to the human in terms of immunological diversity.
Collapse
Affiliation(s)
- Raju Sunagar
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Sudeep Kumar
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Prachi Namjoshi
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Sarah J. Rosa
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Karsten R. O. Hazlett
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Edmund J. Gosselin
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
- * E-mail:
| |
Collapse
|
10
|
Affinity of Staphylococcal a and Streptococcal G Proteins to West Indian Manatee ( Trichechus manatus manatus) Immunoglobulins. J Wildl Dis 2018; 55:421-424. [PMID: 30277833 DOI: 10.7589/2018-02-061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The West Indian manatee ( Trichechus manatus manatus), a subspecies that inhabits coastal areas of Central and South America, has been listed as a vulnerable species because of the rapid decline in its population. Commercially available immunologic reagents specific for sirenians are lacking, limiting the development of sensitive immunodiagnostic assays. We observed the affinity of the microbial proteins A and G to T. m. manatus immunoglobulins. Manatee serum pools were analyzed using enzyme-linked immunosorbent assay (ELISA) to determine the affinity intensity followed by western blotting to confirm the specific binding of proteins A and G to immunoglobulins. The ELISA demonstrated maximum affinity of both proteins until the serum dilution of 1:12,800, with a similar affinity for both proteins. Because both A and G proteins exhibited affinity to manatee immunoglobulins, they can be used to develop sensitive immunodiagnostic assays for this species, contributing to manatee conversation procedures.
Collapse
|
11
|
Gurung S, Preno AN, Dubaut JP, Nadeau H, Hyatt K, Reuter N, Nehete B, Wolf RF, Nehete P, Dittmer DP, Myers DA, Papin JF. Translational Model of Zika Virus Disease in Baboons. J Virol 2018; 92:e00186-18. [PMID: 29875247 PMCID: PMC6069201 DOI: 10.1128/jvi.00186-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/25/2018] [Indexed: 01/23/2023] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus with devastating outcomes seen recently in the Americas due to the association of maternal ZIKV infection with fetal microcephaly and other fetal malformations not previously associated with flavivirus infections. Here, we have developed the olive baboon (Papio anubis) as a nonhuman primate (NHP) translational model for the study of ZIKV pathogenesis and associated disease outcomes to contrast and compare with humans and other major NHPs, such as macaques. Following subcutaneous inoculation of adult male and nonpregnant female baboons, viremia was detected at 3 and 4 days postinfection (dpi) with the concordant presentation of a visible rash and conjunctivitis, similar to human ZIKV infection. Furthermore, virus was detected in the mucosa and cerebrospinal fluid. A robust ZIKV-specific IgM and IgG antibody response was also observed in all the animals. These data show striking similarity between humans and the olive baboon following infection with ZIKV, suggesting our model is a suitable translational NHP model to study ZIKV pathogenesis and potential therapeutics.IMPORTANCE ZIKV was first identified in 1947 in a sentinel rhesus monkey in Uganda and subsequently spread to Southeast Asia. Until 2007, only a small number of cases were reported, and ZIKV infection was relatively minor until the South Pacific and Brazilian outbreaks, where more severe outcomes were reported. Here, we present the baboon as a nonhuman primate model for contrast and comparison with other published animal models of ZIKV, such as the mouse and macaque species. Baboons breed year round and are not currently a primary nonhuman primate species used in biomedical research, making them more readily available for studies other than human immunodeficiency virus studies, which many macaque species are designated for. This, taken together with the similarities baboons have with humans, such as immunology, reproduction, genetics, and size, makes the baboon an attractive NHP model for ZIKV studies in comparison to other nonhuman primates.
Collapse
Affiliation(s)
- Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alisha N Preno
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jamie P Dubaut
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hugh Nadeau
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kimberly Hyatt
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nicole Reuter
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bharti Nehete
- Department of Veterinary Sciences, The University of Texas M. D. Anderson Cancer Center, Bastrop, Texas USA
| | - Roman F Wolf
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Pramod Nehete
- Department of Veterinary Sciences, The University of Texas M. D. Anderson Cancer Center, Bastrop, Texas USA
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dean A Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - James F Papin
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
12
|
Kapil P, Papin JF, Wolf RF, Zimmerman LI, Wagner LD, Merkel TJ. Maternal Vaccination With a Monocomponent Pertussis Toxoid Vaccine Is Sufficient to Protect Infants in a Baboon Model of Whooping Cough. J Infect Dis 2018; 217:1231-1236. [PMID: 29346585 PMCID: PMC6018939 DOI: 10.1093/infdis/jiy022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Bordetella pertussis is a human pathogen responsible for serious respiratory illness. The disease is most severe in infants too young to be vaccinated with most hospitalizations and deaths occurring within this age group. The Advisory Committee on Immunization Practices recommended immunization of pregnant women to protect infants from birth until their first vaccination at 6-8 weeks of age. We previously demonstrated that maternal vaccination with licensed acellular pertussis vaccines protected newborn baboons from disease. We hypothesized that protection was due to toxin-neutralizing, maternal anti-pertussis toxin antibodies and predicted that maternal vaccination with a pertussis toxoid (PTx)-only vaccine would protect newborns from disease. Methods Infant baboons born to unvaccinated mothers or mothers vaccinated with a PTx-only vaccine were challenged with B. pertussis at 5 weeks of age and followed for infection and signs of disease. Results Although all challenged infants were heavily colonized, the infant baboons born to mothers vaccinated with PTx-only vaccine were free from clinical disease following exposure to B. pertussis. In contrast, disease was observed in infants born to unvaccinated mothers. Conclusions Our results demonstrated that maternal vaccination with a PTx-only vaccine is sufficient to protect newborn baboons from disease following exposure to pertussis.
Collapse
Affiliation(s)
- Parul Kapil
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - James F Papin
- Oklahoma Baboon Research Resource, Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Roman F Wolf
- Oklahoma Baboon Research Resource, Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Lindsey I Zimmerman
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Leslie D Wagner
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Tod J Merkel
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
13
|
Kang HJ, Lee H, Park EM, Kim JM, Min BH, Park CG. D-dimer level, in association with humoral responses, negatively correlates with survival of porcine islet grafts in non-human primates with immunosuppression. Xenotransplantation 2017; 24. [DOI: 10.1111/xen.12299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/15/2017] [Accepted: 03/01/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Hee Jung Kang
- Department of Laboratory Medicine; Hallym University College of Medicine; Anyang-si Korea
| | - Haneulnari Lee
- Department of Laboratory Medicine; Hallym University College of Medicine; Anyang-si Korea
| | - Eun Mi Park
- Department of Laboratory Medicine; Hallym University College of Medicine; Anyang-si Korea
| | - Jong-Min Kim
- Xenotransplantation Research Center; Seoul National University College of Medicine; Seoul Korea
| | - Byoung-Hoon Min
- Xenotransplantation Research Center; Seoul National University College of Medicine; Seoul Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center; Seoul National University College of Medicine; Seoul Korea
- Department of Microbiology and Immunology; Department of Biomedical Sciences; Cancer Research Institute; Institute of Endemic Diseases; Seoul National University College of Medicine; Seoul Korea
| |
Collapse
|
14
|
Abstract
Ebola virus disease (EVD) in humans is associated with four ebolaviruses: Ebola virus (EBOV), Sudan virus (SUDV), Bundibugyo virus (BDBV), and Taï Forest virus. To date, no documented cases of human disease have been associated with Reston virus. Here, we describe the nonhuman primate (NHP) models that currently serve as gold standards for testing ebolavirus vaccines and therapeutic agents and elucidating underlying mechanisms of pathogenesis. Although multiple models have been explored over the past 50 years, the predominance of published work has been performed in macaque models. This chapter will focus on the most commonly used models.
Collapse
|
15
|
Helper-dependent adenovirus achieve more efficient and persistent liver transgene expression in non-human primates under immunosuppression. Gene Ther 2015; 22:856-65. [DOI: 10.1038/gt.2015.64] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 06/09/2015] [Accepted: 06/18/2015] [Indexed: 12/31/2022]
|
16
|
Shurtleff AC, Bavari S. Animal models for ebolavirus countermeasures discovery: what defines a useful model? Expert Opin Drug Discov 2015; 10:685-702. [PMID: 26004783 DOI: 10.1517/17460441.2015.1035252] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Ebolaviruses are highly pathogenic filoviruses, which cause disease in humans and nonhuman primates (NHP) in Africa. The Zaire ebolavirus outbreak in 2014, which continues to greatly affect Western Africa and other countries to which the hemorrhagic fever was exported due to travel of unsymptomatic yet infected individuals, was complicated by the lack of available licensed vaccines or therapeutics to combat infection. After almost a year of research at an increased pace to find and test vaccines and therapeutics, there is now a deeper understanding of the available disease models for ebolavirus infection. Demonstration of vaccine or therapeutic efficacy in NHP models of ebolavirus infection is crucial to the development and eventual licensure of ebolavirus medical countermeasures, so that safe and effective countermeasures can be accelerated into human clinical trials. AREAS COVERED The authors describe ebolavirus hemorrhagic fever (EHF) disease in various animal species: mice, guinea pigs, hamsters, pigs and NHP, to include baboons, marmosets, rhesus and cynomolgus macaques, as well as African green monkeys. Because the NHP models are supremely useful for therapeutics and vaccine testing, emphasis is placed on comparison of these models, and their use as gold-standard models of EHF. EXPERT OPINION Animal models of EHF varying from rodents to NHP species are currently under evaluation for their reproducibility and utility for modeling infection in humans. Complete development and licensure of therapeutic agents and vaccines will require demonstration that mechanisms conferring protection in NHP models of infection are predictive of protective responses in humans, for a given countermeasure.
Collapse
Affiliation(s)
- Amy C Shurtleff
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Division of Molecular and Translational Sciences , 1425 Porter Street, Frederick, MD 21702 , USA +1 301 619 4246 ; +1 541 754 3545 ;
| | | |
Collapse
|
17
|
Dakshinamoorthy G, von Gegerfelt A, Andersen H, Lewis M, Kalyanasundaram R. Evaluation of a multivalent vaccine against lymphatic filariasis in rhesus macaque model. PLoS One 2014; 9:e112982. [PMID: 25401783 PMCID: PMC4234504 DOI: 10.1371/journal.pone.0112982] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/20/2014] [Indexed: 01/22/2023] Open
Abstract
Lymphatic filariasis affects 120 million people worldwide and another 1.2 billion people are at risk of acquiring the infection. Chemotherapy with mass drug administration is substantially reducing the incidence of the infection. Nevertheless, an effective vaccine is needed to prevent the infection and eradicate the disease. Previously we reported that a multivalent fusion protein vaccine (rBmHAT) composed of small heat shock proteins 12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and large extracellular domain of tetraspanin (TSP LEL) could confer >95% protection against the challenge infection with Brugia malayi infective larvae (L3) in mouse and gerbil models. In this study we evaluated the immunogenicity and efficacy of rBmHAT fusion protein vaccine in a rhesus macaque model. Our results show that rBmHAT is highly immunogenic in rhesus macaques. All the vaccinated monkeys developed significant titers of antigen-specific IgG antibodies against each of the component antigens (16,000 for rBmHSP12.6), (24,000 for rBmALT-2) and (16,000 for rBmTSP-LEL). An in vitro antibody dependent cellular cytotoxicity (ADCC) assay performed using the sera samples from vaccinated monkeys showed that the anti-rBmHAT antibodies are functional with 35% killing of B. malayi L3s. Vaccinated monkeys also had antigen responding cells in the peripheral blood. Vaccine-induced protection was determined after challenging the monkeys with 500 B. malayi L3. Following challenge infection, 3 out of 5 vaccinated macaques failed to develop the infection. These three protected macaques had high titers of IgG1 antibodies and their PBMC secreted significantly high levels of IFN-γ in response to the vaccine antigens. The two vaccinated macaques that picked the infection had slightly low titers of antibodies and their PBMC secreted high levels of IL-10. Based on these findings we conclude that the rBmHAT vaccine is highly immunogenic and safe and can confer significant protection against challenge infections in rhesus macaques.
Collapse
Affiliation(s)
- Gajalakshmi Dakshinamoorthy
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, United States of America
| | | | - Hanne Andersen
- Bioqual Inc., Rockville, Maryland, United States of America
| | - Mark Lewis
- Bioqual Inc., Rockville, Maryland, United States of America
| | - Ramaswamy Kalyanasundaram
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, United States of America
- * E-mail:
| |
Collapse
|
18
|
Warfel JM, Merkel TJ. The baboon model of pertussis: effective use and lessons for pertussis vaccines. Expert Rev Vaccines 2014; 13:1241-52. [DOI: 10.1586/14760584.2014.946016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
The T-cell-dependent antibody response assay in nonclinical studies of pharmaceuticals and chemicals: study design, data analysis, interpretation. Regul Toxicol Pharmacol 2014; 69:7-21. [PMID: 24566336 DOI: 10.1016/j.yrtph.2014.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 11/22/2022]
Abstract
The T-cell-dependent antibody response (TDAR) assay is a measure of immune function that is dependent upon the effectiveness of multiple immune processes, including antigen uptake and presentation, T cell help, B cell activation, and antibody production. It is used for risk and safety assessments, in conjunction with other toxicologic assessments, by the chemical and pharmaceutical industries, and research and regulatory agencies. It is also employed to evaluate investigational drug efficacy in animal pharmacology studies, provide evidence of biological impact in clinical trials, and evaluate immune function in patients with primary or secondary immunodeficiency diseases. Various immunization schemes, analytical methods, approaches to data analysis, and data interpretations are in use. This manuscript summarizes some recommended practices for the conduct and interpretation of the assay in animal studies.
Collapse
|
20
|
Warfel JM, Papin JF, Wolf RF, Zimmerman LI, Merkel TJ. Maternal and neonatal vaccination protects newborn baboons from pertussis infection. J Infect Dis 2014; 210:604-10. [PMID: 24526741 DOI: 10.1093/infdis/jiu090] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The United States is experiencing a pertussis resurgence that resulted in a 60-year high of 48 000 cases in 2012. The majority of hospitalizations and deaths occur in infants too young to be vaccinated. Neonatal and maternal vaccination have been proposed to protect newborns until the first vaccination, currently recommended at 2 months of age. These interventions result in elevated anti-Bordetella pertussis titers, but there have been no studies demonstrating that these measures confer protection. METHODS Baboons were vaccinated with acellular pertussis vaccine at 2 days of age or at 2 and 28 days of age. To model maternal vaccination, adult female baboons primed with acellular pertussis vaccine were boosted in the third trimester of pregnancy. Neonatally vaccinated infants, infants born to vaccinated mothers, and naive infants born to unvaccinated mothers were infected with B. pertussis at 5 weeks of age. RESULTS Naive infant baboons developed severe disease when challenged with B. pertussis at 5 weeks of age. Baboons receiving acellular pertussis vaccine and infants born to mothers vaccinated at the beginning of their third trimester were protected. CONCLUSIONS Our results demonstrate that neonatal vaccination and maternal vaccination confer protection in the baboon model and support further study of these strategies for protection of newborns from pertussis.
Collapse
Affiliation(s)
- Jason M Warfel
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland
| | - James F Papin
- Oklahoma Baboon Research Resource, Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Roman F Wolf
- Oklahoma Baboon Research Resource, Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Lindsey I Zimmerman
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland
| | - Tod J Merkel
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland
| |
Collapse
|
21
|
Willis EL, Wolf RF, White GL, McFarlane D. Age- and gender-associated changes in the concentrations of serum TGF-1β, DHEA-S and IGF-1 in healthy captive baboons (Papio hamadryas anubis). Gen Comp Endocrinol 2014; 195:21-7. [PMID: 24161750 PMCID: PMC3888644 DOI: 10.1016/j.ygcen.2013.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/04/2013] [Accepted: 10/10/2013] [Indexed: 12/27/2022]
Abstract
Age-related changes in the concentration of factors like TGF-1β, DHEA-S and IGF-1 may increase the risk of disease and illnesses in advanced life. A better understanding of these changes would aid in the development of more appropriate treatments and/or preventative care for many conditions associated with age. Due to their similar immune system and vulnerability to pathogens, baboons are an ideal model for humans. However, little research has been done examining the general effects of age in baboons. Therefore, we wanted to further examine the effects of aging in baboons by determining the age-dependent changes in serum TGF-1β, DHEA-S and IGF-1 concentrations. Blood samples were collected during routine health checks in 113-118 captive baboons. In addition, longitudinal samples from 23 to 27 adult individuals were collected an average of 10.7years apart. Both age and gender influenced the concentrations of serum TGF-1β and IGF-1. When both genders were analyzed together, TGF-1β increased 16.1% as adults, compared to younger and older animals, but male and female baboons showed a slightly different temporal pattern of change. IGF-1 decreased with increasing age and males had a 30% greater concentration of IGF-1 than did females. While there was no effect of gender among our population, serum DHEA-S was negatively correlated with age, decreasing by 51.6% in the oldest animals. There were no effects of age or gender on serum IGFBP-3. In longitudinal samples collected from the same individuals, the concentrations of TGF-1β, DHEA-S and IGF-1 were reduced with age. The results presented herein provide additional knowledge of the aging process in baboons and further validate the use of this species as an appropriate model for aging in humans.
Collapse
Affiliation(s)
- E L Willis
- Department of Physiological Sciences, Center of Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| | - R F Wolf
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - G L White
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - D McFarlane
- Department of Physiological Sciences, Center of Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
22
|
Blaney JE, Marzi A, Willet M, Papaneri AB, Wirblich C, Feldmann F, Holbrook M, Jahrling P, Feldmann H, Schnell MJ. Antibody quality and protection from lethal Ebola virus challenge in nonhuman primates immunized with rabies virus based bivalent vaccine. PLoS Pathog 2013; 9:e1003389. [PMID: 23737747 PMCID: PMC3667758 DOI: 10.1371/journal.ppat.1003389] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/10/2013] [Indexed: 12/25/2022] Open
Abstract
We have previously described the generation of a novel Ebola virus (EBOV) vaccine platform based on (a) replication-competent rabies virus (RABV), (b) replication-deficient RABV, or (c) chemically inactivated RABV expressing EBOV glycoprotein (GP). Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated RABV/EBOV vaccines. Here, we evaluated these vaccines in nonhuman primates. Our results indicate that all three vaccines do induce potent immune responses against both RABV and EBOV, while the protection of immunized animals against EBOV was largely dependent on the quality of humoral immune response against EBOV GP. We also determined if the induced antibodies against EBOV GP differ in their target, affinity, or the isotype. Our results show that IgG1-biased humoral responses as well as high levels of GP-specific antibodies were beneficial for the control of EBOV infection after immunization. These results further support the concept that a successful EBOV vaccine needs to induce strong antibodies against EBOV. We also showed that a dual vaccine against RABV and filoviruses is achievable; therefore addressing concerns for the marketability of this urgently needed vaccine. Ebola virus (EBOV) has been associated with outbreaks in human and nonhuman primate populations since 1976. With a fatality rate approaching 90%, EBOV is one of the most lethal infectious diseases in humans. The increased frequency of EBOV outbreaks along with its potential to be used as a bioterrorism agent has dramatically strengthened filovirus vaccine research and development. While there are currently no approved vaccines or post exposure treatments available for human use, several vaccine candidates have shown to protect nonhuman primates from lethal EBOV challenge. Our primary focus is to develop vaccine candidates to protect humans and endangered wildlife species at risk of infection in Africa. Here, we evaluated the efficacy and immunogenicity of our dual vaccines against EBOV and rabies virus (RABV) in rhesus macaques. Our live replication-competent vaccine provided 100% protection following EBOV challenge while the replication-deficient and inactivated candidates provided 50% protection. Interestingly, protection is dependent on the quality of the antibodies rather than the quantity. All three RABV-based EBOV vaccines did induce antibody levels necessary for protection from RABV infection. These results encourage the further development of these novel dual vaccines directed against two of the most lethal viral diseases.
Collapse
Affiliation(s)
- Joseph E. Blaney
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Mallory Willet
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Amy B. Papaneri
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Friederike Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Michael Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, United States of America
| | - Peter Jahrling
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Matthias J. Schnell
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Lung dendritic cell developmental programming, environmental stimuli, and asthma in early periods of life. J Allergy (Cairo) 2012; 2012:176468. [PMID: 23209481 PMCID: PMC3503332 DOI: 10.1155/2012/176468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/29/2012] [Accepted: 09/30/2012] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) are important cells of our innate immune system. Their role is critical in inducing adaptive immunity, tolerance, or allergic response in peripheral organs—lung and skin. The lung DCs are not developed prenatally before birth. The DCs develop after birth presumably during the first year of life; exposures to any foreign antigen or infectious organisms during this period can significantly affect DC developmental programming and generation of distinct DC phenotypes and functions. These changes can have both short-term and long-term health effects which may be very relevant in childhood asthma and predisposition for a persistent response in adulthood. An understanding of DC development at molecular and cellular levels can help in protecting neonates and infants against problematic environmental exposures and developmental immunotoxicity. This knowledge can eventually help in designing novel pharmacological modulators to skew the DC characteristics and immune responses to benefit the host across a lifetime.
Collapse
|
24
|
Perry DL, Bollinger L, L.White G. The Baboon (Papio spp.) as a model of human Ebola virus infection. Viruses 2012; 4:2400-16. [PMID: 23202470 PMCID: PMC3497058 DOI: 10.3390/v4102400] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 01/09/2023] Open
Abstract
Baboons are susceptible to natural Ebola virus (EBOV) infection and share 96% genetic homology with humans. Despite these characteristics, baboons have rarely been utilized as experimental models of human EBOV infection to evaluate the efficacy of prophylactics and therapeutics in the United States. This review will summarize what is known about the pathogenesis of EBOV infection in baboons compared to EBOV infection in humans and other Old World nonhuman primates. In addition, we will discuss how closely the baboon model recapitulates human EBOV infection. We will also review some of the housing requirements and behavioral attributes of baboons compared to other Old World nonhuman primates. Due to the lack of data available on the pathogenesis of Marburg virus (MARV) infection in baboons, discussion of the pathogenesis of MARV infection in baboons will be limited.
Collapse
Affiliation(s)
- Donna L. Perry
- Integrated Research Facility, Division of Clinical Research, NIAID, NIH, Frederick, MD, USA;
| | - Laura Bollinger
- Integrated Research Facility, Division of Clinical Research, NIAID, NIH, Frederick, MD, USA;
| | - Gary L.White
- Department of Pathology, University of Oklahoma Baboon Research Resource, University of Oklahoma, Ft. Reno Science Park, OK, USA;
| |
Collapse
|
25
|
A three-dose intramuscular injection schedule of anthrax vaccine adsorbed generates sustained humoral and cellular immune responses to protective antigen and provides long-term protection against inhalation anthrax in rhesus macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1730-45. [PMID: 22933399 DOI: 10.1128/cvi.00324-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A 3-dose (0, 1, and 6 months) intramuscular (3-IM) priming series of a human dose (HuAVA) and dilutions of up to 1:10 of anthrax vaccine adsorbed (AVA) provided statistically significant levels of protection (60 to 100%) against inhalation anthrax for up to 4 years in rhesus macaques. Serum anti-protective antigen (anti-PA) IgG and lethal toxin neutralization activity (TNA) were detectable following a single injection of HuAVA or 1:5 AVA or following two injections of diluted vaccine (1:10, 1:20, or 1:40 AVA). Anti-PA and TNA were highly correlated (overall r(2) = 0.89 for log(10)-transformed data). Peak responses were seen at 6.5 months. In general, with the exception of animals receiving 1:40 AVA, serum anti-PA and TNA responses remained significantly above control levels at 28.5 months (the last time point measured for 1:20 AVA), and through 50.5 months for the HuAVA and 1:5 and 1:10 AVA groups (P < 0.05). PA-specific gamma interferon (IFN-γ) and interleukin-4 (IL-4) CD4(+) cell frequencies and T cell stimulation indices were sustained through 50.5 months (the last time point measured). PA-specific memory B cell frequencies were highly variable but, in general, were detectable in peripheral blood mononuclear cells (PBMC) by 2 months, were significantly above control levels by 7 months, and remained detectable in the HuAVA and 1:5 and 1:20 AVA groups through 42 months (the last time point measured). HuAVA and diluted AVA elicited a combined Th1/Th2 response and robust immunological priming, with sustained production of high-avidity PA-specific functional antibody, long-term immune cell competence, and immunological memory (30 months for 1:20 AVA and 52 months for 1:10 AVA). Vaccinated animals surviving inhalation anthrax developed high-magnitude anamnestic anti-PA IgG and TNA responses.
Collapse
|
26
|
McFarlane D, Wolf RF, McDaniel KA, White GL. The effect of season on inflammatory response in captive baboons. J Med Primatol 2012; 41:341-8. [PMID: 22905903 DOI: 10.1111/j.1600-0684.2012.00560.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2012] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Highly seasonal animals demonstrate predictable changes in immune function that coincide with changes in photoperiod. Little is known about the effect of season on immune response in baboons. The objective of this study was to determine the effect of season on inflammatory response in baboons. MATERIALS AND METHODS Peripheral blood mononuclear cell cytokine response following immune stimulation and serum markers of inflammation were assessed during each season in two groups of young male baboons: one housed under natural light and one in a controlled environment of 12 hours light:12 hours dark. RESULTS A seasonal immune rhythm was evident in both groups, with a greater TNF-α and IL-6 response to stimulation and serum CRP concentration in June and September compared with December. CONCLUSIONS Season is an important experimental confounder, and therefore, time of year should be controlled when designing studies and analyzing data from immune studies in baboons.
Collapse
Affiliation(s)
- Dianne McFarlane
- Department of Physiological Sciences, Center of Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| | | | | | | |
Collapse
|
27
|
Pelli A, Castellano LR, Cardoso MRS, Vasconcelos LAS, Domingues MA, Ferreira MB, Rodrigues V. Differential reactivity of serum immunoglobulins from Brazilian wild mammals to staphylococcal A and streptococcal G proteins. J Vet Diagn Invest 2012; 24:148-52. [DOI: 10.1177/1040638711434322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human pathogens have evolved to infect vertebrate hosts other than human beings without causing symptoms of the disease, thus permitting them to complete their life cycle and to develop into infectious forms. The identification and management of infected animals are alternatives to control dissemination of the disease and to prevent human illness. In the current study, the potential use of staphylococcal A or streptococcal G proteins was evaluated with enzyme-linked immunosorbent assays (ELISAs) for seroepidemiological studies. Sera were collected from animals that were representative of 23 different Brazilian wild mammals. A high protein A binding rate was observed in all animals, except for the orders Didelphimorphia, Artiodactyla, and Rodentia, in which affinity was medium or low. Affinity for streptococcal G protein was higher in animals of the order Artiodactyla, whereas no streptococcal G protein binding was observed in samples obtained from felines (order Carnivora). Bacterial protein binding to mammalian immunoglobulins was confirmed by immunoblotting. The results suggest that secondary detection systems should be better investigated in ELISA protocols before their implementation in seroepidemiological studies involving wild mammals.
Collapse
Affiliation(s)
- Afonso Pelli
- Department of Biological Sciences, Triângulo Mineiro Federal University, Minas Gerais, Brazil (Pelli, Castellano, Rodrigues), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Department of Technical School of Health, Paraíba Federal University, Paraíba, Brazil (Castellano), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Department of Furnas Central Electric S.A., Mato Grosso, Brazil (Cardoso, Vasconcelos), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Companhia Energética de Minas Gerais S.A., Minas Gerais, Brazil (Ferreira)
| | - Lucio R. Castellano
- Department of Biological Sciences, Triângulo Mineiro Federal University, Minas Gerais, Brazil (Pelli, Castellano, Rodrigues), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Department of Technical School of Health, Paraíba Federal University, Paraíba, Brazil (Castellano), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Department of Furnas Central Electric S.A., Mato Grosso, Brazil (Cardoso, Vasconcelos), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Companhia Energética de Minas Gerais S.A., Minas Gerais, Brazil (Ferreira)
| | - Marcos R. S. Cardoso
- Department of Biological Sciences, Triângulo Mineiro Federal University, Minas Gerais, Brazil (Pelli, Castellano, Rodrigues), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Department of Technical School of Health, Paraíba Federal University, Paraíba, Brazil (Castellano), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Department of Furnas Central Electric S.A., Mato Grosso, Brazil (Cardoso, Vasconcelos), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Companhia Energética de Minas Gerais S.A., Minas Gerais, Brazil (Ferreira)
| | - Luís A. S. Vasconcelos
- Department of Biological Sciences, Triângulo Mineiro Federal University, Minas Gerais, Brazil (Pelli, Castellano, Rodrigues), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Department of Technical School of Health, Paraíba Federal University, Paraíba, Brazil (Castellano), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Department of Furnas Central Electric S.A., Mato Grosso, Brazil (Cardoso, Vasconcelos), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Companhia Energética de Minas Gerais S.A., Minas Gerais, Brazil (Ferreira)
| | - Marcos A. Domingues
- Department of Biological Sciences, Triângulo Mineiro Federal University, Minas Gerais, Brazil (Pelli, Castellano, Rodrigues), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Department of Technical School of Health, Paraíba Federal University, Paraíba, Brazil (Castellano), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Department of Furnas Central Electric S.A., Mato Grosso, Brazil (Cardoso, Vasconcelos), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Companhia Energética de Minas Gerais S.A., Minas Gerais, Brazil (Ferreira)
| | - Maria B. Ferreira
- Department of Biological Sciences, Triângulo Mineiro Federal University, Minas Gerais, Brazil (Pelli, Castellano, Rodrigues), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Department of Technical School of Health, Paraíba Federal University, Paraíba, Brazil (Castellano), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Department of Furnas Central Electric S.A., Mato Grosso, Brazil (Cardoso, Vasconcelos), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Companhia Energética de Minas Gerais S.A., Minas Gerais, Brazil (Ferreira)
| | - Virmondes Rodrigues
- Department of Biological Sciences, Triângulo Mineiro Federal University, Minas Gerais, Brazil (Pelli, Castellano, Rodrigues), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Department of Technical School of Health, Paraíba Federal University, Paraíba, Brazil (Castellano), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Department of Furnas Central Electric S.A., Mato Grosso, Brazil (Cardoso, Vasconcelos), Jacarandá City Zoo Park, Minas Gerais, Brazil (Domingues)
- Companhia Energética de Minas Gerais S.A., Minas Gerais, Brazil (Ferreira)
| |
Collapse
|
28
|
McFarlane D, Wolf RF, McDaniel KA, White GL. Age-associated alteration in innate immune response in captive baboons. J Gerontol A Biol Sci Med Sci 2011; 66:1309-17. [PMID: 21860017 DOI: 10.1093/gerona/glr146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Baboons are an ideal model for studies of human inflammatory response due to their physiological and immunological similarities to people; however; little is known about how age affects immune function in the baboon. We sought to determine if baboons show age-related innate immune changes similar to that described in people. Age was correlated with increased serum C-reactive protein and interleukin-6 or, however, no change in interleukin-10 concentration was observed (n = 120 baboons). Cytokine release from unstimulated peripheral blood mononuclear cells as well as following immune (lipopolysaccharide) stimulation increased with age. When whole blood was assayed, both lipopolysaccharide stimulated and unstimulated samples showed an age-related increase in interleukin-6 response, although the unstimulated cytokine response was reduced compared with that observed in peripheral blood mononuclear cells. Tumor necrosis factor-α response was not related to age. Cytokine response in lipopolysaccharide-stimulated whole blood was negatively correlated with serum DHEA-S concentration and positively correlated with TGF-β concentration.
Collapse
Affiliation(s)
- Dianne McFarlane
- Department of Physiological Sciences, Center of Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | |
Collapse
|
29
|
Labrijn AF, Rispens T, Meesters J, Rose RJ, den Bleker TH, Loverix S, van den Bremer ETJ, Neijssen J, Vink T, Lasters I, Aalberse RC, Heck AJR, van de Winkel JGJ, Schuurman J, Parren PWHI. Species-Specific Determinants in the IgG CH3 Domain Enable Fab-Arm Exchange by Affecting the Noncovalent CH3–CH3 Interaction Strength. THE JOURNAL OF IMMUNOLOGY 2011; 187:3238-46. [DOI: 10.4049/jimmunol.1003336] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Abstract
Rabies remains a global public health threat that kills more than 55,000 people per year. Rabies disproportionately affects children and, therefore, is ranked the seventh most important infectious disease due to years lost. Prevention of human rabies is accomplished by controlling rabies in domestic and wild animals, including the use of vaccination programs. The usefulness of human rabies vaccines is hampered by high cost, complicated vaccination regimens and lack of compliance, especially in areas of Africa and Asia where human rabies infections are endemic. A single-dose vaccine would greatly benefit efforts to combat this global health threat. However, a single-dose vaccine based on current inactivated vaccines does not appear feasible and other approaches are needed. Technology has advanced since modern human rabies vaccines were developed over 40 years ago. In addition, our understanding of immunological principles that influence the outcome of vaccination has increased. This article describes the current status of inactivated rabies virus vaccines and recent developments arising from the use of reverse genetics technologies designed to develop replication-deficient or single-cycle live rabies virus-based vectors for use as a single-dose rabies vaccine for humans.
Collapse
Affiliation(s)
- James P McGettigan
- Department of Microbiology and Immunology, Jefferson Vaccine Center, Jefferson Medical College of Thomas Jefferson University, 1020 Locust Street, JAH 466, Philadelphia, PA 19107, USA.
| |
Collapse
|
31
|
Zhang W, Ahmad G, Torben W, Noor Z, Le L, Damian RT, Wolf RF, White GL, Chavez-Suarez M, Podesta RB, Kennedy RC, Siddiqui AA. Sm-p80-based DNA vaccine provides baboons with levels of protection against Schistosoma mansoni infection comparable to those achieved by the irradiated cercarial vaccine. J Infect Dis 2010; 201:1105-12. [PMID: 20187746 DOI: 10.1086/651147] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To date, no vaccine is available to prevent human schistosomiasis. We have targeted a protein of Schistosoma mansoni that plays an important role in the surface membrane renewal process, a mechanism widely believed to be utilized by the parasite as an immune evasion strategy. Sm-p80 antigen is a promising vaccine target because of its documented immunogenicity, protective efficacy, and antifecundity effects observed in both experimental murine and nonhuman primate models of this infectious disease. In the present study, we report that, in a vector approved for human use (VR1020), an Sm-p80-based DNA vaccine formulation confers a 46% reduction in the worm burden in a baboon (Papio anubis) model. Baboons vaccinated with Sm-p80-VR1020 had a 28% decrease in egg production after challenge with the infectious parasite. Sm-p80-VR1020 vaccine elicited robust immune responses to specific antigen Sm-p80, including immunoglobulin (Ig) G, its subtypes IgG1 and IgG2, and IgA and IgM in vaccinated animals. When stimulated in vitro with recombinant Sm-p80, peripheral blood mononuclear cells and splenocytes from baboons vaccinated with Sm-p80-VR1020 produced considerably higher levels of T helper 1 response-enhancing cytokines (interleukin [IL]-2 and interferon-gamma) than T helper 2 (Th2) response-enhancing cytokines (IL-4 and IL-10). Peripheral blood mononuclear cells produced a significantly higher number of spot-forming units for interferon-gamma than for IL-4 in enzyme-linked immunosorbent spot assays. A mixed T helper 1/T helper 2 type of humoral and T cell responses was generated after immunization with Sm-p80-VR1020. These findings again highlight the potential of Sm-p80 as a promising vaccine candidate for schistosomiasis.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of 1Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cenna J, Hunter M, Tan GS, Papaneri AB, Ribka EP, Schnell MJ, Marx PA, McGettigan JP. Replication-deficient rabies virus-based vaccines are safe and immunogenic in mice and nonhuman primates. J Infect Dis 2009; 200:1251-60. [PMID: 19764884 DOI: 10.1086/605949] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although current postexposure prophylaxis rabies virus (RV) vaccines are effective, approximately 40,000-70,000 rabies-related deaths are reported annually worldwide. The development of effective formulations requiring only 1-2 applications would significantly reduce mortality. We assessed in mice and nonhuman primates the efficacy of replication-deficient RV vaccine vectors that lack either the matrix (M) or phosphoprotein (P) gene. A single dose of M gene-deficient RV induced a more rapid and efficient anti-RV response than did P gene-deficient RV immunization. Furthermore, the M gene-deleted RV vaccine induced 4-fold higher virus-neutralizing antibody (VNA) levels in rhesus macaques than did a commercial vaccine within 10 days after inoculation, and at 180 days after immunization rhesus macaques remained healthy and had higher-avidity antibodies, higher VNA titers, and a more potent antibody response typical of a type 1 T helper response than did animals immunized with a commercial vaccine. The data presented in this article suggest that the M gene-deleted RV vaccine is safe and effective and holds the potential of replacing current pre- and postexposure RV vaccines.
Collapse
Affiliation(s)
- Jonathan Cenna
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
McCutcheon K, O'Hara E, Fei D. Multiplexed Serum Measurement of IgG, IgA, IgM, and IgE Antibody Responses to Therapeutic Biologicals. Immunol Invest 2009. [DOI: 10.1081/imm-55820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Grimaldi G. The utility of rhesus monkey (Macaca mulatta) and other non-human primate models for preclinical testing of Leishmania candidate vaccines. Mem Inst Oswaldo Cruz 2009; 103:629-44. [PMID: 19057811 DOI: 10.1590/s0074-02762008000700002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/22/2008] [Indexed: 11/22/2022] Open
Abstract
Leishmaniasis causes significant morbidity and mortality, constituting an important global health problem for which there are few effective drugs. Given the urgent need to identify a safe and effective Leishmania vaccine to help prevent the two million new cases of human leishmaniasis worldwide each year, all reasonable efforts to achieve this goal should be made. This includes the use of animal models that are as close to leishmanial infection in humans as is practical and feasible. Old world monkey species (macaques, baboons, mandrills etc.) have the closest evolutionary relatedness to humans among the approachable animal models. The Asian rhesus macaques (Macaca mulatta) are quite susceptible to leishmanial infection, develop a human-like disease, exhibit antibodies to Leishmania and parasite-specific T-cell mediated immune responses both in vivo and in vitro, and can be protected effectively by vaccination. Results from macaque vaccine studies could also prove useful in guiding the design of human vaccine trials. This review summarizes our current knowledge on this topic and proposes potential approaches that may result in the more effective use of the macaque model to maximize its potential to help the development of an effective vaccine for human leishmaniasis.
Collapse
Affiliation(s)
- Gabriel Grimaldi
- Laboratório de Pesquisas em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
35
|
Ahmad G, Zhang W, Torben W, Damian RT, Wolf RF, White GL, Chavez-Suarez M, Kennedy RC, Siddiqui AA. Protective and antifecundity effects of Sm-p80-based DNA vaccine formulation against Schistosoma mansoni in a nonhuman primate model. Vaccine 2009; 27:2830-7. [PMID: 19366570 DOI: 10.1016/j.vaccine.2009.02.096] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/19/2009] [Accepted: 02/24/2009] [Indexed: 12/26/2022]
Abstract
Schistosomiasis is an important parasitic disease for which there is no available vaccine. We have focused on a functionally important antigen of Schistosoma mansoni, Sm-p80, as a vaccine candidate because of its consistent immunogenicity, protective potential and antifecundity effect observed in murine models; and for its pivotal role in the immune evasion process. In the present study we report that an Sm-p80-based DNA vaccine formulation confers 38% reduction in worm burden in a nonhuman primate model, the baboon (Papio anubis). Animals immunized with Sm-p80-pcDNA3 exhibited a decrease in egg production by 32%. Sm-p80 DNA elicited specific immune responses that include IgG; its subtypes IgG1 and IgG2; and IgM in vaccinated animals. Peripheral blood mononuclear cells (PBMCs) from immunized animals when stimulated in vitro with Sm-p80 produced appreciably more Th1 response enhancing cytokines (IL-2, IFN-gamma) than Th2 response enhancing cytokines (IL-4, IL-10). PBMCs produced appreciably more spot-forming units for INF-gamma than for IL-4 in enzyme-linked immunosorbent spot (ELISPOT) assays. Overall it appears that even though a mixed (Th1/Th2) type of humoral antibody response was generated following immunization with Sm-p80; the dominant protective immune response is Th1 type. These data reinforce the potential of Sm-p80 as an excellent vaccine candidate for schistosomiasis.
Collapse
Affiliation(s)
- Gul Ahmad
- Department of Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Stacy S, Pasquali A, Sexton VL, Cantwell AM, Kraig E, Dube PH. An age-old paradigm challenged: old baboons generate vigorous humoral immune responses to LcrV, a plague antigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:109-15. [PMID: 18566375 PMCID: PMC3663140 DOI: 10.4049/jimmunol.181.1.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune senescence in the elderly results in decreased immunity with a concomitant increase in susceptibility to infection and diminished efficacy of vaccination. Nonhuman primate models have proven critical for testing of vaccines and therapeutics in the general population, but a model using old animals has not been established. Toward that end, immunity to LcrV, a protective Ag from Yersinia pestis, was tested in young and old baboons. Surprisingly, there was no age-associated loss in immune competence; LcrV elicited high-titer, protective Ab responses in the older individuals. The primary responses in the younger baboons were lower, but they did show boosting upon secondary immunization to the levels achieved in the old animals. The LcrV Ag was also tested in mice and, as expected, age-associated loss of immunity was seen; older animals responded with lower-titer Abs and, as a result, were more susceptible to Yersinia challenge. Thus, although age-related loss in immune function has been observed in humans, rodents, and some nonhuman primates, baboons appear to be unusual; they age without losing immune competence.
Collapse
Affiliation(s)
- Sue Stacy
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Texas USA 78229-3900
- Barshop Center for Longevity Studies, University of Texas Health Science Center at San Antonio, Texas USA 78229-3900
| | - Amanda Pasquali
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Texas USA 78229-3900
| | - Valerie L. Sexton
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Texas USA 78229-3900
| | - Angelene M. Cantwell
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Texas USA 78229-3900
| | - Ellen Kraig
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Texas USA 78229-3900
- Barshop Center for Longevity Studies, University of Texas Health Science Center at San Antonio, Texas USA 78229-3900
| | - Peter H. Dube
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Texas USA 78229-3900
- Barshop Center for Longevity Studies, University of Texas Health Science Center at San Antonio, Texas USA 78229-3900
| |
Collapse
|
37
|
A multiplex approach to isotyping antigen-specific antibodies using biotinylated antigen/streptavidin-phycoerythrin. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008. [PMID: 18287660 DOI: 10.1007/978-1-59745-579-4_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Analytical methods characterizing the immunogenicity of antigens are useful for monitoring, characterizing and predicting antibody responses to therapeutic biologics or vaccines. Distinct Luminex microspheres coupled with protein G, anti-human immunoglobulin (Ig)A, anti-human IgM and anti-human IgE were developed for the simultaneous capture of total IgG, IgA, IgM and IgE (IgGAME) antibodies from human or non-human primate serum. The fraction of antigen-specific antibodies captured on the beads was detected using biotinylated antigen/streptavidin-phycoerythrin. The method was demonstrated by isotyping antibodies directed against an anti-CD11a antibody therapeutic (RAPTIVA/efalizumab) from the serum of a cynomolgus monkey hyper-immunized with RAPTIVA over a 15-month period. The quantitative range of the antibody measurements, using 5 mul of sample, was determined to be 15 ng/ml to 50 mug/ml in 10% serum. By the use of any biotinylated antigen as a detector, this multiplexed isotyping assay can be broadly applied to human and non-human primate IgGAME immunogenicity studies.
Collapse
|
38
|
Westfall LW, Shearer MH, Jumper CA, White GL, Papin JF, Eberle R, Butel JS, Bright RK, Kennedy RC. Evidence of simian virus 40 exposure in a colony of captive baboons. Virology 2008; 377:54-62. [PMID: 18485439 DOI: 10.1016/j.virol.2008.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/03/2008] [Accepted: 03/27/2008] [Indexed: 11/30/2022]
Abstract
Simian virus 40 (SV40) is a polyomavirus for which non-human primates are the permissive host. The baboon (Papio spp.) is an old world monkey that is used in a variety of research investigations; however, natural infection of SV40 among baboons has not been thoroughly examined or reported. Initially, we were interested in determining the prevalence of SV40 infection among a captive colony of baboons based on the presence of antibodies to SV40 large T-antigen (Tag). An overall seroprevalence rate of >50% was found after screening sera from 142 baboons in the colony based on ELISA. Endpoint titer values for serum antibody binding to SV40 Tag reached as high as 1280 for 5 out of 142 baboons. Peptide binding assays revealed that a range of SV40 Tag epitopes are immunogenic in the baboon, and that individual animals differ in their humoral immune responses to SV40 Tag based on epitope recognition. Specificity to SV40 Tag and not some other primate polyomavirus encoded large Tag was further examined by serologic reactivity to peptide epitopes unique to SV40 Tag. Additional serology was performed to assess SV40 Tag reactivity by Western blot and whether antibodies were capable of neutralizing SV40 infectivity in vitro. Although antibodies with high levels of SV40 neutralization were observed in a number of the baboons, there was a lack of correlation between viral neutralization and antibodies to SV40 Tag. Further examination using molecular-based diagnosis and SV40 Tag specific real-time quantitative PCR determined that some of the baboons appeared to be exposed to SV40. DNA sequence analysis of the PCR products confirmed that SV40 Tag specific sequences were detected in baboons.
Collapse
Affiliation(s)
- Landon W Westfall
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Siddiqui AA, Ahmad G, Damian RT, Kennedy RC. Experimental vaccines in animal models for schistosomiasis. Parasitol Res 2008; 102:825-33. [PMID: 18259777 DOI: 10.1007/s00436-008-0887-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/13/2008] [Indexed: 01/06/2023]
Abstract
Considerable morbidity and mortality results from the affliction of an estimated 200 million people worldwide by several species of schistosomes; 779 million are exposed to the disease in 74 different countries. Even though anti-parasitic drugs and other control measures, including public hygiene and snail control are available, the advent of an effective vaccine still remains the most potentially powerful means for the control of this disease. The putative vaccine could be administered to small children prior to the time when their contact with infected water is maximal, so as to prevent severe infection in the subsequent years. This review attempts to summarize the status of schistosome vaccine development with special emphasis on functionally important vaccine candidates. The importance of utilizing both murine and nonhuman primate models as a prerequisite for clinical trials is discussed.
Collapse
Affiliation(s)
- Afzal A Siddiqui
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6591, Lubbock, TX 79430-6591, USA.
| | | | | | | |
Collapse
|
40
|
Chen L, Ewing D, Subramanian H, Block K, Rayner J, Alterson KD, Sedegah M, Hayes C, Porter K, Raviprakash K. A heterologous DNA prime-Venezuelan equine encephalitis virus replicon particle boost dengue vaccine regimen affords complete protection from virus challenge in cynomolgus macaques. J Virol 2007; 81:11634-9. [PMID: 17715224 PMCID: PMC2168814 DOI: 10.1128/jvi.00996-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A candidate vaccine (D1ME-VRP) expressing dengue virus type 1 premembrane and envelope proteins in a Venezuelan equine encephalitis (VEE) virus replicon particle (VRP) system was constructed and tested in conjunction with a plasmid DNA vaccine (D1ME-DNA) expressing identical dengue virus sequences. Cynomolgus macaques were vaccinated with three doses of DNA (DDD), three doses of VRP (VVV group), or a heterologous DNA prime-VRP boost regimen (DDV) using two doses of DNA vaccine and a third dose of VRP vaccine. Four weeks after the final immunization, the DDV group produced the highest dengue virus type 1-specific immunoglobulin G antibody responses and virus-neutralizing antibody titers. Moderate T-cell responses were demonstrated only in DDD- and DDV-vaccinated animals. When vaccinated animals were challenged with live virus, all vaccination regimens showed significant protection from viremia. DDV-immunized animals were completely protected from viremia (mean time of viremia = 0 days), whereas DDD- and VVV-vaccinated animals had mean times of viremia of 0.66 and 0.75 day, respectively, compared to 6.33 days for the control group of animals.
Collapse
Affiliation(s)
- Lan Chen
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abd Alla MD, White GL, Rogers TB, Cary ME, Carey DW, Ravdin JI. Adherence-inhibitory intestinal immunoglobulin a antibody response in baboons elicited by use of a synthetic intranasal lectin-based amebiasis subunit vaccine. Infect Immun 2007; 75:3812-22. [PMID: 17526742 PMCID: PMC1952019 DOI: 10.1128/iai.00341-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We designed an amebiasis subunit vaccine that is constructed by using four peptide epitopes of the galactose-inhibitable lectin heavy subunit that were recognized by intestinal secretory immunoglobulin A (IgA) antibodies from immune human subjects. These epitopes are contained in the region encompassing amino acids 758 to 1134 of the lectin heavy subunit, designated LC3. Baboons (Papio anubis) are natural hosts for Entamoeba histolytica; naturally infected baboons raised in captivity possess serum IgA antibodies to the same four LC3 epitopes as humans. Uninfected, seronegative baboons received four intranasal immunizations at 7-day intervals with the synthetic peptide vaccine (400, 800, or 1,600 mug per nostril) with cholera toxin (20 mug) as the adjuvant. As determined by an enzyme-linked immunosorbent assay (ELISA), each dose of the peptide vaccine elicited antipeptide serum IgA and IgG and intestinal IgA antibody responses in all six immunized baboons by day 28, 7 days after the last immunization (P, <0.01 for each dose compared to the cholera toxin control). The peptide vaccine elicited serum IgG and intestinal IgA antibodies that recognized purified recombinant LC3 protein (P, <0.008 and 0.02, respectively) and native lectin protein (P < 0.01). In addition, an indirect immunofluorescence assay with whole trophozoites (P < 0.01) and Western blot analysis confirmed that serum IgG antibodies from vaccinated baboons recognized native lectin protein on the surfaces of axenic E. histolytica trophozoites or from solubilized amebae. All four synthetic peptides were immunogenic; the vaccine elicited dose- and time-dependent responses, as determined by ELISA optical density readings indicating the production of serum and intestinal antibodies (P, <0.02 for antipeptide and antilectin antibodies). As a positive control, intranasal immunization with purified recombinant LC3 protein with cholera toxin as the adjuvant elicited a serum anti-LC3 IgA and IgG antibody response (P, 0.05 and <0.0001, respectively); however, no intestinal anti-LC3 IgA antibody response was observed (P = 0.4). Of interest, serum IgA and IgG antibodies elicited by the recombinant LC3 vaccine did not recognize any of the four putatively protective LC3 peptide epitopes. Both serum and fecal antibodies elicited by the peptide vaccine exhibited neutralizing activity, as determined by their dose-dependent inhibition of the galactose-specific adherence of E. histolytica trophozoites to Chinese hamster ovary cells in vitro (P, <0.001 for each group of antibodies compared to the control). In summary, a lectin-based intranasal polylysine-linked synthetic peptide vaccine was effective in eliciting an adherence-inhibitory, intestinal antilectin IgA antibody response in baboons. Future studies with the baboon model will determine vaccine efficacy against asymptomatic E. histolytica intestinal infection.
Collapse
Affiliation(s)
- Mohamed D Abd Alla
- Department of Medicine, University of Minnesota, 14-110 Phillips Wangensteen Building, 516 Delaware Street S.E., Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
42
|
GEHRING ANDREWG, ALBIN DAVIDM. PROTEIN-BASED MICROARRAY FOR THE DETECTION OF PATHOGENIC BACTERIA. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1745-4581.2007.00074.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Zahorsky-Reeves JL, Kearns-Jonker MK, Lam TT, Jackson JR, Morris RE, Starnes VA, Cramer DV. The xenoantibody response and immunoglobulin gene expression profile of cynomolgus monkeys transplanted with hDAF-transgenic porcine hearts. Xenotransplantation 2007; 14:135-44. [PMID: 17381688 DOI: 10.1111/j.1399-3089.2007.00381.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recent work has indicated a role for anti-Gal alpha 1-3Gal (Gal) and anti-non-Gal xenoantibodies in the primate humoral rejection response against human-decay accelerating factor (hDAF) transgenic pig organs. Our laboratory has shown that anti-porcine xenograft antibodies in humans and non-human primates are encoded by a small number of germline IgV(H) progenitors. In this study, we extended our analysis to identify the IgV(H) genes encoding xenoantibodies in immunosuppressed cynomolgus monkeys (Macaca fascicularis) transplanted with hDAF-transgenic pig organs. METHODS Three immunosuppressed monkeys underwent heterotopic heart transplantation with hDAF porcine heart xenografts. Two of three animals were given GAS914, a poly-L-lysine derivative shown to bind to anti-Gal xenoantibodies and neutralize them. One animal rejected its heart at post-operative day (POD) 39; a second animal rejected the transplanted heart at POD 78. The third monkey was euthanized on POD 36 but the heart was not rejected. Peripheral blood leukocytes (PBL) and serum were obtained from each animal before and at multiple time points after transplantation. We analyzed the immune response by enzyme-linked immunosorbent assay (ELISA) to confirm whether anti-Gal or anti-non-Gal xenoantibodies were induced after graft placement. Immunoglobulin heavy-chain gene (V(H)) cDNA libraries were then produced and screened. We generated soluble single-chain antibodies (scFv) to establish the binding specificity of the cloned immunoglobulin genes. RESULTS Despite immunosuppression, which included the use of the polymer GAS914, the two animals that rejected their hearts showed elevated levels of cytotoxic anti-pig red blood cell (RBC) antibodies and anti-pig aortic endothelial cell (PAEC) antibodies. The monkey that did not reject its graft showed a decline in serum anti-RBC, anti-PAEC, and anti-Gal xenoantibodies when compared with pre-transplant levels. A V(H)3 family gene with a high level of sequence similarity to an allele of V(H)3-11, designated V(H)3-11(cyno), was expressed at elevated levels in the monkey that was not given GAS914 and whose graft was not rejected until POD 78. IgM but not IgG xenoantibodies directed at N-acetyl lactosamine (a precursor of the Gal epitope) were also induced in this animal. We produced soluble scFv from this new gene to determine whether this antibody could bind to the Gal carbohydrate, and demonstrated that this protein was capable of blocking the binding of human serum xenoantibody to Gal oligosaccharide, as had previously been shown with human V(H)3-11 scFv. CONCLUSIONS DAF-transgenic organs transplanted into cynomolgus monkeys induce anti-Gal and anti-non-Gal xenoantibody responses mediated by both IgM and IgG xenoantibodies. Anti-non-Gal xenoantibodies are induced at high levels in animals treated with GAS914. Antibodies that bind to the Gal carbohydrate and to N-acetyl lactosamine are induced in the absence of GAS914 treatment. The animal whose heart remained beating for 78 days demonstrated increased usage of an antibody encoded by a germline progenitor that is structurally related, but distinct from IGHV311. This antibody binds to the Gal carbohydrate but does not induce the rapid rejection of the xenograft when expressed at high levels as early as day 8 post-transplantation.
Collapse
Affiliation(s)
- Joanne L Zahorsky-Reeves
- Cardiothoracic Surgery Research, The Saban Research Institute of Childrens Hospital Los Angeles, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Reed DS, Mohamadzadeh M. Status and challenges of filovirus vaccines. Vaccine 2006; 25:1923-34. [PMID: 17241710 DOI: 10.1016/j.vaccine.2006.11.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 11/08/2006] [Accepted: 11/13/2006] [Indexed: 12/25/2022]
Abstract
Vaccines that could protect humans against the highly lethal Marburg and Ebola viruses have eluded scientists for decades. Classical approaches have been generally unsuccessful for Marburg and Ebola viruses and pose enormous safety concerns as well. Modern approaches, in particular those using vector-based approaches have met with success in nonhuman primate models although success against Ebola has been more difficult to achieve than Marburg. Despite these successes, more work remains to be done. For the vector-based vaccines, safety in humans and potency in the face of pre-existing anti-vector immunity may be critical thresholds for licensure. The immunological mechanism(s) by which these vaccines protect has not yet been convincingly determined. Licensure of these vaccines for natural outbreaks may be possible through clinical trials although this will be very difficult; licensure may also be possible by pivotal efficacy studies in animal models with an appropriate challenge. Nevertheless, nonhuman primate studies have shown that protection against Marburg and Ebola is possible and there is hope that one day a vaccine will be licensed for human use.
Collapse
Affiliation(s)
- Douglas S Reed
- Center for Aerobiological Sciences, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA.
| | | |
Collapse
|
45
|
Wolf RF, Papin JF, Hines-Boykin R, Chavez-Suarez M, White GL, Sakalian M, Dittmer DP. Baboon model for West Nile virus infection and vaccine evaluation. Virology 2006; 355:44-51. [PMID: 16904151 DOI: 10.1016/j.virol.2006.06.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Revised: 05/16/2006] [Accepted: 06/30/2006] [Indexed: 12/20/2022]
Abstract
Animal models that closely mimic the human condition are of paramount significance to study pathogenic mechanisms, vaccine and therapy scenarios. This is particularly true for investigations that involve emerging infectious diseases. Nonhuman primate species represent an alternative to the more intensively investigated rodent animal models and in a number of instances have been shown to represent a more reliable predictor of the human response to infection. West Nile virus (WNV) has emerged as a new pathogen in the Americas. It has a 5% fatality rate, predominantly in the elderly and immune compromised. Typically, infections are cleared by neutralizing antibodies, which suggests that a vaccine would be efficacious. Previously, only macaques had been evaluated as a primate model for WNV vaccine design. The macaques did not develop WNV disease nor express the full complement of IgG subclasses that is found in humans. We therefore explored baboons, which exhibit the similar four IgG subclasses observed in humans as a new model for WNV infection and vaccine evaluation. In this present report, we describe the experimental infection of baboons with WNV and test the efficacy of an inactivated WNV vaccination strategy. All experimentally infected animals developed transient viremia and subsequent neutralizing antibodies. Anti-WNV IgM antibodies peaked at 20 days post-infection. Anti-WNV IgG antibodies appeared later and persisted past 60 days. Prior vaccination with chemically inactivated virus induced neutralizing titers and a fast, high titer IgG recall response, which resulted in lower viremia upon challenge. This report is the first to describe the development of the baboon model for WNV experimental infection and the utility of this model to characterize the immunologic response against WNV and a candidate WNV vaccine.
Collapse
Affiliation(s)
- Roman F Wolf
- Department of Comparative Medicine Science, University of Oklahoma Health Sciences Center, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Zahorsky-Reeves JL, Gregory CR, Cramer DV, Patanwala IY, Kyles AE, Borie DC, Kearns-Jonker MK. Similarities in the immunoglobulin response and VH gene usage in rhesus monkeys and humans exposed to porcine hepatocytes. BMC Immunol 2006; 7:3. [PMID: 16549031 PMCID: PMC1448184 DOI: 10.1186/1471-2172-7-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 03/20/2006] [Indexed: 01/13/2023] Open
Abstract
Background The use of porcine cells and organs as a source of xenografts for human patients would vastly increase the donor pool; however, both humans and Old World primates vigorously reject pig tissues due to xenoantibodies that react with the polysaccharide galactose α (1,3) galactose (αGal) present on the surface of many porcine cells. We previously examined the xenoantibody response in patients exposed to porcine hepatocytes via treatment(s) with bioartficial liver devices (BALs), composed of porcine cells in a support matrix. We determined that xenoantibodies in BAL-treated patients are predominantly directed at porcine αGal carbohydrate epitopes, and are encoded by a small number of germline heavy chain variable region (VH) immunoglobulin genes. The studies described in this manuscript were designed to identify whether the xenoantibody responses and the IgVH genes encoding antibodies to porcine hepatocytes in non-human primates used as preclinical models are similar to those in humans. Adult non-immunosuppressed rhesus monkeys (Macaca mulatta) were injected intra-portally with porcine hepatocytes or heterotopically transplanted with a porcine liver lobe. Peripheral blood leukocytes and serum were obtained prior to and at multiple time points after exposure, and the immune response was characterized, using ELISA to evaluate the levels and specificities of circulating xenoantibodies, and the production of cDNA libraries to determine the genes used by B cells to encode those antibodies. Results Xenoantibodies produced following exposure to isolated hepatocytes and solid organ liver grafts were predominantly encoded by genes in the VH3 family, with a minor contribution from the VH4 family. Immunoglobulin heavy-chain gene (VH) cDNA library screening and gene sequencing of IgM libraries identified the genes as most closely-related to the IGHV3-11 and IGHV4-59 germline progenitors. One of the genes most similar to IGHV3-11, VH3-11cyno, has not been previously identified, and encodes xenoantibodies at later time points post-transplant. Sequencing of IgG clones revealed increased usage of the monkey germline progenitor most similar to human IGHV3-11 and the onset of mutations. Conclusion The small number of IGVH genes encoding xenoantibodies to porcine hepatocytes in non-human primates and humans is highly conserved. Rhesus monkeys are an appropriate preclinical model for testing novel reagents such as those developed using structure-based drug design to target and deplete antibodies to porcine xenografts.
Collapse
Affiliation(s)
- Joanne L Zahorsky-Reeves
- Cardiothoracic Surgery Research, The Saban Research Institute of Childrens Hospital Los Angeles, The Keck School of Medicine, University of Southern California, 4650 Sunset Blvd. MS #137, Los Angeles, CA, 90027, USA
| | - Clare R Gregory
- Department of Surgical and Radiological Sciences, University of California, Davis School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Donald V Cramer
- Cardiothoracic Surgery Research, The Saban Research Institute of Childrens Hospital Los Angeles, The Keck School of Medicine, University of Southern California, 4650 Sunset Blvd. MS #137, Los Angeles, CA, 90027, USA
| | - Insiyyah Y Patanwala
- Cardiothoracic Surgery Research, The Saban Research Institute of Childrens Hospital Los Angeles, The Keck School of Medicine, University of Southern California, 4650 Sunset Blvd. MS #137, Los Angeles, CA, 90027, USA
| | - Andrew E Kyles
- Department of Surgical and Radiological Sciences, University of California, Davis School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Dominic C Borie
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Mary K Kearns-Jonker
- Cardiothoracic Surgery Research, The Saban Research Institute of Childrens Hospital Los Angeles, The Keck School of Medicine, University of Southern California, 4650 Sunset Blvd. MS #137, Los Angeles, CA, 90027, USA
| |
Collapse
|
47
|
Williamson ED, Hodgson I, Walker NJ, Topping AW, Duchars MG, Mott JM, Estep J, Lebutt C, Flick-Smith HC, Jones HE, Li H, Quinn CP. Immunogenicity of recombinant protective antigen and efficacy against aerosol challenge with anthrax. Infect Immun 2005; 73:5978-87. [PMID: 16113318 PMCID: PMC1231098 DOI: 10.1128/iai.73.9.5978-5987.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunization with a recombinant form of the protective antigen (rPA) from Bacillus anthracis has been carried out with rhesus macaques. Rhesus macaques immunized with 25 mug or more of B. subtilis-expressed rPA bound to alhydrogel had a significantly increased immunoglobulin G (IgG) response to rPA compared with macaques receiving the existing licensed vaccine from the United Kingdom (anthrax vaccine precipitated [AVP]), although the isotype profile was unchanged, with bias towards the IgG1 and IgG2 subclasses. Immune macaque sera from all immunized groups contained toxin-neutralizing antibody and recognized all the domains of PA. While the recognition of the N terminus of PA (domains 1 to 3) was predominant in macaques immunized with the existing vaccines (AVP and the U.S. vaccine anthrax vaccine adsorbed), macaques immunized with rPA recognized the N- and C-terminal domains of PA. Antiserum derived from immunized macaques protected macrophages in vitro against the cytotoxic effects of lethal toxin. Passive transfer of IgG purified from immune macaque serum into naive A/J mice conferred protection against challenge with B. anthracis in a dose-related manner. The protection conferred by passive transfer of 500 mug macaque IgG correlated significantly (P = 0.003; r = 0.4) with the titers of neutralizing antibody in donor macaques. Subsequently, a separate group of rhesus macaques immunized with 50 mug of Escherichia coli-derived rPA adsorbed to alhydrogel was fully protected against a target dose of 200 50% lethal doses of aerosolized B. anthracis. These data provide some preliminary evidence for the existence of immune correlates of protection against anthrax infection in rhesus macaques immunized with rPA.
Collapse
Affiliation(s)
- E D Williamson
- Defence Science and Technology Laboratory Porton Down, Salisbury, Wilts. SP4 0JQ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Siddiqui AA, Pinkston JR, Quinlin ML, Saeed Q, White GL, Shearer MH, Kennedy RC. Characterization of the immune response to DNA vaccination strategies for schistosomiasis candidate antigen, Sm-p80 in the baboon. Vaccine 2005; 23:1451-6. [PMID: 15670880 DOI: 10.1016/j.vaccine.2004.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 08/27/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
Even though schistosomicidal agents and other control measures, including public hygiene and snail control exist, development of an efficacious vaccine still remains the most potentially powerful method for control of schistosomiasis. In our continuing efforts to develop a vaccine against schistosomiasis, we have selected a vaccine candidate (Sm-p80), which plays an important role in the immune evasion process of the parasite. Sm-p80 has been shown to confer up to 60% protection in mice following experimental infection. In this initial study, we have used Sm-p80 plus the Th1 response promoting cytokine, interleukin-2 (IL-2), in a DNA immunogen formulation. The vaccine was tested for its safety and immunogenicity in a baboon model of schistosomiasis. The vaccine generated a Th1 type Sm-p80-specific response in baboons with IgG(1)/IgG(2) ratios of less than 1.0. No detectable IgG(3) or IgG(4) anti-Sm-p80 responses were present in the immunized baboons. The antibodies to Sm-p80 were able to kill up to 35% schistosomula in vitro in the presence of complement. These results although preliminary suggest the potential of Sm-p80 as a viable vaccine candidate for schistosomiasis.
Collapse
Affiliation(s)
- Afzal A Siddiqui
- Department of Internal Medicine, Texas Tech Women's Health and Research Institute, 1400 Wallace Blvd., Amarillo, TX 79106-1791, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Mouse model characterisation for anthrax vaccine development: comparison of one inbred and one outbred mouse strain. Microb Pathog 2004; 38:33-40. [PMID: 15652293 DOI: 10.1016/j.micpath.2004.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 10/26/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022]
Abstract
In order to evaluate the immunogenicity and protective efficacy of anthrax vaccine candidates a suitable small animal model is required. The inbred A/J strain of mouse has been selected as a potential model, and its immune response to immunisation with recombinant protective antigen (rPA) vaccine characterised, by assessment of rPA specific antibody production, and protection against injected challenge, with the unencapsulated STI strain of Bacillus anthracis. Studies were conducted to determine the time required post immunisation to develop a protective immune response, to define the minimum protective dose of vaccine required and to assess the long-term immune response to immunisation. From the results of these studies it was possible to establish that the A/J mouse is a consistent and robust small animal model for rPA vaccine testing. A comparison of the immune response to rPA vaccine immunisation in the Turner Outbred (TO) mouse strain was also conducted. Both inbred and outbred mouse strains displayed a predominantly Th2 biased immune response and showed a comparable antibody response to rPA immunisation. An assessment of protection in the TO mouse against aerosol challenge with the fully virulent strain of B. anthracis, Ames, was also made.
Collapse
|
50
|
Phipps AJ, Premanandan C, Barnewall RE, Lairmore MD. Rabbit and nonhuman primate models of toxin-targeting human anthrax vaccines. Microbiol Mol Biol Rev 2004; 68:617-29. [PMID: 15590776 PMCID: PMC539006 DOI: 10.1128/mmbr.68.4.617-629.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intentional use of Bacillus anthracis, the etiological agent of anthrax, as a bioterrorist weapon in late 2001 made our society acutely aware of the importance of developing, testing, and stockpiling adequate countermeasures against biological attacks. Biodefense vaccines are an important component of our arsenal to be used during a biological attack. However, most of the agents considered significant threats either have been eradicated or rarely infect humans alive today. As such, vaccine efficacy cannot be determined in human clinical trials but must be extrapolated from experimental animal models. This article reviews the efficacy and immunogenicity of human anthrax vaccines in well-defined animal models and the progress toward developing a rugged immunologic correlate of protection. The ongoing evaluation of human anthrax vaccines will be dependent on animal efficacy data in the absence of human efficacy data for licensure by the U.S. Food and Drug Administration.
Collapse
Affiliation(s)
- Andrew J Phipps
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210-1093, USA.
| | | | | | | |
Collapse
|