1
|
Bessesen MT. Interventions targeting the nasal microbiome to eradicate methicillin-resistant Staphylococcusaureus. Clin Microbiol Infect 2025; 31:190-193. [PMID: 39481681 DOI: 10.1016/j.cmi.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Staphylococcus aureus is an important pathogen in many sites, including the bloodstream, skin and soft tissue, bone and joints. When infection is caused by methicillin-resistant S. aureus (MRSA), therapy is more difficult and outcomes are less favourable. Nasal colonization is associated with increased risk for MRSA infections. The nasal microbiome may play a role in risk for nasal colonization and infection. OBJECTIVES To review the role of the microbiome in MRSA nasal colonization and infection. SOURCES Peer-reviewed literature identified in a MEDLINE search using MRSA, S. aureus, prebiotic and microbiota as search terms. CONTENT Reduction of S. aureus nasal colonization has been shown to reduce risk of S. aureus infections, but decolonization methods are imperfect. The role of the nasal microbiome in host defence against S. aureus colonization and infection is explored. Numerous organisms have been shown to be negatively associated with S. aureus colonization. The antimicrobial molecules produced by these organisms are an active area of research. IMPLICATIONS Future research should focus on development of safe and effective molecules that can inhibit S. aureus in the nasal vestibule. Damage to the diverse nasal microbiota by unnecessary antibiotics should be avoided.
Collapse
Affiliation(s)
- Mary T Bessesen
- Infectious Diseases Section, Department of Medicine, Veterans Affairs Eastern Colorado Healthcare System, 1700 North Wheeling, Aurora, CO, USA; Infectious Diseases Division, Department of Medicine, University of Colorado Anschutz School of Medicine, Aurora, CO, USA.
| |
Collapse
|
2
|
Neumann CJ, Mohammadzadeh R, Woh PY, Kobal T, Pausan MR, Shinde T, Haid V, Mertelj P, Weiss EC, Kolovetsiou-Kreiner V, Mahnert A, Kumpitsch C, Jantscher-Krenn E, Moissl-Eichinger C. First-year dynamics of the anaerobic microbiome and archaeome in infants' oral and gastrointestinal systems. mSystems 2025; 10:e0107124. [PMID: 39714161 PMCID: PMC11756582 DOI: 10.1128/msystems.01071-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
Recent research provides new insights into the early establishment of the infant gut microbiome, emphasizing the influence of breastfeeding on the development of gastrointestinal microbiomes. In our study, we longitudinally examined the taxonomic and functional dynamics of the oral and gastrointestinal tract (GIT) microbiomes of healthy infants (n = 30) in their first year, focusing on the often-over-looked aspects, the development of archaeal and anaerobic microbiomes. Breastfed (BF) infants exhibit a more defined transitional phase in their oral microbiome compared to non-breastfed (NBF) infants, marked by a decrease in Streptococcus and the emergence of anaerobic genera such as Granulicatella. This phase, characterized by increased alpha-diversity and significant changes in beta-diversity, occurs earlier in NBF infants (months 1-3) than in BF infants (months 4-6), suggesting that breastfeeding supports later, more defined microbiome maturation. We demonstrated the presence of archaea in the infant oral cavity and GIT microbiome from early infancy, with Methanobrevibacter being the predominant genus. Still, transient patterns show that no stable archaeome is formed. The GIT microbiome exhibited gradual development, with BF infants showing increased diversity and complexity between the third and eighth months, marked by anaerobic microbial networks. NBF infants showed complex microbial co-occurrence patterns from the start. These strong differences between BF and NBF infants' GIT microbiomes are less pronounced on functional levels than on taxonomic levels. Overall, the infant microbiome differentiates and stabilizes over the first year, with breastfeeding playing a crucial role in shaping anaerobic microbial networks and overall microbiome maturation. IMPORTANCE The first year of life is a crucial period for establishing a healthy human microbiome. Our study analyses the role of archaea and obligate anaerobes in the development of the human oral and gut microbiome, with a specific focus on the impact of breastfeeding in this process. Our findings demonstrated that the oral and gut microbiomes of breastfed infants undergo distinct phases of increased dynamics within the first year of life. In contrast, the microbiomes of non-breastfed infants are more mature from the first month, leading to a steadier development without distinct transitional phases in the first year. Additionally, we found that archaeal signatures are present in infants under 1 year of age, but they do not form a stable archaeome. In contrast to this, we could track specific bacterial strains transitioning from oral to gut or persisting in the gut over time.
Collapse
Affiliation(s)
- Charlotte J. Neumann
- Diagnostic and
Research Institute of Hygiene, Microbiology and Environmental Medicine,
Medical University of Graz,
Graz, Styria, Austria
| | - Rokhsareh Mohammadzadeh
- Diagnostic and
Research Institute of Hygiene, Microbiology and Environmental Medicine,
Medical University of Graz,
Graz, Styria, Austria
| | - Pei Yee Woh
- Department of Food
Science and Nutrition, The Hong Kong Polytechnic
University, Hong Kong,
Hong Kong
- Research Institute for
Future Food (RiFood), The Hong Kong Polytechnic
University, Hong Kong SAR,
China
| | - Tanja Kobal
- Diagnostic and
Research Institute of Hygiene, Microbiology and Environmental Medicine,
Medical University of Graz,
Graz, Styria, Austria
| | - Manuela-Raluca Pausan
- Diagnostic and
Research Institute of Hygiene, Microbiology and Environmental Medicine,
Medical University of Graz,
Graz, Styria, Austria
- BBMRI-ERIC, Graz,
Styria, Austria
| | - Tejus Shinde
- Diagnostic and
Research Institute of Hygiene, Microbiology and Environmental Medicine,
Medical University of Graz,
Graz, Styria, Austria
| | - Victoria Haid
- Diagnostic and
Research Institute of Hygiene, Microbiology and Environmental Medicine,
Medical University of Graz,
Graz, Styria, Austria
| | - Polona Mertelj
- Diagnostic and
Research Institute of Hygiene, Microbiology and Environmental Medicine,
Medical University of Graz,
Graz, Styria, Austria
| | - Eva-Christine Weiss
- Department of
Obstetrics and Gynecology, Medical University of
Graz, Graz,
Styria, Austria
| | | | - Alexander Mahnert
- Diagnostic and
Research Institute of Hygiene, Microbiology and Environmental Medicine,
Medical University of Graz,
Graz, Styria, Austria
| | - Christina Kumpitsch
- Diagnostic and
Research Institute of Hygiene, Microbiology and Environmental Medicine,
Medical University of Graz,
Graz, Styria, Austria
| | - Evelyn Jantscher-Krenn
- Department of
Obstetrics and Gynecology, Medical University of
Graz, Graz,
Styria, Austria
- Research Unit Early
Life Determinants (ELiD), Medical University of
Graz, Graz,
Styria, Austria
- BioTechMed,
Graz, Styria, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and
Research Institute of Hygiene, Microbiology and Environmental Medicine,
Medical University of Graz,
Graz, Styria, Austria
- BioTechMed,
Graz, Styria, Austria
| |
Collapse
|
3
|
Szemraj M, Glajzner P, Olszowiec K, Sienkiewicz M. The prevalence of multidrug resistance in Staphylococcus hominis isolated from clinical materials. Sci Rep 2025; 15:414. [PMID: 39747570 PMCID: PMC11696355 DOI: 10.1038/s41598-024-84500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
The treatment of infections caused by Staphylococcus hominis remains a challenge, mainly due to the increasing resistance of these bacteria to antibiotics. The aim of the study was to determine antibiotic resistance in 62 strains S. hominis isolated from clinical materials, and to identify the molecular basis of resistance to antibiotics. Forty-six strains were both methicillin-resistant and harbored the mecA gene. Twenty-three of these strains had mec complex A and ccr complex AB1. Such a combination of the mec and ccr complexes does not correspond to any cassettes that have been demonstrated so far. However, over 80% of the tested strains were multidrug-resistant, of which as many as 12 were resistant to at least seven antibiotics. More than a half of strains harbored the tetK, acc(6')-Ie aph(2''), and ant(4')-I genes. erm(C) was the most common resistant gene to antibiotics from the MLS group. Two strains had as many as five antibiotic resistance genes from the tested groups (erm(C), msr(A), msr(B), mph(C), lnu(A)). The presence of the vga gene encoding resistance to streptogramins A was detected in one strain. All of strains were sensitive to vancomycin. However, 11 of them had reduced sensitivity to this antibiotic and eight of them were characterized by a heterogeneous resistance profile to this antibiotic. Our results clearly shows increasing threat of S. hominis caused by their multi-resistance. Moreover, these bacteria can constitute a reservoir of resistance genes for more pathogenic bacteria.
Collapse
Affiliation(s)
- Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Łódź, Poland.
| | - Paulina Glajzner
- Department of Biopharmacy, Medical University of Lodz, Łódź, Poland
| | - Kamila Olszowiec
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Łódź, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
4
|
Cho JA, Jeon S, Kwon Y, Roh YJ, Shin S, Lee CH, Kim SJ. Identification and comparison of protein composition of biofilms in response to EGCG from Enterococcus faecalis and Staphylococcus lugdunensis, which showed opposite patterns in biofilm-forming abilities. Biofilm 2024; 8:100232. [PMID: 39555139 PMCID: PMC11564074 DOI: 10.1016/j.bioflm.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Bacterial biofilm is resistant to conventional antibiotic treatments, leading to complications associated with many infection-related human diseases. Epigallocatechin Gallate (EGCG), a phenolic catechin enriched in green tea, is recognized for its anti-bacterial and anti-biofilm activities. In this study, we examined the protein components of the biofilms formed in the absence or presence of EGCG using Enterococcus faecalis and Staphylococcus lugdunensis, which had shown opposing patterns in biofilm formation. A clustering heatmap revealed that the two microorganisms expressed the different protein sets in response to EGCG. Proteins that were noticeably upregulated included those associated with stress responsiveness and gluconeogenesis in E. faecalis, and gene modification in S. lugdunensis. Conversely, downregulated proteins were related to tRNA-modifying enzyme activity in E. faecalis, and anabolic metabolism in S. lugdunensis. Among the proteins identified only in EGCG-responsive biofilms, enzymes involved in de novo purine biosynthesis were enriched in E. faecalis, while proteins likely to cause DNA instability and pathogenicity changes were abundantly present in S. lugdunensis. The classification based on gene ontology (GO) terms by microorganism exhibited that metabolic process or catabolic activity was at the top rank in E. faecalis with more than 33 proteins, and in S. lugdunensis, localization or transport was highly ranked with 4 proteins. These results support the hypothesis that EGCG might cause different cellular programs in each microorganism. Finally, comparison of the proteomes between two groups that form biofilms to similar extents discovered that 2 proteins were commonly found in the weak biofilm-forming groups (E. faecalis and EGCG-responding S. lugudunensis), whereas 9 proteins were common among the strong biofilm-forming groups (S. lugdunensis and EGCG-responding E. faecalis). It was suggested that these proteins could serve as potential indicators to detect the presence and predict the extent of biofilm formation by multiple microorganisms. Taken all together, proteomics data and analyses performed in this study provided useful and new information on the proteins embedded in the biofilms formed at the specific conditions, which can aid in diagnosis and the development of tailored treatment strategies.
Collapse
Affiliation(s)
- Jung-Ah Cho
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sangsoo Jeon
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Youngmin Kwon
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| | - Yoo Jin Roh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sukjin Shin
- Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sung Jae Kim
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| |
Collapse
|
5
|
Cruikshank MJ, Pitzer JM, Ameri K, Rother CV, Cooper K, Nuxoll AS. Characterization of Staphylococcus lugdunensis biofilms through ethyl methanesulfonate mutagenesis. AIMS Microbiol 2024; 10:880-893. [PMID: 39628716 PMCID: PMC11609425 DOI: 10.3934/microbiol.2024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 12/06/2024] Open
Abstract
Staphylococcus lugdunensis is a coagulase-negative species responsible for a multitude of infections. These infections often resemble those caused by the more pathogenic staphylococcal species, Staphylococcus aureus, such as skin and soft tissue infections, prosthetic joint infections, and infective endocarditis. Despite a high mortality rate and infections that differ from other coagulase-negative species, little is known regarding S. lugdunensis pathogenesis. The objective of this study is to identify the essential factors for biofilm formation in S. lugdunensis. S. lugdunensis was mutagenized through ethyl methanesulfonate (EMS) exposure, and the individual cells were separated using a cell sorter and examined for biofilm formation at 8 hr and 24 hr timepoints. Mutations that resulted in either increased or decreased biofilm formation were sequenced to identify the genes responsible for the respective phenotypes. A mutation within the S. lugdunensis surface protein A (slsA) gene was common among all of the low biofilm formers, thus suggesting that high expression of this protein is important in biofilm formation. However, other mutations common among the mutants with decreased biofilm formation were in the putative divalent cation transport gene, mgtE. Conversely, a mutation in the gene that codes for the von Willebrand factor binding protein, vwbl, was common among the mutants with increased biofilm formation. Following proteinase K treatment, a significant dispersal of the S. lugdunensis biofilm matrix occurred, thus confirming the presence of primarily protein-mediated biofilms; this is in agreement with previous S. lugdunensis studies. Additionally, all low biofilm formers exhibited decreased protein levels (1.95-2.77 fold change) within the biofilm matrix, while no difference was observed with extracellular DNA (eDNA) or polysaccharides. This study presents a unique methodology to identify genes that affect biofilm formation and sheds light on S. lugdunensis pathogenesis.
Collapse
Affiliation(s)
- McKenna J. Cruikshank
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Justine M. Pitzer
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Kimia Ameri
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Caleb V. Rother
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Kathryn Cooper
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Austin S. Nuxoll
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| |
Collapse
|
6
|
Appleberry H, Anjum H, Cage T, Jarm K, Khan H, Proctor L, Saroca J, Wolfe AJ, Putonti C, Kula A. Draft genomes of one Staphylococcus haemolyticus and five Staphylococcus lugdunensis strains isolated from catheterized urine samples of females. Microbiol Resour Announc 2024; 13:e0049724. [PMID: 39162452 PMCID: PMC11384740 DOI: 10.1128/mra.00497-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/07/2024] [Indexed: 08/21/2024] Open
Abstract
Although Staphylococcus haemolyticus and Staphylococcus lugdunensis are members of the normal human flora, they also can cause infection. Here, we present the draft genomes of five strains of S. lugdunensis and one strain of S. haemolyticus isolated from transurethral catheterized urine samples from different females experiencing lower urinary tract symptoms.
Collapse
Affiliation(s)
- Helen Appleberry
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Haaris Anjum
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Taleah Cage
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Kayla Jarm
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Haashir Khan
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Lizzie Proctor
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Junelle Saroca
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Alex Kula
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Howson S, Ma SL, Schmidt J, Bisht A, Chopra T. Protracted Course of Staphylococcus lugdunensis Septic Arthritis in Native Knee Joint. Cureus 2024; 16:e66848. [PMID: 39280560 PMCID: PMC11395931 DOI: 10.7759/cureus.66848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Staphylococcus lugdunensis is a coagulase-negative bacteria of the Staphylococcus family. It is a highly invasive organism with similar virulence to Staphylococcus aureus. It is commonly associated with bacteremia and infections of the skin, soft tissues, joints, and bones. Those with indwelling medical devices are at the highest risk of infection due to biofilm formation. Instances of native joint infections are exceedingly rare. We describe a case of a 72-year-old female with multiple comorbidities presenting with native right knee joint septic arthritis from S. lugdunensis. Due to treatment noncompliance secondary to latent social determinants of health, she faced a complicated and protracted clinical course that was treated with inpatient intravenous antibiotics and outpatient oral doxycycline. Few cases of native joint infections with S. lugdunensis have been documented, and to our knowledge, the impact of treatment noncompliance on the sequelae of septic arthritis with this organism has not been reported. Socioeconomic factors and comorbidities have been shown to increase a patient's risk for an extended joint infection with S. lugdunensis.
Collapse
Affiliation(s)
- Sofia Howson
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - Sara L Ma
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - Jennifer Schmidt
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - Aakash Bisht
- Department of Internal Medicine, Wayne State University Detroit Medical Center, Detroit, USA
| | - Teena Chopra
- Department of Internal Medicine, Wayne State University Detroit Medical Center, Detroit, USA
- Department of Infectious Diseases, Wayne State University Detroit Medical Center, Detroit, USA
| |
Collapse
|
8
|
Koumaki D, Maraki S, Evangelou G, Rovithi E, Petrou D, Apokidou ES, Gregoriou S, Koumaki V, Ioannou P, Zografaki K, Doxastaki A, Papadopoulou K, Stafylaki D, Mavromanolaki VE, Krasagakis K. Clinical Significance and Microbiological Characteristics of Staphylococcus lugdunensis in Cutaneous Infections. J Clin Med 2024; 13:4327. [PMID: 39124594 PMCID: PMC11312498 DOI: 10.3390/jcm13154327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives:Staphylococcus lugdunensis is a coagulase-negative staphylococcus (CoNS) commonly found on human skin. Unlike other CoNS, S. lugdunensis has a notable potential to cause severe infections comparable to Staphylococcus aureus. This study aimed to characterize the clinical and microbiological profile of patients with S. lugdunensis skin infections at a single center. Methods: We conducted a retrospective analysis of patient records from the Dermatology Department of the University Hospital of Heraklion, Greece, covering the period from January 2014 to January 2024. Patients' clinical presentations, demographics, infection sites, comorbidities, prior infections, antimicrobial treatments, and therapeutic responses were examined. Specimens were collected, transported, and processed according to standardized microbiological protocols. Bacterial identification and antibiotic susceptibility testing were performed using the Vitek 2 automated system and MALDI-TOF MS, with results interpreted according to Clinical and Laboratory Standards Institute (CLSI) criteria. Results: A total of 123 skin specimens positive for S. lugdunensis were analyzed. The cohort comprised 62 males (50.4%) and 61 females (49.6%), with a mean age of 40.24 ± 20.14 years. Most specimens were collected from pus (84%), primarily from below the waist (66.7%). Hidradenitis suppurativa (26%) was the most common condition associated with S. lugdunensis, followed by folliculitis, abscesses, ulcers, cellulitis, and acne. Co-infections with other bacteria were noted in 49.6% of cases, and 25.2% of infections were nosocomially acquired. The majority of patients (65%) received systemic antibiotics, predominantly amoxicillin/clavulanic acid, cefuroxime axetil, and doxycycline, with a cure rate of 100%. All isolates were susceptible to several antibiotics, though resistance to penicillin (28.5%) and clindamycin (36%) was observed. Conclusions:S. lugdunensis is a significant pathogen in skin infections, capable of causing severe disease. The high cure rate demonstrates the effectiveness of appropriate antibiotic therapy. Continued monitoring and antimicrobial stewardship are essential to manage resistance and ensure effective treatment.
Collapse
Affiliation(s)
- Dimitra Koumaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Sofia Maraki
- Department of Clinical Microbiology, University Hospital of Heraklion, 71110 Heraklion, Greece; (S.M.); (D.S.)
| | - Georgios Evangelou
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Evangelia Rovithi
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Danae Petrou
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Erato Solia Apokidou
- Department of Internal Medicine, Agios Nikolaos General Hospital, Knosou 4, 72100 Agios Nikolaos, Greece;
| | - Stamatios Gregoriou
- 1st Department of Dermatology and Venereology, Medical School of Athens, National and Kapodistrian University of Athens, Andreas Sygros Hospital, I. Dragoumi 5, 16121 Athens, Greece;
| | - Vasiliki Koumaki
- Department of Medical Microbiology, Medical School of Athens, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, 11527 Athens, Greece;
| | - Petros Ioannou
- Department of Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
- School of Medicine, University of Crete, 70003 Heraklion, Greece
| | - Kyriaki Zografaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Aikaterini Doxastaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Kalliopi Papadopoulou
- 2nd Department of Internal Medicine, General Hospital of Venizeleio, Knossou Avenue 44, 71409 Heraklion, Greece;
| | - Dimitra Stafylaki
- Department of Clinical Microbiology, University Hospital of Heraklion, 71110 Heraklion, Greece; (S.M.); (D.S.)
| | | | - Konstantinos Krasagakis
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| |
Collapse
|
9
|
Wang Y, Liu C, Xia W, Cui Y, Yu L, Zhao D, Guan X, Wang Y, Wang Y, Li Y, Hu J, Liu J. Association of coagulase-negative staphylococci with orthopedic infections detected by in-house multiplex real-time PCR. Front Microbiol 2024; 15:1400096. [PMID: 38912353 PMCID: PMC11193334 DOI: 10.3389/fmicb.2024.1400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Clinical significance of coagulase-negative staphylococci (CoNS) has been gradually acknowledged in both healthcare and clinical research, but approaches for their precise discrimination at the species level remain scarce. The current study aimed to evaluate the association of CoNS with orthopedic infections, where accurate and prompt identification of etiology is crucial for appropriate diagnosis and treatment decision-making. Methods A 16S rRNA-based quantitative PCR (qPCR) assay was developed for the detection of Staphylococcus genus and two panels of 3-plex qPCR assays for further differentiation of six CoNS species with remarkable clinical significance, including S. epidermidis, S. haemolyticus, S. simulans, S. hominis, S. capitis, and S. caprae. All the assays exhibited excellent analytical performance. ΔCq (quantification cycle) between 16S rRNA and CoNS species-specific targets was established to determine the primary CoNS. These methods were applied to detect CoNS in wound samples from orthopedic patients with and without infection. Results and discussion Overall, CoNS were detected in 17.8% (21/118) of patients with clinically suspected infection and in 9.8% (12/123) of patients without any infection symptom (p < 0.05). Moreover, the association with infection was found to be bacterial quantity dependent. S. epidermidis was identified as the predominant species, followed by S. simulans, S. haemolyticus, and S. hominis. Male sex, open injury, trauma, and lower extremity were determined as risk factors for CoNS infections. CoNS-positive patients had significantly longer hospitalization duration (20 days (15, 33) versus 13 days (7, 22) for Staphylococcus-negative patients, p = 0.003), which could be a considerable burden for healthcare and individual patients. Considering the complex characteristics and devastating consequences of orthopedic infections, further expanding the detection scope for CoNS may be pursued to better understand the etiology of orthopedic infections and to improve therapeutic strategies.
Collapse
Affiliation(s)
- Ying Wang
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Chao Liu
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Wenbo Xia
- Department of Orthopedics, Qingdao Huangdao Traditional Chinese Medicine Hospital, Qingdao, Shandong, China
| | - Yanxiang Cui
- Department of Clinical Laboratory, Qingdao Huangdao Traditional Chinese Medicine Hospital, Qingdao, Shandong, China
| | - Linhong Yu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Dan Zhao
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Xiaoxuan Guan
- Department of Clinical Laboratory, Qingdao Huangdao Traditional Chinese Medicine Hospital, Qingdao, Shandong, China
| | - Yingdi Wang
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yani Wang
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yisong Li
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Jianqiang Hu
- Department of Orthopedics, Qingdao Huangdao Traditional Chinese Medicine Hospital, Qingdao, Shandong, China
| | - Jie Liu
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Fung WW, SZE RKH, Szeto CC, Chow KM. Staphylococcus lugdunensis Peritoneal Dialysis-Related Peritonitis: A Matched Comparative Analysis. Kidney Med 2024; 6:100811. [PMID: 38650953 PMCID: PMC11033185 DOI: 10.1016/j.xkme.2024.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Rationale & Objective Staphylococcus lugdunensis (S lugdunensis) is a coagulase-negative staphylococcus species that has been increasingly recognized to cause serious infections with virulence resembling Staphylococcus aureus (S aureus). No studies have evaluated the characteristics and outcomes of patients with S lugdunensis peritoneal dialysis-related peritonitis compared with those with S aureus peritonitis. We aim to evaluate the clinical course of peritonitis as caused by these organisms. Study Design A retrospective matched comparative analysis involving a single tertiary center from July 2000 to July 2020. Setting & Participants Forty-eight episodes of S aureus peritonitis were matched to 19 cases of S lugdunensis peritonitis. Analytical Approach The cases were individually matched for year of peritonitis, sex, age (±10 years), and Charlson Comorbidity Index (±3). A comparative analysis was performed between the 2 organisms. The outcome includes responses at day 5 of peritonitis and the rate of complete response. Results There is a higher predilection of diabetes in those with S aureus peritonitis than in those with S lugdunensis (64.6% vs 31.6%; P = 0.03). Patients with S aureus peritonitis also have a much higher total cell count at presentation (4,463.9 ± 5,479.5 vs 1,807.9 ± 3,322.7; P = 0.05); a higher prevalence of poor response at day 5 (50.0% vs 15.8%; P = 0.03); a lower rate of complete response (64.6% vs 94.7%; P = 0.01) and are more prone to relapse with the same organism (29.2% vs 0%, respectively; P = 0.01) as compared to those with S lugdunensis. Limitations The result of this small retrospective study involving a single center may not be generalizable to other centers. There is also no data for comparative analysis on other coagulase-negative staphylococci such as Staphylococcus epidermidis, which belongs to the same family as S lugdunensis. Conclusions Although S aureus peritonitis is more virulent with significant morbidity, S lugdunensis can cause similarly serious peritonitis. This largest case series of S lugdunensis peritonitis enabled better characterization of clinical features and outcomes of patients with S lugdunensis peritonitis.
Collapse
Affiliation(s)
- Winston W.S. Fung
- Department of Medicine & Therapeutics, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Ryan K.-H. SZE
- Department of Microbiology, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Cheuk-Chun Szeto
- Department of Medicine & Therapeutics, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
- Li Ka Shing Institute of Health Sciences (LiHS), The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kai-Ming Chow
- Department of Medicine & Therapeutics, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
11
|
Linz MS, Finkel D, Goshorn ES. Staphylococcus lugdunensis Endocarditis Presenting with Brain Abscesses and Temporal Vision Deficits. Case Rep Infect Dis 2024; 2024:4728700. [PMID: 38680454 PMCID: PMC11055646 DOI: 10.1155/2024/4728700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
Staphylococcus lugdunensis is a coagulase-negative staphylococcal bacterium (CoNS) that colonizes the skin. While infectious endocarditis (IE) caused by S. lugdunensis is rare, it is noteworthy because it has been associated with an aggressive clinical course. In this report, we present a case of culture-negative IE complicated by brain abscesses, vision deficits, and progressive heart failure that ultimately required mitral valve replacement. The causative agent was eventually identified as S. lugdunensis through molecular testing of valvular tissue.
Collapse
Affiliation(s)
| | - Diana Finkel
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Eli S. Goshorn
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
12
|
Alsaadi SE, Lu H, Zhang M, Dykes GF, Allison HE, Horsburgh MJ. Bacteriophages from human skin infecting coagulase-negative Staphylococcus: diversity, novelty and host resistance. Sci Rep 2024; 14:8245. [PMID: 38589670 PMCID: PMC11001980 DOI: 10.1038/s41598-024-59065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/06/2024] [Indexed: 04/10/2024] Open
Abstract
The human skin microbiome comprises diverse populations that differ temporally between body sites and individuals. The virome is a less studied component of the skin microbiome and the study of bacteriophages is required to increase knowledge of the modulation and stability of bacterial communities. Staphylococcus species are among the most abundant colonisers of skin and are associated with both health and disease yet the bacteriophages infecting the most abundant species on skin are less well studied. Here, we report the isolation and genome sequencing of 40 bacteriophages from human skin swabs that infect coagulase-negative Staphylococcus (CoNS) species, which extends our knowledge of phage diversity. Six genetic clusters of phages were identified with two clusters representing novel phages, one of which we characterise and name Alsa phage. We identified that Alsa phages have a greater ability to infect the species S. hominis that was otherwise infected less than other CoNS species by the isolated phages, indicating an undescribed barrier to phage infection that could be in part due to numerous restriction-modification systems. The extended diversity of Staphylococcus phages here enables further research to define their contribution to skin microbiome research and the mechanisms that limit phage infection.
Collapse
Affiliation(s)
- Samah E Alsaadi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Hanshuo Lu
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Minxing Zhang
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Gregory F Dykes
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Heather E Allison
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Malcolm J Horsburgh
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
13
|
Bayer J, Becker J, Liu X, Gritsch L, Daiber E, Korn N, Oesterhelt F, Fraunholz M, Weber A, Wolz C. Differential survival of Staphylococcal species in macrophages. Mol Microbiol 2024; 121:470-480. [PMID: 37898563 DOI: 10.1111/mmi.15184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
Staphylococcus aureus is considered an extracellular pathogen, yet the bacterium is able to survive within and escape from host cells. An agr/sae mutant of strain USA300 is unable to escape from macrophages but can replicate and survive within. We questioned whether such "non-toxic" S. aureus resembles the less pathogenic coagulase-negative Staphylococcal (CoNS) species like S. epidermidis, S. carnosus, S. lugdunensis, S. capitis, S. warneri, or S. pettenkoferi. We show that the CoNS are more efficiently killed in macrophage-like THP-1 cells or in human primary macrophages. Mutations in katA, copL, the regulatory system graRS, or sigB did not impact bacterial survival in THP-1 cells. Deletion of the superoxide dismutases impaired S. aureus survival in primary macrophages but not in THP-1 cells. However, expression of the S. aureus-specific sodM in S. epidermidis was not sufficient to protect this species from being killed. Thus, at least in those cells, better bacterial survival of S. aureus could not be linked to higher protection from ROS. However, "non-toxic" S. aureus was found to be insensitive to pH, whereas most CoNS were protected when phagosomal acidification was inhibited. Thus, species differences are at least partially linked to differences in sensitivity to acidification.
Collapse
Affiliation(s)
- Janina Bayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Janna Becker
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Xiao Liu
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Lisa Gritsch
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Ellen Daiber
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Natalya Korn
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Filipp Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Martin Fraunholz
- Department of Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Alexander Weber
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Hirsch P, Tagirdzhanov A, Kushnareva A, Olkhovskii I, Graf S, Schmartz GP, Hegemann JD, Bozhüyük KAJ, Müller R, Keller A, Gurevich A. ABC-HuMi: the Atlas of Biosynthetic Gene Clusters in the Human Microbiome. Nucleic Acids Res 2024; 52:D579-D585. [PMID: 37994699 PMCID: PMC10767846 DOI: 10.1093/nar/gkad1086] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
The human microbiome has emerged as a rich source of diverse and bioactive natural products, harboring immense potential for therapeutic applications. To facilitate systematic exploration and analysis of its biosynthetic landscape, we present ABC-HuMi: the Atlas of Biosynthetic Gene Clusters (BGCs) in the Human Microbiome. ABC-HuMi integrates data from major human microbiome sequence databases and provides an expansive repository of BGCs compared to the limited coverage offered by existing resources. Employing state-of-the-art BGC prediction and analysis tools, our database ensures accurate annotation and enhanced prediction capabilities. ABC-HuMi empowers researchers with advanced browsing, filtering, and search functionality, enabling efficient exploration of the resource. At present, ABC-HuMi boasts a catalog of 19 218 representative BGCs derived from the human gut, oral, skin, respiratory and urogenital systems. By capturing the intricate biosynthetic potential across diverse human body sites, our database fosters profound insights into the molecular repertoire encoded within the human microbiome and offers a comprehensive resource for the discovery and characterization of novel bioactive compounds. The database is freely accessible at https://www.ccb.uni-saarland.de/abc_humi/.
Collapse
Affiliation(s)
- Pascal Hirsch
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
| | - Azat Tagirdzhanov
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Aleksandra Kushnareva
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Ilia Olkhovskii
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Saarbrücken Graduate School of Computer Science, Saarland University, Saarbrücken 66123, Germany
| | - Simon Graf
- Department of Computer Science, Saarland University, Saarbrücken 66123, Germany
| | - Georges P Schmartz
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Kenan A J Bozhüyük
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Andreas Keller
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Alexey Gurevich
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Computer Science, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
15
|
Liu K, Wang Y, Zhao M, Xue G, Wang A, Wang W, Xu L, Chen J. Rapid discrimination of Bifidobacterium longum subspecies based on MALDI-TOF MS and machine learning. Front Microbiol 2023; 14:1297451. [PMID: 38111645 PMCID: PMC10726008 DOI: 10.3389/fmicb.2023.1297451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Although MALDI-TOF mass spectrometry (MS) is widely known as a rapid and cost-effective reference method for identifying microorganisms, its commercial databases face limitations in accurately distinguishing specific subspecies of Bifidobacterium. This study aimed to explore the potential of MALDI-TOF MS protein profiles, coupled with prediction methods, to differentiate between Bifidobacterium longum subsp. infantis (B. infantis) and Bifidobacterium longum subsp. longum (B. longum). The investigation involved the analysis of mass spectra of 59 B. longum strains and 41 B. infantis strains, leading to the identification of five distinct biomarker peaks, specifically at m/z 2,929, 4,408, 5,381, 5,394, and 8,817, using Recurrent Feature Elimination (RFE). To facilate classification between B. longum and B. infantis based on the mass spectra, machine learning models were developed, employing algorithms such as logistic regression (LR), random forest (RF), and support vector machine (SVM). The evaluation of the mass spectrometry data showed that the RF model exhibited the highest performace, boasting an impressive AUC of 0.984. This model outperformed other algorithms in terms of accuracy and sensitivity. Furthermore, when employing a voting mechanism on multi-mass spectrometry data for strain identificaton, the RF model achieved the highest accuracy of 96.67%. The outcomes of this research hold the significant potential for commercial applications, enabling the rapid and precise discrimination of B. longum and B. infantis using MALDI-TOF MS in conjunction with machine learning. Additionally, the approach proposed in this study carries substantial implications across various industries, such as probiotics and pharmaceuticals, where the precise differentiation of specific subspecies is essential for product development and quality control.
Collapse
Affiliation(s)
- Kexin Liu
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Beijing Hotgen Biotechnology Inc., Beijing, China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical, Beijing, China
| | - Minlei Zhao
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Gaogao Xue
- Beijing Hotgen Biotechnology Inc., Beijing, China
| | - Ailan Wang
- Beijing Hotgen Biotechnology Inc., Beijing, China
| | - Weijie Wang
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Lida Xu
- Beijing Hotgen Biotechnology Inc., Beijing, China
| | - Jianguo Chen
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| |
Collapse
|
16
|
Destruel L, Lecomte M, Grand M, Leoz M, Pestel-Caron M, Dahyot S. Impact of clonal lineages on susceptibility of Staphylococcus lugdunensis to chlorhexidine digluconate and chloride benzalkonium. BMC Microbiol 2023; 23:337. [PMID: 37957548 PMCID: PMC10642039 DOI: 10.1186/s12866-023-03088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Little is known about susceptibility of Staphylococcus lugdunensis to antiseptics. The objective of this study was to evaluate, at the molecular and phenotypic level, the susceptibility of 49 clinical S. lugdunensis strains (belonging to the seven clonal complexes [CCs] defined by multilocus sequence typing) to two antiseptics frequently used in healthcare settings (chlorhexidine digluconate [CHX] and chloride benzalkonium [BAC]). RESULTS The minimum inhibitory concentrations (MICs), by broth microdilution method, varied for BAC from 0.25 mg/L to 8 mg/L (MIC50 = 1 mg/L, MIC90 = 2 mg/L) and for CHX from 0.5 mg/L to 2 mg/L (MIC50 = 1 mg/L, MIC90 = 2 mg/L). The BAC and CHX minimum bactericidal concentrations (MBCs) varied from 2 mg/L to 8 mg/L (MBC50 = 4 mg/L, MBC90 = 8 mg/L) and from 2 mg/L to 4 mg/L (MBC50 and MBC90 = 4 mg/L), respectively. A reduced susceptibility to CHX (MIC = 2 mg/L) was observed for 12.2% of the strains and that to BAC (MIC ≥ 4 mg/L) for 4.1%. The norA resistance gene was detected in all the 49 isolates, whereas the qacA gene was rarely encountered (two strains; 4.1%). The qacC, qacG, qacH, and qacJ genes were not detected. The two strains harboring the qacA gene had reduced susceptibility to both antiseptics and belonged to CC3. CONCLUSION The norA gene was detected in all the strains, suggesting that it could belong to the core genome of S. lugdunensis. S. lugdunensis is highly susceptible to both antiseptics tested. Reduced susceptibility to BAC and CHX was a rare phenomenon. Of note, a tendency to higher MICs of BAC was detected for CC3 isolates. These results should be confirmed on a larger collection of strains.
Collapse
Affiliation(s)
- Laurie Destruel
- Univ Rouen Normandie, UNICAEN, Inserm, Normandie Univ, DYNAMICURE UMR 1311, F - 76000, Rouen, France
| | - Marine Lecomte
- Univ Rouen Normandie, UNICAEN, Inserm, Normandie Univ, DYNAMICURE UMR 1311, F - 76000, Rouen, France
| | - Maxime Grand
- Univ Rouen Normandie, UNICAEN, Inserm, Normandie Univ, DYNAMICURE UMR 1311, F - 76000, Rouen, France
| | - Marie Leoz
- Univ Rouen Normandie, UNICAEN, Inserm, Normandie Univ, DYNAMICURE UMR 1311, F - 76000, Rouen, France
| | - Martine Pestel-Caron
- Univ Rouen Normandie, UNICAEN, Inserm, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Bacteriology, F - 76000, Rouen, France
| | - Sandrine Dahyot
- Univ Rouen Normandie, UNICAEN, Inserm, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Bacteriology, F - 76000, Rouen, France.
| |
Collapse
|
17
|
Sakisaka T, Iwasaki T, Ono T, Ueda K, Nejima R, Mori Y, Noguchi Y, Yagi A, Shoji N, Miyata K. Changes in the preoperative ocular surface flora with an increase in patient age: A surveillance analysis of bacterial diversity and resistance to fluoroquinolone. Graefes Arch Clin Exp Ophthalmol 2023; 261:3231-3239. [PMID: 37261513 DOI: 10.1007/s00417-023-06121-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
PURPOSE This study analyzed the relationship between patient age and the prevalence and fluoroquinolone susceptibility of gram-positive cocci from the ocular surface flora before ophthalmic surgery. METHODS This surveillance study included scraped samples from the conjunctival sac of 8923 eyes of 5490 patients (70.0 ± 13.7 years) without ocular infection before ophthalmologic surgery between August 2018 and December 2020. A review of microbiological records regarding patient age was used to determine the number of isolates and gram-positive species obtained, as well as their fluoroquinolone susceptibility. Fluoroquinolone susceptibility was determined using the Clinical and Laboratory Standards Institute protocols of broth microdilution. Statistical analysis was performed using a generalized additive model and a log-linear model. RESULTS In total, 9,894 bacterial isolates obtained from scraped samples from the patients were analyzed. The detected species were Staphylococcus epidermidis (31.0%), Staphylococcus aureus (6.1%), Staphylococcus lugdunensis (3.9%), Enterococcus faecalis (5.8%), Corynebacterium species (31.7%), and Cutibacterium acnes (7.5%) and others. The number of species isolated from the ocular surface was increased at the rate of 1.018 per 10 years of age (p < 0.0001). S. epidermidis, S. lugdunensis, E. faecalis, and Corynebacterium species were isolated more often with an increase in patient age. The levofloxacin resistance ratio of methicillin-sensitive S. epidermidis and Corynebacterium species increased at the rate of 1.204 and 1.087 respectively with a 10-year increase in age (both p < 0.0001). CONCLUSION Gram-positive bacteria in the ocular surface flora (OSF) exhibited gradual changes in diversity and fluoroquinolone resistance with an increase in patient age. It is important to monitor the OSF of the patients before ophthalmologic surgery to prevent refractory ocular postoperative infection.
Collapse
Affiliation(s)
- Toshihiro Sakisaka
- Department of Ophthalmology, Miyata Eye Hospital, 6-3 Kurahara, Miyakonojo, Miyazaki, 885-0051, Japan.
- Department of Ophthalmology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Takuya Iwasaki
- Department of Ophthalmology, Miyata Eye Hospital, 6-3 Kurahara, Miyakonojo, Miyazaki, 885-0051, Japan
| | - Takashi Ono
- Department of Ophthalmology, Miyata Eye Hospital, 6-3 Kurahara, Miyakonojo, Miyazaki, 885-0051, Japan
- Department of Ophthalmology, Graduate School of Medicine and Faculty of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Koji Ueda
- Department of Ophthalmology, Miyata Eye Hospital, 6-3 Kurahara, Miyakonojo, Miyazaki, 885-0051, Japan
| | - Ryohei Nejima
- Department of Ophthalmology, Miyata Eye Hospital, 6-3 Kurahara, Miyakonojo, Miyazaki, 885-0051, Japan
| | - Yosai Mori
- Department of Ophthalmology, Miyata Eye Hospital, 6-3 Kurahara, Miyakonojo, Miyazaki, 885-0051, Japan
| | - Yukari Noguchi
- Department of Ophthalmology, Miyata Eye Hospital, 6-3 Kurahara, Miyakonojo, Miyazaki, 885-0051, Japan
| | - Akiko Yagi
- Department of Ophthalmology, Miyata Eye Hospital, 6-3 Kurahara, Miyakonojo, Miyazaki, 885-0051, Japan
| | - Nobuyuki Shoji
- Department of Ophthalmology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kazunori Miyata
- Department of Ophthalmology, Miyata Eye Hospital, 6-3 Kurahara, Miyakonojo, Miyazaki, 885-0051, Japan
| |
Collapse
|
18
|
Chang SC, Kao CY, Lin LC, Hidrosollo JH, Lu JJ. Lugdunin production and activity in Staphylococcus lugdunensis isolates are associated with its genotypes. Microbiol Spectr 2023; 11:e0129823. [PMID: 37732790 PMCID: PMC10580833 DOI: 10.1128/spectrum.01298-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/20/2023] [Indexed: 09/22/2023] Open
Abstract
Lugdunin produced by Staphylococcus lugdunensis has been shown to have broad inhibitory activity against Gram-positive bacteria; however, lugdunin activity among S. lugdunensis isolates and its association with different agr, SCCmec, and sequence types remain unclear. We used matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to identify S. lugdunensis and collected 202 S. lugdunensis samples for further assays. Agar spot tests were performed to characterize S. lugdunensis lugdunin production and activity. Multilocus sequence typing, SCCmec, and agr genotyping were performed on S. lugdunensis. In all, 91 Staphylococcus aureus strains with varying vancomycin susceptibilities were used to examine lugdunin activity in S. lugdunensis. In total, 48 S. lugdunensis strains (23.8%) were found to be oxacillin-resistant S. lugdunensis (ORSL), whereas 154 (76.2%) were classified as oxacillin-sensitive S. lugdunensis (OSSL). Moreover, 16 (33.3%) ORSL and 35 (22.7%) OSSL strains showed antibacterial activity against S. aureus. Our data showed that most lugdunin-producing ORSL strains (14/48, 29.2%) were of ST3-SCCmec V-agr II genotypes, whereas most lugdunin-producing OSSL strains (15/154, 9.7%) were of ST3-agr II, followed by ST1-agr I (10/154, 6.5%). Our data also revealed that lugdunin exhibited weak inhibitory activity against the VISA ST239 isolate. In addition, we observed that ST239 VSSA was more resistant to lugdunin than ST5, ST59, and ST45 VSSA. Taken together, our data pioneered the epidemiology of lugdunin production in S. lugdunensis isolates and revealed its association with genotypes. However, further molecular and bioinformatics investigations are needed to elucidate the regulatory mechanisms of lugdunin production and activity. IMPORTANCE Lugdunin is active against both methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci by dissipating their membrane potential. However, the association of lugdunin activity with the genotypes of Staphylococcus lugdunensis has not been addressed. Here, we show the high prevalence of lugdunin-producing strains among ST1 (83.3%), ST2 (66.7%), and ST3 (53.3%) S. lugdunensis. Moreover, we identified the antibacterial activity of lugdunin-producing strains against VISA and hVISA. These results shed light on the potential application of lugdunin for the treatment of drug-resistant pathogens.
Collapse
Affiliation(s)
- Shih-Cheng Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jazon Harl Hidrosollo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
19
|
Piksa M, Fortuna W, Lian C, Gacka M, Samuel IDW, Matczyszyn K, Pawlik KJ. Treatment of antibiotic-resistant bacteria colonizing diabetic foot ulcers by OLED induced antimicrobial photodynamic therapy. Sci Rep 2023; 13:14087. [PMID: 37640720 PMCID: PMC10462621 DOI: 10.1038/s41598-023-39363-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
We evaluate the efficacy of antimicrobial Photodynamic Therapy (APDT) for inactivating a variety of antibiotic-resistant clinical strains from diabetic foot ulcers. Here we are focused on APDT based on organic light-emitting diodes (OLED). The wound swabs from ten patients diagnosed with diabetic foot ulcers were collected and 32 clinical strains comprising 22 bacterial species were obtained. The isolated strains were identified with the use of mass spectrometry coupled with a protein profile database and tested for antibiotic susceptibility. 74% of isolated bacterial strains exhibited adaptive antibiotic resistance to at least one antibiotic. All strains were subjected to the APDT procedure using an OLED as a light source and 16 µM methylene blue as a photosensitizer. APDT using the OLED led to a large reduction in all cases. For pathogenic bacteria, the reduction ranged from 1.1-log to > 8 log (Klebsiella aerogenes, Enterobacter cloaca, Staphylococcus hominis) even for high antibiotic resistance (MRSA 5-log reduction). Opportunistic bacteria showed a range from 0.4-log reduction for Citrobacter koseri to > 8 log reduction for Kocuria rhizophila. These results show that OLED-driven APDT is effective against pathogens and opportunistic bacteria regardless of drug resistance.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Wojciech Fortuna
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews, KY16 9SS, UK
| | | | - Ifor D W Samuel
- Organic Semiconductor Centre, School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland.
| |
Collapse
|
20
|
Hunter N, Kusnik A, Proia L. A Frequently Overlooked Contaminant: A Case of Staphylococcus lugdunensis Bacteremia. J Community Hosp Intern Med Perspect 2023; 13:107-108. [PMID: 37868231 PMCID: PMC10589021 DOI: 10.55729/2000-9666.1201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 10/24/2023] Open
Affiliation(s)
- Nicole Hunter
- Department of Internal Medicine, Unity Hospital, Rochester, NY,
USA
| | - Alexander Kusnik
- Department of Internal Medicine, Unity Hospital, Rochester, NY,
USA
| | - Laurie Proia
- Department of Internal Medicine, Unity Hospital, Rochester, NY,
USA
- Department of Infectious Diseases, Unity Hospital, Rochester, NY,
USA
| |
Collapse
|
21
|
Yukawa S, Noguchi T, Shinohara K, Tsuchido Y, Yamamoto M, Matsumura Y, Nagao M. Characteristics and outcomes in adult patients with Staphylococcus lugdunensis bacteremia compared to patients with Staphylococcus epidermidis and Staphylococcus aureus bacteremia: a retrospective study in a 16-year period at the university hospital, Japan. BMC Infect Dis 2023; 23:269. [PMID: 37127589 PMCID: PMC10150470 DOI: 10.1186/s12879-023-08233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Staphyococcus lugudnensis (S. lugdunensis) is one of coagulase-negative Staphylococcus species with a potential to cause invasive infections. Few studies have evaluated the characteristics and outcomes of patients with S. lugdunensis bacteremia (SLB) compared with those of patients with Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) bacteremia. METHODS We performed a single-center retrospective case-control study of patients aged ≥ 18 who had SLB with at least two sets of positive blood cultures at the Kyoto University Hospital, Japan, from January 2005 to June 2022. Patients who had S. epidermidis bacteremia (SEB) with at least two sets of positive blood cultures and those who had S. aureus bacteremia (SAB) with at least one set of positive blood cultures were randomly selected in a 1:5:5 (SLB:SEB:SAB) ratio. RESULTS A total of 22 patients with SLB, 110 patients with SEB, and 110 patients with SAB were included. The proportions of infective endocarditis (IE) and metastatic infections were statistically higher in the SLB group than in the SEB group (14% vs. 2%, p < 0.01 and 18% vs. 5%, p 0.02, respectively) and were not significantly different between the SLB and SAB groups (14% vs. 5%, p 0.16 and 18% vs. 16%, p 0.78, respectively). The seven-day mortality was higher in the SLB group than in the SEB group (9% vs. 1%, p 0.02) and similar between the SLB and SAB groups (9% vs. 7%, p 0.77). CONCLUSIONS The clinical course and outcome of SLB were worse than those of SEB and similar to those of SAB. Appropriate evaluation and treatment for SAB may be warranted in patients with SLB.
Collapse
Affiliation(s)
- Satomi Yukawa
- Department of Infection Control and Prevention, Kyoto University Hospital, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, Postal Code 6068507, Japan.
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Taro Noguchi
- Department of Infection Control and Prevention, Kyoto University Hospital, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, Postal Code 6068507, Japan
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koh Shinohara
- Department of Infection Control and Prevention, Kyoto University Hospital, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, Postal Code 6068507, Japan
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuhiro Tsuchido
- Department of Infection Control and Prevention, Kyoto University Hospital, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, Postal Code 6068507, Japan
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Yamamoto
- Department of Infection Control and Prevention, Kyoto University Hospital, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, Postal Code 6068507, Japan
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasufumi Matsumura
- Department of Infection Control and Prevention, Kyoto University Hospital, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, Postal Code 6068507, Japan
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miki Nagao
- Department of Infection Control and Prevention, Kyoto University Hospital, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, Postal Code 6068507, Japan
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
22
|
Chang SC, Hidrosollo JH, Lin LC, Ou YH, Kao CY, Lu JJ. Characterization of oxacillin-resistant Staphylococcus lugdunensis isolated from sterile body fluids in a medical center in Taiwan: A 12-year longitudinal epidemiological study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:292-298. [PMID: 36130866 DOI: 10.1016/j.jmii.2022.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND In this study, our objective was to characterize Staphylococcus lugdunensis isolated from sterile body fluids (SBFs) in a medical center in Taiwan between 2009 and 2020. METHODS We used MALDI-TOF MS, disk diffusion testing, agar dilution assay, SCCmec typing, and antibiotic resistance gene screening to identify and investigate the characteristics of oxacillin-resistant S. lugdunensis (ORSL). RESULTS A total of 438 S. lugdunensis isolates were collected and 146 (33.3%) isolates were identified as ORSL. SCCmec type V was dominant (65.7%) in our ORSL isolates, followed by SCCmec type II (18.5%), and type IV (8.9%). After 2013, a slight increase in SCCmec types IV and V was revealed. Moreover, all ORSL isolates with type II and untypable SCCmec were highly resistant to oxacillin (MIC >32 μg/mL), compared to ORSL that had SCCmec types IV, V, and VT. All 146 ORSL isolates were resistant to penicillin and susceptible to teicoplanin and vancomycin. High resistance rates of ORSL to clindamycin (43.2%), erythromycin (43.2%), gentamicin (78.1%) and tetracycline (46.6%) was observed. Moreover, only two (1.4%) and six (4.1%) ORSL isolates were resistant to trimethoprim/sulfamethoxazole and ciprofloxacin, respectively. The erythromycin-resistant ORSL isolates mostly exhibited constitutive MLSB resistant phenotype (61/63, 96.8%) and contained either ermC alone (27/63, 42.9%) or a combination of ermC with ermA (28/63, 44.4%). CONCLUSION Our present study showed a stable rate of ORSL from SBFs during 2009-2020. Moreover, teicoplanin, vancomycin, trimethoprim/sulfamethoxazole, and ciprofloxacin were shown to be highly efficient for the treatment of ORSL in vitro.
Collapse
Affiliation(s)
- Shih-Cheng Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Jazon Harl Hidrosollo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Hsiang Ou
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
23
|
Fructose Stimulated Colonic Arginine and Proline Metabolism Dysbiosis, Altered Microbiota and Aggravated Intestinal Barrier Dysfunction in DSS-Induced Colitis Rats. Nutrients 2023; 15:nu15030782. [PMID: 36771488 PMCID: PMC9921751 DOI: 10.3390/nu15030782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The dysbiosis of intestinal microbiota and their metabolites is linked to the occurrence and development of metabolic syndrome. Although fructose has been proven to be associated with worsened mucus in the colon, its mechanism remains unclear. In this study, we evaluated the relatively low intake of sucrose and fructose in the experimental colitis of Sprague Dawley rats by investigating the microbiome and metabolome. Results showed that sucrose and fructose significantly reduced body weight, colon length and increased inflammation infiltration in colon. Sucrose and fructose worsen colon functions by inhibiting the expression of tight junction (TJ) protein ZO-1 and increasing the level of lipopolysaccharide neoandrographolide (LPS) in plasma, while fructose was more significant. Furthermore, sucrose and fructose significantly changed the composition of gut microbiota characterized by decreasing Adlercreutzia, Leuconostoc, Lactococcus and Oscillospira and increasing Allobaculum and Holdemania along with reducing histidine, phenylalanine, arginine, glycine, aspartic acid, serine, methionine valine, alanine, lysine, isoleucine, leucine, threonine, tryptophan, tyrosine, proline, citrulline, 4-hydroxyproline and gamma amino butyric acid (GABA). Metabolome results showed that fructose may aggravate experimental colitis symptoms by inducing amino metabolism dysbiosis in the colon. These findings suggested that fructose worsened colitis by manipulating the crosstalk between gut microbiota and their metabolites.
Collapse
|
24
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
25
|
Chajęcka-Wierzchowska W, Gajewska J, Zakrzewski AJ, Caggia C, Zadernowska A. Molecular Analysis of Pathogenicity, Adhesive Matrix Molecules (MSCRAMMs) and Biofilm Genes of Coagulase-Negative Staphylococci Isolated from Ready-to-Eat Food. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1375. [PMID: 36674132 PMCID: PMC9859056 DOI: 10.3390/ijerph20021375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
This paper provides a snapshot on the pathogenic traits within CoNS isolated from ready-to-eat (RTE) food. Eighty-five strains were subjected to biofilm and slime production, as well as biofilm-associated genes (icaA, icaD, icaB, icaC, eno, bap, bhp, aap, fbe, embP and atlE), the insertion sequence elements IS256 and IS257 and hemolytic genes. The results showed that the most prevalent determinants responsible for the primary adherence were eno (57.6%) and aap (56.5%) genes. The icaADBC operon was detected in 45.9% of the tested strains and was correlated to slime production. Moreover, most strains carrying the icaADBC operon simultaneously carried the IS257 insertion sequence element. Among the genes encoding for surface proteins involved in the adhesion to abiotic surfaces process, atlE was the most commonly (31.8%) followed by bap (4.7%) and bhp (1.2%). The MSCRAMMs, including fbe and embp were detected in the 11.8% and 28.2% of strains, respectively. A high occurrence of genes involved in the hemolytic toxin production were detected, such as hla_yiD (50.6%), hlb (48.2%), hld (41.2%) and hla_haem (34.1%). The results of the present study revealed an unexpected occurrence of the genes involved in biofilm production and the high hemolytic activity among the CoNS strains, isolated from RTE food, highlighting that this group seems to be acquiring pathogenic traits similar to those of S. aureus, suggesting the need to be included in the routine microbiological analyses of food.
Collapse
Affiliation(s)
- Wioleta Chajęcka-Wierzchowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Joanna Gajewska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Arkadiusz Józef Zakrzewski
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Anna Zadernowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| |
Collapse
|
26
|
Lee SM, Keum HL, Sul WJ. Bacterial Crosstalk via Antimicrobial Peptides on the Human Skin: Therapeutics from a Sustainable Perspective. J Microbiol 2023; 61:1-11. [PMID: 36719618 DOI: 10.1007/s12275-022-00002-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 02/01/2023]
Abstract
The skin's epidermis is an essential barrier as the first guard against invading pathogens, and physical protector from external injury. The skin microbiome, which consists of numerous bacteria, fungi, viruses, and archaea on the epidermis, play a key role in skin homeostasis. Antibiotics are a fast-acting and effective treatment method, however, antibiotic use is a nuisance that can disrupt skin homeostasis by eradicating beneficial bacteria along with the intended pathogens and cause antibiotic-resistant bacteria spread. Increased numbers of antimicrobial peptides (AMPs) derived from humans and bacteria have been reported, and their roles have been well defined. Recently, modulation of the skin microbiome with AMPs rather than artificially synthesized antibiotics has attracted the attention of researchers as many antibiotic-resistant strains make treatment mediation difficult in the context of ecological problems. Herein, we discuss the overall insights into the skin microbiome, including its regulation by different AMPs, as well as their composition and role in health and disease.
Collapse
Affiliation(s)
- Seon Mi Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hye Lim Keum
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
27
|
Clinical and microbiological characteristics of Staphylococcus lugdunensis. Curr Opin Infect Dis 2022; 35:524-529. [PMID: 36305373 DOI: 10.1097/qco.0000000000000882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW This review provides an update on recent findings about the clinical and microbiological characteristics of Staphylococcus lugdunensis . RECENT FINDINGS European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Institute (CLSI) differ in their methodology and breakpoints for the detection of penicillin and oxacillin resistance in S. lugdunensis . The EUCAST method for beta-lactamase detection recommends a 1-unit penicillin disk and has demonstrated superior performance compared to the 10-unit penicillin disk recommended by CLSI. A similar outcome has been previously reported in Staphylococcus aureus. In addition, there is emerging oxacillin resistance in some geographical areas. Of particular concern is that oxacillin resistance in mecA positive isolates may not be reliably detected by current cefoxitin breakpoints. SUMMARY Coagulase negative staphylococci are now recognised as a heterogenous group of organisms that do not microbiologically or clinically behave the same way. The spectrum of clinical disease is species dependent and is particularly true for S. lugdunensis , which causes an array of clinical infections like that of S. aureus. Further studies are needed to assess the performance of phenotypic tests to detect resistance, to ensure that appropriate antimicrobial therapy is delivered to patients.
Collapse
|
28
|
Staphylococcus lugdunensis prosthetic joint infection: A multicentric cohort study. J Infect 2022; 85:652-659. [DOI: 10.1016/j.jinf.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/28/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
|
29
|
Cho JA, Roh YJ, Son HR, Choi H, Lee JW, Kim SJ, Lee CH. Assessment of the biofilm-forming ability on solid surfaces of periprosthetic infection-associated pathogens. Sci Rep 2022; 12:18669. [PMID: 36333517 PMCID: PMC9636376 DOI: 10.1038/s41598-022-22929-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Biofilm formation is one of the leading causes of complications after surgery in clinical settings. In this study, we profiled the biofilm-forming ability of various periprosthetic infection-associated pathogens on medically relevant surfaces, polystyrene (PS) and titanium (Ti). We also explored how a specific environmental stressor, epigallocatechin gallate (EGCG), affected biofilm formation. First, Congo red tests revealed that all microorganisms formed biofilms within 72 h. Then, the amounts of biofilm formation on PS at 24, 48 and 72 h and also on a Ti plate for 72 h were determined. Some microbes preferred one surface over the other, whereas other microbes formed consistent levels of biofilm regardless of the surface material. Staphylococcus lugdunenensis was the most potent, while Enterococcus faecalis and Staphylococcus aureus were the weakest. Bacterial adhesion to hydrocarbon (BATH) tests indicated that the biofilm-forming abilities were not directly correlated with cell surface hydrophobicity (CSH). Finally, an external signal, EGCG, was applied to challenge the biofilm formation of each microorganism. EGCG regulated each microorganism's ability differently, though the change was consistent across surfaces for most pathogens. This study can help a better understanding of a broad spectrum of periprosthetic infection-associated pathogens by relative comparison of their biofilm-forming abilities.
Collapse
Affiliation(s)
- Jung-Ah Cho
- grid.417736.00000 0004 0438 6721School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea
| | - Yoo Jin Roh
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Hye Rim Son
- grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea ,grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Hojung Choi
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.49606.3d0000 0001 1364 9317Department of Chemistry, Hanyang University, Seoul, 04762 Republic of Korea
| | - Jeong-Won Lee
- grid.254187.d0000 0000 9475 8840Department of Mechanical Engineering, Chosun University, Gwangju, 61452 Republic of Korea
| | - Sung Jae Kim
- grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea
| | - Chang-Hun Lee
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.417736.00000 0004 0438 6721New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| |
Collapse
|
30
|
Chen KJ, Sun MH, Tsai ASH, Sun CC, Wu WC, Lai CC. Staphylococcus lugdunensis Endophthalmitis: Case Series and Literature Review. Antibiotics (Basel) 2022; 11:1485. [PMID: 36358140 PMCID: PMC9686588 DOI: 10.3390/antibiotics11111485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 10/27/2023] Open
Abstract
Staphylococcus lugdunensis endophthalmitis is an uncommon intraocular infection with potentially visually devastating consequences. S. lugdunensis endophthalmitis have been reported following cataract surgery, trauma, intravitreal injections of anti-vascular endothelial growth factor agents and dexamethasone implant. We report four cases of postoperative S. lugdunensis endophthalmitis after cataract extraction (three patients) and combined pars plana vitrectomy and cataract extraction (one patient). The onset of presentation of endophthalmitis was acute (within 2 weeks) in two patients, subacute (2 to 6 weeks) in one patient, and chronic (more than 6 weeks) in one patient. All patients had presenting visual acuity (VA) of hand motions or worse and were treated with pars plana vitrectomy with intravitreal antibiotics. The final VA was 20/50 in two patients, 4/200 in one patient with pre-existing myopic maculopathy, and no light perception in one patient with retinal detachment. In antibiotic susceptibility testing, S. lugdunensis isolates were resistant to penicillin (3/4, 75%), but all were susceptible to vancomycin, oxacillin, teicoplanin, tigecycline, and sulfamethoxazole-trimethoprim. S. lugdunensis may be associated with acute or chronic endophthalmitis. Favorable visual outcomes can be achieved with prompt diagnosis and management.
Collapse
Affiliation(s)
- Kuan-Jen Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou branch, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ming-Hui Sun
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou branch, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | | | - Chi-Chin Sun
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou branch, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou branch, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou branch, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| |
Collapse
|
31
|
Staphylococcus lugdunensis Uses the Agr Regulatory System to Resist Killing by Host Innate Immune Effectors. Infect Immun 2022; 90:e0009922. [PMID: 36069592 PMCID: PMC9584346 DOI: 10.1128/iai.00099-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are frequently commensal bacteria that rarely cause disease in mammals. Staphylococcus lugdunensis is an exceptional CoNS that causes disease in humans similar to virulent Staphylococcus aureus, but the factors that enhance the virulence of this bacterium remain ill defined. Here, we used random transposon insertion mutagenesis to identify the agr quorum sensing system as a regulator of hemolysins in S. lugdunensis. Using RNA sequencing (RNA-seq), we revealed that agr regulates dozens of genes, including hemolytic S. lugdunensis synergistic hemolysins (SLUSH) peptides and the protease lugdulysin. A murine bacteremia model was used to show that mice infected systemically with wild-type S. lugdunensis do not show overt signs of disease despite there being high numbers of bacteria in the livers and kidneys of mice. Moreover, proliferation of the agr mutant in these organs was no different from that of the wild-type strain, leaving the role of the SLUSH peptides and the metalloprotease lugdulysin in pathogenesis still unclear. Nonetheless, the tropism of S. lugdunensis for humans led us to investigate the role of virulence factors in other ways. We show that agr-regulated effectors, but not SLUSH or lugdulysin alone, are important for S. lugdunensis survival in whole human blood. Moreover, we demonstrate that Agr contributes to survival of S. lugdunensis during encounters with murine and primary human macrophages. These findings demonstrate that, in S. lugdunensis, Agr regulates expression of virulence factors and is required for resistance to host innate antimicrobial defenses. This study therefore provides insight into strategies that this Staphylococcus species uses to cause disease.
Collapse
|
32
|
An lnu(A)-Carrying Multi-Resistance Plasmid Derived from Sequence Type 3 Methicillin-Resistant Staphylococcus lugdunensis May Contribute to Antimicrobial Resistance in Staphylococci. Antimicrob Agents Chemother 2022; 66:e0019722. [PMID: 35876576 PMCID: PMC9380557 DOI: 10.1128/aac.00197-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Methicillin-resistant Staphylococcus lugdunensis (MRSL) strains showing resistance to several common antibiotics have been reported recently. Sequence type (ST) 3 MRSL carrying SCCmec types IV, V, or Vt is the major lineage associated with health care-associated infections. We aimed to investigate the distribution and dissemination of antimicrobial resistance determinants in this lineage. Two representative ST3-MRSL strains, CGMH-SL131 (SCCmec V) and CGMH-SL138 (SCCmec IV), were subjected to whole-genome sequencing. Detection of antibiotic resistance genes and screening of susceptibility patterns were performed for 30 ST3-MRSL and 16 ST6-MRSL strains via PCR and standard methods. Except for mecA and blaZ, antimicrobial resistance genes were located within two plasmids: a 28.6 kb lnu(A)-carrying plasmid (pCGMH_SL138) in CGMH-SL138 and a 26 kb plasmid carrying non-lnu(A) resistance genes (pCGMH_SL131) in CGMH-SL131. Both plasmids shared common genetic features with multiple copies of IS257 flanked by genes conferring resistance to aminoglycoside (aacA-aphD and aadD), TET (tetk), and cadmium (cadDX) and tolerance to chlorhexidine (qacA/R); however, only pCGMH_SL138 harbored lnu(A) that conferred resistance to lincomycin and rep13 that encodes a replication initiation protein. Unlike ST6-MRSL, none of the ST3-MRSL isolates contained the ermA gene. Instead, most isolates harbored lnu(A) (20/30, 66.7%), and several other resistance genes found on pCGMH_SL138. These isolates and transformants containing pCGMH_SL138 exhibited susceptibility to ERY and higher MICs for lincomycin and aforementioned antibiotics. A novel lnu(A)-carrying plasmid, pCGMH_SL138, that harbored a multiresistance gene cluster, was identified in ST3-MRSL strains and may contribute to the dissemination of antibiotic resistance in staphylococci.
Collapse
|
33
|
Palladium-platinum bimetallic nanomaterials and their application in Staphylococcus aureus detection on paper-based devices. Biosens Bioelectron 2022; 216:114669. [DOI: 10.1016/j.bios.2022.114669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
|
34
|
Fernández-Fernández R, Lozano C, Ruiz-Ripa L, Robredo B, Azcona-Gutiérrez JM, Alonso CA, Aspiroz C, Zarazaga M, Torres C. Antimicrobial Resistance and Antimicrobial Activity of Staphylococcus lugdunensis Obtained from Two Spanish Hospitals. Microorganisms 2022; 10:microorganisms10081480. [PMID: 35893538 PMCID: PMC9332302 DOI: 10.3390/microorganisms10081480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022] Open
Abstract
Staphylococcus lugdunensis is a coagulase-negative-staphylococci (CoNS) that lately has gained special attention in public health as a human pathogen and also as a bacteriocin-producer bacteria. In this study, we characterized 56 S. lugdunensis isolates recovered from human samples in two Spanish hospitals. Antimicrobial susceptibility testing was performed and antimicrobial resistance and virulence genotypes were determined. Antimicrobial activity (AA) production was evaluated by the spot-on-lawn method against 37 indicator bacteria, including multidrug-resistant (MDR) isolates, and the presence of the lugD gene coding for lugdunin bacteriocin was analyzed by PCR. The antibiotic resistance detected was as follows (% resistance/genes detected): penicillin (44.6%/blaZ), oxacillin (1.8%/mecA on SCCmec-V), erythromycin-clindamycin inducible (7.1%/erm(C), msrA), tetracycline (5.3%/tetK), gentamicin and/or tobramycin (3.6%/ant(4′)-Ia, acc(6′)-aph(2″)), and fosfomycin (21.4%). A MDR phenotype was detected in 5% of isolates. Twenty-one of the S. lugdunensis isolates showed susceptibility to all 20 antibiotics tested (37.5%). The screening for AA revealed 23 antimicrobial producer (AP) isolates with relevant inhibition against coagulase-positive-staphylococci (CoPS), including both methicillin-susceptible and –resistant S. aureus. The lugD gene was detected in 84% of the 56 S. lugdunensis isolates. All of the AP S. lugdunensis isolates (n = 23) carried the lugD gene and it was also detected in 24 of the non-AP isolates, suggesting different gene expression levels. One of the AP isolates stood out due to its high antimicrobial activity against more than 70% of the indicator bacteria tested, so it will be further characterized at genomic and proteomic level.
Collapse
Affiliation(s)
- Rosa Fernández-Fernández
- Área Bioquímica y Biología Molecular, OneHealth-UR Research Group, Universidad de La Rioja, 26006 Logroño, Spain; (R.F.-F.); (L.R.-R.); (M.Z.)
| | - Carmen Lozano
- Área Bioquímica y Biología Molecular, OneHealth-UR Research Group, Universidad de La Rioja, 26006 Logroño, Spain; (R.F.-F.); (L.R.-R.); (M.Z.)
- Correspondence: (C.L.); (C.T.)
| | - Laura Ruiz-Ripa
- Área Bioquímica y Biología Molecular, OneHealth-UR Research Group, Universidad de La Rioja, 26006 Logroño, Spain; (R.F.-F.); (L.R.-R.); (M.Z.)
| | - Beatriz Robredo
- Área Didáctica de las Ciencias Experimentales, OneHealth-UR Research Group, Universidad de La Rioja, 26006 Logroño, Spain;
| | | | - Carla Andrea Alonso
- Servicio de Microbiología, Hospital San Pedro, 26006 Logroño, Spain; (J.M.A.-G.); (C.A.A.)
| | - Carmen Aspiroz
- Servicio de Microbiología, Hospital Royo Villanova, 50015 Zaragoza, Spain;
| | - Myriam Zarazaga
- Área Bioquímica y Biología Molecular, OneHealth-UR Research Group, Universidad de La Rioja, 26006 Logroño, Spain; (R.F.-F.); (L.R.-R.); (M.Z.)
| | - Carmen Torres
- Área Bioquímica y Biología Molecular, OneHealth-UR Research Group, Universidad de La Rioja, 26006 Logroño, Spain; (R.F.-F.); (L.R.-R.); (M.Z.)
- Correspondence: (C.L.); (C.T.)
| |
Collapse
|
35
|
Kosecka-Strojek M, Wolska-Gębarzewska M, Podbielska-Kubera A, Samet A, Krawczyk B, Międzobrodzki J, Michalik M. May Staphylococcus lugdunensis Be an Etiological Factor of Chronic Maxillary Sinuses Infection? Int J Mol Sci 2022; 23:ijms23126450. [PMID: 35742895 PMCID: PMC9224237 DOI: 10.3390/ijms23126450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus lugdunensis is an opportunistic pathogen found in the healthy human skin microbiome bacterial community that is able to cause infections of diverse localization, manifestation, and course, including laryngological infections, such as necrotizing sinusitis. Chronic maxillary sinusitis is a disease present in up to one third of European and American populations, and its etiology is not fully described. Within this study, we aimed to characterize 18 S. lugdunensis strains recovered from maxillary sinuses and evaluate them as etiological agents of chronic disease. We performed MLST analysis, the complex analysis of both phenotypic and genetic virulence factors, antibiotic susceptibility profiles, and biofilm formation assay for the detection of biofilm-associated genes. Altogether, S. lugdunensis strains were clustered into eight different STs, and we demonstrated several virulence factors associated with the chronic disease. All tested strains were able to produce biofilm in vitro with numerous strains with a very strong ability, and overall, they were mostly susceptible to antibiotics, although we found resistance to fosfomycin, erythromycin, and clindamycin in several strains. We believe that further in-depth analysis of S. lugdunensis strains from different niches, including the nasal one, should be performed in the future in order to reduce infection rate and broaden the knowledge about this opportunistic pathogen that is gaining attention.
Collapse
Affiliation(s)
- Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland; (M.W.-G.); (J.M.)
- Correspondence:
| | - Mariola Wolska-Gębarzewska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland; (M.W.-G.); (J.M.)
| | | | - Alfred Samet
- MML Centre, Bagno 2, 00-112 Warsaw, Poland; (A.P.-K.); (A.S.); (M.M.)
| | - Beata Krawczyk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland; (M.W.-G.); (J.M.)
| | - Michał Michalik
- MML Centre, Bagno 2, 00-112 Warsaw, Poland; (A.P.-K.); (A.S.); (M.M.)
| |
Collapse
|
36
|
Staphylococcus hominis Infective Endocarditis Presenting with Embolic Splenic and Renal Infarcts and Spinal Discitis. Case Rep Infect Dis 2022; 2022:7183049. [PMID: 35607353 PMCID: PMC9124120 DOI: 10.1155/2022/7183049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus hominis (S. hominis) is a Gram-positive, coagulase-negative bacteria that occurs as a normal commensal organism on the skin and may rarely cause native valve endocarditis (NVE). We present a 62-year-old male with type 2 diabetes mellitus, coronary artery disease, and hypertension presenting with fever and abdominal pain. CT (computerized tomography) of the abdomen revealed splenic and renal infarcts; further imaging with MRI (magnetic resonance imaging) revealed enhancements consistent with discitis in T5-6 and L1-2. Three sets of blood cultures were positive for S. hominis sensitive to methicillin on antimicrobial susceptibility tests, and echocardiogram showed posterior mitral valve vegetation. The patient was initially treated with 10 weeks of nafcillin IV (intravenous) 2 g q4 hours. He had recurrent bouts of S. hominis bacteremia that was treated with IV vancomycin. His clinical course was complicated by new-onset atrial fibrillation with rapid ventricular response and congestive heart failure. Once bacteremia was cleared, his infective endocarditis was successfully definitively treated with mitral valve replacement and tricuspid repair.
Collapse
|
37
|
In vivo growth of Staphylococcus lugdunensis is facilitated by the concerted function of heme and non-heme iron acquisition mechanisms. J Biol Chem 2022; 298:101823. [PMID: 35283192 PMCID: PMC9052147 DOI: 10.1016/j.jbc.2022.101823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus lugdunensis has increasingly been recognized as a pathogen that can cause serious infection indicating this bacterium overcomes host nutritional immunity. Despite this, there exists a significant knowledge gap regarding the iron acquisition mechanisms employed by S. lugdunensis, especially during infection of the mammalian host. Here we show that S. lugdunensis can usurp hydroxamate siderophores and staphyloferrin A and B from Staphylococcus aureus. These transport activities all required a functional FhuC ATPase. Moreover, we show that the acquisition of catechol siderophores and catecholamine stress hormones by S. lugdunensis required the presence of the sst-1 transporter-encoding locus, but not the sst-2 locus. Iron-dependent growth in acidic culture conditions necessitated the ferrous iron transport system encoded by feoAB. Heme iron was acquired via expression of the iron-regulated surface determinant (isd) locus. During systemic infection of mice, we demonstrated that while S. lugdunensis does not cause overt illness, it does colonize and proliferate to high numbers in the kidneys. By combining mutations in the various iron acquisition loci (isd, fhuC, sst-1, and feo), we demonstrate that only a strain deficient for all of these systems was attenuated in its ability to proliferate to high numbers in the murine kidney. We propose the concerted action of heme and non-heme iron acquisition systems also enable S. lugdunensis to cause human infection.
Collapse
|
38
|
Caldara M, Belgiovine C, Secchi E, Rusconi R. Environmental, Microbiological, and Immunological Features of Bacterial Biofilms Associated with Implanted Medical Devices. Clin Microbiol Rev 2022; 35:e0022120. [PMID: 35044203 PMCID: PMC8768833 DOI: 10.1128/cmr.00221-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The spread of biofilms on medical implants represents one of the principal triggers of persistent and chronic infections in clinical settings, and it has been the subject of many studies in the past few years, with most of them focused on prosthetic joint infections. We review here recent works on biofilm formation and microbial colonization on a large variety of indwelling devices, ranging from heart valves and pacemakers to urological and breast implants and from biliary stents and endoscopic tubes to contact lenses and neurosurgical implants. We focus on bacterial abundance and distribution across different devices and body sites and on the role of environmental features, such as the presence of fluid flow and properties of the implant surface, as well as on the interplay between bacterial colonization and the response of the human immune system.
Collapse
Affiliation(s)
- Marina Caldara
- Interdepartmental Center on Safety, Technologies, and Agri-food Innovation (SITEIA.PARMA), University of Parma, Parma, Italy
| | - Cristina Belgiovine
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Scuola di Specializzazione in Microbiologia e Virologia, Università degli Studi di Pavia, Pavia, Italy
| | - Eleonora Secchi
- Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Roberto Rusconi
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele–Milan, Italy
| |
Collapse
|
39
|
Ogura K, Furuya H, Takahashi N, Shibata K, Endo M, Watanabe S, Cui L, Miyoshi-Akiyama T, Okamoto S, Ogai K, Sugama J. Interspecies Regulation Between Staphylococcus caprae and Staphylococcus aureus Colonized on Healed Skin After Injury. Front Microbiol 2022; 13:818398. [PMID: 35300478 PMCID: PMC8921658 DOI: 10.3389/fmicb.2022.818398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus spp. colonize commensally on the human skin. Some commensal coagulase-negative staphylococci and Staphylococcus aureus are also involved in nosocomial infections. Bacteria were collected from skin healed from pressure injury (PI). After the collection time points, some patients suffered from recurrent PI (RPI). This study analyzed the characteristics of Staphylococcus spp. on healed skin before recurrence between healed skin that suffered from RPI within 6 weeks (RPI group) and healed skin that did not suffer within the duration (non-RPI group) by Staphylococcus spp.-specific sequencing. Of the seven patients in the RPI group, two were dominated by S. aureus and four by Staphylococcus caprae, coagulase-negative human commensal staphylococci in the RPI group. Using mouse models, both S. caprae and S. aureus, but not Staphylococcus epidermidis, colonized on skin healed from injury at significantly higher rates than normal skin. Although subcutaneous injection of S. caprae did not induce lesion formation, the bacterium exhibited high hemolytic activity on human red blood cells. Lesion formation by subcutaneous injection of S. aureus was significantly suppressed in the presence of S. caprae. The hemolytic activity of rabbit blood cells of S. aureus was suppressed by S. caprae, whereas the hemolytic activity of S. caprae was dramatically suppressed by S. aureus. Data indicated that each of the two Staphylococcus spp. suppresses the pathogenicity of the other and that the imbalance between the two is associated with RPI.
Collapse
Affiliation(s)
- Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Hiroka Furuya
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Natsuki Takahashi
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Kana Shibata
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Maho Endo
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Shinjuku, Japan
| | - Shigefumi Okamoto
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.,Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Ogai
- AI Hospital/Macro Signal Dynamics Research and Development Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Junko Sugama
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.,Research Center for Implementation Nursing Science Initiative, School of Health Sciences, Fujita Health University, Toyoake, Japan
| |
Collapse
|
40
|
Hwang J, Rick J, Hsiao J, Hamzavi IH, Shi VY. Microbiome in Hidradenitis Suppurativa: Current Evidence and Practice. CURRENT DERMATOLOGY REPORTS 2022. [DOI: 10.1007/s13671-021-00349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Paruch K, Biernasiuk A, Khylyuk D, Paduch R, Wujec M, Popiołek Ł. Synthesis, Biological Activity and Molecular Docking Studies of Novel Nicotinic Acid Derivatives. Int J Mol Sci 2022; 23:2823. [PMID: 35269966 PMCID: PMC8911400 DOI: 10.3390/ijms23052823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
In our research, we used nicotinic acid as a starting compound, which was subjected to a series of condensation reactions with appropriate aldehydes. As a result of these reactions, we were able to obtain a series of twelve acylhydrazones, two of which showed promising activity against Gram-positive bacteria (MIC = 1.95-15.62 µg/mL), especially against Staphylococcus epidermidis ATCC 12228 (MIC = 1.95 µg/mL). Moreover, the activity of compound 13 against the Staphylococcus aureus ATCC 43300 strain, i.e., the MRSA strain, was MIC = 7.81 µg/mL. Then, we subjected the entire series of acylhydrazones to a cyclization reaction in the acetic anhydride, thanks to which we were able to obtain twelve new 3-acetyl-2,5-disubstituted-1,3,4-oxadiazoline derivatives. Obtained 1,3,4-oxadiazolines were also tested for antimicrobial activity. The results showed high activity of compound 25 with a 5-nitrofuran substituent, which was active against all tested strains. The most promising activity of this compound was found against Gram-positive bacteria, in particular against Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538 (MIC = 7.81 µg/mL) and ATCC 43300 MRSA strains (MIC = 15.62 µg/mL). Importantly, the best performing compounds did not show cytotoxicity against normal cell lines. It seems practical to use some of these compounds or their derivatives in the future in the prevention and treatment of infections caused by some pathogenic or opportunistic microorganisms.
Collapse
Affiliation(s)
- Kinga Paruch
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland; (D.K.); (M.W.); (Ł.P.)
| | - Anna Biernasiuk
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Dmytro Khylyuk
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland; (D.K.); (M.W.); (Ł.P.)
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Monika Wujec
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland; (D.K.); (M.W.); (Ł.P.)
| | - Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland; (D.K.); (M.W.); (Ł.P.)
| |
Collapse
|
42
|
Aubourg M, Pottier M, Léon A, Bernay B, Dhalluin A, Cacaci M, Torelli R, Ledormand P, Martini C, Sanguinetti M, Auzou M, Gravey F, Giard JC. Inactivation of the Response Regulator AgrA Has a Pleiotropic Effect on Biofilm Formation, Pathogenesis and Stress Response in Staphylococcus lugdunensis. Microbiol Spectr 2022; 10:e0159821. [PMID: 35138170 PMCID: PMC8826819 DOI: 10.1128/spectrum.01598-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus lugdunensis is a coagulase-negative Staphylococcus that emerges as an important opportunistic pathogen. However, little is known about the regulation underlying the transition from commensal to virulent state. Based on knowledge of S. aureus virulence, we suspected that the agr quorum sensing system may be an important determinant for the pathogenicity of S. lugdunensis. We investigated the functions of the transcriptional regulator AgrA using the agrA deletion mutant. AgrA played a role in cell pigmentation: ΔargA mutant colonies were white while the parental strains were slightly yellow. Compared with the wild-type strain, the ΔargA mutant was affected in its ability to form biofilm and was less able to survive in mice macrophages. Moreover, the growth of ΔagrA was significantly reduced by the addition of 10% NaCl or 0.4 mM H2O2 and its survival after 2 h in the presence of 1 mM H2O2 was more than 10-fold reduced. To explore the mechanisms involved beyond these phenotypes, the ΔagrA proteome and transcriptome were characterized by mass spectrometry and RNA-Seq. We found that AgrA controlled several virulence factors as well as stress-response factors, which are well correlated with the reduced resistance of the ΔagrA mutant to osmotic and oxidative stresses. These results were not the consequence of the deregulation of RNAIII of the agr system, since no phenotype or alteration of the proteomic profile has been observed for the ΔRNAIII mutant. Altogether, our results highlighted that the AgrA regulator of S. lugdunensis played a key role in its ability to become pathogenic. IMPORTANCE Although belonging to the natural human skin flora, Staphylococcus lugdunensis is recognized as a particularly aggressive and destructive pathogen. This study aimed to characterize the role of the response regulator AgrA, which is a component of the quorum-sensing agr system and known to be a major element in the regulation of pathogenicity and biofilm formation in Staphylococcus aureus. In the present study, we showed that, contrary to S. aureus, the agrA deletion mutant produced less biofilm. Inactivation of agrA conferred a white colony phenotype and impacted S. lugdunensis in its ability to survive in mice macrophages and to cope with osmotic and oxidative stresses. By global proteomic and transcriptomic approaches, we identified the AgrA regulon, bringing molecular bases underlying the observed phenotypes. Together, our data showed the importance of AgrA in the opportunistic pathogenic behavior of S. lugdunensis allowing it to be considered as an interesting therapeutic target.
Collapse
Affiliation(s)
- Marion Aubourg
- Université de Caen Normandie, Dynamicure, INSERM U1311, CHU de Caen, Caen, France
| | - Marine Pottier
- Université de Caen Normandie, Dynamicure, INSERM U1311, CHU de Caen, Caen, France
- LABÉO Frank Duncombe, Caen, France
| | - Albertine Léon
- Université de Caen Normandie, Dynamicure, INSERM U1311, CHU de Caen, Caen, France
- LABÉO Frank Duncombe, Caen, France
| | - Benoit Bernay
- Plateforme Proteogen SFR ICORE 4206, Université de Caen Normandie, Caen, France
| | - Anne Dhalluin
- Université de Caen Normandie, Dynamicure, INSERM U1311, CHU de Caen, Caen, France
| | - Margherita Cacaci
- Institute of Microbiology, Catholic University of Sacred Heart, L. go F. Vito 1, Rome, Italy
| | - Riccardo Torelli
- Institute of Microbiology, Catholic University of Sacred Heart, L. go F. Vito 1, Rome, Italy
| | | | - Cecilia Martini
- Institute of Microbiology, Catholic University of Sacred Heart, L. go F. Vito 1, Rome, Italy
| | - Maurizio Sanguinetti
- Institute of Microbiology, Catholic University of Sacred Heart, L. go F. Vito 1, Rome, Italy
| | - Michel Auzou
- CHU de Caen, Laboratoire de Microbiologie, Caen, France
| | - François Gravey
- Université de Caen Normandie, Dynamicure, INSERM U1311, CHU de Caen, Caen, France
| | | |
Collapse
|
43
|
Staphylococcus hominis cellulitis and bacteremia associated with surgical clips. IDCases 2022; 27:e01436. [PMID: 35145866 PMCID: PMC8819119 DOI: 10.1016/j.idcr.2022.e01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Streptococcus spp. and Staphylococcus aureus are the most common pathogens causing skin and soft tissue infections (SSTI). Guideline-recommended empiric antibiotics targeting these organisms would also treat coagulase negative Staphylococci, which are not typically considered skin and soft tissue pathogens. Coagulase negative Staphylococci are, however, well known for their propensity to cause indolent infections in the setting of prosthetic material. Here, we present a case of a patient with surgical clips from a femoral artery surgical repair one year prior, presenting with cellulitis at the prior surgical site, complicated by high-grade Staphylococcus hominis bacteremia. Signs of infection persisted after 4 days of appropriate antibiotic therapy and resolved rapidly upon non-steroidal anti-inflammatory administration. This case highlights the importance of recognizing coagulase negative Staphylococci as a possible etiology of cellulitis in patients with prosthetic material, and of considering anti-inflammatory medications as a supplement to antibiotic therapy to hasten resolution of cellulitis in appropriate patients.
Collapse
|
44
|
Baquero F, Saralegui C, Marcos-Mencía D, Ballestero L, Vañó-Galván S, Moreno-Arrones ÓM, Del Campo R. Epidermis as a Platform for Bacterial Transmission. Front Immunol 2021; 12:774018. [PMID: 34925344 PMCID: PMC8671829 DOI: 10.3389/fimmu.2021.774018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
The epidermis constitutes a continuous external layer covering the body, offering protection against bacteria, the most abundant living organisms that come into contact with this barrier. The epidermis is heavily colonized by commensal bacterial organisms that help protect against pathogenic bacteria. The highly regulated and dynamic interaction between the epidermis and commensals involves the host’s production of nutritional factors promoting bacterial growth together to chemical and immunological bacterial inhibitors. Signal trafficking ensures the system’s homeostasis; conditions that favor colonization by pathogens frequently foster commensal growth, thereby increasing the bacterial population size and inducing the skin’s antibacterial response, eliminating the pathogens and re-establishing the normal density of commensals. The microecological conditions of the epidermis favors Gram-positive organisms and are unsuitable for long-term Gram-negative colonization. However, the epidermis acts as the most important host-to-host transmission platform for bacteria, including those that colonize human mucous membranes. Bacteria are frequently shared by relatives, partners, and coworkers. The epidermal bacterial transmission platform of healthcare workers and visitors can contaminate hospitalized patients, eventually contributing to cross-infections. Epidermal transmission occurs mostly via the hands and particularly through fingers. The three-dimensional physical structure of the epidermis, particularly the fingertips, which have frictional ridges, multiplies the possibilities for bacterial adhesion and release. Research into the biology of bacterial transmission via the hands is still in its infancy; however, tribology, the science of interacting surfaces in relative motion, including friction, wear and lubrication, will certainly be an important part of it. Experiments on finger-to-finger transmission of microorganisms have shown significant interindividual differences in the ability to transmit microorganisms, presumably due to genetics, age, sex, and the gland density, which determines the physical, chemical, adhesive, nutritional, and immunological status of the epidermal surface. These studies are needed to optimize interventions and strategies for preventing the hand transmission of microorganisms.
Collapse
Affiliation(s)
- Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Claudia Saralegui
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Daniel Marcos-Mencía
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luna Ballestero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sergio Vañó-Galván
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Óscar M Moreno-Arrones
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Health Sciences, Universidad Alfonso X El Sabio, Madrid, Spain.,Centro de Investigación en Red en Enfermedades Infecciosas (CIBER-EEII), Madrid, Spain
| |
Collapse
|
45
|
Chang SC, Lin LC, Lu JJ. Comparative Genomic Analyses Reveal Potential Factors Responsible for the ST6 Oxacillin-Resistant Staphylococcus lugdunensis Endemic in a Hospital. Front Microbiol 2021; 12:765437. [PMID: 34899648 PMCID: PMC8655729 DOI: 10.3389/fmicb.2021.765437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022] Open
Abstract
Oxacillin-resistant Staphylococcus lugdunensis (ORSL) is considered a life-threatening isolate in healthcare settings. Among ORSL clones, ST6-SCCmec II strains are associated with an endemic spread in hospitals. We analyzed the complete genome of ORSL CGMH-SL118, a representative strain. Results revealed that this strain contained three MGEs (two prophages and one plasmid) other than the SCCmec II element, which showed remarkable differences in genome organization compared to the reference strains from NCBI. Eight multidrug-resistant genes were identified. All but blaZ were carried by MGEs, such as the SCCmec II element [mecA, ant (9)-Ia, and ermA] and the prophage φSPbeta [aac (6')-aph (2'), aph (3')-III, and ant (6)-Ia], indicating that MGEs carrying multidrug-resistant genes may be important for ST6 strains. The prophage φSPbeta contains sasX gene, which was responsible for the pathogenesis of Staphylococcus aureus. A phage-mediated resistant island containing fusB (SlRIfusB-118) was found near φSPbeta, which was highly homologous to type III SeRIfusB-5907 of Staphylococcus epidermidis. In contrast to previous studies, over 20% of ST6 isolates showed a fusidic acid-resistant phenotype, suggesting that phage-mediated intraspecies transmission of resistant islands may become an important issue for ST6 strains. Sixty-eight clinical isolates of ST6 Staphylococcus lugdunensis (50 OSSL, oxacillin-sensitive S. lugdunensis, and 18 ORSL, including CGMH-SL118) collected from various types of specimens in the hospital were studied. Among these isolates in this study, ORSL showed similar drug-resistant genes and phenotypes as CGMH-SL118. The comparative genomic analyses highlight the contribution of MGEs in the development and dissemination of antimicrobial resistance in ST6 strains, suggesting that resistance determinants and virulence factors encoded by MGEs provide a survival advantage for successful colonization and spread in healthcare settings.
Collapse
Affiliation(s)
- Shih-Cheng Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
46
|
Alfeo MJ, Pagotto A, Barbieri G, Foster TJ, Vanhoorelbeke K, De Filippis V, Speziale P, Pietrocola G. Staphylococcus aureus iron-regulated surface determinant B (IsdB) protein interacts with von Willebrand factor and promotes adherence to endothelial cells. Sci Rep 2021; 11:22799. [PMID: 34815454 PMCID: PMC8611056 DOI: 10.1038/s41598-021-02065-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is the cause of a spectrum of diseases in humans and animals. The molecular basis of this pathogenicity lies in the expression of a variety of virulence factors, including proteins that mediate adherence to the host plasma and extracellular matrix proteins. In this study, we discovered that the iron-regulated surface determinant B (IsdB) protein, besides being involved in iron transport and vitronectin binding, interacts with von Willebrand Factor (vWF). IsdB-expressing bacteria bound to both soluble and immobilized vWF. The binding of recombinant IsdB to vWF was blocked by heparin and reduced at high ionic strength. Furthermore, treatment with ristocetin, an allosteric agent that promotes the exposure of the A1 domain of vWF, potentiates the binding of IsdB to vWF. Both near-iron transporter motifs NEAT1 and NEAT2 of IsdB individually bound recombinant A1 domain with KD values in the micromolar range. The binding of IsdB and adhesion of S. aureus expressing IsdB to monolayers of activated endothelial cells was significantly inhibited by a monoclonal antibody against the A1 domain and by IsdB reactive IgG from patients with staphylococcal endocarditis. This suggests the importance of IsdB in adherence of S. aureus to the endothelium colonization and as potential therapeutic target.
Collapse
Affiliation(s)
- Mariangela J Alfeo
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100, Pavia, Italy
| | - Anna Pagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131, Padua, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Timothy J Foster
- Microbiology Department, Trinity College Dublin, Dublin, Ireland
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Vincenzo De Filippis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131, Padua, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100, Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100, Pavia, Italy.
| |
Collapse
|
47
|
Staphylococcus lugdunensis. Trends Microbiol 2021; 29:1143-1145. [PMID: 34462188 DOI: 10.1016/j.tim.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022]
|
48
|
Ho PL, Law YH, Liu MCJ, Lau A, Tong MK, Chow KH, Wu AKL, Tse CWS, Cheng VCC, Que TL. Improved Detection of mecA-Mediated β-Lactam Resistance in Staphylococcus lugdunensis Using a New Oxacillin Salt Agar Screen. Front Microbiol 2021; 12:704552. [PMID: 34421864 PMCID: PMC8378274 DOI: 10.3389/fmicb.2021.704552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022] Open
Abstract
Oxacillin resistance mediated by mecA in Staphylococcus lugdunensis is emerging in some geographic areas. We evaluated cefoxitin disk diffusion (DD) and a new oxacillin agar (supplemented with 2 μg/ml oxacillin and 2% sodium chloride) screen for the detection of mecA-mediated resistance in S. lugdunensis. A total of 300 consecutive, non-duplicated clinical S. lugdunensis isolates from diverse sources in Hong Kong in 2019 were tested. The categorical agreement and errors obtained between cefoxitin DD test, oxacillin agar screen and mecA PCR were analyzed. Isolates with discordant results were further tested by MIC, penicillin binding protein 2a (PBP2a) assays, population analysis and molecular typing. PCR showed that 62 isolates were mecA-positive and 238 isolates were mecA-negative. For cefoxitin DD results interpreted using S. aureus/S. lugdunensis breakpoints, the categorical agreement (CA) for two brands of Muller-Hinton agars, MH-II (Becton Dickinson) and MH-E (bioMérieux) were both 96.0%; MEs were both 0%; and VMEs were 19.4 and 12.9%, respectively. The new oxacillin agar reliably differentiated mecA-positive and mecA-negative isolates (100% CA) without any ME or VME results. The 8 isolates with false susceptibility in the cefoxitin DD testing had cefoxitin and oxacillin MICs in the susceptible range. The isolates showed heterogeneous oxacillin resistance with resistant subpopulations at low frequencies. All had positive PBP2a results and were typed as sequence type 27/SCCmec V. The findings highlight the inability of cefoxitin DD and MIC tests for reliable detection of some mecA-positive S. lugdunensis isolates.
Collapse
Affiliation(s)
- Pak-Leung Ho
- Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China.,Carol Yu Center for Infection, University of Hong Kong, Hong Kong, China
| | - Ying-Hang Law
- Department of Clinical Pathology, Tuen Mun Hospital, Hospital Authority, Hong Kong, China
| | - Melissa Chun-Jiao Liu
- Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Andes Lau
- Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Man-Ki Tong
- Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Kin-Hung Chow
- Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Alan Ka-Lun Wu
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - Cindy Wing-Sze Tse
- Department of Clinical Pathology, Kwong Wah Hospital, Hospital Authority, Hong Kong, China
| | | | - Tak-Lun Que
- Department of Clinical Pathology, Tuen Mun Hospital, Hospital Authority, Hong Kong, China
| |
Collapse
|
49
|
Aubourg M, Gravey F, Dhalluin A, Giard JC. Identification of the iron-limitation stimulon in Staphylococcus lugdunensis. Arch Microbiol 2021; 203:3687-3694. [PMID: 33983488 DOI: 10.1007/s00203-021-02342-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
During the infectious process, pathogens such as Staphylococcus lugdunensis have to cope with the condition of host-induced iron-limitation. Using the RNAseq approach, we performed the first global transcriptomic analysis of S. lugdunensis cells incubated in the absence and presence of iron chelator. One hundred and seventy-five genes were identified as members of the iron-limitation stimulon (127 up- and 48 downregulated). Six gene clusters known or likely required for the acquisition of iron have been identified. Among them, a novel Energy-Coupling Factor type transporter (ECF), homologous to the lhaSTA operon, has been found into a 13-gene putative operon and strongly overexpressed under iron-limitation condition. Moreover, the transcription of genes involved in resistance to oxidative stress (including catalase), virulence, transcriptional regulation, and hemin detoxification were also modified. These data provide some answers on the cellular response to the iron-limitation stress that is important for the opportunistic behavior of this pathogen.
Collapse
Affiliation(s)
- Marion Aubourg
- EA4655 U2RM (équipe "Antibio-résistance"), CHU de Caen, Université de Caen Normandie, Caen, France
| | - François Gravey
- Groupe de Recherche sur l'Adaptation Microbienne (GRAM 2.0), Normandie Univ, Unicaen, Unirouen, GRAM 2.0, 14000, Caen, France
| | - Anne Dhalluin
- EA4655 U2RM (équipe "Antibio-résistance"), CHU de Caen, Université de Caen Normandie, Caen, France
| | - Jean-Christophe Giard
- EA4655 U2RM (équipe "Antibio-résistance"), CHU de Caen, Université de Caen Normandie, Caen, France.
| |
Collapse
|
50
|
França A, Gaio V, Lopes N, Melo LDR. Virulence Factors in Coagulase-Negative Staphylococci. Pathogens 2021; 10:170. [PMID: 33557202 PMCID: PMC7913919 DOI: 10.3390/pathogens10020170] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) have emerged as major pathogens in healthcare-associated facilities, being S. epidermidis, S. haemolyticus and, more recently, S. lugdunensis, the most clinically relevant species. Despite being less virulent than the well-studied pathogen S. aureus, the number of CoNS strains sequenced is constantly increasing and, with that, the number of virulence factors identified in those strains. In this regard, biofilm formation is considered the most important. Besides virulence factors, the presence of several antibiotic-resistance genes identified in CoNS is worrisome and makes treatment very challenging. In this review, we analyzed the different aspects involved in CoNS virulence and their impact on health and food.
Collapse
Affiliation(s)
- Angela França
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (V.G.); (N.L.)
| | | | | | - Luís D. R. Melo
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (V.G.); (N.L.)
| |
Collapse
|