1
|
Ge H, Wang M, Wei X, Chen XL, Wang X. Copper-Based Nanozymes: Potential Therapies for Infectious Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2407195. [PMID: 39757568 DOI: 10.1002/smll.202407195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/30/2024] [Indexed: 01/07/2025]
Abstract
Bacterial infections are a significant obstacle to the healing of acute and chronic wounds, such as diabetic ulcers and burn injuries. Traditional antibiotics are the primary treatment for bacterial infections, but they present issues such as antibiotic resistance, limited efficacy, and potential side effects. This challenge leads to the exploration of nanozymes as alternative therapeutic agents. Nanozymes are nanomaterials with enzyme-like activities. Owing to their low production costs, high stability, scalability, and multifunctionality, nanozymes have emerged as a prominent focus in antimicrobial research. Among various types of nanozymes, metal-based nanozymes offer several benefits, including broad-spectrum antimicrobial activity and robust catalytic properties. Specifically, copper-based nanozymes (CuNZs) have shown considerable potential in promoting wound healing. They exhibit strong antimicrobial effects, reduce inflammation, and enhance tissue regeneration, making them highly advantageous for use in wound care. This review describes the dual functions of CuNZs in combating infection and facilitating wound repair. Recent advancements in the design and synthesis of CuNZs, evaluating their antimicrobial efficacy, healing promotion, and biosafety both in vitro and in vivo on the basis of their core components, are critically important.
Collapse
Affiliation(s)
- Haojie Ge
- Department of Burns, The First Hospital Affiliated of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Min Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xiaolong Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xu-Lin Chen
- Department of Burns, The First Hospital Affiliated of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xianwen Wang
- Department of Burns, The First Hospital Affiliated of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
2
|
Chauhan R, Patel H, Bhardwaj B, Suryawanshi V, Rawat S. Copper induced augmentation of antibiotic resistance in Acinetobacter baumannii MCC 3114. Biometals 2024:10.1007/s10534-024-00657-3. [PMID: 39708209 DOI: 10.1007/s10534-024-00657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Increasing antibiotic resistance among the common nosocomial pathogen i.e. Acinetobacter baumannii poses life threat to the health care workers as well as to the society. The dissemination of antibiotic resistance in this pathogen at an alarming rate could be not only due to the overuse of antibiotics but also due to the stress caused by exposure of bacterium to several environmental contaminants in their niches. In the present study, effect of copper stress on augmentation in the antibiotic resistance of A. baumannii MCC 3114 against three clinically used antibiotics was investigated along with the phenotypic and genotypic alterations in the cell. It induced 8, 44 and 22-fold increase in resistance against colistin, ciprofloxacin and levofloxacin, respectively. Moreover, the biofilm formation of adapted culture was significantly enhanced due to a dense EPS around the cell (as revealed by SEM images). The structural changes in EPS were demonstrated by FTIR spectroscopy. The adequate growth of adapted MCC 3114 despite increased level of ROS indicates its persistence in copper and ROS stress. The physiological alterations in cell viz., increased efflux pump activity and decreased membrane permeability was observed. Molecular analysis revealed increased expression of efflux pump related genes, oxidative stress genes, integron and antibiotic resistance genes. In sum, our study revealed that the exposure of the critical pathogen, A. baunmannii to copper in hospital settings and environmental reservoirs can impose adaptive pressure which may lead to genotypic as well phenotypic changes in cell resulting into the augmentation of antibiotic resistance.
Collapse
Affiliation(s)
- Ravi Chauhan
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Hardi Patel
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Bhavna Bhardwaj
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Vijay Suryawanshi
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Seema Rawat
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India.
| |
Collapse
|
3
|
Zhang N, Zhuang L, King MF, Qian H, Zhu M. Public surface disinfection every 2 hours can reduce the infection risk of norovirus in airports up to 83. PLoS Comput Biol 2024; 20:e1012561. [PMID: 39636806 PMCID: PMC11620375 DOI: 10.1371/journal.pcbi.1012561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
Norovirus, primarily transmitted via fomite route, poses a significant threat to global public health and the economy. Airports, as critical transportation hubs connecting people from around the world, has high potential risk of norovirus transmission due to large number of public surfaces. A total of 21.3 hours of video episodes were recorded across nine functional areas at the airport, capturing 25,925 touches. A surface transmission model based on a Markov chain was developed. Using the beta-Poisson dose-response model, the infection risk of norovirus and the effectiveness of various interventions in different airports' areas were quantified. Without any preventive measures, restaurants at airports exhibited the highest risk of norovirus transmission, with an infection probability of 8.8×10-3% (95% CI, 1.5×10-3% -2.1×10-2%). This means approximately 4.6 (95% CI, 0.8-10.9) out of 51,494 passengers who entered the restaurants would be infected by an infected passenger. Comparing with no surface disinfection, disinfecting public surfaces every 2 hours can reduce the risk of norovirus infection per visit to the airport by 83.2%. In contrast, comparing with no hand washing, handwashing every 2 hours can reduce the infection risk per visit to the airport by only 2.0%, making public surface disinfection significantly more effective than handwashing. If the mask-wearing rate increases from 0% to 50%, the infection risk of norovirus would be decreased by 48.0% (95% CI, 43.5-52.3%). Furthermore, using antimicrobial copper/copper-nickel alloy coatings for most public surfaces could reduce the infection risk by 15.9%-99.2%.
Collapse
Affiliation(s)
- Nan Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Linan Zhuang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Marco-Felipe King
- School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds, United Kingdom
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Min Zhu
- 6th Medical Center of General Hospital of PLA, Beijing, China
| |
Collapse
|
4
|
Maguire M, Serna C, Montero Serra N, Kovarova A, O'Connor L, Cahill N, Hooban B, DeLappe N, Brennan W, Devane G, Cormican M, Morris D, Coughlan SC, Miliotis G, Gonzalez-Zorn B, Burke LP. Spatiotemporal and genomic analysis of carbapenem resistance elements in Enterobacterales from hospital inpatients and natural water ecosystems of an Irish city. Microbiol Spectr 2024:e0090424. [PMID: 39601575 DOI: 10.1128/spectrum.00904-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) is a diverse group of often multidrug-resistant organisms. Surveillance and control of infections are complicated due to the inter-species spread of carbapenemase-encoding genes (CEGs) on mobile genetic elements (MGEs), including plasmids and transposons. Due to wastewater discharges, urban water ecosystems represent a known reservoir of CPE. However, the dynamics of carbapenemase-bearing MGE dissemination between Enterobacterales in humans and environmental waters are poorly understood. We carried out whole-genome sequencing, combining short- and long-sequencing reads to enable complete characterization of CPE isolated from patients, wastewaters, and natural waters between 2018 and 2020 in Galway, Ireland. Isolates were selected based on their carriage of Class A blaKPC-2 (n = 6), Class B blaNDM-5 (n = 12), and Class D blaOXA-48 (n = 21) CEGs. CEGs were plasmid-borne in all but two isolates. OXA-48 dissemination was associated with a 64 kb IncL plasmid (62%), in a broad range of Enterobacterales isolates from both niches. Conversely, blaKPC-2 and blaNDM-5 genes were usually carried on larger and more variable multireplicon IncF plasmids in Klebsiella pneumoniae and Escherichia coli, respectively. In every isolate, each CEG was surrounded by a gene-specific common genetic environment which constituted part, or all, of a transposable element that was present in both plasmids and the bacterial chromosome. Transposons Tn1999 and Tn4401 were associated with blaOXA-48 and blaKPC-2, respectively, while blaNDM-5 was associated with variable IS26 bound composite transposons, usually containing a class 1 integron.IMPORTANCESince 2018, the Irish National Carbapenemase-Producing Enterobacterales (CPE) Reference Laboratory Service at University Hospital Galway has performed whole-genome sequencing on suspected and confirmed CPE from clinical specimens as well as patient and environmental screening isolates. Understanding the dynamics of CPE and carbapenemase-encoding gene encoding mobile genetic element (MGE) flux between human and environmental reservoirs is important for One Health surveillance of these priority organisms. We employed hybrid assembly approaches for improved resolution of CPE genomic surveillance, typing, and plasmid characterization. We analyzed a diverse collection of human (n = 17) and environmental isolates (n = 22) and found common MGE across multiple species and in different ecological niches. The conjugation ability and frequency of a subset of these plasmids were demonstrated to be affected by the presence or absence of necessary conjugation genes and by plasmid size. We characterize several MGE at play in the local dissemination of carbapenemase genes. This may facilitate their future detection in the clinical laboratory.
Collapse
Affiliation(s)
- Mark Maguire
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
- SFI Center for Research Training in Genomics Data Science, Dublin, Ireland
| | - Carlos Serna
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Natalia Montero Serra
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Aneta Kovarova
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Louise O'Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Brigid Hooban
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Niall DeLappe
- National Carbapenemase Producing Enterobacterales Reference Laboratory Service, University Hospital Galway, Galway, Ireland
| | - Wendy Brennan
- National Carbapenemase Producing Enterobacterales Reference Laboratory Service, University Hospital Galway, Galway, Ireland
| | - Genevieve Devane
- National Carbapenemase Producing Enterobacterales Reference Laboratory Service, University Hospital Galway, Galway, Ireland
| | - Martin Cormican
- National Carbapenemase Producing Enterobacterales Reference Laboratory Service, University Hospital Galway, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Simone C Coughlan
- SFI Center for Research Training in Genomics Data Science, Dublin, Ireland
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Liam P Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
5
|
Pal S, Villani S, Mansi A, Marcelloni AM, Chiominto A, Amori I, Proietto AR, Calcagnile M, Alifano P, Bagheri S, Mele C, Licciulli A, Sannino A, Demitri C. Antimicrobial and Superhydrophobic CuONPs/TiO 2 Hybrid Coating on Polypropylene Substrates against Biofilm Formation. ACS OMEGA 2024; 9:45376-45385. [PMID: 39554441 PMCID: PMC11561633 DOI: 10.1021/acsomega.4c07345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 11/19/2024]
Abstract
Biofilm formation in common public places and hospitals is of great concern. Active antimicrobial coatings can prevent the formation of bacterial biofilms and the spreading of primary and secondary infections caused by contagious bacteria and viruses. In the present work, we report a simple spray coating process using copper oxide (CuO) nanoparticles (NPs) dispersed in a titanium dioxide (TiO2) sol, where CuONPs act as the active antimicrobial agent and TiO2 as the inorganic binder. Homogeneous CuONPs/TiO2 coating was obtained on polypropylene substrates by spraying the CuO/TiO2 sol using a commercial air gun, followed by drying at 80 °C. The amount of CuONPs loading in the coating was adjusted by controlling the number of coated layers. CuONPs and CuONPs/TiO2 coatings were characterized by XRD, BET, X-ray fluorescence spectroscopy, AFM, and field emission scanning electron microscopy techniques. All of the coated films showed dual activity, i.e., antimicrobial and superhydrophobicity. A high bactericidal effect against both Escherichia coli and Staphylococcus aureus was observed for the coated substrates. Coatings with higher CuONPs showed greater antibacterial activity, reaching R value >6, and no bacterial colonies were detected after 24 h of incubation. An increasing trend of water contact angle was observed with the increasing amount of CuONP loading.
Collapse
Affiliation(s)
- Sudipto Pal
- Department
of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Stefania Villani
- Department
of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Antonella Mansi
- Department
of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents
at Work (INAIL), Via
Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Anna Maria Marcelloni
- Department
of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents
at Work (INAIL), Via
Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Alessandra Chiominto
- Department
of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents
at Work (INAIL), Via
Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Ilaria Amori
- Department
of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents
at Work (INAIL), Via
Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Anna Rita Proietto
- Department
of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents
at Work (INAIL), Via
Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Matteo Calcagnile
- Department
of Experimental Medicine, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Pietro Alifano
- Department
of Experimental Medicine, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Sonia Bagheri
- Institute
of Clinical Physiology, National Research Council, C/o Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Claudio Mele
- Department
of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Antonio Licciulli
- Department
of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department
of Experimental Medicine, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Christian Demitri
- Department
of Experimental Medicine, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| |
Collapse
|
6
|
Abreu K, Viana JR, Oliveira Neto JG, Dias TG, Reis AS, Lage MR, da Silva LM, de Sousa FF, dos Santos AO. Exploring Thermal Stability, Vibrational Properties, and Biological Assessments of Dichloro(l-histidine)copper(II): A Combined Theoretical and Experimental Study. ACS OMEGA 2024; 9:43488-43502. [PMID: 39493995 PMCID: PMC11525524 DOI: 10.1021/acsomega.4c05029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Dichloro(l-histidine)copper(II) crystal ([Cu(l-His)Cl2] complex) was obtained by the slow evaporation method and characterized concerning its thermal stability, phase transformations, and electronic and vibrational properties. X-ray diffraction (XRPD) confirmed that this complex crystallizes with an orthorhombic structure (P212121 space group). Thermal analyses (TG and DTA) demonstrate stability from ambient temperature up to 460 K, followed by a phase transition from the orthorhombic structure to the amorphous form around 465 K, as confirmed by temperature-dependent XRPD studies. The active modes in Fourier transform infrared (FT-IR) and Raman spectroscopy spectra were suitably assigned via density functional theory (DFT) calculations. Additionally, Hirshfeld surface analysis uncovered the prominence of Cl···H, O···H, and H···H interactions as the primary intermolecular forces within the crystal structure. The antimicrobial activity of the [Cu(l-His)Cl2] complex was investigated, demonstrating significant efficacy against Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Pseudomonas aeruginosa), and fungi (Candida albicans). The minimum inhibitory concentration and cell viability tests showed that the complex inhibits the growth of S. aureus bacteria at a concentration of 1.5 μM without causing damage to the human cell line. The pharmacokinetic parameters corroborate the other tested parameters and highlight the [Cu(l-His)Cl2] complex as a promising alternative for future clinical trials and medicinal applications. The alignment of the pharmacokinetic parameters with other tested criteria highlights the potential of the [Cu(l-His)Cl2] complex as a promising candidate for future clinical studies.
Collapse
Affiliation(s)
- Kamila
R. Abreu
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Jailton R. Viana
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - João G. Oliveira Neto
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Tatielle G. Dias
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Aramys S. Reis
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Mateus R. Lage
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Luzeli M. da Silva
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Francisco F. de Sousa
- Institute
of Exact and Natural Sciences, Federal University
of Para (UFPA), 66075-110 Belem, PA, Brazil
| | - Adenilson O. dos Santos
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| |
Collapse
|
7
|
Tang W, Xie D, Wang X, Liu G, Huang G. Design and decoration of copper nanoparticles into lignosulfonate-starch bionanocomposite: Characterization and evaluation of its therapeutic properties on burn wound. Int J Biol Macromol 2024; 278:134389. [PMID: 39098681 DOI: 10.1016/j.ijbiomac.2024.134389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
In this report, eco-friendly synthesis for the production of copper nanoparticles by employing the sodium lignosulfonate (NaLS) mixed starch composite (NaLS-Starch/Cu NPs). NaLS-Starch mixed hydrogel has notable reducing and stabilizing potential for preparation of Cu nanoparticles. Characterization of NaLS-Starch/Cu NPs bionanocomposite was subjected to analysis of spectroscopic and microscopic techniques, including FE-SEM, TEM, EDS-elemental mapping, particle size distribution, XRD and ICP. TEM images displayed the spherical structured NaLS-Starch/Cu NPs, averaging 5-10 nm size. NaLS-Starch/Cu NPs were applied to cure the induced burn wounds in 60 Wistar rats. A group was considered as control group. The animals were treated with basal, tetracycline 3 % and NaLS-Starch/Cu NPs 3 % for 30 days and the treatment efficacy was determined according to the burn wound area reduction and molecular and histological characteristics. Taken together, these results support therapeutic use of NaLS-Starch/Cu NPs as potent ointment that may be proposed for burn wound healing. NaLS-Starch/Cu NPs ointment increased the levels of platelet-derived growth factors (PDGF) and fibroblast growth factor (bFGF). The mean wound surface, in all groups treated by NaLS-Starch/Cu NPs was larger than control group.
Collapse
Affiliation(s)
- Wenwen Tang
- Department of Medical Cosmetology and Burn & Plastic Surgery, Shanxi Bethune Hospital, No. 99 Longcheng Road, Taiyuan City, Shanxi Province 030000, China
| | - Dong Xie
- Department of Thoracic Surgery, Traditional Chinese medical hospital of Huangdao District Qingdao, Qingdao, Shandong, 266500, China
| | - Xinli Wang
- Department of Neurosurgery, The Fourth People's Hospital of Jinan, No.50, Shifan Road, Tianqiao District, Jinan, 250000, China
| | - Guiyang Liu
- Department of Neurosurgery, The Fourth People's Hospital of Jinan, No.50, Shifan Road, Tianqiao District, Jinan, 250000, China
| | - Guobao Huang
- Department of Burn and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, No.105, Jiefang Road, Lixia District, Jinan 250013, Shandong, China.
| |
Collapse
|
8
|
Majorek KA, Gucwa M, Murzyn K, Minor W. Metal ions in biomedically relevant macromolecular structures. Front Chem 2024; 12:1426211. [PMID: 39246722 PMCID: PMC11378719 DOI: 10.3389/fchem.2024.1426211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/28/2024] [Indexed: 09/10/2024] Open
Abstract
Understanding the functions of metal ions in biological systems is crucial for many aspects of research, including deciphering their roles in diseases and potential therapeutic use. Structural information about the molecular or atomic details of these interactions, generated by methods like X-ray crystallography, cryo-electron microscopy, or nucleic magnetic resonance, frequently provides details that no other method can. As with any experimental method, they have inherent limitations that sometimes lead to an erroneous interpretation. This manuscript highlights different aspects of structural data available for metal-protein complexes. We examine the quality of modeling metal ion binding sites across different structure determination methods, where different kinds of errors stem from, and how they can impact correct interpretations and conclusions.
Collapse
Affiliation(s)
- Karolina A Majorek
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| | - Michal Gucwa
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
9
|
Abdelkhalek MM, Seif R, Abdallah RZ, Akar AA, Siam R, Allam NK. Recovery of copper/carbon matrix nanoheteroarchitectures from recyclable electronic waste and their efficacy as antibacterial agents. RSC Adv 2024; 14:25750-25758. [PMID: 39148753 PMCID: PMC11325858 DOI: 10.1039/d4ra04750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Innovative solutions are urgently needed with the growing environmental hazard of electronic waste (e-waste) and the rising global threat of bacterial infections. This study addresses both issues by using e-waste to produce copper nanoparticles within a carbon matrix (Cu/C NPs), mitigating environmental hazards while exploring their antibacterial properties. Printed circuit boards from discarded computers were collected and treated with 2 M ammonium citrate dissolved in 8% ammonia solution. The leached solution was used to synthesize copper particles using ascorbic acid. The synthesized Cu/C NPs were characterized using various techniques such as EDX, field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The antibacterial activity of Cu/C NPs against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated using colony-forming unit (CFU) reduction assay and calculating the minimum inhibitory concentrations (MICs). The Cu/C NPs were found to be effective against E. coli and S. aureus with 100% and 98% CFU reduction, respectively, with MICs ranging from 250 to 375 μg mL-1 for E. coli and 375 to 750 μg mL-1 for S. aureus, according to the bacterial load. The bactericidal kinetics showed complete bacterial elimination after 5 and 7 hours for E. coli and S. aureus, respectively. This study presents a sustainable approach for utilizing e-waste and demonstrates the potential of the recovered nanoparticles for antibacterial applications.
Collapse
Affiliation(s)
- Mariam M Abdelkhalek
- Energy Materials Laboratory, Physics Department, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Rania Seif
- Energy Materials Laboratory, Physics Department, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Rehab Z Abdallah
- Department of Biology, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Abdallah A Akar
- Energy Materials Laboratory, Physics Department, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Rania Siam
- Department of Biology, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, Physics Department, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|
10
|
Alkarri S, Naveed M, Alali F, Vachon J, Walworth A, Vanderberg A. Anti-Microbial, Thermal, Mechanical, and Gas Barrier Properties of Linear Low-Density Polyethylene Extrusion Blow-Molded Bottles. Polymers (Basel) 2024; 16:1914. [PMID: 39000769 PMCID: PMC11244499 DOI: 10.3390/polym16131914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
Microbial contamination can occur on the surfaces of blow-molded bottles, necessitating the development and application of effective anti-microbial treatments to mitigate the hazards associated with microbial growth. In this study, new methods of incorporating anti-microbial particles into linear low-density polyethylene (LLDPE) extrusion blow-molded bottles were developed. The anti-microbial particles were thermally embossed on the external surface of the bottle through two particle deposition approaches (spray and powder) over the mold cavity. The produced bottles were studied for their thermal, mechanical, gas barrier, and anti-microbial properties. Both deposition approaches indicated a significant enhancement in anti-microbial activity, as well as barrier properties, while maintaining thermal and mechanical performance. Considering both the effect of anti-microbial agents and variations in tensile bar weight and thickness, the statistical analysis of the mechanical properties showed that applying the anti-microbial agents had no significant influence on the tensile properties of the blow-molded bottles. The external fixation of the particles over the surface of the bottles would result in optimum anti-microbial activity, making it a cost-effective solution compared to conventional compounding processing.
Collapse
Affiliation(s)
- Saleh Alkarri
- School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI 48824-1223, USA
| | - Muhammed Naveed
- School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI 48824-1223, USA
| | - Fatimah Alali
- Almoosa College of Health Sciences, Ain Najm Rd, Al Mubarraz 36422, Saudi Arabia
| | - Jérôme Vachon
- SABIC, P.O. Box 319, 6160 AH Geleen, The Netherlands
| | - Aaron Walworth
- School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI 48824-1223, USA
| | - Abigail Vanderberg
- Center for Advanced Microscopy, Michigan State University, 578 Wilson Road, CIPS Bldg, Rm B-6B, East Lansing, MI 48824-1223, USA
| |
Collapse
|
11
|
Qian Q, Chen J, Qin M, Pei Y, Chen C, Tang D, Makvandi P, Du W, Yang G, Fang H, Zhou Y. Enhancing antibacterial properties by regulating valence configurations of copper: a focus on Cu-carboxyl chelates. J Mater Chem B 2024; 12:5128-5139. [PMID: 38699827 DOI: 10.1039/d4tb00370e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Optimizing the antibacterial effectiveness of copper ions while reducing environmental and cellular toxicity is essential for public health. A copper chelate, named PAI-Cu, is skillfully created using a specially designed carboxyl copolymer (a combination of acrylic and itaconic acids) with copper ions. PAI-Cu demonstrates a broad-spectrum antibacterial capability both in vitro and in vivo, without causing obvious cytotoxic effects. When compared to free copper ions, PAI-Cu displays markedly enhanced antibacterial potency, being about 35 times more effective against Escherichia coli and 16 times more effective against Staphylococcus aureus. Moreover, Gaussian and ab initio molecular dynamics (AIMD) analyses reveal that Cu+ ions can remain stable in the carboxyl compound's aqueous environment. Thus, the superior antibacterial performance of PAI-Cu largely stems from its modulation of copper ions between mono- and divalent states within the Cu-carboxyl chelates, especially via the carboxyl ligand. This modulation leads to the generation of reactive oxygen species (˙OH), which is pivotal in bacterial eradication. This research offers a cost-effective strategy for amplifying the antibacterial properties of Cu ions, paving new paths for utilizing copper ions in advanced antibacterial applications.
Collapse
Affiliation(s)
- Qiuping Qian
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Jige Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingming Qin
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Yu Pei
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Chunxiu Chen
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Dongping Tang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital Quzhou, Zhejiang 324000, China
| | - Wei Du
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqiang Yang
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiping Fang
- School of Physics and National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yunlong Zhou
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
12
|
Torabi S, Hassanzadeh-Tabrizi SA. Effective antibacterial agents in modern wound dressings: a review. BIOFOULING 2024; 40:305-332. [PMID: 38836473 DOI: 10.1080/08927014.2024.2358913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
Wound infections are a significant concern in healthcare, leading to long healing times. Traditional approaches for managing wound infections rely heavily on systemic antibiotics, which are associated with the emergence of antibiotic-resistant bacteria. Therefore, the development of alternative antibacterial materials for wound care has gained considerable attention. In today's world, new generations of wound dressing are commonly used to heal wounds. These new dressings keep the wound and the area around it moist to improve wound healing. However, this moist environment can also foster an environment that is favorable for the growth of bacteria. Excessive antibiotic use poses a significant threat to human health and causes bacterial resistance, so new-generation wound dressings must be designed and developed to reduce the risk of infection. Wound dressings using antimicrobial compounds minimize wound bacterial colonization, making them the best way to avoid open wound infection. We aim to provide readers with a comprehensive understanding of the latest advancements in antibacterial materials for wound management.
Collapse
Affiliation(s)
- Sadaf Torabi
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Sayed Ali Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
13
|
Li Z, Saravanakumar K, Yao L, Kim Y, Choi SY, Yoo G, Keon K, Lee CM, Youn B, Lee D, Cho N. Acer tegmentosum extract-mediated silver nanoparticles loaded chitosan/alginic acid scaffolds enhance healing of E. coli-infected wounds. Int J Biol Macromol 2024; 267:131389. [PMID: 38582461 DOI: 10.1016/j.ijbiomac.2024.131389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
This work developed Acer tegmentosum extract-mediated silver nanoparticles (AgNPs) loaded chitosan (CS)/alginic acid (AL) scaffolds (CS/AL-AgNPs) to enhance the healing of E. coli-infected wounds. The SEM-EDS and XRD results revealed the successful formation of the CS/AL-AgNPs. FTIR analysis evidenced that the anionic group of AL (-COO-) and cationic amine groups of CS (-NH3+) were ionically crosslinked to form scaffold (CS/AL). The CS/AL-AgNPs exhibited significant antimicrobial activity against both Gram-positive (G+) and Gram-negative (G-) bacterial pathogens, while being non-toxic to red blood cells (RBCs), the hen's egg chorioallantoic membrane (HET-CAM), and a non-cancerous cell line (NIH3T3). Treatment with CS/AL-AgNPs significantly accelerated the healing of E. coli-infected wounds by regulating the collagen deposition and blood parameters as evidenced by in vivo experiments. Overall, these findings suggest that CS/AL-AgNPs are promising for the treatment of infected wounds.
Collapse
Affiliation(s)
- Zijun Li
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Lulu Yao
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yebon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Sang Yoon Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea.
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea.
| | - Kim Keon
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea.
| | - Byungwook Youn
- Department of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea.
| | - Doojin Lee
- Department of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
14
|
Diao W, Li P, Jiang X, Zhou J, Yang S. Progress in copper-based materials for wound healing. Wound Repair Regen 2024; 32:314-322. [PMID: 37822053 DOI: 10.1111/wrr.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
Chronic wounds have become the leading cause of death, particularly among diabetic patients. Chronic wounds affect ~6.5 million patients each year, according to statistics, and wound care and management incur significant financial costs. The rising prevalence of chronic wounds, combined with the limitations of current treatments, necessitates the development of new and innovative approaches to accelerate wound healing. Copper has been extensively studied for its antibacterial and anti-inflammatory activities. Copper in its nanoparticle form could have better biological properties and many applications in health care.
Collapse
Affiliation(s)
- Wuliang Diao
- Department of Plastic Surgery, Xiangya Third Hospital, Central South University, Changsha, Hunan, China
| | - Peiting Li
- Department of Plastic Surgery, Xiangya Third Hospital, Central South University, Changsha, Hunan, China
| | - Xilin Jiang
- Department of General Surgery, Zhongfang Hospital, Hunan University of Medicine, Huaihua, Hunan, China
| | - Jianda Zhou
- Department of Plastic Surgery, Xiangya Third Hospital, Central South University, Changsha, Hunan, China
| | - Songbo Yang
- Department of General Surgery, People's Hospital of Tianzhu County, Guizhou, China
| |
Collapse
|
15
|
Reda AT, Park JY, Park YT. Zinc Oxide-Based Nanomaterials for Microbiostatic Activities: A Review. J Funct Biomater 2024; 15:103. [PMID: 38667560 PMCID: PMC11050959 DOI: 10.3390/jfb15040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The world is fighting infectious diseases. Therefore, effective antimicrobials are required to prevent the spread of microbes and protect human health. Zinc oxide (ZnO) nano-materials are known for their antimicrobial activities. Because of their distinctive physical and chemical characteristics, they can be used in medical and environmental applications. ZnO-based composites are among the leading sources of antimicrobial research. They are effective at killing (microbicidal) and inhibiting the growth (microbiostatic) of numerous microorganisms, such as bacteria, viruses, and fungi. Although most studies have focused on the microbicidal features, there is a lack of reviews on their microbiostatic effects. This review provides a detailed overview of available reports on the microbiostatic activities of ZnO-based nano-materials against different microorganisms. Additionally, the factors that affect the efficacy of these materials, their time course, and a comparison of the available antimicrobials are highlighted in this review. The basic properties of ZnO, challenges of working with microorganisms, and working mechanisms of microbiostatic activities are also examined. This review underscores the importance of further research to better understand ZnO-based nano-materials for controlling microbial growth.
Collapse
Affiliation(s)
| | | | - Yong Tae Park
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea; (A.T.R.)
| |
Collapse
|
16
|
Wang D, Yuan C, Li Y, Bai S, Feng J, Wang Y, Fang Y, Zhang Z. Chelation of the Optimal Antifungal Pogostone Analogue with Copper(II) to Explore the Dual Antifungal and Antibacterial Agent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3894-3903. [PMID: 38366986 DOI: 10.1021/acs.jafc.3c07050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
In an ongoing effort to explore more potent antifungal pogostone (Po) analogues, we maintained the previously identified 3-acetyl-4-hydroxy-2-pyrone core motif while synthesizing a series of Po analogues with variations in the alkyl side chain. The in vitro bioassay results revealed that compound 21 was the most potent antifungal analogue with an EC50 value of 1.1 μg/mL against Sclerotinia sclerotiorum (Lib.) de Bary. Meanwhile, its Cu(II) complex 34 manifested significantly enhanced antibacterial activity against Xanthomonas campestris pv campestris (Xcc) with a minimum inhibitory concentration (MIC) value of 300 μg/mL compared with 21 (MIC = 700 μg/mL). Complex 34 exhibited a striking preventive effect against S. sclerotiorum and Xcc in rape leaves, with control efficacies of 98.8% (50 μg/mL) and 80.7% (1000 μg/mL), respectively. The 3D-QSAR models generated using Topomer comparative molecular field analysis indicated that a shorter alkyl chain (carbon atom number <8), terminal rings, or electron-deficient groups on the alkyl side chain are beneficial for antifungal potency. Further, bioassay results revealed that the component of 21 in complex 34 dominated the antifungal activity, but the introduction of Cu(II) significantly enhanced its antibacterial activity. The toxicological observations demonstrated that 21 could induce abnormal mitochondrial morphology, loss of mitochondrial membrane potential, and reactive oxygen species (ROS) accumulation in S. sclerotiorum. The enzyme assay results showed that 21 is a moderate promiscuous inhibitor of mitochondrial complexes II and III. Besides, the introduction of Cu(II) to 34 could promote the disruption of the cell membrane and intracellular proteins and the ROS level in Xcc compared with 21. In summary, these results highlight the potential of 34 as a dual antifungal and antibacterial biocide for controlling rape diseases or as a promising candidate for further optimization.
Collapse
Affiliation(s)
- Delong Wang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Chunxia Yuan
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Yunpeng Li
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Shuhong Bai
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Juntao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yali Fang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Zhijia Zhang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| |
Collapse
|
17
|
Behzadinasab S, Williams MD, Falkinham Iii JO, Ducker WA. Antimicrobial mechanism of cuprous oxide (Cu 2O) coatings. J Colloid Interface Sci 2023; 652:1867-1877. [PMID: 37688933 DOI: 10.1016/j.jcis.2023.08.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Some very effective antimicrobial coatings exploit copper or cuprous oxide (Cu2O) as the active agent. The aim of this study is to determine which species is the active antimicrobial - dissolved ions, the Cu2O solid, or reactive oxygen species. Copper ions were leached from Cu2O into various solutions and the leachate tested for both dissolved copper and the efficacy in killing Pseudomonas aeruginosa. The concentration of copper species leached from Cu2O into aqueous solution varied greatly with the composition of the aqueous solution. For a range of solution buffers, killing of P. aeruginosa was highly correlated with the concentration of copper in the leachate. Further, 10 µL bacterial suspension droplets were placed on Cu2O coatings, with or without a polymer barrier layer, and tested for bacterial kill. Killing occurred without contact between bacterium and solid, demonstrating that contact with Cu2O is not necessary. We therefore conclude that soluble copper species are the antimicrobial agent, and that the most potent species is Cu+. The solid quickly raises and sustains the concentration of soluble copper species near the bacterium. Killing via soluble copper ions rather than contact should allow copper coatings to kill bacteria even when fouled, which is an important practical consideration.
Collapse
Affiliation(s)
- Saeed Behzadinasab
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Myra D Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | | | - William A Ducker
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
18
|
Agarwalla A, Ahmed W, Al-Marzouqi AH, Rizvi TA, Khan M, Zaneldin E. Characteristics and Key Features of Antimicrobial Materials and Associated Mechanisms for Diverse Applications. Molecules 2023; 28:8041. [PMID: 38138531 PMCID: PMC10745420 DOI: 10.3390/molecules28248041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since the Fourth Industrial Revolution, three-dimensional (3D) printing has become a game changer in manufacturing, particularly in bioengineering, integrating complex medical devices and tools with high precision, short operation times, and low cost. Antimicrobial materials are a promising alternative for combating the emergence of unforeseen illnesses and device-related infections. Natural antimicrobial materials, surface-treated biomaterials, and biomaterials incorporated with antimicrobial materials are extensively used to develop 3D-printed products. This review discusses the antimicrobial mechanisms of different materials by providing examples of the most commonly used antimicrobial materials in bioengineering and brief descriptions of their properties and biomedical applications. This review will help researchers to choose suitable antimicrobial agents for developing high-efficiency biomaterials for potential applications in medical devices, packaging materials, biomedical applications, and many more.
Collapse
Affiliation(s)
- Aaruci Agarwalla
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.)
| | - Waleed Ahmed
- Engineering Requirements Unit, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali H. Al-Marzouqi
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.)
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mushtaq Khan
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Essam Zaneldin
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
19
|
Thakare NR, Ingole PG, Hazarika S. Biogenic Synthesis of Nanoparticles from the Edible Plant Polygonum microcephalum for Use in Antimicrobial Fabric. ACS OMEGA 2023; 8:45301-45312. [PMID: 38075803 PMCID: PMC10702177 DOI: 10.1021/acsomega.3c03978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/02/2023] [Accepted: 09/25/2023] [Indexed: 01/03/2025]
Abstract
With increasing demand of the public toward antimicrobial textiles, there should be the proper fabrication of such types of clothes, and it is possible with biogenically synthesized metal nanoparticles (NPs). It is necessary to find cheap and eco-friendly resources for such synthesis. In this work, we used Polygonum microcephalum from Assam, India, to synthesize copper and silver (Ag) NPs. As far as we know, this is the first report on the synthesis of AgNPs and copper oxide NPs (CuONPs) from P. microcephalum The synthesis was done from the aqueous leaf extract. The AgNPs and CuONPs formation was observed by the change in the color of the solution and was confirmed by UV-visible spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Characterization of NPs was done with various physicochemical characterization techniques. The synthesized spherical-shaped AgNPs were found to be effective against the representative bacteria, Gram +ve (Staphylococcus Aureus) and Gram -ve (Escherichia Coli and Pseudomonas Aeruginosa), but the flake-shaped CuONPs were not effective due to their bigger size (>200 nm). The results clearly show that the AgNPs used in this study were toxic against three pathogens. The minimum inhibitory concentrations of AgNPs for S. aureus and E. coli were 32 μg/mL. The uptake analysis of AgNPs for both pathogens demonstrates the mechanism of toxic effects. The present study confirms that P. microcephalum leaf extract is effective in AgNP synthesis, and it could be a cost-effective and environmentally friendly resource for the green synthesis of AgNPs.
Collapse
Affiliation(s)
- Neha R. Thakare
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G. Ingole
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Swapnali Hazarika
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
20
|
Mo F, Zhou J, Yu C, Liu F, Jumili M, Wu Y, Xie X. Decoupling locally enhanced electric field treatment (LEEFT) intensity and copper release by applying asymmetric electric pulses for water disinfection. WATER RESEARCH X 2023; 21:100206. [PMID: 38098885 PMCID: PMC10719566 DOI: 10.1016/j.wroa.2023.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Copper has well-known anti-microbial properties but is typically not considered for drinking water disinfection because of its health risk to human at efficient biocidal concentrations. Locally enhanced electric field treatment (LEEFT) is a cutting-edge technique that aims to inactivate bacteria by generating aqueous pores on the cell membrane through the application of a strong electric field. LEEFT can also increase the permeability of the cell membrane, which promotes the uptake of chemical disinfectants to reduce the required biocidal concentrations. Previously, a coaxial-electrode copper ionization cell (CECIC) was developed to combine copper disinfection with LEEFT, demonstrating superior disinfection efficiency with low effluent copper concentrations (<0.5 mg/L). However, using direct-current (DC) voltages results in a dilemma that a higher voltage is necessary for effective LEEFT disinfection, but a lower voltage is required to limit Cu release. Here, asymmetric electric pulses are employed to decouple the LEEFT intensity from copper release in the CECIC. In this case, LEEFT intensity is primarily determined by the pulse amplitude while the copper release is controlled by the pulse offset. We have demonstrated that the use of asymmetric electric pulses achieves significantly higher inactivation efficiency compared to the DC voltages with the similar level of Cu release. For the water with conductivity similar to tap water (∼100 μS/cm), a high inactivation efficiency of 4.7-log is achieved with only 0.49 mg/L copper release. These findings highlight the potential of asymmetric electric pulses as a promising alternative to DC voltages for the practical application of LEEFT-Cu systems in the future.
Collapse
Affiliation(s)
- Feiyang Mo
- School of Civil & Environmental Engineering, Georgia Institute of Technology, United States
| | - Jianfeng Zhou
- School of Civil & Environmental Engineering, Georgia Institute of Technology, United States
| | - Cecilia Yu
- School of Civil & Environmental Engineering, Georgia Institute of Technology, United States
| | - Feifei Liu
- School of Civil & Environmental Engineering, Georgia Institute of Technology, United States
| | - Manhitha Jumili
- School of Civil & Environmental Engineering, Georgia Institute of Technology, United States
| | - Yuxiao Wu
- School of Civil & Environmental Engineering, Georgia Institute of Technology, United States
| | - Xing Xie
- School of Civil & Environmental Engineering, Georgia Institute of Technology, United States
| |
Collapse
|
21
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
22
|
Sanjarnia P, Nourmohammadi J, Hesaraki S. Nanocomposite chitosan dressing incorporating polydopamine‑copper Janus nanoparticle. Int J Biol Macromol 2023; 251:126173. [PMID: 37558027 DOI: 10.1016/j.ijbiomac.2023.126173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
This research aims to introduce a new wound dressing with antibacterial and anti-inflammatory properties made from chitosan and copper-containing Janus nanoparticles (JNPs). The JNPs were synthesized by attaching copper to PDA nanospheres, which were then embedded in Chitosan at different concentrations. The resulting spherical JNPs had a mean size of 208 ± 96 nm, and EDX mapping showed successful adhesion of Cu2+ ions to PDA nanospheres with a total Cu2+ content of 16.5 wt%. The samples exhibited interconnected porous structures, increasing JNPs concentration resulting in larger pore size and higher porosity. The addition of JNPs to 10 % (Ch-JNP 10) resulted in the highest strength, young modulus, and crystallinity, while a reverse trend was observed at higher JNPs content. JNPs improve the antibacterial activity of chitosan-based dressing, especially against E. coli. All samples were biocompatible and did not exhibit any cytotoxic effects. Ch-JNP10 had higher cellular density, confluency, and collagen secretion than other samples. The in vivo study demonstrated that Ch-JNP10 induced epithelialization and oriented collagen fiber formation while reducing inflammation. Overall, Ch-JNP10 may be a potential wound dressing for chronic wounds.
Collapse
Affiliation(s)
- Pegah Sanjarnia
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran.
| | - Saeed Hesaraki
- Biomaterials Group, Nanotechnology, and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| |
Collapse
|
23
|
Weber DJ, Rutala WA, Anderson DJ, Sickbert-Bennett EE. ..úNo touch..Ñ methods for health care room disinfection: Focus on clinical trials. Am J Infect Control 2023; 51:A134-A143. [PMID: 37890944 DOI: 10.1016/j.ajic.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Hospital patient room surfaces are frequently contaminated with multidrug-resistant organisms. Since studies have demonstrated that inadequate terminal room disinfection commonly occurs, ..úno touch..Ñ methods of terminal room disinfection have been developed such as ultraviolet light (UV) devices and hydrogen peroxide (HP) systems. METHODS This paper reviews published clinical trials of ..úno touch..Ñ methods and ..úself-disinfecting..Ñ surfaces. RESULTS Multiple papers were identified including clinical trials of UV room disinfection devices (N.ß=.ß20), HP room disinfection systems (N.ß=.ß8), handheld UV devices (N.ß=.ß1), and copper-impregnated or coated surfaces (N.ß=.ß5). Most but not all clinical trials of UV devices and HP systems for terminal disinfection demonstrated a reduction of colonization/infection in patients subsequently housed in the room. Copper-coated surfaces were the only ..úself-disinfecting..Ñ technology evaluated by clinical trials. Results of these clinical trials were mixed. DISCUSSION Almost all clinical trials reviewed used a ..úweak..Ñ design (eg, before-after) and failed to assess potential confounders (eg, compliance with hand hygiene and environmental cleaning). CONCLUSIONS The evidence is strong enough to recommend the use of a ..úno-touch..Ñ method as an adjunct for outbreak control, mitigation strategy for high-consequence pathogens (eg, Candida auris or Ebola), or when there are an excessive endemic rates of multidrug-resistant organisms.
Collapse
Affiliation(s)
- David J Weber
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC.
| | - William A Rutala
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Deverick J Anderson
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke University School of Medicine, Durham, NC
| | - Emily E Sickbert-Bennett
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC
| |
Collapse
|
24
|
O'Brien H, Davoodian T, Johnson MDL. The promise of copper ionophores as antimicrobials. Curr Opin Microbiol 2023; 75:102355. [PMID: 37406562 PMCID: PMC10529258 DOI: 10.1016/j.mib.2023.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
Antibiotic-resistant microbe-mediated deaths are a major worldwide health issue. Unfortunately, due to microbial adaptation to develop resistance, some antibiotics are nullified early in their usage, and worse, resistance is detected before they can even be prescribed. Copper's toxicity since antiquity against microbes at the host-pathogen interface offers a fascinating weapon to fight antimicrobial resistance. Here, we briefly review why copper is so effective, how drugs that work with copper are effective antimicrobials, and how compounds such as these could reinvigorate investment in antimicrobial development.
Collapse
Affiliation(s)
- Henrik O'Brien
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Talish Davoodian
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Michael D L Johnson
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; Valley Fever Center for Excellence, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; BIO5 Institute, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; Asthma and Airway Disease Research Center, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA.
| |
Collapse
|
25
|
Abdelbasir SM, Rayan DA, Ismail MM. Synthesis of Cu and CuO nanoparticles from e-waste and evaluation of their antibacterial and photocatalytic properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89690-89704. [PMID: 37458881 PMCID: PMC10412494 DOI: 10.1007/s11356-023-28437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/21/2023] [Indexed: 08/11/2023]
Abstract
Waste printed circuit boards (WPCBs) contain a plethora of valuable metals, considered an attractive secondary resource. In the current research, a hydrometallurgical process combined ammonia/ammonium chloride leaching and reduction (using L-ascorbic acid) to recover copper and its oxide (CuO) as nanosized particles from WPCBs was investigated. The results of leaching indicated that 96.7% of copper could be recovered at a temperature of 35 °C for a leaching duration of 2 h with ammonium chloride and ammonia concentration of 2 mol/L at a solid:liquid ratio of 1:10 g/cm3. The synthesized particles exhibit spherical and distorted sphere morphology with average particle size of 460 nm and 50 nm for Cu and CuO NPs, respectively. The antibacterial activity of Cu, CuO, and a (1:1) blend of both (Cu/CuO) has been examined against five different bacterial and fungal strains. The highest zone of inhibition was measured as 21.2 mm for Cu NPs toward Escherichia coli and 16.7 mm for Cu/CuO blend toward Bacillus cereus bacteria. The highest zone of inhibition was measured as 13 mm and 13.8 mm for Cu/CuO blend toward Fusarium proliferatum and Penicillium verrucosum fungi. Cu/CuO blend showed notable photocatalytic activity towards Rhodamine B dye under visible light irradiation with 96% degradation rate within 120 min. Using the process developed in this study, copper and its oxide as nanoparticles can be produced from WPCBs and used for multifunctional applications.
Collapse
Affiliation(s)
- Sabah M Abdelbasir
- Central Metallurgical R&D Institute (CMRDI), P.O. Box 87, Helwan, Cairo, 11421, Egypt.
| | - Diaa A Rayan
- Central Metallurgical R&D Institute (CMRDI), P.O. Box 87, Helwan, Cairo, 11421, Egypt
- Department of Physics, Deraya University, New Minya, Minya, Egypt
| | - Mahmoud M Ismail
- Physics Department, Faculty of Science, Al-Azhar Unversity, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
26
|
Nassar ARA, Atta HM, Abdel-Rahman MA, El Naghy WS, Fouda A. Myco-synthesized copper oxide nanoparticles using harnessing metabolites of endophytic fungal strain Aspergillus terreus: an insight into antibacterial, anti-Candida, biocompatibility, anticancer, and antioxidant activities. BMC Complement Med Ther 2023; 23:261. [PMID: 37481531 PMCID: PMC10363295 DOI: 10.1186/s12906-023-04056-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The overuse of antibiotics leads to the emergence of antibiotic-resistant microbes which causes high mortality worldwide. Therefore, the synthesis of new active compounds has multifunctional activities are the main challenge. Nanotechnology provides a solution for this issue. METHOD The endophytic fungal strain Aspergillus terreus BR.1 was isolated from the healthy root of Allium sativum and identified using internal transcribed spacer (ITS) sequence analysis. The copper oxide nanoparticles (CuO-NPs) were synthesized by harnessing the metabolites of the endophytic fungal strain. The UV-Visble spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Transmission electron micrscopy (TEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Dynamic light scattering (DLS), and zeta potential (ζ) were used for the characterization of synthesized CuO-NPs. The activity against different pathogenic bacteria and Candida species were investigated by agar well-diffusion method. The biocombatibility and anticancer activity were assessed by MTT assay method. The scavenging of DPPH was used to investigate the antioxidant activity of synthesized CuO-NPs. RESULTS Data showed the successful formation of crystalline nature and spherical shape CuO-NPs with sizes in the ranges of 15-55 nm. The EDX reveals that the as-formed sample contains ions of C, O, Cl, and Cu with weight percentages of 18.7, 23.82, 11.31, and 46.17%, respectively. The DLS and ζ-potential showed high homogeneity and high stability of synthesized CuO-NPs with a polydispersity index (PDI) of 0.362 and ζ-value of - 26.6 mV. The synthesized CuO-NPs exhibited promising antibacterial and anti-Candida activity (concentration-dependent) with minimum inhibitory concentration (MIC) values in the ranges of 25-50 µg mL-1. Moreover, the fungal mediated-CuO-NPs targeted cancer cells of MCF7 and PC3 at low IC50 concentrations of 159.2 ± 4.5 and 116.2 ± 3.6 µg mL-1, respectively as compared to normal cells (Vero and Wi38 with IC50 value of 220.6 ± 3.7 and 229.5 ± 2.1 µg mL-1, respectively). The biosynthesized CuO-NPs showed antioxidant activity as detected by the DPPH method with scavenging percentages of 80.5 ± 1.2% at a concentration of 1000 µg mL-1 and decreased to 20.4 ± 4.2% at 1.9 µg mL-1 as compared to ascorbic acid (control) with scavenging activity of 97.3 ± 0.2 and 37.5 ± 1.3% at the same concentrations, respectively. CONCLUSION The fungal mediated-CuO-NPs exhibited promising activity and can be integrated into various biomedical and theraputic applications.
Collapse
Affiliation(s)
| | - Hossam M Atta
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohamed Ali Abdel-Rahman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Wageih S El Naghy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
27
|
Lovato MJ, Del Valle LJ, Puiggalí J, Franco L. Performance-Enhancing Materials in Medical Gloves. J Funct Biomater 2023; 14:349. [PMID: 37504844 PMCID: PMC10381443 DOI: 10.3390/jfb14070349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Medical gloves, along with masks and gowns, serve as the initial line of defense against potentially infectious microorganisms and hazardous substances in the health sector. During the COVID-19 pandemic, medical gloves played a significant role, as they were widely utilized throughout society in daily activities as a preventive measure. These products demonstrated their value as important personal protection equipment (PPE) and reaffirmed their relevance as infection prevention tools. This review describes the evolution of medical gloves since the discovery of vulcanization by Charles Goodyear in 1839, which fostered the development of this industry. Regarding the current market, a comparison of the main properties, benefits, and drawbacks of the most widespread types of sanitary gloves is presented. The most common gloves are produced from natural rubber (NR), polyisoprene (IR), acrylonitrile butadiene rubber (NBR), polychloroprene (CR), polyethylene (PE), and poly(vinyl chloride) (PVC). Furthermore, the environmental impacts of the conventional natural rubber glove manufacturing process and mitigation strategies, such as bioremediation and rubber recycling, are addressed. In order to create new medical gloves with improved properties, several biopolymers (e.g., poly(vinyl alcohol) and starch) and additives such as biodegradable fillers (e.g., cellulose and chitin), reinforcing fillers (e.g., silica and cellulose nanocrystals), and antimicrobial agents (e.g., biguanides and quaternary ammonium salts) have been evaluated. This paper covers these performance-enhancing materials and describes different innovative prototypes of gloves and coatings designed with them.
Collapse
Affiliation(s)
- María José Lovato
- Departament d'Enginyeria Química, Escola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Luis J Del Valle
- Departament d'Enginyeria Química, Escola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 10-14, 08019 Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', c/Pasqual i Vila s/n, 08028 Barcelona, Spain
| | - Jordi Puiggalí
- Departament d'Enginyeria Química, Escola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 10-14, 08019 Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', c/Pasqual i Vila s/n, 08028 Barcelona, Spain
| | - Lourdes Franco
- Departament d'Enginyeria Química, Escola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 10-14, 08019 Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', c/Pasqual i Vila s/n, 08028 Barcelona, Spain
| |
Collapse
|
28
|
Ma Z, Liang H, Cui R, Ji J, Liu H, Liu X, Shen P, Wang H, Wang X, Song Z, Jiang Y. Construction of a risk model and prediction of prognosis and immunotherapy based on cuproptosis-related LncRNAs in the urinary system pan-cancer. Eur J Med Res 2023; 28:198. [PMID: 37370148 DOI: 10.1186/s40001-023-01173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Urinary pan-cancer system is a general term for tumors of the urinary system including renal cell carcinoma (RCC), prostate cancer (PRAD), and bladder cancer (BLCA). Their location, physiological functions, and metabolism are closely related, making the occurrence and outcome of these tumors highly similar. Cuproptosis is a new type of cell death that is different from apoptosis and plays an essential role in tumors. Therefore, it is necessary to study the molecular mechanism of cuproptosis-related lncRNAs to urinary system pan-cancer for the prognosis, clinical diagnosis, and treatment of urinary tumors. METHOD In our study, we identified 35 co-expression cuproptosis-related lncRNAs (CRLs) from the urinary pan-cancer system. 28 CRLs were identified as prognostic-related CRLs by univariate Cox regression analysis. Then 12 CRLs were obtained using lasso regression and multivariate cox analysis to construct a prognostic model. We divided patients into high- and low-risk groups based on the median risk scores. Next, Kaplan-Meier analysis, principal component analysis (PCA), functional rich annotations, and nomogram were used to compare the differences between the high- and low-risk groups. Finally, the prediction of tumor immune dysfunction and rejection, gene mutation, and drug sensitivity were discussed. CONCLUSION Finally, the candidate molecules of the urinary system pan-cancer were identified. This CRLs risk model may be promising for clinical prediction of prognosis and immunotherapy response in urinary system pan-cancer patients.
Collapse
Affiliation(s)
- Zhihui Ma
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Haining Liang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Rongjun Cui
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jinli Ji
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Hongfeng Liu
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaoxue Liu
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Ping Shen
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Huan Wang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xingyun Wang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Zheyao Song
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Ying Jiang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China.
| |
Collapse
|
29
|
Ramos-Zúñiga J, Bruna N, Pérez-Donoso JM. Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses. Int J Mol Sci 2023; 24:10503. [PMID: 37445681 DOI: 10.3390/ijms241310503] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Copper is a metal historically used to prevent infections. One of the most relevant challenges in modern society are infectious disease outbreaks, where copper-based technologies can play a significant role. Currently, copper nanoparticles and surfaces are the most common antimicrobial copper-based technologies. Despite the widespread use of copper on nanoparticles and surfaces, the toxicity mechanism(s) explaining their unique antimicrobial properties are not entirely known. In general, toxicity effects described in bacteria and fungi involve the rupture of membranes, accumulation of ions inside the cell, protein inactivation, and DNA damage. A few studies have associated Cu-toxicity with ROS production and genetic material degradation in viruses. Therefore, understanding the mechanisms of the toxicity of copper nanoparticles and surfaces will contribute to developing and implementing efficient antimicrobial technologies to combat old and new infectious agents that can lead to disease outbreaks such as COVID-19. This review summarizes the current knowledge regarding the microbial toxicity of copper nanoparticles and surfaces and the gaps in this knowledge. In addition, we discuss potential applications derived from discovering new elements of copper toxicity, such as using different molecules or modifications to potentiate toxicity or antimicrobial specificity.
Collapse
Affiliation(s)
- Javiera Ramos-Zúñiga
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Nicolás Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - José M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| |
Collapse
|
30
|
Shao Y, Fan X, Yang X, Li S, Huang L, Zhou X, Zhang S, Zheng M, Sun J. Impact of Cuproptosis-related markers on clinical status, tumor immune microenvironment and immunotherapy in colorectal cancer: A multi-omic analysis. Comput Struct Biotechnol J 2023; 21:3383-3403. [PMID: 37389187 PMCID: PMC10300104 DOI: 10.1016/j.csbj.2023.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023] Open
Abstract
Background Cuproptosis, a novel identified cell death form induced by copper, is characterized by aggregation of lipoylated mitochondrial enzymes and the destabilization of Fe-S cluster proteins. However, the function and potential clinical value of cuproptosis and cuproptosis-related biomarkers in colorectal cancer (CRC) remain largely unknown. Methods A comprehensive multi-omics (transcriptomics, genomics, and single-cell transcriptome) analysis was performed for identifying the influence of 16 cuproptosis-related markers on clinical status, molecular functions and tumor microenvironment (TME) in CRC. A novel cuproptosis-related scoring system (CuproScore) based on cuproptosis-related markers was also constructed to predict the prognosis of CRC individuals, TME and the response to immunotherapy. In addition, our transcriptome cohort of 15 paired CRC tissue, tissue-array, and various assays in 4 kinds of CRC cell lines in vitro were applied for verification. Results Cuproptosis-related markers were closely associated with both clinical prognosis and molecular functions. And the cuproptosis-related molecular phenotypes and scoring system (CuproScore) could distinguish and predict the prognosis of CRC patients, TME, and the response to immunotherapy in both public and our transcriptome cohorts. Besides, the expression, function and clinical significance of these markers were also checked and analyzed in CRC cell lines and CRC tissues in our own cohorts. Conclusions In conclusion, we indicated that cuproptosis and CPRMs played a significant role in CRC progression and in modeling the TME. Inducing cuproptosis may be a useful tool for tumor therapy in the future.
Collapse
Affiliation(s)
- Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Orta-Rivera AM, Meléndez-Contés Y, Medina-Berríos N, Gómez-Cardona AM, Ramos-Rodríguez A, Cruz-Santiago C, González-Dumeng C, López J, Escribano J, Rivera-Otero JJ, Díaz-Rivera J, Díaz-Vélez SC, Feliciano-Delgado Z, Tinoco AD. Copper-Based Antibiotic Strategies: Exploring Applications in the Hospital Setting and the Targeting of Cu Regulatory Pathways and Current Drug Design Trends. INORGANICS 2023; 11:252. [PMID: 39381734 PMCID: PMC11460770 DOI: 10.3390/inorganics11060252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Classical antibacterial drugs were designed to target specific bacterial properties distinct from host human cells to maximize potency and selectivity. These designs were quite effective as they could be easily derivatized to bear next-generation drugs. However, the rapid mutation of bacteria and their associated acquired drug resistance have led to the rise of highly pathogenic superbug bacterial strains for which treatment with first line drugs is no match. More than ever, there is a dire need for antibacterial drug design that goes beyond conventional standards. Taking inspiration by the body's innate immune response to employ its own supply of labile copper ions in a toxic attack against pathogenic bacteria, which have a very low Cu tolerance, this review article examines the feasibility of Cu-centric strategies for antibacterial preventative and therapeutic applications. Promising results are shown for the use of Cu-containing materials in the hospital setting to minimize patient bacterial infections. Studies directed at disrupting bacterial Cu regulatory pathways elucidate new drug targets that can enable toxic increase of Cu levels and perturb bacterial dependence on iron. Likewise, Cu intracellular chelation/prochelation strategies effectively induce bacterial Cu toxicity. Cu-based small molecules and nanoparticles demonstrate the importance of the Cu ions in their mechanism and display potential synergism with classical drugs.
Collapse
|
32
|
Xu B, Zhou M, Liu M, Wang Z, Duan J, Li W, Cui W, Zhang A. Bioactive Injectable and Self-Healing Hydrogel Via Cell-Free Fat Extract for Endometrial Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300481. [PMID: 37035992 DOI: 10.1002/smll.202300481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Indexed: 06/19/2023]
Abstract
The damaged endometrium and the formation of fibrosis are key barriers to pregnancy and further lead to infertility. However, how to promote endometrium repair is always a challenge. Here, a bioactive injectable and self-healing hydrogel is developed by physically combination of thiolated polyethylene (PEG), Cu2+ and cell-free fat extract (CEFFE, CF) for endometrial regeneration and fertility. By inheriting the advantages of various active proteins contained in CEFFE, it could induce the overall repair of endometrial microenvironment for intrauterine adhesion (IUA). In vitro, CF@Cu-PEG reduces endometrial cell apoptosis by more than 50%, and increases angiogenesis by 92.8%. In the IUA mouse, injection of CF@Cu-PEG significantly reduces the rate of uterine hydrometra and prevents the formation of endometrial fibrosis. Remarkably, CF@Cu-PEG contributes to the repair of endometrial microstructure, especially increases the number of endometrial pinopodes, significantly improves endometrial receptivity, and increases the pregnancy rate of IUA mice from 7.14% to 66.67%. In summary, through the physically combination of CEFFE and Cu-PEG, the construction of loaded bioactive injectable hydrogel not only inhibits the IUA, but also induces the self-repair of endometrial cells in situ and improves fertility, providing a new strategy for IUA repair in clinical application.
Collapse
Affiliation(s)
- Bufang Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Mingjuan Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Mengyu Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jingru Duan
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenzhu Li
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Aijun Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
33
|
Singh P, Ali SW, Kale RD. Antimicrobial Nanomaterials as Advanced Coatings for Self-Sanitizing of Textile Clothing and Personal Protective Equipment. ACS OMEGA 2023; 8:8159-8171. [PMID: 36910928 PMCID: PMC9996805 DOI: 10.1021/acsomega.2c06343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Controlling bioaerosols has become increasingly critical in affecting human health. Natural product treatment in the nano form is a potential method since it has lower toxicity than inorganic nanomaterials like silver nanoparticles. This research is important for the creation of a bioaerosol control system that is effective. Nanoparticles (NPs) are gradually being employed to use bacteria as a nonantibiotic substitute for treating bacterial infections. The present study looks at nanoparticles' antimicrobial properties, their method of action, their impact on drug-opposing bacteria, and the hazards connected with their operation as antimicrobial agents. The aspects that influence nanoparticle conduct in clinical settings, as well as their distinctive features and mode of action as antibacterial assistants, are thoroughly examined. Nanoparticles' action on bacterial cells is presently accepted by way of the introduction of oxidative stress induction, metal-ion release, and nonoxidative methods. Because many concurrent mechanisms of action against germs would necessitate multiple simultaneous gene modifications in the same bacterial cell for antibacterial protection to evolve, bacterial cells developing resistance to NPs is difficult. This review discusses the antimicrobial function of NPs against microbes and presents a comprehensive discussion of the bioaerosols: their origin, hazards, and their prevention. This state of the art method is dependent upon the use of personal protective gear against these bioaerosols. The benefit of the utmost significant categories of metal nanoparticles as antibacterial agents is given important consideration. The novelty of this review depends upon the antimicrobial properties of (a) silver (Ag), (b) zinc oxide (ZnO), and (c) copper oxide (CuO) nanoparticles. The value-added features of these nanoparticles are discussed, as well as their physicochemical characterization and pharmacokinetics, including the toxicological danger they pose to people. Lastly, the effective role of nanomaterials and their future in human wellness is discussed.
Collapse
Affiliation(s)
- Preeti Singh
- Fibers
& Textile Processing Technology, Institute
of Chemical Technology, Mumbai, India
- Department
of Textile and Fibre Engineering, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - S. Wazed Ali
- Department
of Textile and Fibre Engineering, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ravindra D. Kale
- Fibers
& Textile Processing Technology, Institute
of Chemical Technology, Mumbai, India
| |
Collapse
|
34
|
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem 2023; 7:202-224. [PMID: 37117903 PMCID: PMC9907218 DOI: 10.1038/s41570-023-00463-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
35
|
Dávalos A, García-de los Santos A. Five copper homeostasis gene clusters encode the Cu-efflux resistome of the highly copper-tolerant Methylorubrum extorquens AM1. PeerJ 2023; 11:e14925. [PMID: 36846457 PMCID: PMC9948745 DOI: 10.7717/peerj.14925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Background In the last decade, the use of copper has reemerged as a potential strategy to limit healthcare-associated infections and to control the spread of multidrug-resistant pathogens. Numerous environmental studies have proposed that most opportunistic pathogens have acquired antimicrobial resistance in their nonclinical primary habitat. Thus, it can be presumed that copper-resistant bacteria inhabiting a primary commensal niche might potentially colonize clinical environments and negatively affect the bactericidal efficacy of Cu-based treatments. The use of copper in agricultural fields is one of the most important sources of Cu pollution that may exert selection pressure for the increase of copper resistance in soil and plant-associated bacteria. To assess the emergence of copper-resistant bacteria in natural habitats, we surveyed a laboratory collection of bacterial strains belonging to the order Rhizobiales. This study proposes that Methylorubrum extorquens AM1 is an environmental isolate well adapted to thrive in copper-rich environments that could act as a reservoir of copper resistance genes. Methods The minimal inhibitory concentrations (MICs) of CuCl2 were used to estimate the copper tolerance of eight plant-associated facultative diazotrophs (PAFD) and five pink-pigmented facultative methylotrophs (PPFM) belonging to the order Rhizobiales presumed to come from nonclinical and nonmetal-polluted natural habitats based on their reported source of isolation. Their sequenced genomes were used to infer the occurrence and diversity of Cu-ATPases and the copper efflux resistome of Mr. extorquens AM1. Results These bacteria exhibited minimal inhibitory concentrations (MICs) of CuCl2 ranging between 0.020 and 1.9 mM. The presence of multiple and quite divergent Cu-ATPases per genome was a prevalent characteristic. The highest copper tolerance exhibited by Mr. extorquens AM1 (highest MIC of 1.9 mM) was similar to that found in the multimetal-resistant model bacterium Cupriavidus metallidurans CH34 and in clinical isolates of Acinetobacter baumannii. The genome-predicted copper efflux resistome of Mr. extorquens AM1 consists of five large (6.7 to 25.7 kb) Cu homeostasis gene clusters, three clusters share genes encoding Cu-ATPases, CusAB transporters, numerous CopZ chaperones, and enzymes involved in DNA transfer and persistence. The high copper tolerance and the presence of a complex Cu efflux resistome suggest the presence of relatively high copper tolerance in environmental isolates of Mr. extorquens.
Collapse
|
36
|
Pang S, Wu D, Yang H, Kamutzki F, Kurreck J, Gurlo A, Hanaor DAH. Enhanced mechanical performance and bioactivity in strontium/copper co-substituted diopside scaffolds. BIOMATERIALS ADVANCES 2023; 145:213230. [PMID: 36527963 DOI: 10.1016/j.bioadv.2022.213230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Shumin Pang
- Technische Universität Berlin, Chair of Advanced Ceramic Materials, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Dongwei Wu
- Technische Universität Berlin, Chair of Applied Biochemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Haotian Yang
- Technische Universität Berlin, Chair of Advanced Ceramic Materials, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Franz Kamutzki
- Technische Universität Berlin, Chair of Advanced Ceramic Materials, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jens Kurreck
- Technische Universität Berlin, Chair of Applied Biochemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Aleksander Gurlo
- Technische Universität Berlin, Chair of Advanced Ceramic Materials, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Dorian A H Hanaor
- Technische Universität Berlin, Chair of Advanced Ceramic Materials, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
37
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
38
|
Thahira Khatoon U, Velidandi A, Nageswara Rao G. Copper oxide nanoparticles: synthesis via chemical reduction, characterization, antibacterial activity, and possible mechanism involved. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Sahoo J, Sarkhel S, Mukherjee N, Jaiswal A. Nanomaterial-Based Antimicrobial Coating for Biomedical Implants: New Age Solution for Biofilm-Associated Infections. ACS OMEGA 2022; 7:45962-45980. [PMID: 36570317 PMCID: PMC9773971 DOI: 10.1021/acsomega.2c06211] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/09/2022] [Indexed: 05/12/2023]
Abstract
Recently, the upsurge in hospital-acquired diseases has put global health at risk. Biomedical implants being the primary source of contamination, the development of biomedical implants with antimicrobial coatings has attracted the attention of a large group of researchers from around the globe. Bacteria develops biofilms on the surface of implants, making it challenging to eradicate them with the standard approach of administering antibiotics. A further issue of current concern is the fast resurgence of resistance to conventional antibiotics. As nanotechnology continues to advance, various types of nanomaterials have been created, including 2D nanoparticles and metal and metal oxide nanoparticles with antimicrobial properties. Researchers from all over the world are using these materials as a coating agent for biomedical implants to create an antimicrobial environment. This comprehensive and contemporary review summarizes various metals, metal oxide nanoparticles, 2D nanomaterials, and their composites that have been used or may be used in the future as an antimicrobial coating agent for biomedical implants, as well as their succinct mode of action to combat biofilm-associated infection and diseases.
Collapse
Affiliation(s)
| | | | - Nivedita Mukherjee
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
40
|
Coley WC, Akhavi A, Sandu C, Pena PA, Lee I, Ozkan M, Ozkan CS. Copper-carbon hybrid nanoparticles as antimicrobial additives. MRS COMMUNICATIONS 2022; 12:1197-1203. [PMID: 36284763 PMCID: PMC9584249 DOI: 10.1557/s43579-022-00294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Millions of cases of hospital-acquired infections occur every year involving difficult to treat bacterial and fungal agents. In an effort to improve patient outcomes and provide better infection control, antimicrobial coatings are ideal to apply in clinical settings in addition to aseptic practices. Most efforts involving effective antimicrobial surface technologies are limited by toxicity of exposure due to the diffusion. Therefore, surface-immobilized antimicrobial agents are an ideal solution to infection control. Presented herein is a method of producing carbon-coated copper/copper oxide nanoparticles. Our findings demonstrate the potential for these particles to serve as antimicrobial additives. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1557/s43579-022-00294-2.
Collapse
Affiliation(s)
- William C. Coley
- Materials Science and Engineering Program, University of California, Riverside, CA 92521 USA
| | - Amirali Akhavi
- Materials Science and Engineering Program, University of California, Riverside, CA 92521 USA
| | - Cristina Sandu
- Materials Science and Engineering Program, University of California, Riverside, CA 92521 USA
| | - Pedro A. Pena
- Department of Chemistry, University of California, Riverside, CA 92521 USA
| | - Ilkeun Lee
- Department of Chemistry, University of California, Riverside, CA 92521 USA
| | - Mihrimah Ozkan
- Department of Chemistry, University of California, Riverside, CA 92521 USA
- Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521 USA
| | - Cengiz S. Ozkan
- Department of Chemistry, University of California, Riverside, CA 92521 USA
- Department of Mechanical Engineering, University of California, Riverside, CA 92521 USA
| |
Collapse
|
41
|
Ismail NA, Shameli K, Mohamad Sukri SNA, Hara H, Teow SY, Moeini H. Sonochemical synthesis of a copper reduced graphene oxide nanocomposite using honey and evaluation of its antibacterial and cytotoxic activities. Front Mol Biosci 2022; 9:995853. [PMID: 36250022 PMCID: PMC9561822 DOI: 10.3389/fmolb.2022.995853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
The combination of graphene-based materials and inorganic nanoparticles for the enhancement of the nanomaterial properties is extensively explored nowadays. In the present work, we used a sonochemical method to synthesize a copper/reduced graphene oxide (Cu/RGO) nanocomposite using Australian honey and vitamin C as capping and reducing agents, respectively. The honey-mediated copper/reduced graphene oxide (H/Cu/RGO) nanocomposite was then characterized through UV-visible, XRD, HRTEM, and FTIR analysis. The copper nanoparticles (Cu-NPs) in the nanocomposite formed uniform spherical shapes with a size of 2.20 ± 0.70 nm, which attached to the reduced graphene oxide (RGO) layers. The nanocomposite could suppress bacterial growth in both types of bacteria strains. However, in this study, the nanocomposite exhibited good bactericidal activity toward the Gram-positive bacteria than the Gram-negative bacteria. It also showed a cytotoxic effect on the cancer colorectal cell line HCT11, even in low concentrations. These results suggested that the H/Cu/RGO nanocomposite can be a suitable component for biomedical applications.
Collapse
Affiliation(s)
- Nur Afini Ismail
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| | - Siti Nur Amalina Mohamad Sukri
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| | - Hirofumi Hara
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Sin-Yeang Teow
- School of Medical and Life Sciences (SMLS), Sunway University, Kuala Lumpur, Malaysia
| | - Hassan Moeini
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| |
Collapse
|
42
|
Lekhan A, Fiore C, Shemchuk O, Grepioni F, Braga D, Turner RJ. Comparison of Antimicrobial and Antibiofilm Activity of Proflavine Co-crystallized with Silver, Copper, Zinc, and Gallium Salts. ACS APPLIED BIO MATERIALS 2022; 5:4203-4212. [PMID: 35970511 PMCID: PMC9491326 DOI: 10.1021/acsabm.2c00404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
Here, we exploit our mechanochemical synthesis for co-crystallization of an organic antiseptic, proflavine, with metal-based antimicrobials (silver, copper, zinc, and gallium). Our previous studies have looked for general antimicrobial activity for the co-crystals: proflavine·AgNO3, proflavine·CuCl, ZnCl3[Proflavinium], [Proflavinium]2[ZnCl4]·H2O, and [Proflavinium]3[Ga(oxalate)3]·4H2O. Here, we explore and compare more precisely the bacteriostatic (minimal inhibitory concentrations) and antibiofilm (prevention of cell attachment and propagation) activities of the co-crystals. For this, we choose three prominent "ESKAPE" bacterial pathogens of Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. The antimicrobial behavior of the co-crystals was compared to that of the separate components of the polycrystalline samples to ascertain whether the proflavine-metal complex association in the solid state provided effective antimicrobial performance. We were particularly interested to see if the co-crystals were effective in preventing bacteria from initiating and propagating the biofilm mode of growth, as this growth form provides high antimicrobial resistance properties. We found that for the planktonic lifestyle of growth of the three bacterial strains, different co-crystal formulations gave selectivity for best performance. For the biofilm state of growth, we see that the silver proflavine co-crystal has the best overall antibiofilm activity against all three organisms. However, other proflavine-metal co-crystals also show practical antimicrobial efficacy against E. coli and S. aureus. While not all proflavine-metal co-crystals demonstrated enhanced antimicrobial efficacy over their constituents alone, all possessed acceptable antimicrobial properties while trapped in the co-crystal form. We also demonstrate that the metal-proflavine crystals retain antimicrobial activity in storage. This work defines that co-crystallization of metal compounds and organic antimicrobials has a potential role in the quest for antimicrobials/antiseptics in the defense against bacteria in our antimicrobial resistance era.
Collapse
Affiliation(s)
- Andrii Lekhan
- Department
of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Cecilia Fiore
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Oleksii Shemchuk
- Institute
of Condensed Matter and Nanosciences, Université
Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Fabrizia Grepioni
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Dario Braga
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Raymond J. Turner
- Department
of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
43
|
Copper nanoparticles and their oxides: optical, anticancer and antibacterial properties. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Xiao J, Liu Z, Wang J, Zhang S, Zhang Y. Identification of cuprotosis-mediated subtypes, the development of a prognosis model, and influence immune microenvironment in hepatocellular carcinoma. Front Oncol 2022; 12:941211. [PMID: 36110946 PMCID: PMC9468823 DOI: 10.3389/fonc.2022.941211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/05/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose Cuprotosis is a newly discovered form of non-apoptotic regulated cell death and is characterized by copper-dependent and associated with mitochondrial respiration. However, the prognostic significance and function of cuprotosis-related genes (CRGs) in hepatocellular carcinoma (HCC) are unknown. This study aims to develop cuprotosis-mediated patterns-related gene (CMPRG) prediction models for the prognosis of patients with HCC, exploring the functional underlying the CRGs on the influence of tumor microenvironment (TME) features. Experimental design This study obtained transcriptome profiling and the corresponding clinical information from the TCGA and GEO databases. Besides, the Cox regression model with LASSO was implemented to build a multi-gene signature, which was then validated in an internal validation set and two external validation sets through Kaplan-Meier, DCA, and ROC analyses. Results According to the LASSO analysis, we screened out a cuprotosis-mediated pattern 5-gene combination (including PBK; MMP1; GNAZ; GPC1 and AKR1D1). A nomogram was constructed for the presentation of the final model. The ROC curve assessed the model’s predictive ability, which resulted in an area under the curve (AUC) values ranging from 0.604 to 0.787 underwent internal and two external validation sets. Meanwhile, the risk score divided the patients into two groups of high and low risk, and the survival rate of high-risk patients was significantly lower than that of low-risk patients (P<0.01). The risk score could be an independent prognostic factor in the multifactorial Cox regression analysis (P<0.01). Functional analysis revealed that immune status, mutational loads, and drug sensitivity differed between the two risk groups. Conclusions In summary, we identified three cuprotosis-mediated patterns in HCC. And CMPRGs are a promising candidate biomarker for HCC early detection, owing to their strong performance in predicting HCC prognosis and therapy. Quantifying cuprotosis-mediated patterns in individual samples may help improve the understanding of multiomic characteristics and guide the development of targeted therapy for HCC.
Collapse
Affiliation(s)
- Jingjing Xiao
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhenhua Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jinlong Wang
- Department of Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Shuaimin Zhang
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yi Zhang
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
- *Correspondence: Yi Zhang,
| |
Collapse
|
45
|
Zinc Imidazolate Metal–Organic Frameworks-8-Encapsulated Enzymes/Nanoenzymes for Biocatalytic and Biomedical Applications. Catal Letters 2022. [DOI: 10.1007/s10562-022-04140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
46
|
Nafarrate-Valdez RA, Martínez-Martínez RE, Zaragoza-Contreras EA, Áyala-Herrera JL, Domínguez-Pérez RA, Reyes-López SY, Donohue-Cornejo A, Cuevas-González JC, Loyola-Rodríguez JP, Espinosa-Cristóbal LF. Anti-Adherence and Antimicrobial Activities of Silver Nanoparticles against Serotypes C and K of Streptococcus mutans on Orthodontic Appliances. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:877. [PMID: 35888596 PMCID: PMC9323808 DOI: 10.3390/medicina58070877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Streptococcus mutans (S. mutans) is the main microorganism associated with the presence of dental caries and specific serotypes of this bacteria have been related to several systemic diseases limiting general health. In orthodontics, white spot lesions (WSL), represent a great challenge for clinicians due to the great fluctuation of their prevalence and incidence during conventional orthodontic treatments. Although silver nanoparticles (AgNP) have been demonstrated to have great antimicrobial properties in several microorganisms, including S. mutans bacteria, there is no available information about anti adherence and antimicrobial properties of AgNP exposed to two of the most relevant serotypes of S. mutans adhered on orthodontic materials used for conventional therapeutics. The objective of this study was to determine anti-adherence and antimicrobial levels of AgNP against serotypes c and k of S. mutans on conventional orthodontic appliances. Materials and Methods: An AgNP solution was prepared and characterized using dispersion light scattering (DLS) and transmission electron microscopy (TEM). Antimicrobial and anti-adherence activities of AgNP were determined using minimal inhibitory concentrations (MIC) and bacterial adherence testing against serotypes c and k of S. mutans clinically isolated and confirmed by PCR assay. Results: The prepared AgNP had spherical shapes with a good size distribution (29.3 ± 0.7 nm) with negative and well-defined electrical charges (−36.5 ± 5.7 mV). AgNP had good bacterial growth (55.7 ± 19.3 µg/mL for serotype c, and 111.4 ± 38.6 µg/mL for serotype k) and adherence inhibitions for all bacterial strains and orthodontic wires (p < 0.05). The serotype k showed statistically the highest microbial adherence (p < 0.05). The SS wires promoted more bacterial adhesion (149.0 ± 253.6 UFC/mL × 104) than CuNiTi (3.3 ± 6.0 UFC/mL × 104) and NiTi (101.1 ± 108.5 UFC/mL × 104) arches. SEM analysis suggests CuNiTi wires demonstrated better topographical conditions for bacterial adherence while AFM evaluation determined cell wall irregularities in bacterial cells exposed to AgNP. Conclusions: This study suggests the widespread use of AgNP as a potential anti-adherent and antimicrobial agent for the prevention of WSL during conventional orthodontic therapies and, collaterally, other systemic diseases.
Collapse
Affiliation(s)
- Rosa Amalia Nafarrate-Valdez
- Speciality Program in Orthodontics, Department of Dentistry, Biomedical Science Institute, Autonomous University of Ciudad Juarez (UACJ), Envolvente del PRONAF and Estocolmo Avenues, Juarez City 32310, Mexico;
| | - Rita Elizabeth Martínez-Martínez
- Master Program in Advanced Dentistry, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava Avenue, Universitary Campus, San Luis Potosí 78290, Mexico;
| | - Erasto Armando Zaragoza-Contreras
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S. C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| | - José Luis Áyala-Herrera
- School of Dentistry, Universidad De La Salle Bajío, Universidad Avenue, Lomas del Campestre, Guanajuato 37150, Mexico;
| | - Rubén Abraham Domínguez-Pérez
- Laboratory of Multidisciplinary Dental Research, Faculty of Medicine, Autonomous University of Queretaro, Clavel Street, Prados de La Capilla, Santiago de Querétaro 76176, Mexico;
| | - Simón Yobanny Reyes-López
- Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Mexico;
| | - Alejandro Donohue-Cornejo
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Mexico; (A.D.-C.); (J.C.C.-G.)
| | - Juan Carlos Cuevas-González
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Mexico; (A.D.-C.); (J.C.C.-G.)
| | - Juan Pablo Loyola-Rodríguez
- Faculty of Dentistry, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez, Ciudad Universitaria, Universitaria, Culiacán 80013, Mexico;
| | - León Francisco Espinosa-Cristóbal
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Mexico; (A.D.-C.); (J.C.C.-G.)
| |
Collapse
|
47
|
Zhang C, Li X, Xiao D, Zhao Q, Chen S, Yang F, Liu J, Duan K. Cu 2+ Release from Polylactic Acid Coating on Titanium Reduces Bone Implant-Related Infection. J Funct Biomater 2022; 13:jfb13020078. [PMID: 35735933 PMCID: PMC9225639 DOI: 10.3390/jfb13020078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
Implant-related infection (IRI) is a major problem in orthopedics. Copper (Cu) is an essential trace element with strong bactericidal activity and, thus, presents potential for reducing IRI. The present study explored a straightforward strategy for releasing Cu2+ from titanium (Ti) implants, and we conducted a preliminary study to assess the feasibility of this approach in clinical translation. Polylactic acid (PLA) coatings containing different concentrations of copper ions were prepared on Ti discs. The antibacterial activity and biocompatibility of the copper ion-incorporated Ti implants were evaluated using Staphylococcus aureus (S. aureus), bone marrow mesenchymal stem cells (BMSCs) and animal models. In vitro, the coatings produced burst release of Cu2+ in 12 h, and inhibited S. aureus growth in a dose-dependent manner. The coatings prepared from PLA solutions containing 0.5 or 1.0 mg/mL reduced the viability and osteogenic differentiation of BMSCs, but these effects were negated after the coatings were immersed in culture medium for 6 h. Four weeks after implantation, the Cu-free K-wires challenged with S. aureus had persistent infection and inferior fracture healing to the other three groups, while Cu-coated wires had no evidence of infection. Furthermore, the Cu-coated wires placed in rabbits without S. aureus challenge showed superior fracture healing to the other three groups. These results suggest that PLA coatings containing Cu2+ may be an effective design for reducing IRI without adversely affecting adjacent bone healing.
Collapse
Affiliation(s)
- Chengdong Zhang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China; (C.Z.); (Q.Z.); (S.C.); (F.Y.)
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xingping Li
- Department of Orthopaedics, Chengfei Hospital, Chengdu 610091, China;
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China; (C.Z.); (Q.Z.); (S.C.); (F.Y.)
- Correspondence: (D.X.); (K.D.)
| | - Qiao Zhao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China; (C.Z.); (Q.Z.); (S.C.); (F.Y.)
| | - Shuo Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China; (C.Z.); (Q.Z.); (S.C.); (F.Y.)
| | - Fei Yang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China; (C.Z.); (Q.Z.); (S.C.); (F.Y.)
| | - Jinhui Liu
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China;
| | - Ke Duan
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China;
- Correspondence: (D.X.); (K.D.)
| |
Collapse
|
48
|
Kryuchkov M, Adamcik J, Katanaev VL. Bactericidal and Antiviral Bionic Metalized Nanocoatings. NANOMATERIALS 2022; 12:nano12111868. [PMID: 35683724 PMCID: PMC9182136 DOI: 10.3390/nano12111868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023]
Abstract
In diverse living organisms, bionanocoatings provide multiple functionalities, to the surfaces they cover. We have, previously, identified the molecular mechanisms of Turing-based self-assembly of insect corneal nanocoatings and developed forward-engineering approaches to construct multifunctional soft bionic nanocoatings, encompassing the Drosophila protein Retinin. Here, we expand the versatility of the bionic nanocoatings, by identifying and using diverse Retinin-like proteins and different methods of their metallization, using nickel, silver, and copper ions. Comparative assessment, of the resulting bactericidal, antiviral, and cytotoxic properties, identifies the best protocols, to construct safe and anti-infective metalized bionic nanocoatings. Upscaled application of these protocols, to various public surfaces, may represent a safe and economic approach to limit hazardous infections.
Collapse
Affiliation(s)
- Mikhail Kryuchkov
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Jozef Adamcik
- National Center of Competence in Research Bio-Inspired Materials, Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- Correspondence: ; Tel.: +41-22-379-5353
| |
Collapse
|
49
|
Penny H, Flores R, Pennington E, Pedersen A, Tran S. The role of macronutrients and micronutrients in wound healing: a narrative review. J Wound Care 2022; 31:S14-S22. [PMID: 35576197 DOI: 10.12968/jowc.2022.31.sup5.s14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is an extensive amount of research and literature discussing the role of various nutrients throughout the wound healing process. Despite the importance of nutrition in wound healing, dietary protocols often remain absent from wound care standards. This may be due to a lack of comprehensive literature that summarises the complexities and considerations associated with nutrient deficiency and supplementation into an easily accessible and inclusive reference tool. The purpose of this review is to assess the nutrients with key roles in the wound healing process, and subsequently provide information that enables optimisation of nutrition in wound healing. The goal is to consolidate the complexities associated with this topic into a simple, easy-to-use reference tool. We have identified the most important nutrients required for optimal wound healing and condensed the findings into an inclusive chart to be utilised in a clinical setting. This reference tool will include patient populations at risk of deficiency, the stage of wound healing in which each nutrient is required, delivery method and recommended daily intake, outpatient recommendations for rich food sources of each nutrient, and considerations associated with each nutrient.
Collapse
Affiliation(s)
- Harry Penny
- UPMC Altoona, 1414 9th Ave, Altoona, PA 16602, US
| | | | | | | | - Son Tran
- Temple University, School of Pediatric Medicine 148 N. 8th Street, Philadelphia, PA 19107, US
| |
Collapse
|
50
|
Metryka O, Wasilkowski D, Mrozik A. Evaluation of the Effects of Ag, Cu, ZnO and TiO 2 Nanoparticles on the Expression Level of Oxidative Stress-Related Genes and the Activity of Antioxidant Enzymes in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. Int J Mol Sci 2022; 23:4966. [PMID: 35563357 PMCID: PMC9103769 DOI: 10.3390/ijms23094966] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022] Open
Abstract
Although the molecular response of bacteria exposed to metal nanoparticles (NPs) is intensively studied, many phenomena related to their survival, metal uptake, gene expression and protein production are not fully understood. Therefore, this work aimed to study Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs-induced alterations in the expression level of selected oxidative stress-related genes in connection with the activity of antioxidant enzymes: catalase (CAT), peroxidase (PER) and superoxide dismutase (SOD) in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. The methodology used included: the extraction of total RNA and cDNA synthesis, the preparation of primers for selected housekeeping and oxidative stress genes, RT-qPCR reaction and the measurements of CAT, PER and SOD activities. It was established that the treatment of E. coli and S. epidermidis with NPs resulted mainly in the down-regulation of targeted genes, whilst the up-regulation of genes was confirmed in B. cereus. The greatest differences in the relative expression levels of tested genes occurred in B. cereus and S. epidermidis treated with TiO2-NPs, while in E. coli, they were observed under ZnO-NPs exposure. The changes found were mostly related to the expression of genes encoding proteins with PER and CAT-like activity. Among NPs, ZnO-NPs and Cu-NPs increased the activity of antioxidants in E. coli and B. cereus. In turn, TiO2-NPs had a major effect on enzymes activity in S. epidermidis. Considering all of the collected results for tested bacteria, it can be emphasised that the impact of NPs on the antioxidant system functioning was dependent on their type and concentration.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| |
Collapse
|