1
|
Li X, Zhou L, Lei T, Zhang X, Yao J, He J, Liu H, Cai H, Ji J, Zhu Y, Tu Y, Yu Y, Zhou H. Genomic epidemiology and ceftazidime-avibactam high-level resistance mechanisms of Pseudomonas aeruginosa in China from 2010 to 2022. Emerg Microbes Infect 2024; 13:2324068. [PMID: 38406830 PMCID: PMC10939098 DOI: 10.1080/22221751.2024.2324068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Ceftazidime-avibactam (CZA) resistance is a huge threat in the clinic; however, the underlying mechanism responsible for high-level CZA resistance in Pseudomonas aeruginosa (PA) isolates remains unknown. In this study, a total of 5,763 P. aeruginosa isolates were collected from 2010 to 2022 to investigate the ceftazidime-avibactam (CZA) high-level resistance mechanisms of Pseudomonas aeruginosa (PA) isolates in China. Fifty-six PER-producing isolates were identified, including 50 isolates carrying blaPER-1 in PA, and 6 isolates carrying blaPER-4. Of these, 82.1% (46/56) were classified as DTR-PA isolates, and 76.79% (43/56) were resistant to CZA. Importantly, blaPER-1 and blaPER-4 overexpression led to 16-fold and >1024-fold increases in the MICs of CZA, respectively. WGS revealed that the blaPER-1 gene was located in two different transferable IncP-2-type plasmids and chromosomes, whereas blaPER-4 was found only on chromosomes and was carried by a class 1 integron embedded in a Tn6485-like transposon. Overexpression of efflux pumps may be associated with high-level CZA resistance in blaPER-1-positive strains. Kinetic parameter analysis revealed that PER-4 exhibited a similar kcat/Km with ceftazidime and a high (∼3359-fold) IC50 value with avibactam compared to PER-1. Our study found that overexpression of PER-1 combined with enhanced efflux pump expression and the low affinity of PER-4 for avibactam contributes to high-level resistance to CZA. Additionally, the Tn6485-like transposon plays a significant role in disseminating blaPER. Urgent active surveillance is required to prevent the further spread of high-level CZA resistance in DTR-PA isolates.
Collapse
Affiliation(s)
- Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Longjie Zhou
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Tailong Lei
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiaofan Zhang
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Jiayao Yao
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Haiyang Liu
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Heng Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jingshu Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yiwei Zhu
- Department of Critical Care Medicine, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yuexing Tu
- Department of Critical care medicine, Tongde Hospital of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Yunsong Yu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Do DT, Yang MR, Vo TNS, Le NQK, Wu YW. Unitig-centered pan-genome machine learning approach for predicting antibiotic resistance and discovering novel resistance genes in bacterial strains. Comput Struct Biotechnol J 2024; 23:1864-1876. [PMID: 38707536 PMCID: PMC11067008 DOI: 10.1016/j.csbj.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024] Open
Abstract
In current genomic research, the widely used methods for predicting antimicrobial resistance (AMR) often rely on prior knowledge of known AMR genes or reference genomes. However, these methods have limitations, potentially resulting in imprecise predictions owing to incomplete coverage of AMR mechanisms and genetic variations. To overcome these limitations, we propose a pan-genome-based machine learning approach to advance our understanding of AMR gene repertoires and uncover possible feature sets for precise AMR classification. By building compacted de Brujin graphs (cDBGs) from thousands of genomes and collecting the presence/absence patterns of unique sequences (unitigs) for Pseudomonas aeruginosa, we determined that using machine learning models on unitig-centered pan-genomes showed significant promise for accurately predicting the antibiotic resistance or susceptibility of microbial strains. Applying a feature-selection-based machine learning algorithm led to satisfactory predictive performance for the training dataset (with an area under the receiver operating characteristic curve (AUC) of > 0.929) and an independent validation dataset (AUC, approximately 0.77). Furthermore, the selected unitigs revealed previously unidentified resistance genes, allowing for the expansion of the resistance gene repertoire to those that have not previously been described in the literature on antibiotic resistance. These results demonstrate that our proposed unitig-based pan-genome feature set was effective in constructing machine learning predictors that could accurately identify AMR pathogens. Gene sets extracted using this approach may offer valuable insights into expanding known AMR genes and forming new hypotheses to uncover the underlying mechanisms of bacterial AMR.
Collapse
Affiliation(s)
- Duyen Thi Do
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Ren Yang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Tran Nam Son Vo
- Department of Business Administration, College of Management, Lunghwa University of Science and Technology, Taoyuan City, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Dong L, Sun L, Yang Y, Yuan L, Gao W, Yu D, Meng Q, Shi W, Wang Q, Li Y, Zhang Y, You X, Yao K. Non-antibiotic pharmaceutical phenylbutazone binding to MexR reduces the antibiotic susceptibility of Pseudomonas aeruginosa. Microbiol Res 2024; 288:127872. [PMID: 39146705 DOI: 10.1016/j.micres.2024.127872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Antimicrobial resistance has been an increasingly serious threat to global public health. The contribution of non-antibiotic pharmaceuticals to the development of antibiotic resistance has been overlooked. Our study found that the anti-inflammatory drug phenylbutazone could protect P. aeruginosa against antibiotic mediated killing by binding to the efflux pump regulator MexR. In this study, antibiotic activity against P. aeruginosa alone or in combination with phenylbutazone was evaluated in vitro and in vivo. Resazurin accumulation assay, transcriptomic sequencing, and PISA assay were conducted to explore the underlying mechanism for the reduced antibiotic susceptibility caused by phenylbutazone. Then EMSA, ITC, molecular dynamic simulations, and amino acid substitutions were used to investigate the interactions between phenylbutazone and MexR. We found that phenylbutazone could reduce the susceptibility of P. aeruginosa to multiple antibiotics, including parts of β-lactams, fluoroquinolones, tetracyclines, and macrolides. Phenylbutazone could directly bind to MexR, then promote MexR dissociating from the mexA-mexR intergenic region and de-repress the expression of MexAB-OprM efflux pump. The overexpressed MexAB-OprM pump resulted in the reduced antibiotic susceptibility. And the His41 and Arg21 residues of MexR were involved in the phenylbutazone-MexR interaction. We hope this study would imply the potential risk of antibiotic resistance caused by non-antibiotic pharmaceuticals.
Collapse
Affiliation(s)
- Limin Dong
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yan Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lin Yuan
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Gao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Dan Yu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Qinghong Meng
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Shi
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Qing Wang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yue Li
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Kaihu Yao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
4
|
Meirelles LA, Vayena E, Debache A, Schmidt E, Rossy T, Distler T, Hatzimanikatis V, Persat A. Pseudomonas aeruginosa faces a fitness trade-off between mucosal colonization and antibiotic tolerance during airway infection. Nat Microbiol 2024:10.1038/s41564-024-01842-3. [PMID: 39455898 DOI: 10.1038/s41564-024-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Pseudomonas aeruginosa frequently causes antibiotic-recalcitrant pneumonia, but the mechanisms driving its adaptation during human infections remain unclear. To reveal the selective pressures and adaptation strategies at the mucosal surface, here we investigated P. aeruginosa growth and antibiotic tolerance in tissue-engineered airways by transposon insertion sequencing (Tn-seq). Metabolic modelling based on Tn-seq data revealed the nutritional requirements for P. aeruginosa growth, highlighting reliance on glucose and lactate and varying requirements for amino acid biosynthesis. Tn-seq also revealed selection against biofilm formation during mucosal growth in the absence of antibiotics. Live imaging in engineered organoids showed that biofilm-dwelling cells remained sessile while colonizing the mucosal surface, limiting nutrient foraging and reduced growth. Conversely, biofilm formation increased antibiotic tolerance at the mucosal surface. Moreover, mutants with exacerbated biofilm phenotypes protected less tolerant but more cytotoxic strains, contributing to phenotypic heterogeneity. P. aeruginosa must therefore navigate conflicting physical and biological selective pressures to establish chronic infections.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Auriane Debache
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eric Schmidt
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tamara Rossy
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tania Distler
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
5
|
Ndikubwimana I, Gahamanyi N, Bwanakweli T, Uwayo HD, Habimana G, Rogo T. Case Report: Pan-Drug Resistant Pseudomonas aeruginosa from a Child with an Infected Burn Wound at the University Teaching Hospital of Kigali, Rwanda. Infect Drug Resist 2024; 17:4637-4642. [PMID: 39469095 PMCID: PMC11516630 DOI: 10.2147/idr.s486519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Background Pseudomonas aeruginosa is a significant cause of morbidity and mortality in intensive care units, and is prevalent in nosocomial infections and cystic fibrosis. The increasing rates of antimicrobial resistance (AMR) complicate the treatment of P. aeruginosa infections, especially because of the multidrug resistance (MDR), extensively drug-resistant (XDR), and pan-drug resistant (PDR) strains. Case Presentation We report the case of a 4-year-old male with severe burns covering 45% of his body surface who developed nosocomial PDR P. aeruginosa infection at the University Teaching Hospital of Kigali (CHUK) in Rwanda. A wound culture yielded a PDR P. aeruginosa isolate that was resistant to all the tested antimicrobials, with intermediate resistance to colistin. However, the patient improved with a combination of ceftazidime and amikacin following cessation of fever and successful skin grafting. The patient was discharged on day 95. Conclusion P. aeruginosa is a common hospital-acquired pathogen that is particularly challenging to treat, owing to its antimicrobial resistance profile and biofilm production. Antibiotic-resistant strains are a significant public health threat, especially in pediatric burn units. This case underscores the critical need to strengthen infection prevention and control measures together with robust antimicrobial stewardship programs. Molecular characterization of this PDR strain will yield further details regarding its virulence and genotyping.
Collapse
Affiliation(s)
- Innocent Ndikubwimana
- Pediatric Department, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Noel Gahamanyi
- National Reference Laboratory, Rwanda Biomedical Centre, Kigali, Rwanda
- Biology Department, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | | | | | - Gaspard Habimana
- Pediatric Department, Kigali University Teaching Hospital, Kigali, Rwanda
| | - Tanya Rogo
- Pediatric Infectious Diseases, Brown University Alpert Medical School, Providence, RI, USA
| |
Collapse
|
6
|
Echterhof A, Dharmaraj T, Khosravi A, McBride R, Miesel L, Chia JH, Blankenberg PM, Lin KY, Shen CC, Lee YL, Yeh YC, Liao WT, Blankenberg FG, Dąbrowska K, Amanatullah DF, Frymoyer AR, Bollyky PL. The contribution of neutrophils to bacteriophage clearance and pharmacokinetics in vivo. JCI Insight 2024; 9:e181309. [PMID: 39435664 PMCID: PMC11530120 DOI: 10.1172/jci.insight.181309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
With the increasing prevalence of antimicrobial-resistant bacterial infections, there is interest in using bacteriophages (phages) to treat such infections. However, the factors that govern bacteriophage pharmacokinetics in vivo remain poorly understood. Here, we have examined the contribution of neutrophils, the most abundant phagocytes in the body, to the pharmacokinetics of i.v. administered bacteriophage in uninfected mice. A single dose of LPS-5, a bacteriophage recently used in human clinical trials to treat drug-resistant Pseudomonas aeruginosa, was administered i.v. to both immunocompetent BALB/c and neutropenic CD1 mice. Phage concentrations were assessed in peripheral blood and spleen at 0.25, 1, 2, 4, 8, 12, and 24 hours after administration by plaque assay and qPCR. We observed that the phage clearance was only minimally affected by neutropenia. Indeed, the half-lives of phages in blood in BALB/c and CD1 mice were 3.45 and 3.66 hours, respectively. These data suggest that neutrophil-mediated phagocytosis is not a major determinant of phage clearance. Conversely, we observed a substantial discrepancy in circulating phage levels over time when measured by qPCR versus plaque assay, suggesting that significant inactivation of circulating phages occurs over time. These data indicate that alternative factors, but not neutrophils, inactivate i.v. administered phages.
Collapse
Affiliation(s)
- Arne Echterhof
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Arya Khosravi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Robert McBride
- Felix Biotechnology, South San Francisco, California, USA
| | - Lynn Miesel
- Pharmacology Discovery Services, Taipei, Taiwan
| | | | - Patrick M. Blankenberg
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | | - Yu-Ling Lee
- Pharmacology Discovery Services, Taipei, Taiwan
| | | | | | - Francis G. Blankenberg
- Division of Pediatric Radiology and Nuclear Medicine, Department of Radiology, Lucile Packard Children’s Hospital, Stanford, California, USA
| | - Krystyna Dąbrowska
- Laboratory of Phage Molecular Biology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Derek F. Amanatullah
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Adam R. Frymoyer
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Nordmann P, Helsens N, Poirel L, Sadek M, Bumann D, Findlay J. The OprF porin as a potential target for the restoration of carbapenem susceptibility in Pseudomonas aeruginosa expressing acquired carbapenemases. Antimicrob Agents Chemother 2024; 68:e0076124. [PMID: 39264186 PMCID: PMC11459928 DOI: 10.1128/aac.00761-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Carbapenem resistance in Pseudomonas aeruginosa is primarily due to the acquisition of carbapenemases and is often associated with a diminution of the membrane permeability. The outer membrane protein, OprD, is a well-known route, by which carbapenems, predominantly imipenem, can enter the cell, and its loss has been associated with reduced susceptibility to imipenem. In this study, we investigated the antibiotic susceptibility patterns of isogenic P. aeruginosa mutants containing various acquired β-lactamases, including carbapenemases, in a porin-depleted background. We identified that the deletion of oprF was associated with some recovery of susceptibility to carbapenems.
Collapse
Affiliation(s)
- Patrice Nordmann
- European Institute for Emerging Antibiotic Resistance, Pasteur Institute, Lille, France
- European Institute for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Nicolas Helsens
- European Institute for Emerging Antibiotic Resistance, Pasteur Institute, Lille, France
- Clinical Microbiology Unit, Pasteur Institute of Lille, Lille, France
| | - Laurent Poirel
- European Institute for Emerging Antibiotic Resistance, Pasteur Institute, Lille, France
- European Institute for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Mustafa Sadek
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, Basel, Switzerland
| | - Jacqueline Findlay
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
Glen KA, Lamont IL. Characterization of acquired β-lactamases in Pseudomonas aeruginosa and quantification of their contributions to resistance. Microbiol Spectr 2024; 12:e0069424. [PMID: 39248479 PMCID: PMC11448201 DOI: 10.1128/spectrum.00694-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
Pseudomonas aeruginosa is a highly problematic opportunistic pathogen that causes a range of different infections. Infections are commonly treated with β-lactam antibiotics, including cephalosporins, monobactams, penicillins, and carbapenems, with carbapenems regarded as antibiotics of last resort. Isolates of P. aeruginosa can contain horizontally acquired bla genes encoding β-lactamase enzymes, but the extent to which these contribute to β-lactam resistance in this species has not been systematically quantified. The overall aim of this research was to address this knowledge gap by quantifying the frequency of β-lactamase-encoding genes in P. aeruginosa and by determining the effects of β-lactamases on susceptibility of P. aeruginosa to β-lactams. Genome analysis showed that β-lactamase-encoding genes are present in 3% of P. aeruginosa but are enriched in carbapenem-resistant isolates (35%). To determine the substrate antibiotics, 10 β-lactamases were expressed from an integrative plasmid in the chromosome of P. aeruginosa reference strain PAO1. The β-lactamases reduced susceptibility to a variety of clinically used antibiotics, including carbapenems (meropenem, imipenem), penicillins (ticarcillin, piperacillin), cephalosporins (ceftazidime, cefepime), and a monobactam (aztreonam). Different enzymes acted on different β-lactams. β-lactamases encoded by the genomes of P. aeruginosa clinical isolates had similar effects to the enzymes expressed in strain PAO1. Genome engineering was used to delete β-lactamase-encoding genes from three carbapenem-resistant clinical isolates and increased susceptibility to substrate β-lactams. Our findings demonstrate that acquired β-lactamases play an important role in β-lactam resistance in P. aeruginosa, identifying substrate antibiotics for a range of enzymes and quantifying their contributions to resistance.IMPORTANCEPseudomonas aeruginosa is an extremely problematic pathogen, with isolates that are resistant to the carbapenem class of β-lactam antibiotics being in critical need of new therapies. Genes encoding β-lactamase enzymes that degrade β-lactam antibiotics can be present in P. aeruginosa, including carbapenem-resistant isolates. Here, we show that β-lactamase genes are over-represented in carbapenem-resistant isolates, indicating their key role in resistance. We also show that different β-lactamases alter susceptibility of P. aeruginosa to different β-lactam antibiotics and quantify the effects of selected enzymes on β-lactam susceptibility. This research significantly advances the understanding of the contributions of acquired β-lactamases to antibiotic resistance, including carbapenem resistance, in P. aeruginosa and by implication in other species. It has potential to expedite development of methods that use whole genome sequencing of infecting bacteria to inform antibiotic treatment, allowing more effective use of antibiotics, and facilitate the development of new antibiotics.
Collapse
Affiliation(s)
- Karl A Glen
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Xia Y, Wei X, Gao P, Wang C, de Jong A, Chen JHK, Rodríguez-Sánchez MJ, Rodríguez-Nogales A, Diez-Echave P, Gálvez J, García F, Wu W, Kao RYT, Li H, Cebrián R, Kuipers OP, Sun H. Bismuth-based drugs sensitize Pseudomonas aeruginosa to multiple antibiotics by disrupting iron homeostasis. Nat Microbiol 2024; 9:2600-2613. [PMID: 39294461 DOI: 10.1038/s41564-024-01807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Pseudomonas aeruginosa infections are difficult to treat due to rapid development of antibiotic drug resistance. The synergistic combination of already-in-use drugs is an alternative to developing new antibiotics to combat antibiotic-resistant bacteria. Here we demonstrate that bismuth-based drugs (bismuth subsalicylate, colloidal bismuth subcitrate) in combination with different classes of antibiotics (tetracyclines, macrolides, quinolones, rifamycins and so on) can eliminate multidrug-resistant P. aeruginosa and do not induce development of antibiotic resistance. Bismuth disrupts iron homeostasis by binding to P. aeruginosa siderophores. Inside cells, bismuth inhibits the electron transport chain, dissipates the proton motive force and impairs efflux pump activity by disrupting iron-sulfur cluster-containing enzymes, including respiration complexes. As a result, bismuth facilitates antibiotic accumulation inside bacteria, enhancing their efficacy. The combination therapy shows potent antibacterial efficacy and low toxicity in an ex vivo bacteraemia model and increases the survival rate of mice in in vivo mouse lung-infection models. Our findings highlight the potential of bismuth-based drugs to be repurposed to combat P. aeruginosa infections in combination with clinically used antibiotics.
Collapse
Affiliation(s)
- Yushan Xia
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xueying Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China
| | - Peng Gao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chenyuan Wang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Jonathan Hon Kwan Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - María José Rodríguez-Sánchez
- Department of Digestive system, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Instituto de Investigación Biosanitaria ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Instituto de Investigación Biosanitaria ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Instituto de Investigación Biosanitaria ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Biomedical Research Network Center, Liver and Digestive Diseases (CIBER-EHD), Granada, Spain
| | - Federico García
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital San Cecilio, Granada, Spain
- Biomedicinal Research Network Center, Infectious Diseases (CIBER-INFEC), Granada, Spain
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China
| | - Rubén Cebrián
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital San Cecilio, Granada, Spain.
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol 2024; 22:598-616. [PMID: 38831030 DOI: 10.1038/s41579-024-01054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
The rise of antibiotic resistance and a dwindling antimicrobial pipeline have been recognized as emerging threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria for which effective therapies were rapidly needed. Now, entering the third decade of the twenty-first century, and despite the introduction of several new antibiotics and antibiotic adjuvants, such as novel β-lactamase inhibitors, these organisms continue to represent major therapeutic challenges. These bacteria share several key biological features, including adaptations for survival in the modern health-care setting, diverse methods for acquiring resistance determinants and the dissemination of successful high-risk clones around the world. With the advent of next-generation sequencing, novel tools to track and combat the spread of these organisms have rapidly evolved, as well as renewed interest in non-traditional antibiotic approaches. In this Review, we explore the current epidemiology and clinical impact of this important group of bacterial pathogens and discuss relevant mechanisms of resistance to recently introduced antibiotics that affect their use in clinical settings. Furthermore, we discuss emerging therapeutic strategies needed for effective patient care in the era of widespread antimicrobial resistance.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Cesar A Arias
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA.
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
11
|
Kačániová M, Garzoli S, Ben Hsouna A, Bianchi A, Kluz MI, Elizondo-Luevano JH, Ban Z, Ben Saad R, Mnif W, Haščík P. The Potential of Thymus serpyllum Essential Oil as an Antibacterial Agent against Pseudomonas aeruginosa in the Preservation of Sous Vide Red Deer Meat. Foods 2024; 13:3107. [PMID: 39410141 PMCID: PMC11476099 DOI: 10.3390/foods13193107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Foodborne infections caused by microbes are a serious health risk. Regarding this, customer preferences for "ready-to-eat" or minimally processed (MP) deer meat are one of the main risk factors. Given the health dangers associated with food, essential oil (EO) is a practical substitute used to decrease pathogenic germs and extend the shelf-life of MP meals. Nonetheless, further data regarding EO use in MP meals are required. In order to evaluate new, safer alternatives to chemicals for disease control and food preservation, this research was carried out in the following areas to assess the antibacterial and antibiofilm characteristics of Thymus serpyllum (TSEO) essential oil, which is extracted from dried flowering stalks. Furthermore, this study applied an essential oil of wild thyme and inoculated the sous vide deer meat with Pseudomonas aeruginosa for seven days at 4 °C in an effort to prolong its shelf-life. Against P. aeruginosa, the essential oil exhibited potent antibacterial action. The findings of the minimal biofilm inhibition concentration (MBIC) crystal violet test demonstrated the substantial antibiofilm activity of the TSEO. The TSEO modified the protein profiles of bacteria on glass and plastic surfaces, according to data from MALDI-TOF MS analysis. Moreover, it was discovered that P. aeruginosa was positively affected by the antibacterial properties of TSEO. The anti-Pseudomonas activity of the TSEO was marginally higher in vacuum-packed sous vide red deer meat samples than in control samples. The most frequently isolated species from sous vide deer meat, if we do not consider the applied bacteria Pseudomonas aeruginosa, were P. fragi, P. lundensis, and P. taetrolens. These results highlight the antibacterial and antibiofilm qualities of TSEO, demonstrating its potential for food preservation and extending the shelf-life of deer meat.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Maciej Ireneusz Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland;
| | - Joel Horacio Elizondo-Luevano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León, Av. Francisco Villa S/N, Col. Ex Hacienda el Canadá, General Escobedo 66050, Nuevo León, Mexico;
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (R.B.S.)
| | - Wissem Mnif
- Department of Chemistry, College of Sciences of Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia;
| | - Peter Haščík
- Institute of Food Technology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia;
| |
Collapse
|
12
|
Kavanaugh LG, Dey D, Shafer WM, Conn GL. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0008923. [PMID: 39235227 PMCID: PMC11426026 DOI: 10.1128/mmbr.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Kim N, Ko SY, Park SY, Kim SY, Lee DE, Kwon KT, Kim YK, Lee JC. Clonal Distribution and Its Association With the Carbapenem Resistance Mechanisms of Carbapenem-Non-Susceptible Pseudomonas aeruginosa Isolates From Korean Hospitals. Ann Lab Med 2024; 44:410-417. [PMID: 38433574 PMCID: PMC11169769 DOI: 10.3343/alm.2023.0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Background Carbapenem resistance in Pseudomonas aeruginosa is a serious global health problem. We investigated the clonal distribution and its association with the carbapenem resistance mechanisms of carbapenem-non-susceptible P. aeruginosa isolates from three Korean hospitals. Methods A total of 155 carbapenem-non-susceptible P. aeruginosa isolates collected between 2011 and 2019 were analyzed for sequence types (STs), antimicrobial susceptibility, and carbapenem resistance mechanisms, including carbapenemase production, the presence of resistance genes, OprD mutations, and the hyperproduction of AmpC β-lactamase. Results Sixty STs were identified in carbapenem-non-susceptible P. aeruginosa isolates. Two high-risk clones, ST235 (N=41) and ST111 (N=20), were predominant; however, sporadic STs were more prevalent than high-risk clones. The resistance rate to amikacin was the lowest (49.7%), whereas that to piperacillin was the highest (92.3%). Of the 155 carbapenem-non-susceptible isolates, 43 (27.7%) produced carbapenemases. Three metallo-β-lactamase (MBL) genes, blaIMP-6 (N=38), blaVIM-2 (N=3), and blaNDM-1 (N=2), were detected. blaIMP-6 was detected in clonal complex 235 isolates. Two ST773 isolates carried blaNDM-1 and rmtB. Frameshift mutations in oprD were identified in all isolates tested, regardless of the presence of MBL genes. Hyperproduction of AmpC was detected in MBL gene-negative isolates. Conclusions Frameshift mutations in oprD combined with MBL production or hyperproduction of AmpC are responsible for carbapenem resistance in P. aeruginosa. Further attention is required to curb the emergence and spread of new carbapenem-resistant P. aeruginosa clones.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seo Yeon Ko
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong Yong Park
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong Yeob Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Da Eun Lee
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
| | - Ki Tae Kwon
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yu Kyung Kim
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
- Department of Laboratory Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
14
|
Mu X, Fu Y, Li P, Yu Y. In vitro activity of ceftolozane/tazobactam against Gram-negative bacilli isolated from pediatric patients: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART) 2017-2021, China. J Glob Antimicrob Resist 2024; 38:216-222. [PMID: 38908824 DOI: 10.1016/j.jgar.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/24/2024] Open
Abstract
OBJECTIVES Ceftolozane-tazobactam (C/T) is a combination of a cephalosporin and a β-lactamase inhibitor with activity against Gram-negative bacilli (GNB). The study aims were to evaluate the activity of C/T in vitro vs. comparators against clinical GNB isolated from Chinese paediatric patients. METHODS From 2017-2021, 660 GNB isolates were collected from 20 hospitals across China. The minimum inhibitory concentrations were tested using a Trek Diagnostic System (Thermo Fisher Scientific). Susceptibility was determined by CLSI broth microdilution and the results were interpreted according to CLSI M100 (2021) breakpoints. RESULTS GNB isolates were obtained from paediatric patients < 18 years old, mainly from the bloodstream (n = 146), intraperitoneal cavity (n = 138), lower respiratory (n = 278) and urinary tract (n = 96). Overall, C/T was active against 76.6% of 436 Enterobacterales, with a descending susceptibility rate of 100.0% to S. marcescens, 92.2% to E. coli, 83.3% to K. oxytoca, 66.7% to K. aerogenes, 66.7% to P. mirabilis, 58.6% to K. pneumoniae and 57.1% to E. cloacae. The susceptibility of P. aeruginosa to C/T was 89.4%, which was the highest among the β-lactam antibiotics and was second only to amikacin (92.9%). Isolates of respiratory tract infection (RTI) derived P. aeruginosa were highly susceptible (93.8%) to C/T, while <75% of isolates of RTI derived P. aeruginosa were susceptible to the other β-lactam antibiotics tested, except for ceftazidime-avibactam (91.2%). CONCLUSION GNBs collected from paediatric patients in China showed a high susceptibility to C/T making this drug combination an effective choice for treating the paediatric population, especially those infected with P. aeruginosa.
Collapse
Affiliation(s)
- Xinli Mu
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Fu
- Department of Clinical Laboratory, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Pengcheng Li
- V&I, Global Medical & Scientific Affairs, MSD China, Shanghai, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
15
|
Dulanto Chiang A, Dekker JP. Efflux pump-mediated resistance to new beta lactam antibiotics in multidrug-resistant gram-negative bacteria. COMMUNICATIONS MEDICINE 2024; 4:170. [PMID: 39210044 PMCID: PMC11362173 DOI: 10.1038/s43856-024-00591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence and spread of bacteria resistant to commonly used antibiotics poses a critical threat to modern medical practice. Multiple classes of bacterial efflux pump systems play various roles in antibiotic resistance, and members of the resistance-nodulation-division (RND) transporter superfamily are among the most important determinants of efflux-mediated resistance in gram-negative bacteria. RND pumps demonstrate broad substrate specificities, facilitating extrusion of multiple chemical classes of antibiotics from the bacterial cell. Several newer beta-lactams and beta-lactam/beta-lactamase inhibitor combinations (BL/BLI) have been developed to treat infections caused by multidrug resistant bacteria. Here we review recent studies that suggest RND efflux pumps in clinically relevant gram-negative bacteria may play critical but underappreciated roles in the development of resistance to beta-lactams and novel BL/BLI combinations. Improved understanding of the genetic and structural basis of RND efflux pump-mediated resistance may identify new antibiotic targets as well as strategies to minimize the emergence of resistance.
Collapse
Affiliation(s)
- Augusto Dulanto Chiang
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
- Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA
| | - John P Dekker
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA.
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA.
| |
Collapse
|
16
|
Mahmoudi S, Jafari E, Pourakbari B, Poormohammadi S, Sadeghi RH, Mamishi S. Molecular Epidemiology of Carbapenemase-Producing Pseudomonas aeruginosa: An Iranian Referral Hospital-Based Study. Foodborne Pathog Dis 2024. [PMID: 39206521 DOI: 10.1089/fpd.2024.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
In recent years, there has been a significant increase in infections caused by carbapenemase-producing strains, with carbapenem-resistant Pseudomonas aeruginosa (CRPA) emerging as a priority pathogen according to the World Health Organization. This study aimed to evaluate the molecular epidemiology of CRPA isolated from patients referred to Children's Medical Center in Tehran, Iran. P. aeruginosa isolates collected from different children's wards were screened for common carbapenem-resistant genes by polymerase chain reaction (PCR). Genetic relatedness between isolates was assessed by pulsed-field gel electrophoresis (PFGE). The study included 133 participants, with 50% being male, and revealed a median age of 2 years (interquartile range: 6 months to 6 years). Carbapenem resistance was detected in 15% of cases (n = 20), with CRPA isolates predominantly found in the emergency ward (60%). The median age of patients with CRPA was significantly higher than those with carbapenem-susceptible P. aeruginosa (6 years vs. 1 year). PCR analysis revealed metallo-β-lactamase production in 45% of CRPA isolates (n = 9), with blaNDM being the most prevalent gene. PFGE analysis of the CRPA isolates identified three clusters (Cluster I, II, and III). Cluster I, comprising 65% of all isolates (n = 13), was predominantly found in the emergency ward. Notably, blaNDM-producing strains were prevalent in the emergency ward. Our study highlights the significant prevalence of CRPA in the emergency ward of our hospital and underscores the importance of targeted surveillance and infection control measures to curb its spread within health care settings.
Collapse
Affiliation(s)
- Shima Mahmoudi
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Erfaneh Jafari
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Pourakbari
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Poormohammadi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Setareh Mamishi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Lin YH, Dharmaraj T, Chen Q, Echterhof A, Manasherob R, Zhang LJ, de Leeuw C, Peterson NA, Stannard W, Li Z, Hajfathalian M, Hargil A, Martinez HA, Pourtois J, Chang THW, Blankenberg FG, Amanatullah D, Chaudhuri O, Bollyky PL. Optimized Dosing and Delivery of Bacteriophage Therapy for Wound Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593005. [PMID: 38766200 PMCID: PMC11100690 DOI: 10.1101/2024.05.07.593005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Lytic bacteriophages, viruses that lyse (kill) bacteria, hold great promise for treating infections, including wound infections caused by antimicrobial-resistant Pseudomonas aeruginosa. However, the optimal dosing and delivery strategies for phage therapy remain unclear. In a mouse wound infection model, we investigated the impact of dose, frequency, and administration route on the efficacy of phage therapy. We find that topical but not intravenous delivery is effective in this model. High-doses of phage reduces bacterial burden more effectively than low-doses, and repeated dosing achieves the highest eradication rates. Building on these insights, we developed "HydroPhage", a hyaluronan-based hydrogel system that uses dynamic covalent crosslinking to deliver high-titre phages over one week. HydroPhage eradicates infections five times more effectively than intravenous injection. We conclude that hydrogel-based sustained phage delivery enhances the efficacy of phage therapy and offers a practical, well-tolerated option for topical application.
Collapse
Affiliation(s)
- Yung-Hao Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Arne Echterhof
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Robert Manasherob
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Redwood City, CA, USA
| | - Lucy J. Zhang
- Department of Material Science and Engineering, Stanford University, Stanford, CA, USA
| | - Cas de Leeuw
- Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Nana A. Peterson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Whitney Stannard
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Zhiwei Li
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Maryam Hajfathalian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hunter A. Martinez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Julie Pourtois
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Tony H. W. Chang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Francis G. Blankenberg
- Division of Pediatric Radiology and Nuclear Medicine, Department of Radiology, Lucile Packard Children’s Hospital, Stanford, CA, USA
| | - Derek Amanatullah
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Redwood City, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
18
|
Abreu R, Mouro S, Guerreiro JF, Sousa SA, Leitão JH, Pissarra H, Cunha E, Tavares L, Oliveira M. Pseudomonas aestus Isolation from the Nasal Cavity of a Cat with Chronic Rhinitis. Vet Sci 2024; 11:382. [PMID: 39195836 PMCID: PMC11359275 DOI: 10.3390/vetsci11080382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
The Pseudomonas genus includes ubiquitous bacteria frequently described as animal and human opportunistic pathogens. A 9-year-old cat was referred for rhinoscopy at the Veterinary Hospital of the Faculty of Veterinary Medicine, University of Lisbon, Portugal, for an investigation of the chronic respiratory signs. Upon rhinoscopy, nasal and nasopharyngeal discharge were observed, and the nasal turbinates showed signs of inflammation. The nasal biopsies were evaluated by histopathology and mycological and bacterial cultures. The histopathology revealed chronic lymphoplasmacytic inflammation. The mycological culture was negative, but the bacterial culture revealed the growth of a bacterial isolate in the pure culture, identified as P. aestus by the sequencing of a 1750 bp PCR amplicon obtained with BCR1 and BCR2 primers, followed by homologous sequences analysis using the NCBI database. The isolate's susceptibility profile towards 14 antimicrobials was evaluated through the disk diffusion method, being observed that it presented a multidrug resistance profile. The studies available on this environmental Pseudomonas strain focused on its potential use for biocide production and application in agricultural settings, and, to the authors' best knowledge, there are no reports describing its association with infectious diseases in humans or animals, highlighting the importance of establishing protocols aiming at the identification and characterization of non-traditional, multidrug-resistant Pseudomonas in the clinical setting.
Collapse
Affiliation(s)
- Raquel Abreu
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal (M.O.)
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisbon, Portugal
| | - Sofia Mouro
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Joana F. Guerreiro
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal (M.O.)
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisbon, Portugal
| | - Sílvia A. Sousa
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Jorge H. Leitão
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Hugo Pissarra
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal (M.O.)
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisbon, Portugal
| | - Eva Cunha
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal (M.O.)
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisbon, Portugal
| | - Luís Tavares
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal (M.O.)
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisbon, Portugal
| | - Manuela Oliveira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal (M.O.)
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisbon, Portugal
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
19
|
Valzano F, La Bella G, Lopizzo T, Curci A, Lupo L, Morelli E, Mosca A, Marangi M, Melfitano R, Rollo T, De Nittis R, Arena F. Resistance to ceftazidime-avibactam and other new β-lactams in Pseudomonas aeruginosa clinical isolates: a multi-center surveillance study. Microbiol Spectr 2024; 12:e0426623. [PMID: 38934607 PMCID: PMC11302676 DOI: 10.1128/spectrum.04266-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
New β-lactam-β-lactamase inhibitor combinations represent last-resort antibiotics to treat infections caused by multidrug-resistant Pseudomonas aeruginosa. Carbapenemase gene acquisition can limit their spectrum of activity, and reports of resistance toward these new molecules are increasing. In this multi-center study, we evaluated the prevalence of resistance to ceftazidime-avibactam (CZA) and comparators among P. aeruginosa clinical isolates from bloodstream infections, hospital-acquired or ventilator-associated pneumonia, and urinary tract infections, circulating in Southern Italy. We also investigated the clonality and content of relevant β-lactam resistance mechanisms of CZA-resistant (CZAR) isolates. A total of 120 P. aeruginosa isolates were collected. CZA was among the most active β-lactams, retaining susceptibility in the 81.7% of cases, preceded by cefiderocol (95.8%) and followed by ceftolozane-tazobactam (79.2%), meropenem-vaborbactam (76.1%), imipenem-relebactam (75%), and aztreonam (69.6%). Among non-β-lactams, colistin and amikacin were active against 100% and 85.8% of isolates respectively. In CZAR strains subjected to whole-genome sequencing (n = 18), resistance was mainly due to the expression of metallo-β-lactamases (66.6% VIM-type and 5.5% FIM-1), followed by PER-1 (16.6%) and GES-1 (5.5%) extended-spectrum β-lactamases, mostly carried by international high-risk clones (ST111 and ST235). Of note, two strains producing the PER-1 enzyme were resistant to all β-lactams, including cefiderocol. In conclusion, the CZA resistance rate among P. aeruginosa clinical isolates in Southern Italy remained low. CZAR isolates were mostly metallo-β-lactamases producers and belonging to ST111 and ST253 epidemic clones. It is important to implement robust surveillance systems to monitor emergence of new resistance mechanisms and to limit the spread of P. aeruginosa high-risk clones. IMPORTANCE Multidrug-resistant Pseudomonas aeruginosa infections are a growing threat due to the limited therapeutic options available. Ceftazidime-avibactam (CZA) is among the last-resort antibiotics for the treatment of difficult-to-treat P. aeruginosa infections, although resistance due to the acquisition of transferable β-lactamase genes is increasing. With this work, we report that CZA represents a highly active antipseudomonal β-lactam compound (after cefiderocol), and that metallo-β-lactamases (VIM-type) and extended-spectrum β-lactamases (GES and PER-type) production is the major factor underlying CZA resistance in isolates from Southern Italian hospitals. In addition, we reported that such resistance mechanisms were mainly carried by the international high-risk clones ST111 and ST235.
Collapse
Affiliation(s)
- Felice Valzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Gianfranco La Bella
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Teresa Lopizzo
- Clinical Pathology and Microbiology Unit, AOR San Carlo, Potenza, Italy
| | - Anna Curci
- Clinical Pathology and Microbiology Unit, AOR San Carlo, Potenza, Italy
| | - Laura Lupo
- Clinical Pathology and Microbiology Unit, Vito Fazzi Hospital, Lecce, Italy
| | | | - Adriana Mosca
- Department of Interdisciplinary Medicine, Microbiology Section, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Marangi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | - Tiziana Rollo
- Microbiology and Virology Unit, AOU Policlinico Riuniti, Foggia, Italy
| | - Rosella De Nittis
- Microbiology and Virology Unit, AOU Policlinico Riuniti, Foggia, Italy
| | - Fabio Arena
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Microbiology and Virology Unit, AOU Policlinico Riuniti, Foggia, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| |
Collapse
|
20
|
Yang Y, Shao Q, Guo M, Han L, Zhao X, Wang A, Li X, Wang B, Pan JA, Chen Z, Fokine A, Sun L, Fang Q. Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages. Nat Commun 2024; 15:6551. [PMID: 39095371 PMCID: PMC11297242 DOI: 10.1038/s41467-024-50811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Jumbo phages are a group of tailed bacteriophages with large genomes and capsids. As a prototype of jumbo phage, ΦKZ infects Pseudomonas aeruginosa, a multi-drug-resistant (MDR) opportunistic pathogen leading to acute or chronic infection in immunocompromised individuals. It holds potential to be used as an antimicrobial agent and as a model for uncovering basic phage biology. Although previous low-resolution structural studies have indicated that jumbo phages may have more complicated capsid structures than smaller phages such as HK97, the detailed structures and the assembly mechanism of their capsids remain largely unknown. Here, we report a 3.5-Å-resolution cryo-EM structure of the ΦKZ capsid. The structure unveiled ten minor capsid proteins, with some decorating the outer surface of the capsid and the others forming a complex network attached to the capsid's inner surface. This network seems to play roles in driving capsid assembly and capsid stabilization. Similar mechanisms of capsid assembly and stabilization are probably employed by many other jumbo viruses.
Collapse
Affiliation(s)
- Yashan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qianqian Shao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Mingcheng Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lin Han
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xinyue Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Aohan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiangyun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bo Wang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhenguo Chen
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Lei Sun
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Qianglin Fang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
21
|
Johno D, Zhang Y, Mohammadi TN, Zhao J, Lin Y, Wang C, Lu Y, Abdelaziz MNS, Maung AT, Lin CY, El-Telbany M, Lwin SZC, Damaso CH, Masuda Y, Honjoh KI, Miyamoto T. Characterization of selected phages for biocontrol of food-spoilage pseudomonads. Int Microbiol 2024; 27:1333-1344. [PMID: 38206524 DOI: 10.1007/s10123-023-00479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Pseudomonas spp., such as P. fluorescens group, P. fragi, and P. putida, are the major psychrophilic spoilage bacteria in the food industry. Bacteriophages (phages) are a promising tool for controlling food-spoilage and food-poisoning bacteria; however, there are few reports on phages effective on food-spoilage bacteria such as Pseudomonas spp. In this study, 12 Pseudomonas phages were isolated from chicken and soil samples. Based on the host range and lytic activity at 30 °C and 4 °C and various combinations of phages, phages vB_PflP-PCS4 and vB_PflP-PCW2 were selected to prepare phage cocktails to control Pseudomonas spp. The phage cocktail consisting of vB_PflP-PCS4 and vB_PflP-PCW2 showed the strongest lytic activity and retarded regrowth of P. fluorescens and P. putida at 30 °C, 8 °C, and 4 °C at a multiplicity of infection of 100. Nucleotide sequence analysis of the genomic DNA indicated that vB_PflP-PCS4 and vB_PflP-PCW2 phages were lytic phages of the Podoviridae family and lacked tRNA, toxin, or virulence genes. A novel endolysin gene was found in the genomic DNA of phage vB_PflP-PCS4. The results of this study suggest that the phage cocktail consisting of vB_PflP-PCS4 and vB_PflP-PCW2 is a promising tool for the biocontrol of psychrophilic food-spoilage pseudomonads during cold storage and distribution.
Collapse
Affiliation(s)
- Daisuke Johno
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Yu Zhang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tahir Noor Mohammadi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Junxin Zhao
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Yuan Lu
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Marwa Nabil Sayed Abdelaziz
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Aye Thida Maung
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Chen-Yu Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Catherine Hofilena Damaso
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
22
|
Mudgil U, Khullar L, Chadha J, Prerna, Harjai K. Beyond antibiotics: Emerging antivirulence strategies to combat Pseudomonas aeruginosa in cystic fibrosis. Microb Pathog 2024; 193:106730. [PMID: 38851361 DOI: 10.1016/j.micpath.2024.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that poses a significant threat to individuals suffering from cystic fibrosis (CF). The pathogen is highly prevalent in CF individuals and is responsible for chronic infection, resulting in severe tissue damage and poor patient outcome. Prolonged antibiotic administration has led to the emergence of multidrug resistance in P. aeruginosa. In this direction, antivirulence strategies achieving targeted inhibition of bacterial virulence pathways, including quorum sensing, efflux pumps, lectins, and iron chelators, have been explored against CF isolates of P. aeruginosa. Hence, this review article presents a bird's eye view on the pulmonary infections involving P. aeruginosa in CF patients by laying emphasis on factors contributing to bacterial colonization, persistence, and disease progression along with the current line of therapeutics against P. aeruginosa in CF. We further collate scientific literature and discusses various antivirulence strategies that have been tested against P. aeruginosa isolates from CF patients.
Collapse
Affiliation(s)
- Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Prerna
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
23
|
Han F, Zhang X, Chen Y, Zhao H, Wu J, Yu Y, Wang Y. A Simple Allelic Exchange Method for Efficient Seamless Knockout of Up to 34-kbp-Long Gene Cassettes in Pseudomonas. Appl Biochem Biotechnol 2024; 196:5616-5630. [PMID: 38103122 DOI: 10.1007/s12010-023-04806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Gene knockout is a widely used technique for engineering bacterial genomes, investigating the roles of genes in metabolism, and conferring biological characteristics. Herein, we developed a rapid, efficient, and simple method for the knockout of long gene cassettes in Pseudomonas spp., based on a traditional allelic exchange strategy. The upstream and downstream sequences of the target gene cluster to be deleted were amplified using primers with 5'-end sequences identical to the multiple cloning sites of a suicide plasmid (mutant allele insert vector). The sequences were then fused with the linearized suicide plasmid in one step via seamless cloning. The resulting allelic exchange vector (recombinant plasmid) was introduced from the donor strain (Escherichia coli SM 10) into recipient cells (Pseudomonas putida, P. composti, and P. khazarica) via conjugation. Single-crossover merodiploids (integrates the vector into host chromosome by homologous recombination) were screened based on antibiotic resistance conferred by the plasmid, and double-crossover haploids (deleting the target gene clusters and inserted alien plasmid backbone) were selected using sucrose-mediated counterselection. Unlike other approaches, the method described herein introduces no selective marker genes into the genomes of the knockout mutants. Using our method, we successfully deleted polysaccharide-encoding gene clusters in P. putida, P. composti, and P. khazarica and generated four mutants with single-gene cassette deletions up to 18 kbp and one mutant with double-gene cassette deletion of approximately 34 kbp. Collectively, our results indicate that this method is ideal for the deletion of long genetic sequences, yielding seamless mutants of various Pseudomonas spp.
Collapse
Affiliation(s)
- Feng Han
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Xiaoya Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yunfei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haixia Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jieer Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
24
|
Adamiak JW, Ajmal L, Zgurskaya HI. Non-interchangeable functions of efflux transporters of Pseudomonas aeruginosa in survival under infection-associated stress. J Bacteriol 2024; 206:e0005424. [PMID: 38874367 PMCID: PMC11323973 DOI: 10.1128/jb.00054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Pseudomonas aeruginosa is a challenging opportunistic pathogen due to its intrinsic and acquired mechanisms of antibiotic resistance. A large repertoire of efflux transporters actively expels antibiotics, toxins, and metabolites from cells and enables growth of P. aeruginosa in diverse environments. In this study, we analyzed the roles of representative efflux pumps from the Resistance-Nodulation-Division (RND), Major Facilitator Superfamily (MFS), and Small Multidrug Resistance (SMR) families of proteins in the susceptibility of P. aeruginosa to antibiotics and bacterial growth under stresses imposed by human hosts during bacterial infections: an elevated temperature, osmotic stress, low iron, bile salts, and acidic pH. We selected five RND pumps MexAB-OprM, MexEF-OprN, MexCD-OprJ, MuxABC-OpmB, and TriABC-OpmH that differ in their substrate specificities and expression profiles, two MFS efflux pumps PA3136-3137 and PA5158-5160 renamed here into MfsAB and MfsCD-OpmG, respectively, and an SMR efflux transporter PA1540-1541 (MdtJI). We found that the most promiscuous RND pumps such as MexEF-OprN and MexAB-OprM are integrated into diverse survival mechanisms and enable P. aeruginosa growth under various stresses. MuxABC-OpmB and TriABC-OpmH pumps with narrower substrate spectra are beneficial only in the presence of the iron chelator 2,2'-dipyridyl and bile salts, respectively. MFS pumps do not contribute to antibiotic efflux but play orthogonal roles in acidic pH, low iron, and in the presence of bile salts. In contrast, MdtJI protects against polycationic antibiotics but does not contribute to survival under stress. Thus, efflux pumps play specific, non-interchangeable functions in P. aeruginosa cell physiology and bacterial survival under stresses. IMPORTANCE The role of multidrug efflux pumps in the intrinsic and clinical levels of antibiotic resistance in Pseudomonas aeruginosa and other gram-negative bacteria is well-established. Their functions in bacterial physiology, however, remain unclear. The P. aeruginosa genome comprises an arsenal of efflux pumps from different protein families, the substrate specificities of which are typically assessed by measuring their impact on susceptibility to antibiotics. In this study, we analyzed how deletions and overproductions of efflux pumps affect P. aeruginosa growth under human-infection-induced stresses. Our results show that the physiological functions of multidrug efflux pumps are non-redundant and essential for the survival of this important human pathogen under stress.
Collapse
Affiliation(s)
- Justyna W. Adamiak
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Laiba Ajmal
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
25
|
Suleman M, Yaseen AR, Ahmed S, Khan Z, Irshad A, Pervaiz A, Rahman HH, Azhar M. Pyocins and Beyond: Exploring the World of Bacteriocins in Pseudomonas aeruginosa. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10322-3. [PMID: 39023701 DOI: 10.1007/s12602-024-10322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Pseudomonas aeruginosa significantly induces health-associated infections in a variety of species other than humans. Over the years, the opportunistic pathogen has developed resistance against commonly used antibiotics. Since most P. aeruginosa strains are multi-drug resistant, regular antibiotic treatment of its infections is becoming a dire concern, shifting the global focus towards the development of alternate antimicrobial approaches. Pyocins are one of the most diverse antimicrobial peptide combinations produced by bacteria. They have potent antimicrobial properties, mainly against bacteria from the same phylogenetic group. P. aeruginosa, whether from clinical or environmental origins, produce several different pyocins that show inhibitory activity against other multi-drug-resistant strains of P. aeruginosa. They are, therefore, good candidates for alternate therapeutic antimicrobials because they have a unique mode of action that kills antibiotic-resistant bacteria by attacking their biofilms. Here, we review pseudomonas-derived antimicrobial pyocins with great therapeutic potential against multi-drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Muhammad Suleman
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Allah Rakha Yaseen
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Shahbaz Ahmed
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Zoha Khan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Asma Irshad
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Afsah Pervaiz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hafiza Hiba Rahman
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muteeba Azhar
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
26
|
Wang Y, Lu K, Zhou Z, Wang Y, Shen J, Huang D, Xu Y, Wang M. Nanoscale zero-valent iron reverses resistance of Pseudomonas aeruginosa to chloramphenicol. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134698. [PMID: 38788587 DOI: 10.1016/j.jhazmat.2024.134698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Zero-valent iron (ZVI) has been extensively studied for its capacity to remove various contaminants in the environments. However, whether ZVI affects bacterial resistance to antibiotics has not been fully explored. Herein, it was unexpected that, compared with microscale ZVI (mZVI), nanoscale ZVI (nZVI) facilitated the susceptibility of Pseudomonas aeruginosa (P. aeruginosa) to chloramphenicol (CAP), with a decrease in the minimal inhibitory concentration (MIC) of about 60 %, demonstrating a nanosize-specific effect. nZVI enhanced CAP accumulation in P. aeruginosa via inhibitory effect on efflux pumps activated by MexT, thus conferring the susceptibility of P. aeruginosa to CAP. Circular dichroism spectroscopy revealed that the structure of MexT was changed during the evolution. More importantly, molecular dynamic simulations uncovered that, once the structure of MexT changed, it would be more likely to interact with nZVI, resulting in more serious changes in its secondary structure, which was consistent with the increasing susceptibility of P. aeruginosa to CAP. Collectively, this study elucidated the size-specific effect and the underlying mechanism of ZVI on the bacterial evolution of susceptibility toward antibiotics, highlighting the potentials of nZVI-based technologies on the prevention of bacterial resistance to antibiotics, one of the most important issue for globally public health.
Collapse
Affiliation(s)
- Yufan Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Kun Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zhiruo Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yujie Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jiawei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Dan Huang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yongchang Xu
- Zhejiang Provincial Key Laboratory of Aging and Cancer Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Meizhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
27
|
Klimov PB, Hubert J, Erban T, Alejandra Perotti M, Braig HR, Flynt A, He Q, Cui Y. Genomic and metagenomic analyses of the domestic mite Tyrophagus putrescentiae identify it as a widespread environmental contaminant and a host of a basal, mite-specific Wolbachia lineage (supergroup Q). Int J Parasitol 2024:S0020-7519(24)00138-3. [PMID: 38992783 DOI: 10.1016/j.ijpara.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Tyrophagus putrescentiae (mould mite) is a global, microscopic trophic generalist that commonly occurs in various human-created habitats, causing allergies and damaging stored food. Its ubiquity and extraordinary ability to penetrate research samples or cultures through air currents or by active walking through tights spaces (such as treads of screw caps) may lead to sample contamination and introduction of its DNA to research materials in the laboratory. This prompts a thorough investigation into potential sequence contamination in public genomic databases. The trophic success of T. putrescentiae is primarily attributed to the symbiotic bacteria housed in specialized internal mite structures, facilitating adaptation to varied nutritional niches. However, recent work suggests that horizontal transfer of bacterial/fungal genes related to nutritional functionality may also contribute to the mite's trophic versatility. This aspect requires independent confirmation. Additionally, T. putrescentiae harbors an uncharacterized and genetically divergent bacterium, Wolbachia, displaying blocking and microbiome-modifying effects. The phylogenomic position and supergroup assignment of this bacterium are unknown. Here, we sequenced and assembled the T. putrescentiae genome, analyzed its microbiome, and performed detailed phylogenomic analyses of the mite-specific Wolbachia. We show that T. putrescentiae DNA is a substantial source of contamination of research samples. Its DNA may inadvertently be co-extracted with the DNA of the target organism, eventually leading to sequence contamination in public databases. We identified a diversity of bacterial species associated with T. putrescentiae, including those capable of rapidly developing antibiotic resistance, such as Escherichia coli. Despite the presence of diverse bacterial communities in T. putrescentiae, we did not detect any recent horizontal gene transfers in this mite species and/or in astigmatid (domestic) mites in general. Our phylogenomic analysis of Wolbachia recovered a basal, mite-specific lineage (supergroup Q) represented by two Wolbachia spp. from the mould mite and a gall-inducing plant mite. Fluorescence in situ hybridization confirmed the presence of Wolbachia inside the mould mite. The discovery of an early derivative Wolbachia lineage (supergroup Q) in two phylogenetically unrelated and ecologically dissimilar mites suggests that this endosymbiotic bacterial lineage formed a long-term association with mites. This finding provides a unique insight into the early evolution and host associations of Wolbachia. Further discoveries of Wolbachia diversity in acariform mites are anticipated.
Collapse
Affiliation(s)
- Pavel B Klimov
- Purdue University, Department of Biological Sciences, 915 W State St, West Lafayette, IN, USA; Tyumen State University, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen, Russia.
| | - Jan Hubert
- Crop Research Institute, Department of Stored Product and Food Safety, Prague, Czechia; Czech University of Life Science, Faculty of Microbiology Nutrient and Dietics, Prague, Czechia
| | - Tomas Erban
- Crop Research Institute, Department of Stored Product and Food Safety, Prague, Czechia
| | - M Alejandra Perotti
- University of Reading, Ecology and Evolutionary Biology Section, School of Biological Sciences, Reading RG6 6AS, United Kingdom
| | - Henk R Braig
- Institute and Museum of Natural Sciences, Faculty of Natural and Exact Sciences, National University of San Juan, San Juan, J5400 DNQ, Argentina
| | - Alex Flynt
- University of Southern Mississippi, School of Biological, Environmental, and Earth Sciences, Hattiesburg, MS, USA
| | - Qixin He
- Purdue University, Department of Biological Sciences, 915 W State St, West Lafayette, IN, USA.
| | - Yubao Cui
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University.Wuxi, PR Chin.
| |
Collapse
|
28
|
Arfaoui A, Rojo-Bezares B, Fethi M, López M, Toledano P, Sayem N, Ben Khelifa Melki S, Ouzari HI, Klibi N, Sáenz Y. Molecular characterization of Pseudomonas aeruginosa from diabetic foot infections in Tunisia. J Med Microbiol 2024; 73. [PMID: 38963417 DOI: 10.1099/jmm.0.001851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Background. Pseudomonas aeruginosa is an invasive organism that frequently causes severe tissue damage in diabetic foot ulcers.Gap statement. The characterisation of P. aeruginosa strains isolated from diabetic foot infections has not been carried out in Tunisia.Purpose. The aim was to determine the prevalence of P. aeruginosa isolated from patients with diabetic foot infections (DFIs) in Tunisia and to characterize their resistance, virulence and molecular typing.Methods. Patients with DFIs admitted to the diabetes department of the International Hospital Centre of Tunisia, from September 2019 to April 2021, were included in this prospective study. P. aeruginosa were obtained from the wound swabs, aspiration and soft tissue biopsies during routine clinical care and were confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing, serotyping, integron and OprD characterization, virulence, biofilm production, pigment quantification, elastase activity and molecular typing were analysed in all recovered P. aeruginosa isolates by phenotypic tests, specific PCRs, sequencing, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing.Results. Sixteen P. aeruginosa isolates (16.3 %) were recovered from 98 samples of 78 diabetic patients and were classified into 6 serotypes (O:11 the most frequent), 11 different PFGE patterns and 10 sequence types (three of them new ones). The high-risk clone ST235 was found in two isolates. The highest resistance percentages were observed to netilmicin (69 %) and cefepime (43.8 %). Four multidrug-resistant (MDR) isolates (25 %) were detected, three of them being carbapenem-resistant. The ST235-MDR strain harboured the In51 class 1 integron (intI1 +aadA6+orfD+qacED1-sul1). According to the detection of 14 genes involved in virulence or quorum sensing, 5 virulotypes were observed, including 5 exoU-positive, 9 exoS-positive and 2 exoU/exoS-positive strains. The lasR gene was truncated by ISPpu21 insertion sequence in one isolate, and a deletion of 64 bp in the rhlR gene was detected in the ST235-MDR strain. Low biofilm, pyoverdine and elastase production were detected in all P. aeruginosa; however, the lasR-truncated strain showed a chronic infection phenotype characterized by loss of serotype-specific antigenicity, high production of phenazines and high biofilm formation.Conclusions. Our study demonstrated for the first time the prevalence and the molecular characterization of P. aeruginosa strains from DFIs in Tunisia, showing a high genetic diversity, moderate antimicrobial resistance, but a high number of virulence-related traits, highlighting their pathological importance.
Collapse
Affiliation(s)
- Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Meha Fethi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maria López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Paula Toledano
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Noureddine Sayem
- Service of Biology, Carthagene International Hospital of Tunisia, Tunis, Tunisia
| | | | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
29
|
Lopes JA, Garnier NE, Pei Y, Yates JGE, Campbell ESB, Goens MM, Hughes ME, Rghei AD, Stevens BAY, Guilleman MM, Thompson B, Khursigara CM, Susta L, Wootton SK. AAV-vectored expression of monospecific or bispecific monoclonal antibodies protects mice from lethal Pseudomonas aeruginosa pneumonia. Gene Ther 2024; 31:400-412. [PMID: 38678160 DOI: 10.1038/s41434-024-00453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Pseudomonas aeruginosa poses a significant threat to immunocompromised individuals and those with cystic fibrosis. Treatment relies on antibiotics, but persistent infections occur due to intrinsic and acquired resistance of P. aeruginosa towards multiple classes of antibiotics. To date, there are no licensed vaccines for this pathogen, prompting the urgent need for novel treatment approaches to combat P. aeruginosa infection and persistence. Here we validated AAV vectored immunoprophylaxis as a strategy to generate long-term plasma and mucosal expression of highly protective monoclonal antibodies (mAbs) targeting the exopolysaccharide Psl (Cam-003) and the PcrV (V2L2MD) component of the type-III secretion system injectosome either as single mAbs or together as a bispecific mAb (MEDI3902) in a mouse model. When administered intramuscularly, AAV-αPcrV, AAV-αPsl, and AAV-MEDI3902 significantly protected mice challenged intranasally with a lethal dose of P. aeruginosa strains PAO1 and PA14 and reduced bacterial burden and dissemination to other organs. While all AAV-mAbs provided protection, AAV-αPcrV and AAV-MEDI3902 provided 100% and 87.5% protection from a lethal challenge with 4.47 × 107 CFU PAO1 and 87.5% and 75% protection from a lethal challenge with 3 × 107 CFU PA14, respectively. Serum concentrations of MEDI3902 were ~10× lower than that of αPcrV, but mice treated with this vector showed a greater reduction in bacterial dissemination to the liver, lung, spleen, and blood compared to other AAV-mAbs. These results support further investigation into the use of AAV vectored immunoprophylaxis to prevent and treat P. aeruginosa infections and other bacterial pathogens of public health concern for which current treatment strategies are limited.
Collapse
Affiliation(s)
- Jordyn A Lopes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicole E Garnier
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jacob G E Yates
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elena S B Campbell
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Melanie M Goens
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Madison E Hughes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brenna A Y Stevens
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Matthew M Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brad Thompson
- Avamab Pharma Inc., 120, 4838 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
30
|
Yadav SA, Pawar SK, Datkhile KD, Mohite ST, Patil SR, More AL. Phenotypic and Genotypic Characterization of AmpC Beta-Lactamase in Clinical Isolates of Pseudomonas aeruginosa Findings From a Tertiary Care Hospital. Cureus 2024; 16:e65185. [PMID: 39176317 PMCID: PMC11341105 DOI: 10.7759/cureus.65185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Background and aim Pseudomonas aeruginosa is an opportunistic pathogen responsible for various healthcare-related infections, which are difficult to treat due to intrinsic and acquired resistance. This study aimed to investigate AmpC β-lactamase production using phenotypic and genotypic methods in Pseudomonas aeruginosa strains isolated from a tertiary care hospital in Karad, Maharashtra, India. Material and methods Over one year, a descriptive cross-sectional study was conducted at the Department of Microbiology, Krishna Institute Medical Sciences, Krishna Vishwa Vidyapeeth, Karad. Phenotypic detection of AmpC beta-lactamase was performed using the Cefoxitin-Cloxacillin Double-Disc Synergy Test method, and genotypic detection was conducted using conventional polymerase chain reaction (PCR) targeting the bla Pseudomonas-derived cephalosporinases (PDC) and bla cephamycinase (CMY) genes. Results Out of 205 clinical isolates of Pseudomonas aeruginosa, 110 (53.66%) showed AmpC production phenotypically, while 86 (41.95%) were positive genotypically. The blaPDC gene was detected in 36.10% of isolates, and the blaCMY gene in 10.73% of isolates. Conclusions The study findings indicate that AmpC-β-lactamase stands out as the primary resistance mechanism in strains of Pseudomonas aeruginosa isolated from the hospital. PCR study concluded that blaPDC (36.10 %) was the leading gene responsible for AmpC synthesis among study isolates. Early detection of AmpC beta-lactamase production by employing phenotypic and genotypic methods is crucial for detecting antibiotic resistance. This dual approach enables healthcare professionals to decide on the most effective antibiotics and mitigate the development of resistance.
Collapse
Affiliation(s)
- Suvarna A Yadav
- Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidhyapeeth (Deemed to be University), Karad, IND
| | - Satyajeet K Pawar
- Microbiology, Krishna Institute of Medical Science, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Kailas D Datkhile
- Molecular Biology and Genetics, Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Shivaji T Mohite
- Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Satish R Patil
- Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Ashwini L More
- Molecular Biology and Genetics, Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
31
|
Alipour-Khezri E, Skurnik M, Zarrini G. Pseudomonas aeruginosa Bacteriophages and Their Clinical Applications. Viruses 2024; 16:1051. [PMID: 39066214 PMCID: PMC11281547 DOI: 10.3390/v16071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance poses a serious risk to contemporary healthcare since it reduces the number of bacterial illnesses that may be treated with antibiotics, particularly for patients with long-term conditions like cystic fibrosis (CF). People with a genetic predisposition to CF often have recurrent bacterial infections in their lungs due to a buildup of sticky mucus, necessitating long-term antibiotic treatment. Pseudomonas aeruginosa infections are a major cause of CF lung illness, and P. aeruginosa airway isolates are frequently resistant to many antibiotics. Bacteriophages (also known as phages), viruses that infect bacteria, are a viable substitute for antimicrobials to treat P. aeruginosa infections in individuals with CF. Here, we reviewed the utilization of P. aeruginosa bacteriophages both in vivo and in vitro, as well as in the treatment of illnesses and diseases, and the outcomes of the latter.
Collapse
Affiliation(s)
- Elaheh Alipour-Khezri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
| | - Mikael Skurnik
- Human Microbiome Research Program, and Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
- Microbial Biotechnology Research Group, University of Tabriz, Tabriz 51368, Iran
| |
Collapse
|
32
|
Yang X, Zhang H, Zhao Q, Li Q, Li T, Gao J. Total Synthesis of the Repeating Units of Highly Functionalized O-Antigens of Pseudomonas aeruginosa ATCC 27577, O10, and O19. JACS AU 2024; 4:2351-2362. [PMID: 38938791 PMCID: PMC11200240 DOI: 10.1021/jacsau.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
The first total synthesis of the repeating units of the O-antigens of Pseudomonas aeruginosa ATCC 27577, O10, and O19 was achieved via a linear glycosylation strategy. This also represents the first synthesis of an oligosaccharide containing an α-linked N-acetyl-l-galactosaminuronic acid (l-GalpNAcA) unit. All of the glycosyl linkages, including three challenging 1,2-cis-glycosidic bonds of amino sugars, were effectively constructed with high to exclusive stereoselectivity, while orthogonal protection tactics were employed to facilitate regioselective glycosylations and the introduction of a variety of functionalities. An acetyl group migration phenomenon was found during the synthesis of the O-acylated repeating unit of the P. aeruginosa ATCC 27577 antigen. All synthetic targets carried an amino functional group in the linker at the reducing end, thus facilitating further regioselective elaboration and biological studies. The synthetic strategy established here should be useful for the preparation of other similar oligosaccharides.
Collapse
Affiliation(s)
- Xiaoyu Yang
- National
Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate
Chemistry and Glycobiology, Shandong University, Qingdao ,Shandong 266237, China
- NMPA
Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based
Medicine, Shandong University, Qingdao ,Shandong 266237, China
| | - Han Zhang
- Department
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan ,Shandong 250355, China
| | - Qingpeng Zhao
- National
Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate
Chemistry and Glycobiology, Shandong University, Qingdao ,Shandong 266237, China
- NMPA
Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based
Medicine, Shandong University, Qingdao ,Shandong 266237, China
| | - Qingjiang Li
- Department
of Chemistry, University of Massachusetts
Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Tiehai Li
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Gao
- National
Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate
Chemistry and Glycobiology, Shandong University, Qingdao ,Shandong 266237, China
- NMPA
Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based
Medicine, Shandong University, Qingdao ,Shandong 266237, China
| |
Collapse
|
33
|
Wannasrichan W, Krobthong S, Morgan CJ, Armbruster EG, Gerovac M, Yingchutrakul Y, Wongtrakoongate P, Vogel J, Aonbangkhen C, Nonejuie P, Pogliano J, Chaikeeratisak V. A phage nucleus-associated protein from the jumbophage Churi inhibits bacterial growth through protein translation interference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599175. [PMID: 38915640 PMCID: PMC11195228 DOI: 10.1101/2024.06.15.599175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Antibacterial proteins inhibiting Pseudomonas aeruginosa have been identified in various phages and explored as antibiotic alternatives. Here, we isolated a phiKZ-like phage, Churi, which encodes 364 open reading frames. We examined 15 early-expressed phage proteins for their ability to inhibit bacterial growth, and found that gp335, closely related to phiKZ-gp14, exhibits antibacterial activity. Similar to phiKZ-gp14, recently shown to form a complex with the P. aeruginosa ribosome, we predict experimentally that gp335 interacts with ribosomal proteins, suggesting its involvement in protein translation. GFP-tagged gp335 clusters around the phage nucleus as early as 15 minutes post-infection and remains associated with it throughout the infection, suggesting its role in protein expression in the cell cytoplasm. CRISPR-Cas13-mediated deletion of gp355 reveals that the mutant phage has a prolonged latent period. Altogether, we demonstrate that gp335 is an antibacterial protein of nucleus-forming phages that associates with the ribosomes at the phage nucleus.
Collapse
|
34
|
Shahab SN, van Veen A, Büchler AC, Saharman YR, Karuniawati A, Vos MC, Voor In 't Holt AF, Severin JA. In search of the best method to detect carriage of carbapenem-resistant Pseudomonas aeruginosa in humans: a systematic review. Ann Clin Microbiol Antimicrob 2024; 23:50. [PMID: 38858708 PMCID: PMC11163693 DOI: 10.1186/s12941-024-00707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Detection of carbapenem-resistant Pseudomonas aeruginosa (CR-PA) in humans is important to prevent transmission. However, the most optimal culture method to detect CR-PA is unknown. This systematic review aims to determine which culture method is most sensitive and which culture methods are used to detect CR-PA in humans. Second, to establish the most feasible culture method taking into account the turnaround time (TAT), and third, to provide an overview of the sampling sites used to detect carriage. METHODS We systematically searched the electronic databases Embase, Medline Ovid, Cochrane, Scopus, CINAHL, and Web of Science until January 27, 2023. All diagnostic accuracy studies comparing two or more culture methods to detect CR-PA and recent outbreak or surveillance reports on CR-PA carriage or infection in humans, which describe culture methods and their results, were eligible for inclusion. We used QUADAS-2 guideline for diagnostic accuracy studies and the STROBE or ORION guideline for outbreak-surveillance studies to assess the risk of bias. RESULTS Six diagnostic accuracy studies were included. An enrichment broth was found to increase the detection of CR-PA. Using an enrichment broth extended the TAT by 18-24 h, yet selective media could reduce the TAT by 24 h compared to routine media. In total, 124 outbreak-surveillance studies were included, of which 17 studies with surveillance samples and 116 studies with clinical samples. In outbreak-surveillance studies with surveillance samples, perianal, rectal swabs or stools were the most common sampling site/specimen (13/17, 76%). A large variety was observed in whether and which kind of enrichment broth and selective media were used. CONCLUSIONS We found a benefit of using an enrichment step prior to inoculation of the material onto selective media for the detection of CR-PA. More research is needed to determine the most sensitive sampling site and culture method. TRAIL REGISTRATION This study was registered in the PROSPERO International prospective register of systematic reviews (registration number: CRD42020207390, http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42020207390 ).
Collapse
Affiliation(s)
- Selvi N Shahab
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Anneloes van Veen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Andrea C Büchler
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Yulia R Saharman
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Anis Karuniawati
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Margreet C Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Anne F Voor In 't Holt
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Juliëtte A Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
35
|
Patra S, Biswas P, Karmakar S, Biswas K. Repression of resistance mechanisms of Pseudomonas aeruginosa: implications of the combination of antibiotics and phytoconstituents. Arch Microbiol 2024; 206:294. [PMID: 38850339 DOI: 10.1007/s00203-024-04012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/10/2024]
Abstract
Antimicrobial resistance is a prevalent problem witnessed globally and creating an alarming situation for the treatment of infections caused by resistant pathogens. Available armaments such as antibiotics often fail to exhibit the intended action against resistant pathogens, leading to failure in the treatments that are causing mortality. New antibiotics or a new treatment approach is necessary to combat this situation. P. aeruginosa is an opportunistic drug resistant pathogen and is the sixth most common cause of nosocomial infections. P. aeruginosa due to its genome organization and other factors are exhibiting resistance against drugs. Bacterial biofilm formation, low permeability of outer membrane, the production of the beta-lactamase, and the production of several efflux systems limits the antibacterial potential of several classes of antibiotics. Combination of phytoconstituents with antibiotics is a promising strategy to combat multidrug resistant P. aeruginosa. Phytoconstituents such as flavonoids, terpenoids, alkaloids, polypeptides, phenolics, and essential oils are well known antibacterial agents. In this review, the activity of combination of the phytoconstituents and antibiotics, and their corresponding mechanism of action was discussed elaborately. The combination of antibiotics and plant-derived compounds exhibited better efficacy compared to antibiotics alone against the antibiotic resistance P. aeruginosa infections.
Collapse
Affiliation(s)
- Susmita Patra
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India
| | - Poulomi Biswas
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Kaushik Biswas
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
36
|
Madden DE, Baird T, Bell SC, McCarthy KL, Price EP, Sarovich DS. Keeping up with the pathogens: improved antimicrobial resistance detection and prediction from Pseudomonas aeruginosa genomes. Genome Med 2024; 16:78. [PMID: 38849863 PMCID: PMC11157771 DOI: 10.1186/s13073-024-01346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is an intensifying threat that requires urgent mitigation to avoid a post-antibiotic era. Pseudomonas aeruginosa represents one of the greatest AMR concerns due to increasing multi- and pan-drug resistance rates. Shotgun sequencing is gaining traction for in silico AMR profiling due to its unambiguity and transferability; however, accurate and comprehensive AMR prediction from P. aeruginosa genomes remains an unsolved problem. METHODS We first curated the most comprehensive database yet of known P. aeruginosa AMR variants. Next, we performed comparative genomics and microbial genome-wide association study analysis across a Global isolate Dataset (n = 1877) with paired antimicrobial phenotype and genomic data to identify novel AMR variants. Finally, the performance of our P. aeruginosa AMR database, implemented in our AMR detection and prediction tool, ARDaP, was compared with three previously published in silico AMR gene detection or phenotype prediction tools-abritAMR, AMRFinderPlus, ResFinder-across both the Global Dataset and an analysis-naïve Validation Dataset (n = 102). RESULTS Our AMR database comprises 3639 mobile AMR genes and 728 chromosomal variants, including 75 previously unreported chromosomal AMR variants, 10 variants associated with unusual antimicrobial susceptibility, and 281 chromosomal variants that we show are unlikely to confer AMR. Our pipeline achieved a genotype-phenotype balanced accuracy (bACC) of 85% and 81% across 10 clinically relevant antibiotics when tested against the Global and Validation Datasets, respectively, vs. just 56% and 54% with abritAMR, 58% and 54% with AMRFinderPlus, and 60% and 53% with ResFinder. ARDaP's superior performance was predominantly due to the inclusion of chromosomal AMR variants, which are generally not identified with most AMR identification tools. CONCLUSIONS Our ARDaP software and associated AMR variant database provides an accurate tool for predicting AMR phenotypes in P. aeruginosa, far surpassing the performance of current tools. Implementation of ARDaP for routine AMR prediction from P. aeruginosa genomes and metagenomes will improve AMR identification, addressing a critical facet in combatting this treatment-refractory pathogen. However, knowledge gaps remain in our understanding of the P. aeruginosa resistome, particularly the basis of colistin AMR.
Collapse
Affiliation(s)
- Danielle E Madden
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Timothy Baird
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Scott C Bell
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland, Australia
- Children's Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, Queensland, Australia
| | - Kate L McCarthy
- University of Queensland Medical School, Herston, QLD, Australia
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Erin P Price
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Derek S Sarovich
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia.
| |
Collapse
|
37
|
Romano KP, Bagnall J, Warrier T, Sullivan J, Ferrara K, Orzechowski M, Nguyen P, Raines K, Livny J, Shoresh N, Hung D. Perturbation-Specific Transcriptional Mapping for unbiased target elucidation of antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.590978. [PMID: 38712067 PMCID: PMC11071498 DOI: 10.1101/2024.04.25.590978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The rising prevalence of antibiotic resistance threatens human health. While more sophisticated strategies for antibiotic discovery are being developed, target elucidation of new chemical entities remains challenging. In the post-genomic era, expression profiling can play an important role in mechanism-of-action (MOA) prediction by reporting on the cellular response to perturbation. However, the broad application of transcriptomics has yet to fulfill its promise of transforming target elucidation due to challenges in identifying the most relevant, direct responses to target inhibition. We developed an unbiased strategy for MOA prediction, called Perturbation-Specific Transcriptional Mapping (PerSpecTM), in which large-throughput expression profiling of wildtype or hypomorphic mutants, depleted for essential targets, enables a computational strategy to address this challenge. We applied PerSpecTM to perform reference-based MOA prediction based on the principle that similar perturbations, whether chemical or genetic, will elicit similar transcriptional responses. Using this approach, we elucidated the MOAs of three new molecules with activity against Pseudomonas aeruginosa by comparing their expression profiles to those of a reference set of antimicrobial compounds with known MOAs. We also show that transcriptional responses to small molecule inhibition resemble those resulting from genetic depletion of essential targets by CRISPRi by PerSpecTM, demonstrating proof-of-concept that correlations between expression profiles of small molecule and genetic perturbations can facilitate MOA prediction when no chemical entities exist to serve as a reference. Empowered by PerSpecTM, this work lays the foundation for an unbiased, readily scalable, systematic reference-based strategy for MOA elucidation that could transform antibiotic discovery efforts.
Collapse
|
38
|
Cao L, Yang H, Huang Z, Lu C, Chen F, Zhang J, Ye P, Yan J, Zhang H. Direct prediction of antimicrobial resistance in Pseudomonas aeruginosa by metagenomic next-generation sequencing. Front Microbiol 2024; 15:1413434. [PMID: 38903781 PMCID: PMC11187003 DOI: 10.3389/fmicb.2024.1413434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Objective Pseudomonas aeruginosa has strong drug resistance and can tolerate a variety of antibiotics, which is a major problem in the management of antibiotic-resistant infections. Direct prediction of multi-drug resistance (MDR) resistance phenotypes of P. aeruginosa isolates and clinical samples by genotype is helpful for timely antibiotic treatment. Methods In the study, whole genome sequencing (WGS) data of 494 P. aeruginosa isolates were used to screen key anti-microbial resistance (AMR)-associated genes related to imipenem (IPM), meropenem (MEM), piperacillin/tazobactam (TZP), and levofloxacin (LVFX) resistance in P. aeruginosa by comparing genes with copy number differences between resistance and sensitive strains. Subsequently, for the direct prediction of the resistance of P. aeruginosa to four antibiotics by the AMR-associated features screened, we collected 74 P. aeruginosa positive sputum samples to sequence by metagenomics next-generation sequencing (mNGS), of which 1 sample with low quality was eliminated. Then, we constructed the resistance prediction model. Results We identified 93, 88, 80, 140 AMR-associated features for IPM, MEM, TZP, and LVFX resistance in P. aeruginosa. The relative abundance of AMR-associated genes was obtained by matching mNGS and WGS data. The top 20 features with importance degree for IPM, MEM, TZP, and LVFX resistance were used to model, respectively. Then, we used the random forest algorithm to construct resistance prediction models of P. aeruginosa, in which the areas under the curves of the IPM, MEM, TZP, and LVFX resistance prediction models were all greater than 0.8, suggesting these resistance prediction models had good performance. Conclusion In summary, mNGS can predict the resistance of P. aeruginosa by directly detecting AMR-associated genes, which provides a reference for rapid clinical detection of drug resistance of pathogenic bacteria.
Collapse
Affiliation(s)
- Lichao Cao
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong Province, China
| | - Huilin Yang
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Zhigang Huang
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Chang Lu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Fang Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong Province, China
| | - Jiahao Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong Province, China
| | - Peng Ye
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jinjin Yan
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong Province, China
| |
Collapse
|
39
|
Edward EA, El Shehawy MR, Abouelfetouh A, Aboulmagd E. Phenotypic and molecular characterization of extended spectrum- and metallo- beta lactamase producing Pseudomonas aeruginosa clinical isolates from Egypt. Infection 2024:10.1007/s15010-024-02297-8. [PMID: 38824475 DOI: 10.1007/s15010-024-02297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Antimicrobial resistance among Pseudomonas aeruginosa (P. aeruginosa), a leading cause of nosocomial infections worldwide, is escalating. This study investigated the prevalence of extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) among 104 P. aeruginosa clinical isolates from Alexandria Main University Hospital, Alexandria, Egypt. METHODS Antimicrobial susceptibility testing was performed using agar dilution technique, or broth microdilution method in case of colistin. ESBL and MBL prevalence was assessed phenotypically and genotypically using polymerase chain reaction (PCR). The role of plasmids in mediating resistance to extended-spectrum β-lactams was studied via transformation technique using plasmids isolated from ceftazidime-resistant isolates. RESULTS Antimicrobial susceptibility testing revealed alarming resistance rates to carbapenems, cephalosporins, and fluoroquinolones. Using PCR as the gold standard, phenotypic methods underestimated ESBL production while overestimating MBL production. Eighty-five isolates (81.7%) possessed only ESBL encoding genes, among which 69 isolates harbored a single ESBL gene [blaOXA-10 (n = 67) and blaPER (n = 2)]. Four ESBL-genotype combinations were detected: blaPER + blaOXA-10 (n = 8), blaVEB-1 + blaOXA-10 (n = 6), blaPSE + blaOXA-10 (n = 1), and blaPER + blaVEB-1 + blaOXA-10 (n = 1). Three isolates (2.9%) possessed only the MBL encoding gene blaVIM. Three ESBL + MBL- genotype combinations: blaOXA-10 + blaAIM, blaOXA-10 + blaVIM, and blaPER + blaOXA-10 + blaAIM were detected in 2, 1 and 1 isolate(s), respectively. Five plasmid preparations harboring blaVEB-1 and blaOXA-10 were successfully transformed into chemically competent Escherichia coli DH5α with transformation efficiencies ranging between 6.8 × 10 3 and 3.7 × 10 4 CFU/μg DNA plasmid. Selected tested transformants were ceftazidime-resistant and harbored plasmids carrying blaOXA-10. CONCLUSIONS The study highlights the importance of the expeditious characterization of ESBLs and MBLs using genotypic methods among P. aeruginosa clinical isolates to hinder the development and dissemination of multidrug resistant strains.
Collapse
Affiliation(s)
- Eva A Edward
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt.
| | - Marwa R El Shehawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Elsayed Aboulmagd
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
- College of Pharmacy, Arab Academy for Science, Technology and Maritime, Alamein Branch, Alamein, Egypt
| |
Collapse
|
40
|
Suzuki S, Morita Y, Ishige S, Kai K, Kawasaki K, Matsushita K, Ogura K, Miyoshi-Akiyama† T, Shimizu T. Effects of quorum sensing-interfering agents, including macrolides and furanone C-30, and an efflux pump inhibitor on nitrosative stress sensitivity in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001464. [PMID: 38900549 PMCID: PMC11263931 DOI: 10.1099/mic.0.001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Long-term administration of certain macrolides is efficacious in patients with persistent pulmonary Pseudomonas aeruginosa infection, despite how limited the clinically achievable concentrations are, being far below their MICs. An increase in the sub-MIC of macrolide exposure-dependent sensitivity to nitrosative stress is a typical characteristic of P. aeruginosa. However, a few P. aeruginosa clinical isolates do not respond to sub-MIC of macrolide treatment. Therefore, we examined the effects of sub-MIC of erythromycin (EM) on the sensitivity to nitrosative stress together with an efflux pump inhibitor (EPI) phenylalanine arginyl β-naphthylamide (PAβN). The sensitivity to nitrosative stress increased, suggesting that the efflux pump was involved in inhibiting the sub-MIC of macrolide effect. Analysis using efflux pump-mutant P. aeruginosa revealed that MexAB-OprM, MexXY-OprM, and MexCD-OprJ are factors in reducing the sub-MIC of macrolide effect. Since macrolides interfere with quorum sensing (QS), we demonstrated that the QS-interfering agent furanone C-30 (C-30) producing greater sensitivity to nitric oxide (NO) stress than EM. The effect of C-30 was decreased by overproduction of MexAB-OprM. To investigate whether the increase in the QS-interfering agent exposure-dependent sensitivity to nitrosative stress is characteristic of P. aeruginosa clinical isolates, we examined the viability of P. aeruginosa treated with NO. Although treatment with EM could reduce cell viability, a high variability in EM effects was observed. Conversely, C-30 was highly effective at reducing cell viability. Treatment with both C-30 and PAβN was sufficiently effective against the remaining isolates. Therefore, the combination of a QS-interfering agent and an EPI could be effective in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Shin Suzuki
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Shota Ishige
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Kiyohiro Kai
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Kenji Kawasaki
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Kohei Ogura
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 6110011, Japan
| | - Tohru Miyoshi-Akiyama†
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Takeshi Shimizu
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| |
Collapse
|
41
|
Aroca Molina KJ, Gutiérrez SJ, Benítez-Campo N, Correa A. Genomic Differences Associated with Resistance and Virulence in Pseudomonas aeruginosa Isolates from Clinical and Environmental Sites. Microorganisms 2024; 12:1116. [PMID: 38930498 PMCID: PMC11205572 DOI: 10.3390/microorganisms12061116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 06/28/2024] Open
Abstract
Pseudomonas aeruginosa is a pathogen that causes healthcare-associated infections (HAIs) worldwide. It is unclear whether P. aeruginosa isolated from the natural environment has the same pathogenicity and antimicrobial resistance potential as clinical strains. In this study, virulence- and resistance-associated genes were compared in 14 genomic sequences of clinical and environmental isolates of P. aeruginosa using the VFDB, PATRIC, and CARD databases. All isolates were found to share 62% of virulence genes related to adhesion, motility, secretion systems, and quorum sensing and 72.9% of resistance genes related to efflux pumps and membrane permeability. Our results indicate that both types of isolates possess conserved genetic information associated with virulence and resistance mechanisms regardless of the source. However, none of the environmental isolates were associated with high-risk clones (HRCs). These clones (ST235 and ST111) were found only in clinical isolates, which have an impact on human medical epidemiology due to their ability to spread and persist, indicating a correlation between the clinical environment and increased virulence. The genomic variation and antibiotic susceptibility of environmental isolates of P. aeruginosa suggest potential biotechnological applications if obtained from sources that are under surveillance and investigation to limit the emergence and spread of antibiotic resistant strains.
Collapse
Affiliation(s)
- Kelly J. Aroca Molina
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Sonia Jakeline Gutiérrez
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Neyla Benítez-Campo
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Adriana Correa
- Department of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia;
| |
Collapse
|
42
|
VanPortfliet JJ, Lei Y, Martinez CG, Wong J, Pflug K, Sitcheran R, Kneeland SC, Murray SA, McGuire PJ, Cannon CL, West AP. Caspase-11 drives macrophage hyperinflammation in models of Polg-related mitochondrial disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593693. [PMID: 38798587 PMCID: PMC11118447 DOI: 10.1101/2024.05.11.593693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondrial diseases (MtD) represent a significant public health challenge due to their heterogenous clinical presentation, often severe and progressive symptoms, and the lack of effective therapies. Environmental exposures, such bacterial and viral infection, can further compromise mitochondrial function and exacerbate the progression of MtD. Infections in MtD patients more frequently progress to sepsis, pneumonia, and other detrimental inflammatory endpoints. However, the underlying immune alterations that enhance immunopathology in MtD remain unclear, constituting a key gap in knowledge that complicates treatment and increases mortality in this population. Here we employ in vitro and in vivo approaches to clarify the molecular and cellular basis for innate immune hyperactivity in models of polymerase gamma (Polg)-related MtD. We reveal that type I interferon (IFN-I)-mediated upregulation of caspase-11 and guanylate-binding proteins (GBPs) increase macrophage sensing of the opportunistic microbe Pseudomonas aeruginosa (PA) in Polg mutant mice. Furthermore, we show that excessive macrophage cytokine secretion and pyroptotic cell death contribute to lung inflammation and morbidity after infection with PA. Our work sheds new light on innate immune dysregulation in MtD and reveals potential targets for limiting infection- and inflammation-related complications in Polg-related MtD.
Collapse
Affiliation(s)
- Jordyn J. VanPortfliet
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Camila Guerra Martinez
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Jessica Wong
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Kathryn Pflug
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | | | | | - Peter. J. McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Carolyn L. Cannon
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - A. Phillip West
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| |
Collapse
|
43
|
Funke FJ, Schlee S, Sterner R. Validation of aminodeoxychorismate synthase and anthranilate synthase as novel targets for bispecific antibiotics inhibiting conserved protein-protein interactions. Appl Environ Microbiol 2024; 90:e0057224. [PMID: 38700332 PMCID: PMC11107160 DOI: 10.1128/aem.00572-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Multi-resistant bacteria are a rapidly emerging threat to modern medicine. It is thus essential to identify and validate novel antibacterial targets that promise high robustness against resistance-mediating mutations. This can be achieved by simultaneously targeting several conserved function-determining protein-protein interactions in enzyme complexes from prokaryotic primary metabolism. Here, we selected two evolutionary related glutamine amidotransferase complexes, aminodeoxychorismate synthase and anthranilate synthase, that are required for the biosynthesis of folate and tryptophan in most prokaryotic organisms. Both enzymes rely on the interplay of a glutaminase and a synthase subunit that is conferred by a highly conserved subunit interface. Consequently, inhibiting subunit association in both enzymes by one competing bispecific inhibitor has the potential to suppress bacterial proliferation. We comprehensively verified two conserved interface hot-spot residues as potential inhibitor-binding sites in vitro by demonstrating their crucial role in subunit association and enzymatic activity. For in vivo target validation, we generated genomically modified Escherichia coli strains in which subunit association was disrupted by modifying these central interface residues. The growth of such strains was drastically retarded on liquid and solid minimal medium due to a lack of folate and tryptophan. Remarkably, the bacteriostatic effect was observed even in the presence of heat-inactivated human plasma, demonstrating that accessible host metabolite concentrations do not compensate for the lack of folate and tryptophan within the tested bacterial cells. We conclude that a potential inhibitor targeting both enzyme complexes will be effective against a broad spectrum of pathogens and offer increased resilience against antibiotic resistance. IMPORTANCE Antibiotics are indispensable for the treatment of bacterial infections in human and veterinary medicine and are thus a major pillar of modern medicine. However, the exposure of bacteria to antibiotics generates an unintentional selective pressure on bacterial assemblies that over time promotes the development or acquisition of resistance mechanisms, allowing pathogens to escape the treatment. In that manner, humanity is in an ever-lasting race with pathogens to come up with new treatment options before resistances emerge. In general, antibiotics with novel modes of action require more complex pathogen adaptations as compared to chemical derivates of existing entities, thus delaying the emergence of resistance. In this contribution, we use modified Escherichia coli strains to validate two novel targets required for folate and tryptophan biosynthesis that can potentially be targeted by one and the same bispecific protein-protein interaction inhibitor and promise increased robustness against bacterial resistances.
Collapse
Affiliation(s)
- Franziska Jasmin Funke
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sandra Schlee
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
44
|
Takemoto K, Nakayama R, Fujimoto K, Suzuki Y, Takarabe Y, Honsho M, Kitahara S, Noguchi Y, Matsui H, Hirose T, Asami Y, Hidaka J, Sunazuka T, Hanaki H. In vitro and in vivo activities of KSP-1007, a broad-spectrum inhibitor of serine- and metallo-β-lactamases, in combination with meropenem against carbapenem-resistant Gram-negative bacteria. Antimicrob Agents Chemother 2024:e0160223. [PMID: 38709005 DOI: 10.1128/aac.01602-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
KSP-1007 is a novel bicyclic boronate-based broad-spectrum β-lactamase inhibitor and is being developed in combination with meropenem (MEM) for the treatment of infections caused by carbapenem-resistant Gram-negative bacteria, a global health concern, and here, we describe its characteristics. KSP-1007 exhibited low apparent inhibition constant (Ki app) values against all classes of β-lactamase, including imipenemase types and oxacillinase types from Acinetobacter baumannii. Against 207 Enterobacterales and 55 A. baumannii, including carbapenemase producers, KSP-1007 at fixed concentrations of 4, 8, and 16 µg/mL dose-dependently potentiated the in vitro activity of MEM in broth microdilution MIC testing. The MIC90 of MEM/KSP-1007 at 8 µg/mL against Enterobacterales was lower than those of MEM/vaborbactam, ceftazidime/avibactam, imipenem/relebactam, and colistin and similar to those of aztreonam/avibactam, cefiderocol, and tigecycline. The in vitro activity of MEM/KSP-1007 at ≥4 µg/mL against Enterobacterales harboring metallo-β-lactamase was superior to that of cefepime/taniborbactam. MEM/KSP-1007 showed excellent activity against Escherichia coli with PBP3 mutations and New Delhi metallo-β-lactamase compared to aztreonam/avibactam, cefepime/taniborbactam, and cefiderocol. MEM/KSP-1007 at 8 µg/mL showed greater efficacy against A. baumannii than these comparators except for cefiderocol, tigecycline, and colistin. A 2-fold reduction in MEM MIC against 96 Pseudomonas aeruginosa was observed in combination with KSP-1007. MEM/KSP-1007 demonstrated bactericidal activity against carbapenemase-producing Enterobacterales, A. baumannii, and P. aeruginosa based on minimum bactericidal concentration/MIC ratios of ≤4. KSP-1007 enhanced the in vivo activity of MEM against carbapenemase-producing Enterobacterales, A. baumannii, and P. aeruginosa in murine systemic, complicated urinary tract, and thigh infection models. Collectively, MEM/KSP-1007 has a good profile for treating carbapenem-resistant Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Koji Takemoto
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Ryo Nakayama
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Koichi Fujimoto
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Yumiko Suzuki
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Yukiko Takarabe
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Masako Honsho
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | - Yoshihiko Noguchi
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Hidehito Matsui
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Yukihiro Asami
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Jun Hidaka
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Toshiaki Sunazuka
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Hideaki Hanaki
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
45
|
Castanheira M, Kimbrough JH, Lindley J, Doyle TB, Ewald JM, Sader HS. In vitro development of resistance against antipseudomonal agents: comparison of novel β-lactam/β-lactamase inhibitor combinations and other β-lactam agents. Antimicrob Agents Chemother 2024; 68:e0136323. [PMID: 38526050 PMCID: PMC11064483 DOI: 10.1128/aac.01363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
We subjected seven P. aeruginosa isolates to a 10-day serial passaging against five antipseudomonal agents to evaluate resistance levels post-exposure and putative resistance mechanisms in terminal mutants were analyzed by whole-genome sequencing analysis. Meropenem (mean, 38-fold increase), cefepime (14.4-fold), and piperacillin-tazobactam (52.9-fold) terminal mutants displayed high minimum inhibitory concentration (MIC) values compared to those obtained after exposure to ceftolozane-tazobactam (11.4-fold) and ceftazidime-avibactam (5.7-fold). Fewer isolates developed elevated MIC values for other β-lactams and agents belonging to other classes when exposed to meropenem in comparison to other agents. Alterations in nalC and nalD, involved in the upregulation of the efflux pump system MexAB-OprM, were common and observed more frequently in isolates exposed to ceftazidime-avibactam and meropenem. These alterations, along with ones in mexR and amrR, provided resistance to most β-lactams and levofloxacin but not imipenem. The second most common gene altered was mpl, which is involved in the recycling of the cell wall peptidoglycan. These alterations were mainly noted in isolates exposed to ceftolozane-tazobactam and piperacillin-tazobactam but also in one cefepime-exposed isolate. Alterations in other genes known to be involved in β-lactam resistance (ftsI, oprD, phoP, pepA, and cplA) and multiple genes involved in lipopolysaccharide biosynthesis were also present. The data generated here suggest that there is a difference in the mechanisms selected for high-level resistance between newer β-lactam/β-lactamase inhibitor combinations and older agents. Nevertheless, the isolates exposed to all agents displayed elevated MIC values for other β-lactams (except imipenem) and quinolones tested mainly due to alterations in the MexAB-OprM regulators that extrude these agents.
Collapse
Affiliation(s)
| | | | | | | | - Jessica M. Ewald
- JMI Laboratories, North Liberty, Iowa, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | | |
Collapse
|
46
|
Rizk AM, Elsayed MM, Abd El Tawab AA, Elhofy FI, Soliman EA, Kozytska T, Brangsch H, Sprague LD, Neubauer H, Wareth G. Phenotypic and genotypic characterization of resistance and virulence in Pseudomonas aeruginosa isolated from poultry farms in Egypt using whole genome sequencing. Vet Microbiol 2024; 292:110063. [PMID: 38554598 DOI: 10.1016/j.vetmic.2024.110063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an ESKAPE pathogen that can quickly develop resistance to most antibiotics. This bacterium is a zoonotic pathogen that can be found in humans, animals, foods, and environmental samples, making it a One-Health concern. P. aeruginosa threatens the poultry industry in Egypt, leading to significant economic losses. However, the investigation of this bacterium using NGS technology is nearly non-existent in Egypt. In this study, 38 isolates obtained from broiler farms of the Delta region were phenotypically investigated, and their genomes were characterized using whole genome sequencing (WGS). The study found that 100% of the isolates were resistant to fosfomycin and harbored the fosA gene. They were also resistant to trimethoprim/sulfamethoxazole, although only one isolate harbored the sul1 gene. Non-susceptibility (resistant, susceptible with increased dose) of colistin was observed in all isolates. WGS analysis revealed a high level of diversity between isolates, and MLST analysis allocated the 38 P. aeruginosa isolates into 11 distinct sequence types. The most predominant sequence type was ST267, found in 13 isolates, followed by ST1395 in 8 isolates. The isolates were susceptible to almost all tested antibiotics carrying only few different antimicrobial resistance (AMR) genes. Various AMR genes that confer resistance mainly to ß-lactam, aminoglycoside, sulfonamide, and phenicol compounds were identified. Additionally, several virulence associated genes were found without any significant differences in number and distribution among isolates. The majority of the virulence genes was identified in almost all isolates. The fact that P. aeruginosa, which harbors several AMR and virulence-associated factors, is present in poultry farms is alarming and threatens public health. The misuse of antimicrobial compounds in poultry farms plays a significant role in resistance development. Thus, increasing awareness and implementing strict veterinary regulations to guide the use of veterinary antibiotics is required to reduce health and environmental risks. Further studies from a One-Health perspective using WGS are necessary to trace the potential transmission routes of resistance between animals and humans and clarify resistance mechanisms.
Collapse
Affiliation(s)
- Amira M Rizk
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Moshtohor, Egypt
| | - Marwa M Elsayed
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Moshtohor, Egypt
| | - Ashraf A Abd El Tawab
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Moshtohor, Egypt
| | - Fatma I Elhofy
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Moshtohor, Egypt
| | - Enas A Soliman
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Moshtohor, Egypt
| | - Tamara Kozytska
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena 07743, Germany
| | - Hanka Brangsch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena 07743, Germany
| | - Lisa D Sprague
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena 07743, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena 07743, Germany
| | - Gamal Wareth
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Moshtohor, Egypt; Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena 07743, Germany; Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena 07747, Germany.
| |
Collapse
|
47
|
Chen C, Shi J, Wang D, Kong P, Wang Z, Liu Y. Antimicrobial peptides as promising antibiotic adjuvants to combat drug-resistant pathogens. Crit Rev Microbiol 2024; 50:267-284. [PMID: 36890767 DOI: 10.1080/1040841x.2023.2186215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 03/10/2023]
Abstract
The widespread antimicrobial resistance (AMR) calls for the development of new antimicrobial strategies. Antibiotic adjuvant rescues antibiotic activity and increases the life span of the antibiotics, representing a more productive, timely, and cost-effective strategy in fighting drug-resistant pathogens. Antimicrobial peptides (AMPs) from synthetic and natural sources are considered new-generation antibacterial agents. Besides their direct antimicrobial activity, growing evidence shows that some AMPs effectively enhance the activity of conventional antibiotics. The combinations of AMPs and antibiotics display an improved therapeutic effect on antibiotic-resistant bacterial infections and minimize the emergence of resistance. In this review, we discuss the value of AMPs in the age of resistance, including modes of action, limiting evolutionary resistance, and their designing strategies. We summarise the recent advances in combining AMPs and antibiotics against antibiotic-resistant pathogens, as well as their synergistic mechanisms. Lastly, we highlight the challenges and opportunities associated with the use of AMPs as potential antibiotic adjuvants. This will shed new light on the deployment of synergistic combinations to address the AMR crisis.
Collapse
Affiliation(s)
- Chen Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dejuan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Pan Kong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
48
|
de Melo Guedes GM, Pereira VC, Freitas AS, Honório de Souza PR, Chacon Parra AL, Brasil JA, de Medeiros Guedes RF, Pereira de Sousa PC, de Aguiar Cordeiro R, Gadelha Rocha MF, Costa Sidrim JJ, de Souza Collares Maia Castelo Branco D. Repurposing approved drugs as potential efflux pump inhibitors in multidrug-resistant Pseudomonas aeruginosa. Future Microbiol 2024; 19:495-508. [PMID: 38629920 PMCID: PMC11216505 DOI: 10.2217/fmb-2023-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/22/2023] [Indexed: 06/27/2024] Open
Abstract
Aim: To evaluate the action of promethazine, fluoxetine and carbonyl cyanide 3-chlorophenylhydrazone as efflux pump inhibitors (EPIs) against multidrug-resistant Pseudomonas aeruginosa. Methods: The effect of the compounds was evaluated in planktonic cells and bacterial biofilms. Accumulation tests were performed with ethidium bromide to prove their action as EPIs. Then, they were associated with antimicrobials. Results: Effect on planktonic cells and biofilms was found. Assays with ethidium bromide indicate their action as EPIs. Significant reductions in the metabolic activity of biofilms were observed after the association with the antimicrobials, especially for meropenem. Conclusion: It is possible to prove the action of these compounds as EPIs for P. aeruginosa and demonstrate the relevance of efflux pumps in antimicrobial resistance.
Collapse
Affiliation(s)
- Gláucia Morgana de Melo Guedes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Vinicius Carvalho Pereira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Alyne Soares Freitas
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Paulo Roberto Honório de Souza
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Aura Lucia Chacon Parra
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Jaiane Alves Brasil
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Rodrigo Fonseca de Medeiros Guedes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | | | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Fortaleza, Ceará, 60714-903, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Débora de Souza Collares Maia Castelo Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| |
Collapse
|
49
|
Sha XL, Lv GT, Chen QH, Cui X, Wang L, Cui X. A peptide selectively recognizes Gram-negative bacteria and forms a bacterial extracellular trap (BET) through interfacial self-assembly. J Mater Chem B 2024; 12:3676-3685. [PMID: 38530749 DOI: 10.1039/d3tb02559d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
An innate immune system intricately leverages unique mechanisms to inhibit colonization of external invasive Bacteria, for example human defensin-6, through responsive encapsulation of bacteria. Infection and accompanying antibiotic resistance stemming from Gram-negative bacteria aggregation represent an emerging public health crisis, which calls for research into novel anti-bacterial therapeutics. Herein, inspired by naturally found host-defense peptides, we design a defensin-like peptide ligand, bacteria extracellular trap (BET) peptide, with modular design composed of targeting, assembly, and hydrophobic motifs with an aggregation-induced emission feature. The ligand specifically recognizes Gram-negative bacteria via targeting cell wall conserved lipopolysaccharides (LPS) and transforms from nanoparticles to nanofibrous networks in situ to trap bacteria and induce aggregation. Importantly, treatment of the BET peptide was found to have an antibacterial effect on the Pseudomonas aeruginosa strain, which is comparable to neomycin. Animal studies further demonstrate its ability to trigger aggregation of bacteria in vivo. This biomimetic self-assembling BET peptide provides a novel approach to fight against pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Xiao-Ling Sha
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Gan-Tian Lv
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qing-Hua Chen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xin Cui
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
- Department of Graduate, Hebei North University, No. 11 Diamond South Road, High-tech Zone, Zhangjiakou, Hebei Province, 075000, P.R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xu Cui
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
- Department of Graduate, Hebei North University, No. 11 Diamond South Road, High-tech Zone, Zhangjiakou, Hebei Province, 075000, P.R. China
| |
Collapse
|
50
|
Gan M, Zhang Y, Yan G, Wang Y, Lu G, Wu B, Chen W, Zhou W. Antimicrobial resistance prediction by clinical metagenomics in pediatric severe pneumonia patients. Ann Clin Microbiol Antimicrob 2024; 23:33. [PMID: 38622723 PMCID: PMC11020437 DOI: 10.1186/s12941-024-00690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a major threat to children's health, particularly in respiratory infections. Accurate identification of pathogens and AMR is crucial for targeted antibiotic treatment. Metagenomic next-generation sequencing (mNGS) shows promise in directly detecting microorganisms and resistance genes in clinical samples. However, the accuracy of AMR prediction through mNGS testing needs further investigation for practical clinical decision-making. METHODS We aimed to evaluate the performance of mNGS in predicting AMR for severe pneumonia in pediatric patients. We conducted a retrospective analysis at a tertiary hospital from May 2022 to May 2023. Simultaneous mNGS and culture were performed on bronchoalveolar lavage fluid samples obtained from pediatric patients with severe pneumonia. By comparing the results of mNGS detection of microorganisms and antibiotic resistance genes with those of culture, sensitivity, specificity, positive predictive value, and negative predictive value were calculated. RESULTS mNGS detected bacterial in 71.7% cases (86/120), significantly higher than culture (58/120, 48.3%). Compared to culture, mNGS demonstrated a sensitivity of 96.6% and a specificity of 51.6% in detecting pathogenic microorganisms. Phenotypic susceptibility testing (PST) of 19 antibiotics revealed significant variations in antibiotics resistance rates among different bacteria. Sensitivity prediction of mNGS for carbapenem resistance was higher than penicillins and cephalosporin (67.74% vs. 28.57%, 46.15%), while specificity showed no significant difference (85.71%, 75.00%, 75.00%). mNGS also showed a high sensitivity of 94.74% in predicting carbapenem resistance in Acinetobacter baumannii. CONCLUSIONS mNGS exhibits variable predictive performance among different pathogens and antibiotics, indicating its potential as a supplementary tool to conventional PST. However, mNGS currently cannot replace conventional PST.
Collapse
Affiliation(s)
- Mingyu Gan
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, People's Republic of China
| | - Yanyan Zhang
- Department of Neonatology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Gangfeng Yan
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, People's Republic of China
| | - Yixue Wang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, People's Republic of China
| | - Guoping Lu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, People's Republic of China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, People's Republic of China
| | - Weiming Chen
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, People's Republic of China.
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, People's Republic of China.
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China.
| |
Collapse
|