1
|
Sun N, Su Z, Zheng X. Research progress of mosquito-borne virus mRNA vaccines. Mol Ther Methods Clin Dev 2025; 33:101398. [PMID: 39834558 PMCID: PMC11743085 DOI: 10.1016/j.omtm.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In recent years, mRNA vaccines have emerged as a leading technology for preventing infectious diseases due to their rapid development and high immunogenicity. These vaccines encode viral antigens, which are translated into antigenic proteins within host cells, inducing both humoral and cellular immune responses. This review systematically examines the progress in mRNA vaccine research for major mosquito-borne viruses, including dengue virus, Zika virus, Japanese encephalitis virus, Chikungunya virus, yellow fever virus, Rift Valley fever virus, and Venezuelan equine encephalitis virus. Enhancements in mRNA vaccine design, such as improvements to the 5' cap structure, 5'UTR, open reading frame, 3'UTR, and polyadenylation tail, have significantly increased mRNA stability and translation efficiency. Additionally, the use of lipid nanoparticles and polymer nanoparticles has greatly improved the delivery efficiency of mRNA vaccines. Currently, mRNA vaccines against mosquito-borne viruses are under development and clinical trials, showing promising protective effects. Future research should continue to optimize vaccine design and delivery systems to achieve broad-spectrum and long-lasting protection against various mosquito-borne virus infections.
Collapse
Affiliation(s)
- Ningze Sun
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Zhiwei Su
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Xiaoyan Zheng
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| |
Collapse
|
2
|
Cheong DHJ, Yi B, Wong YH, Chu JJH. The Current Progress in the Quest for Vaccines Against the Semliki Forest Virus Complex. Med Res Rev 2025. [PMID: 39757142 DOI: 10.1002/med.22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/10/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
The Semliki Forest virus (SFV) complex comprises of arboviruses that are transmitted by arthropod vectors and cause acute febrile illness in humans. In the last seven decades, re-emergence of these viruses has resulted in numerous outbreaks globally, affecting regions including Africa, Americas, Asia, Europe and the Caribbean. These viruses are transmitted to humans by the bite of infected mosquitoes. Symptoms of infection include high fever, severe joint pain, skin rash, muscle pain and headache. Fatal cases were reported, and mortality rate increased during the epidemic of these viruses. There is therefore a need to control the spread of these emerging arboviruses. Given that vaccination is one of the most effective ways to protect populations against viral outbreaks, efforts have been made to develop and test potential vaccine candidates. However, there are still no licensed vaccines available against the medically important viruses in the SFV complex. This review first summarizes the current knowledge of the SFV complex disease pathogenesis. Next, seven strategies that have been applied in vaccine development against these viruses are reviewed, indicating the immune response and efficacies of these vaccine candidates in in vivo models of infection. Finally, the more promising candidates that have entered clinical trials are discussed and insights into the future development of vaccines for viruses of the SFV complex are given.
Collapse
Affiliation(s)
- Dorothy Hui Juan Cheong
- Department of Microbiology and Immunology, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Bowen Yi
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Yi Hao Wong
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore CIty, Singapore
| |
Collapse
|
3
|
Johnson BJ, Hereward JP, Wilson R, Furlong MJ, Devine GJ. A review of the potential impacts of coastal mosquito control programs on Australian Stingless Bees (Apidae, Meliponini)-likely exposure pathways and lessons learned from studies on honey bees. ENVIRONMENTAL ENTOMOLOGY 2024; 53:894-907. [PMID: 39373633 DOI: 10.1093/ee/nvae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
The impact of the programmatic use of larvicides for mosquito control on native stingless bees (e.g., Apidae, Meliponini) is a growing concern in Australia due to heightened conservation awareness and the growth of hobbyist stingless bee keeping. In Australia, the two most widely used mosquito larvicides are the bacterium Bacillus thuringiensis var. israelensis (Bti) and the insect hormone mimic methoprene (as S-methoprene). Each has a unique mode of action that could present a risk to stingless bees and other pollinators. Herein, we review the potential impacts of these larvicides on native Australian bees and conclude that their influence is mitigated by their low recommended field rates, poor environmental persistence, and the seasonal and intermittent nature of mosquito control applications. Moreover, evidence suggests that stingless bees may display a high physiological tolerance to Bti similar to that observed in honey bees (Apis mellifera), whose interactions with B. thuringiensis-based biopesticides are widely reported. In summary, neither Bti or methoprene is likely to pose a significant risk to the health of stingless bees or their nests. However, current knowledge is limited by regulatory testing requirements that only require the use of honey bees as toxicological models. To bridge this gap, we suggest that regulatory testing is expanded to include stingless bees and other nontarget insects. This is imperative for improving our understanding of the potential risks that these and other pesticides may pose to native pollinator conservation.
Collapse
Affiliation(s)
- Brian J Johnson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - James P Hereward
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
| | - Rachele Wilson
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Michael J Furlong
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
4
|
Bullock CB, Wang L, Ware BC, Wagoner N, Ohara RA, Liu TT, Desai P, Peters B, Murphy KM, Handley SA, Morrison TE, Diamond MS. Type I interferon signaling in dendritic cells limits direct antigen presentation and CD8 + T cell responses against an arthritogenic alphavirus. mBio 2024; 15:e0293024. [PMID: 39535221 PMCID: PMC11633147 DOI: 10.1128/mbio.02930-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Ross River virus (RRV) and other alphaviruses cause chronic musculoskeletal syndromes that are associated with viral persistence, which suggests deficits in immune clearance mechanisms, including CD8+ T-cell responses. Here, we used a recombinant RRV-gp33 that expresses the immunodominant CD8+ T-cell epitope of lymphocytic choriomeningitis virus (LCMV) to directly compare responses with a virus, LCMV, that strongly induces antiviral CD8+ T cells. After footpad injection, we detected fewer gp33-specific CD8+ T cells in the draining lymph node (DLN) after RRV-gp33 than LCMV infection, despite similar viral RNA levels in the foot. However, less RRV RNA was detected in the DLN compared to LCMV, with RRV localizing principally to the subcapsular region and LCMV to the paracortical T-cell zones. Single-cell RNA-sequencing analysis of adoptively transferred gp33-specific transgenic CD8+ T cells showed rapid differentiation into effector cells after LCMV but not RRV infection. This defect in RRV-specific CD8+ T effector cell maturation was corrected by local blockade of type I interferon (IFN) signaling, which also resulted in increased RRV infection in the DLN. Studies in Wdfy4-/-, CD11c-Cre B2mfl/fl, or Xcr1-Cre Ifnar1fl/fl mice that respectively lack cross-presenting capacity, MHC-I antigen presentation by dendritic cells (DCs), or type I IFN signaling in the DC1 subset show that RRV-specific CD8+ T-cell responses can be improved by enhanced direct antigen presentation by DCs. Overall, our experiments suggest that antiviral type I IFN signaling in DCs limits direct alphavirus infection and antigen presentation, which likely delays CD8+ T-cell responses.IMPORTANCEChronic arthritis and musculoskeletal disease are common outcomes of infections caused by arthritogenic alphaviruses, including Ross River virus (RRV), due to incomplete virus clearance. Unlike other viral infections that are efficiently cleared by cytotoxic CD8+ T cells, RRV infection is surprisingly unaffected by CD8+ T cells as mice lacking or having these cells show similar viral persistence in joint and lymphoid tissues. To elucidate the basis for this deficient response, we measured the RRV-specific CD8+ T-cell population size and activation state relative to another virus known to elicit a strong T-cell response. Our findings reveal that RRV induces fewer CD8+ T cells due to limited infection of immune cells in the draining lymph node. By increasing RRV susceptibility in antigen-presenting cells, we elicited a robust CD8+ T-cell response. These results highlight antigen availability and virus tropism as possible targets for intervention against RRV immune evasion and persistence.
Collapse
Affiliation(s)
- Christopher B. Bullock
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Leran Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brian C. Ware
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ngan Wagoner
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ray A. Ohara
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bjoern Peters
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Gervais A, Bastard P, Bizien L, Delifer C, Tiberghien P, Rodrigo C, Trespidi F, Angelini M, Rossini G, Lazzarotto T, Conti F, Cassaniti I, Baldanti F, Rovida F, Ferrari A, Mileto D, Mancon A, Abel L, Puel A, Cobat A, Rice CM, Cadar D, Schmidt-Chanasit J, Scheid JF, Lemieux JE, Rosenberg ES, Agudelo M, Tangye SG, Borghesi A, Durand GA, Duburcq-Gury E, Valencia BM, Lloyd AR, Nagy A, MacDonald MM, Simonin Y, Zhang SY, Casanova JL. Auto-Abs neutralizing type I IFNs in patients with severe Powassan, Usutu, or Ross River virus disease. J Exp Med 2024; 221:e20240942. [PMID: 39485284 PMCID: PMC11533500 DOI: 10.1084/jem.20240942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Arboviral diseases are a growing global health concern. Pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) can underlie encephalitis due to West Nile virus (WNV) (∼40% of patients) and tick-borne encephalitis (TBE, due to TBE virus [TBEV]) (∼10%). We report here that these auto-Abs can also underlie severe forms of rarer arboviral infections. Auto-Abs neutralizing high concentrations of IFN-α2, IFN-β, and/or IFN-ω are present in the single case of severe Powassan virus (POWV) encephalitis studied, two of three cases of severe Usutu virus (USUV) infection studied, and the most severe of 24 cases of Ross River virus (RRV) disease studied. These auto-Abs are not found in any of the 137 individuals with silent or mild infections with these three viruses. Thus, auto-Abs neutralizing type I IFNs underlie an increasing list of severe arboviral diseases due to Flaviviridae (WNV, TBEV, POWV, USUV) or Togaviridae (RRV) viruses transmitted to humans by mosquitos (WNV, USUV, RRV) or ticks (TBEV, POWV).
Collapse
Affiliation(s)
- Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Céline Delifer
- Établissement Français du Sang, La Plaine Saint-Denis, France
| | | | - Chaturaka Rodrigo
- Faculty of Medicine, School of Biomedical Sciences, UNSW Australia, Sydney, Australia
| | - Francesca Trespidi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Micol Angelini
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Giada Rossini
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Section of Microbiology, University of Bologna, Bologna, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Irene Cassaniti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Rovida
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro Ferrari
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Davide Mileto
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Alessandro Mancon
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Johannes F. Scheid
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacob E. Lemieux
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric S. Rosenberg
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Guillaume André Durand
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), Marseille, France
| | - Emilie Duburcq-Gury
- Intensive Care Unit, Saint Philibert Hospital, Lille Catholic Hospitals, Lille, France
| | | | | | - Anna Nagy
- National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary
| | - Margaret M. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
6
|
Vieira CJSP, Onn MB, Shivas MA, Shearman D, Darbro JM, Graham M, Freitas L, van den Hurk AF, Frentiu FD, Wallau GL, Devine GJ. Long-term co-circulation of multiple arboviruses in southeast Australia revealed by xeno-monitoring and viral whole-genome sequencing. Virus Evol 2024; 10:0. [PMID: 39678352 PMCID: PMC11646120 DOI: 10.1093/ve/veae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Arbovirus surveillance of wild-caught mosquitoes is an affordable and sensitive means of monitoring virus transmission dynamics at various spatial-temporal scales, and emergence and re-emergence during epidemic and interepidemic periods. A variety of molecular diagnostics for arbovirus screening of mosquitoes (known as xeno-monitoring) are available, but most provide limited information about virus diversity. Polymerase chain reaction (PCR)-based screening coupled with RNA sequencing is an increasingly affordable and sensitive pipeline for integrating complete viral genome sequencing into surveillance programs. This enables large-scale, high-throughput arbovirus screening from diverse samples. We collected mosquitoes in CO2-baited light traps from five urban parks in Brisbane from March 2021 to May 2022. Mosquito pools of ≤200 specimens were screened for alphaviruses and flaviviruses using virus genus-specific primers and reverse transcription quantitative PCR (qRT-PCR). A subset of virus-positive samples was then processed using a mosquito-specific ribosomal RNA depletion method and then sequenced on the Illumina NextSeq. Overall, 54,670 mosquitoes representing 26 species were screened in 382 pools. Thirty detections of arboviruses were made in 28 pools. Twenty of these positive pools were further characterized using RNA sequencing generating 18 full-length genomes. These full-length sequences belonged to four medically relevant arboviruses: Barmah Forest, Ross River, Sindbis-like, and Stratford viruses. Phylogenetic and evolutionary analyses revealed the evolutionary progression of arbovirus lineages over the last 100 years, demonstrating that different epidemiological, immunological, and evolutionary processes may actively shape the evolution of Australian arboviruses. These results underscore the need for more genomic surveillance data to explore the complex evolutionary pressures acting on arboviruses. Overall, our findings highlight the effectiveness of our methodology, which can be applied broadly to enhance arbovirus surveillance in various ecological contexts and improve understanding of transmission dynamics.
Collapse
Affiliation(s)
- Carla Julia S. P Vieira
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, 300 Herston Road, Herston, QLD 4006, Australia
| | - Michael B Onn
- Entomology Laboratory, Public Space Operations, Brisbane City Council, 20 Tradecoast Dr, Eagle Farm, QLD 4009, Australia
| | - Martin A Shivas
- Entomology Laboratory, Public Space Operations, Brisbane City Council, 20 Tradecoast Dr, Eagle Farm, QLD 4009, Australia
| | - Damien Shearman
- Metro North Public Health Unit, Queensland Health, Briden Street, Windsor, QLD 4030, Australia
| | - Jonathan M Darbro
- Metro North Public Health Unit, Queensland Health, Briden Street, Windsor, QLD 4030, Australia
| | - Melissa Graham
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Enoggera, QLD 4051, Australia
| | - Lucas Freitas
- Global Data Science Initiative (GISAID) at, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Andrew F van den Hurk
- Department of Health, Public Health Virology, Forensic and Scientific Services, Queensland Government, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Francesca D Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, 300 Herston Road, Herston, QLD 4006, Australia
| | - Gabriel L Wallau
- Department of Entomology and Bioinformatic Core, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Professor Moraes Rego, Recife, PE 50740-465, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Bernhard-Nocht-Street 74, Hamburg 20359, Germany
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| |
Collapse
|
7
|
Vieira CJSP, Gyawali N, Onn MB, Shivas MA, Shearman D, Darbro JM, Wallau GL, van den Hurk AF, Frentiu FD, Skinner EB, Devine GJ. Mosquito bloodmeals can be used to determine vertebrate diversity, host preference, and pathogen exposure in humans and wildlife. Sci Rep 2024; 14:23203. [PMID: 39369026 PMCID: PMC11455984 DOI: 10.1038/s41598-024-73820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
The surveillance and detection of zoonotic pathogens in animals is essential for predicting disease transmission pathways and the risks of spillover, but challenges include the costs, ethics and technical expertise required for vertebrate trapping, serum sampling and antibody or virus screening. Surveillance using haematophagous arthropods as a sampling tool offers a unique opportunity to obtain blood samples from a wide range of vertebrate species, allowing the study of host-mosquito associations, and host exposure to pathogens. We explored vertebrate diversity and potential Ross River virus (RRV) transmission pathways by analysing blood-fed mosquitoes collected in Brisbane, Australia. Host origins were identified using barcode sequencing, and host exposure to RRV was assessed using a modified plaque reduction neutralisation test. In total, 480 blood-fed mosquitoes were collected between February 2021 and May 2022. The host origins of 346 (72%) bloodmeals were identified, with humans (73%) and cattle (9%) comprising the dominant hosts. RRV seroprevalence was high in both vertebrate species with evidence of RRV exposure in 70% (21/30) of cattle and 52% (132/253) of humans. This is a novel, non-invasive method of estimating seroprevalence in vertebrate host populations. Our results highlight the potential of blood-fed mosquitoes to provide species-specific insights into pathogen transmission dynamics.
Collapse
Affiliation(s)
- Carla Julia S P Vieira
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4006, Australia.
| | - Narayan Gyawali
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Michael B Onn
- Entomology Laboratory, Public Space Operations, Brisbane City Council, Brisbane, QLD, 4009, Australia
| | - Martin A Shivas
- Entomology Laboratory, Public Space Operations, Brisbane City Council, Brisbane, QLD, 4009, Australia
| | - Damien Shearman
- Metro North Public Health Unit, Queensland Health, Brisbane, QLD, 4030, Australia
| | - Jonathan M Darbro
- Metro North Public Health Unit, Queensland Health, Brisbane, QLD, 4030, Australia
| | - Gabriel L Wallau
- Department of Entomology and Bioinformatic Core of the Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, 50740-465, PE, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, 20359, Hamburg, Germany
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Brisbane, QLD, 4108, Australia
| | - Francesca D Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4006, Australia
| | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD, 4215, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| |
Collapse
|
8
|
Pyke AT, Wilson DJ, Michie A, Mackenzie JS, Imrie A, Cameron J, Doggett SL, Haniotis J, Herrero LJ, Caly L, Lynch SE, Mee PT, Madzokere ET, Ramirez AL, Paramitha D, Hobson-Peters J, Smith DW, Weir R, Sullivan M, Druce J, Melville L, Robson J, Gibb R, van den Hurk AF, Duchene S. Independent repeated mutations within the alphaviruses Ross River virus and Barmah Forest virus indicates convergent evolution and past positive selection in ancestral populations despite ongoing purifying selection. Virus Evol 2024; 10:veae080. [PMID: 39411152 PMCID: PMC11477980 DOI: 10.1093/ve/veae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/25/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Ross River virus (RRV) and Barmah Forest virus (BFV) are arthritogenic arthropod-borne viruses (arboviruses) that exhibit generalist host associations and share distributions in Australia and Papua New Guinea (PNG). Using stochastic mapping and discrete-trait phylogenetic analyses, we profiled the independent evolution of RRV and BFV signature mutations. Analysis of 186 RRV and 88 BFV genomes demonstrated their viral evolution trajectories have involved repeated selection of mutations, particularly in the nonstructural protein 1 (nsP1) and envelope 3 (E3) genes suggesting convergent evolution. Convergent mutations in the nsP1 genes of RRV (residues 248 and 441) and BFV (residues 297 and 447) may be involved with catalytic enzyme mechanisms and host membrane interactions during viral RNA replication and capping. Convergent E3 mutations (RRV site 59 and BFV site 57) may be associated with enzymatic furin activity and cleavage of E3 from protein precursors assisting viral maturation and infectivity. Given their requirement to replicate in disparate insect and vertebrate hosts, convergent evolution in RRV and BFV may represent a dynamic link between their requirement to selectively 'fine-tune' intracellular host interactions and viral replicative enzymatic processes. Despite evidence of evolutionary convergence, selection pressure analyses did not reveal any RRV or BFV amino acid sites under strong positive selection and only weak positive selection for nonstructural protein sites. These findings may indicate that their alphavirus ancestors were subject to positive selection events which predisposed ongoing pervasive convergent evolution, and this largely supports continued purifying selection in RRV and BFV populations during their replication in mosquito and vertebrate hosts.
Collapse
Affiliation(s)
- Alyssa T Pyke
- Public Health Virology Laboratory, Public and Environmental Health Reference Laboratories, Department of Health, Queensland Government, P.O. Box 594, Archerfield, Coopers Plains, Queensland, Australia
| | - Daniel J Wilson
- Big Data Institute, Oxford Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford OX3 7LF, United Kingdom
- Department for Continuing Education, University of Oxford, 1 Wellington Square, Oxford OX1 2JA, United Kingdom
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - John S Mackenzie
- Faculty of Health Sciences, Curtin University, G.P.O. Box U1987, Bentley, Western Australia 6845, Australia
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Jane Cameron
- Public Health Virology Laboratory, Public and Environmental Health Reference Laboratories, Department of Health, Queensland Government, P.O. Box 594, Archerfield, Coopers Plains, Queensland, Australia
| | - Stephen L Doggett
- NSW Health Pathology, Westmead Hospital, 166-174 Hawkesbury Road Westmead, Sydney, New South Wales 2145, Australia
| | - John Haniotis
- NSW Health Pathology, Westmead Hospital, 166-174 Hawkesbury Road Westmead, Sydney, New South Wales 2145, Australia
| | - Lara J Herrero
- Gold Coast Campus, Institute for Glycomics, Griffith University, 1 Parklands Drive, Southport, Queensland 4215, Australia
| | - Leon Caly
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Stacey E Lynch
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Peter T Mee
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Eugene T Madzokere
- Gold Coast Campus, Institute for Glycomics, Griffith University, 1 Parklands Drive, Southport, Queensland 4215, Australia
| | - Ana L Ramirez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
- The Jackson Laboratory, 10 Discovery Drive Connecticut, Farmington, CT 06032, United States of America
| | - Devina Paramitha
- School of Chemistry and Molecular Biosciences, The University of Queensland, Bdg 68 Cooper Road, St. Lucia, Queensland 4072, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Bdg 68 Cooper Road, St. Lucia, Queensland 4072, Australia
| | - David W Smith
- NSW Health Pathology, Westmead Hospital, 166-174 Hawkesbury Road Westmead, Sydney, New South Wales 2145, Australia
- School of Medicine, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Richard Weir
- Department of Primary Industries and Fisheries, Berrimah Veterinary Laboratory, P.O. Box 3000, Darwin, Northern Territory 0801, Australia
| | - Mitchell Sullivan
- Public and Environmental Health Reference Laboratories, Department of Health, Queensland Government, P.O Box 594 Archerfield, Coopers Plains, Queensland 4108, Australia
| | - Julian Druce
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Lorna Melville
- Department of Primary Industries and Fisheries, Berrimah Veterinary Laboratory, P.O. Box 3000, Darwin, Northern Territory 0801, Australia
| | - Jennifer Robson
- Department of Microbiology and Molecular Pathology, Sullivan Nicolaides Pathology, P.O. Box 2014 Fortitude Valley, Brisbane, Queensland 4006, Australia
| | - Robert Gibb
- Serology, Pathology Queensland Central Laboratory, Royal Brisbane and Women’s Hospital, 40 Butterfield Street Herston, Brisbane, Queensland 4029, Australia
| | - Andrew F van den Hurk
- Public Health Virology Laboratory, Public and Environmental Health Reference Laboratories, Department of Health, Queensland Government, P.O. Box 594, Archerfield, Coopers Plains, Queensland, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
- Evolutionary Dynamics of Infectious Diseases, Department of Computational Biology, Institut Pasteur, 28 Rue du Dr Roux, Paris 75015, France
| |
Collapse
|
9
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
10
|
Freppel W, Lim EX, Rudd PA, Herrero LJ. Synoviocytes assist in modulating the effect of Ross River virus infection in micromass-cultured primary human chondrocytes. J Med Microbiol 2024; 73:001859. [PMID: 39028255 PMCID: PMC11316548 DOI: 10.1099/jmm.0.001859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction. Ross River virus (RRV) is a mosquito-borne virus prevalent in Australia and the islands of the South Pacific, where it causes an arthritogenic illness with a hallmark feature of severe joint pain. The joint space is a unique microenvironment that contains cartilage and synovial fluid. Chondrocytes and synoviocytes are crucial components of the joint space and are known targets of RRV infection.Hypothesis/Gap statement. Understanding the relationship between synoviocytes and chondrocytes during RRV infection will provide further insights into RRV-induced joint pathology.Methodology. To better understand the unique dynamics of these cells during RRV infection, we used primary chondrocytes cultured in physiologically relevant micromasses. We then directly infected micromass chondrocytes or infected primary fibroblast-like synoviocytes (FLS), co-cultured with micromass chondrocytes. Micromass cultures and supernatants were collected and analysed for viral load with a PCR array of target genes known to play a role in arthritis.Results. We show that RRV through direct or secondary infection in micromass chondrocytes modulates the expression of cellular factors that likely contribute to joint inflammation and disease pathology, as well as symptoms such as pain. More importantly, while we show that RRV can infect micromass-cultured chondrocytes via FLS infection, FLS themselves affect the regulation of cellular genes known to contribute to arthritis.Conclusion. Single-cell culture systems lack the complexity of in vivo systems, and understanding the interaction between cell populations is crucial for deciphering disease pathology, including for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia
| | - Elisa X.Y. Lim
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia
| | - Penny A. Rudd
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
11
|
Damtew YT, Varghese BM, Anikeeva O, Tong M, Hansen A, Dear K, Zhang Y, Morgan G, Driscoll T, Capon T, Gourley M, Prescott V, Bi P. Current and future burden of Ross River virus infection attributable to increasing temperature in Australia: a population-based study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 48:101124. [PMID: 39040035 PMCID: PMC11260579 DOI: 10.1016/j.lanwpc.2024.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/24/2024]
Abstract
Background Ross River virus (RRV), Australia's most notifiable vector-borne disease transmitted through mosquito bites, has seen increased transmission due to rising temperatures. Quantifying the burden of RRV infection attributable to increasing temperatures (both current and future) is pivotal to inform prevention strategies in the context of climate change. Methods As RRV-related deaths are rare in Australia, we utilised years lived with disability (YLDs) associated with RRV infection data from the Australian Institute of Health and Welfare (AIHW) Burden of Disease database between 2003 and 2018. We obtained relative risks per 1 °C temperature increase in RRV infection from a previous meta-analysis. Exposure distributions for each Köppen-Geiger climate zone were calculated separately and compared with the theoretical-minimum-risk exposure distribution to calculate RRV burden attributable to increasing temperatures during the baseline period (2003-2018), and projected future burdens for the 2030s and 2050s under two greenhouse gas emission scenarios (Representative Concentration Pathways, RCP 4.5 and RCP 8.5), two adaptation scenarios, and different population growth series. Findings During the baseline period (2003-2018), increasing mean temperatures contributed to 35.8 (±0.5) YLDs (19.1%) of the observed RRV burden in Australia. The mean temperature attributable RRV burden varied across climate zones and jurisdictions. Under both RCP scenarios, the projected RRV burden is estimated to increase in the future despite adaptation scenarios. By the 2050s, without adaptation, the RRV burden could reach 45.8 YLDs under RCP4.5 and 51.1 YLDs under RCP8.5. Implementing a 10% adaptation strategy could reduce RRV burden to 41.8 and 46.4 YLDs, respectively. Interpretation These findings provide scientific evidence for informing policy decisions and guiding resource allocation for mitigating the future RRV burden. The current findings underscore the need to develop location-specific adaptation strategies for climate-sensitive disease control and prevention. Funding Australian Research Council Discovery Program.
Collapse
Affiliation(s)
- Yohannes Tefera Damtew
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- College of Health and Medical Sciences, Haramaya University, P.O.BOX 138, Dire Dawa, Ethiopia
| | - Blesson Mathew Varghese
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Olga Anikeeva
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Michael Tong
- National Centre for Epidemiology and Population Health, ANU College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia
| | - Alana Hansen
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Keith Dear
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Ying Zhang
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia
| | - Geoffrey Morgan
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia
| | - Tim Driscoll
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia
| | - Tony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, Victoria, Australia
| | - Michelle Gourley
- Burden of Disease and Mortality Unit, Australian Institute of Health and Welfare, Canberra, ACT 2601, Australia
| | - Vanessa Prescott
- Burden of Disease and Mortality Unit, Australian Institute of Health and Welfare, Canberra, ACT 2601, Australia
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
12
|
Schmidt C, Gerbeth J, von Rhein C, Hastert FD, Schnierle BS. The Stop Codon after the nsp3 Gene of Ross River Virus (RRV) Is Not Essential for Virus Replication in Three Cell Lines Tested, but RRV Replication Is Attenuated in HEK 293T Cells. Viruses 2024; 16:1033. [PMID: 39066196 PMCID: PMC11281442 DOI: 10.3390/v16071033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
A recombinant Ross River virus (RRV) that contains the fluorescent protein mCherry fused to the non-structural protein 3 (nsP3) was constructed, which allowed real-time imaging of viral replication. RRV-mCherry contained either the natural opal stop codon after the nsP3 gene or was constructed without a stop codon. The mCherry fusion protein did not interfere with the viral life cycle and deletion of the stop codon did not change the replication capacity of RRV-mCherry. Comparison of RRV-mCherry and chikungunya virus-mCherry infections, however, showed a cell type-dependent delay in RRV-mCherry replication in HEK 293T cells. This delay was not caused by differences in cell entry, but rather by an impeded nsP expression caused by the RRV inhibitor ZAP (zinc finger CCCH-Type, antiviral 1). The data indicate that viral replication of alphaviruses is cell-type dependent, and might be unique for each alphavirus.
Collapse
Affiliation(s)
- Christin Schmidt
- Section AIDS and Newly Emerging Pathogens, Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | | | | | | | - Barbara S. Schnierle
- Section AIDS and Newly Emerging Pathogens, Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| |
Collapse
|
13
|
Nahain AA, Li J, Modhiran N, Watterson D, Li JP, Ignjatovic V, Monagle P, Tsanaktsidis J, Vamvounis G, Ferro V. Antiviral Activities of Heparan Sulfate Mimetic RAFT Polymers Against Mosquito-borne Viruses. ACS APPLIED BIO MATERIALS 2024; 7:2862-2871. [PMID: 38699864 DOI: 10.1021/acsabm.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Mosquito-borne viruses are a major worldwide health problem associated with high morbidity and mortality rates and significant impacts on national healthcare budgets. The development of antiviral drugs for both the treatment and prophylaxis of these diseases is thus of considerable importance. To address the need for therapeutics with antiviral activity, a library of heparan sulfate mimetic polymers was screened against dengue virus (DENV), Yellow fever virus (YFV), Zika virus (ZIKV), and Ross River virus (RRV). The polymers were prepared by RAFT polymerization of various acidic monomers with a target MW of 20 kDa (average Mn ∼ 27 kDa by GPC). Among the polymers, poly(SS), a homopolymer of sodium styrenesulfonate, was identified as a broad spectrum antiviral with activity against all the tested viruses and particularly potent inhibition of YFV (IC50 = 310 pM). Our results further uncovered that poly(SS) exhibited a robust inhibition of ZIKV infection in both mosquito and human cell lines, which points out the potential functions of poly(SS) in preventing mosquito-borne viruses associated diseases by blocking viral transmission in their mosquito vectors and mitigating viral infection in patients.
Collapse
Affiliation(s)
- Abdullah Al Nahain
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, University of Uppsala, 75123 Uppsala, Sweden
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, University of Uppsala, 75123 Uppsala, Sweden
| | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paul Monagle
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Clinical Haematology, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - John Tsanaktsidis
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - George Vamvounis
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
14
|
Nurmukanova V, Matsvay A, Gordukova M, Shipulin G. Square the Circle: Diversity of Viral Pathogens Causing Neuro-Infectious Diseases. Viruses 2024; 16:787. [PMID: 38793668 PMCID: PMC11126052 DOI: 10.3390/v16050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroinfections rank among the top ten leading causes of child mortality globally, even in high-income countries. The crucial determinants for successful treatment lie in the timing and swiftness of diagnosis. Although viruses constitute the majority of infectious neuropathologies, diagnosing and treating viral neuroinfections remains challenging. Despite technological advancements, the etiology of the disease remains undetermined in over half of cases. The identification of the pathogen becomes more difficult when the infection is caused by atypical pathogens or multiple pathogens simultaneously. Furthermore, the modern surge in global passenger traffic has led to an increase in cases of infections caused by pathogens not endemic to local areas. This review aims to systematize and summarize information on neuroinvasive viral pathogens, encompassing their geographic distribution and transmission routes. Emphasis is placed on rare pathogens and cases involving atypical pathogens, aiming to offer a comprehensive and structured catalog of viral agents with neurovirulence potential.
Collapse
Affiliation(s)
- Varvara Nurmukanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Alina Matsvay
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Maria Gordukova
- G. Speransky Children’s Hospital No. 9, 123317 Moscow, Russia
| | - German Shipulin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| |
Collapse
|
15
|
Srivastava S, Kumar S, Chinnam S, Srivastava N, Mehta R, Mohanty A, Sah S, Feehan J, de Courten M, Apostolopoulos V, Sah R. Mosquito-borne ross river virus: A raising concern in Queensland. Travel Med Infect Dis 2024; 59:102723. [PMID: 38640984 DOI: 10.1016/j.tmaid.2024.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 273007, India; Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India.
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 273007, India.
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology, MSR Nagar, Bengaluru, 560054, Karnataka, India.
| | - Naina Srivastava
- Department of Pharmacology, Institute of Pharmaceutical Sciences University of Lucknow, Lucknow, 226021, India.
| | - Rachana Mehta
- National Public Health Laboratory, Kathmandu, Nepal.
| | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India.
| | - Sanjit Sah
- Global Consortium for Public Health and Research, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, 442001, India; SR Sanjeevani Hospital, Kalyanpur-10, Siraha, Nepal.
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, 3030, VIC, Australia.
| | - Maximilian de Courten
- Institute for Health and Sport, Victoria University, Melbourne, 3030, VIC, Australia.
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, 3030, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, 3021, VIC, Australia.
| | - Ranjit Sah
- Green City Hospital, Tokha, Kathmandu, Nepal; Department of Microbiology, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, 411018, India; Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, 411018, Maharashtra, India.
| |
Collapse
|
16
|
Yuen NKY, Bielefeldt-Ohmann H, Coyle MP, Henning J. Exposure dynamics of Ross River virus in horses - Horses as potential sentinels (a One Health approach). Epidemiol Infect 2024; 152:e67. [PMID: 38606586 PMCID: PMC11062785 DOI: 10.1017/s0950268824000554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024] Open
Abstract
Ross River virus (RRV), the most medically and economically important arbovirus in Australia, has been the most prevalent arbovirus infections in humans for many years. Infected humans and horses often suffer similar clinical symptoms. We conducted a prospective longitudinal study over a 3.5-year period to investigate the exposure dynamics of RRV in three foal cohorts (n = 32) born in a subtropical region of South East Queensland, Australia, between 2020 and 2022. RRV-specific seroconversion was detected in 56% (n = 18) of foals with a median time to seroconversion, after waning of maternal antibodies, of 429 days (95% CI: 294-582). The median age at seroconversion was 69 weeks (95% CI: 53-57). Seroconversion events were only detected between December and March (Southern Hemisphere summer) over the entire study period. Cox proportion hazards regression analyses revealed that seroconversions were significantly (p < 0.05) associated with air temperature in the month of seroconversion. Time-lags in meteorological variables were not significantly (p > 0.05) associated with seroconversion, except for relative humidity (p = 0.036 at 2-month time-lag). This is in contrast to research results of RRV infection in humans, which peaked between March and May (Autumn) and with a 0-3 month time-lag for various meteorological risk factors. Therefore, horses may be suitable sentinels for monitoring active arbovirus circulation and could be used for early arbovirus outbreak detection in human populations.
Collapse
Affiliation(s)
- Nicholas K. Y. Yuen
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Mitchell P. Coyle
- Equine Unit, Office of the Director Gatton Campus, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia
| | - Joerg Henning
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
17
|
Kizu J, Graham M, Liu W. Potential Serological Misdiagnosis of Barmah Forest Virus and Ross River Virus Diseases as Chikungunya Virus Infections in Australia: Comparison of ELISA with Neutralization Assay Results. Viruses 2024; 16:384. [PMID: 38543750 PMCID: PMC10974935 DOI: 10.3390/v16030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 05/23/2024] Open
Abstract
To evaluate the frequency of errors in the diagnosis of medical laboratory-diagnosed Chikungunya virus (CHIKV) infections in Australia, we studied 42 laboratory-diagnosed CHIKV serum samples from one Queensland medical laboratory by ELISA IgG/IgM and measured the specific neutralization antibodies (Nab) against Barmah Forest virus (BFV), CHIKV and Ross River virus (RRV). The sero-positivity rates for the sera were as follows: anti-BFV IgG+ 19% (8/42), IgM+ 2.4% (1/42) and Nab+ 16.7% (7/42); anti-CHIKV IgG+ 90.5% (38/42), IgM+ 21.4% (9/42) and Nab+ 90.5% (38/42); anti-RRV IgG+ 88.1% (37/42), IgM+ 28.6% (12/42) and Nab+ 83.2% (35/42), respectively. Among the samples with multiple antibody positivity, 2.4% (1/42) showed triple ELISA IgM+, and 14.3% (6/42) exhibited double IgM RRV+CHIKV+; 9.5% (4/42) showed triple IgG+, 76.2% (32/42) displayed double IgG RRV+CHIKV+, 4.8% (2/42) showed IgG BFV+RRV+ and 4.8% (2/42) showed IgG BFV++CHIKV+; and 9.5% (4/42) showed triple Nab+ and 69% (29/42) exhibited double Nab RRV+CHIKV+, respectively. Our analysis of the single-virus infection control Nab results suggested no cross-neutralization between RRV and BFV, and only mild cross-neutralization between CHIKV and RRV, BFV and CHIKV, all with a ≥4-fold Nab titre ratio difference between the true virus infection and cross-reactivity counterpart virus. Subsequently, we re-diagnosed these 42 patients as 1 BFV+, 8 CHIKV+ and 23 RRV+ single-virus infections, along with five RRV+/BFV+ and four RRV+/CHIKV+ double infections, and one possible RRV+/BFV+ or RRV+CHIKV+, respectively. These findings suggests that a substantial proportion of medically attended RRV and BFV infections were misdiagnosed as CHIKV infections, highlighting the imperative need for diagnostic laboratory tests capable of distinguishing between CHIKV infections and actively co-circulating RRV and BFV. For a correct diagnosis, it is crucial to consider reliable diagnostic methods such as the neutralization assay to exclude RRV and BFV.
Collapse
Affiliation(s)
- Joanne Kizu
- Australian Defence Force Malaria and Infectious Disease Institute, Weary Dunlop Drive, Gallipoli Barracks, Enoggera, QLD 4051, Australia; (J.K.); (M.G.)
| | - Melissa Graham
- Australian Defence Force Malaria and Infectious Disease Institute, Weary Dunlop Drive, Gallipoli Barracks, Enoggera, QLD 4051, Australia; (J.K.); (M.G.)
- Queensland Institute of Medical Research-Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Wenjun Liu
- Australian Defence Force Malaria and Infectious Disease Institute, Weary Dunlop Drive, Gallipoli Barracks, Enoggera, QLD 4051, Australia; (J.K.); (M.G.)
| |
Collapse
|
18
|
Staples K, Neville PJ, Richardson S, Oosthuizen J. Development of a regional climate change model for Aedes vigilax and Aedes camptorhynchus (Diptera: Culicidae) in Perth, Western Australia. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:8-21. [PMID: 38235528 DOI: 10.1017/s0007485323000561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Mosquito-borne disease is a significant public health issue and within Australia Ross River virus (RRV) is the most reported. This study combines a mechanistic model of mosquito development for two mosquito vectors; Aedes vigilax and Aedes camptorhynchus, with climate projections from three climate models for two Representative Concentration Pathways (RCPs), to examine the possible effects of climate change and sea-level rise on a temperate tidal saltmarsh habitat in Perth, Western Australia. The projections were run under no accretion and accretion scenarios using a known mosquito habitat as a case study. This improves our understanding of the possible implications of sea-level rise, accretion and climate change for mosquito control programmes for similar habitats across temperate tidal areas found in Southwest Western Australia. The output of the model indicate that the proportion of the year mosquitoes are active increases. Population abundances of the two Aedes species increase markedly. The main drivers of changes in mosquito population abundances are increases in the frequency of inundation of the tidal wetland and size of the area inundated, increased minimum water temperature, and decreased daily temperature fluctuations as water depth increases due to sea level changes, particularly under the model with no accretion. The effects on mosquito populations are more marked for RCP 8.5 when compared to RCP 4.5 but were consistent among the three climate change models. The results indicate that Ae. vigilax is likely to be the most abundant species in 2030 and 2050, but that by 2070 Aedes camptorhynchus may become the more abundant species. This increase would put considerable pressure on existing mosquito control programmes and increase the risk of mosquito-borne disease and nuisance biting to the local community, and planning to mitigate these potential impacts should commence now.
Collapse
Affiliation(s)
- Kerry Staples
- Occupational and Environmental Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Peter J Neville
- Occupational and Environmental Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
- Department of Health, Biological and Applied Environmental Health, Environmental Health Directorate, Perth 6849, Western Australia, Australia
| | - Steven Richardson
- Mathematics, School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Jacques Oosthuizen
- Occupational and Environmental Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| |
Collapse
|
19
|
Koolhof IS, Beeton N, Bettiol S, Charleston M, Firestone SM, Gibney K, Neville P, Jardine A, Markey P, Kurucz N, Warchot A, Krause V, Onn M, Rowe S, Franklin L, Fricker S, Williams C, Carver S. Testing the intrinsic mechanisms driving the dynamics of Ross River Virus across Australia. PLoS Pathog 2024; 20:e1011944. [PMID: 38358961 PMCID: PMC10868856 DOI: 10.1371/journal.ppat.1011944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
The mechanisms driving dynamics of many epidemiologically important mosquito-borne pathogens are complex, involving combinations of vector and host factors (e.g., species composition and life-history traits), and factors associated with transmission and reporting. Understanding which intrinsic mechanisms contribute most to observed disease dynamics is important, yet often poorly understood. Ross River virus (RRV) is Australia's most important mosquito-borne disease, with variable transmission dynamics across geographic regions. We used deterministic ordinary differential equation models to test mechanisms driving RRV dynamics across major epidemic centers in Brisbane, Darwin, Mandurah, Mildura, Gippsland, Renmark, Murray Bridge, and Coorong. We considered models with up to two vector species (Aedes vigilax, Culex annulirostris, Aedes camptorhynchus, Culex globocoxitus), two reservoir hosts (macropods, possums), seasonal transmission effects, and transmission parameters. We fit models against long-term RRV surveillance data (1991-2017) and used Akaike Information Criterion to select important mechanisms. The combination of two vector species, two reservoir hosts, and seasonal transmission effects explained RRV dynamics best across sites. Estimated vector-human transmission rate (average β = 8.04x10-4per vector per day) was similar despite different dynamics. Models estimate 43% underreporting of RRV infections. Findings enhance understanding of RRV transmission mechanisms, provide disease parameter estimates which can be used to guide future research into public health improvements and offer a basis to evaluate mitigation practices.
Collapse
Affiliation(s)
- Iain S. Koolhof
- College of Health and Medicine, Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Silvana Bettiol
- College of Health and Medicine, Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael Charleston
- College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Simon M. Firestone
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine Gibney
- Victorian Department of Health and Human Services, Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Melbourne, Victoria, Australia
| | - Peter Neville
- Department of Health, Western Australia, Environmental Health Directorate, Public and Aboriginal Health Division, Perth, Western Australia, Australia
| | - Andrew Jardine
- Department of Health, Western Australia, Environmental Health Directorate, Public and Aboriginal Health Division, Perth, Western Australia, Australia
| | - Peter Markey
- Centre for Disease Control, Northern Territory Department of Health, Northern Territory, Darwin, Australia
| | - Nina Kurucz
- Centre for Disease Control, Northern Territory Department of Health, Northern Territory, Darwin, Australia
| | - Allan Warchot
- Centre for Disease Control, Northern Territory Department of Health, Northern Territory, Darwin, Australia
| | - Vicki Krause
- Centre for Disease Control, Northern Territory Department of Health, Northern Territory, Darwin, Australia
| | - Michael Onn
- Brisbane City Council, Brisbane, Queensland, Australia
| | - Stacey Rowe
- Victorian Department of Health and Human Services, Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Melbourne, Victoria, Australia
| | - Lucinda Franklin
- Victorian Department of Health and Human Services, Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Melbourne, Victoria, Australia
| | - Stephen Fricker
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
| | - Craig Williams
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
| | - Scott Carver
- College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Odum School of Ecology, University of Georgia, Georgia, United States of America
- Center for the Ecology of Infectious Diseases, University of Georgia, Georgia, United States of America
| |
Collapse
|
20
|
Makhdoom H. Merkel Cell Polyomavirus and their Association with the Pathogenesis of Cervical Squamous Cell Carcinomas and Adenocarcinomas: A Review Article. Ethiop J Health Sci 2023; 33:711-720. [PMID: 38784202 PMCID: PMC11111187 DOI: 10.4314/ejhs.v33i4.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/30/2023] [Indexed: 05/25/2024] Open
Abstract
Background This review aims to determine the potential role of Merkel Cell Polyomavirus (MCPyV) in the pathogenesis of cervical squamous cell carcinomas and adenocarcinomas. Methods A PRISMA systematic search appraisal was conducted. The Scopus, Web of Science, PubMed, EMBASE, Google Scholar, and MEDLINE databases for publications in English were searched up to September 2022 for all relevant articles. All articles that have outlined the contributions of the MCPyV to cervical squamous cell carcinomas and adenocarcinomas were included. Results The six databases produced 6806 articles. Only six articles met the inclusion criteria and were included. The protocol of this review was submitted and registered with the PROSPERO (Code no. CRD42022369197). The total sample size across the articles was 1135; the age of the participants ranged between 18 and 75 years. In addition, the included articles were conducted between 2012 to 2016. All included articles have a cross-sectional design.Furthermore, different kinds of samples were collected in the reviewed articles, namely cervical tissue biopsies, cervical smears, formalin-fixed paraffin-embedded resection specimens, and cervical adenocarcinomas. Moreover, five articles showed no statistically significant association between the MCPyV and cervical squamous cell carcinomas and adenocarcinomas. In contrast, one article revealed a positive association between MCPyV and cervical squamous cell carcinomas and adenocarcinomas. Conclusions MCPyV could not be associated with the pathogenesis of cervical squamous cell carcinomas and adenocarcinomas. Further attention should be given to examining this association, and further studies with a large sample size are recommended to confirm these findings.
Collapse
Affiliation(s)
- Hatim Makhdoom
- Applied Medical Sciences College, Laboratory Technology Department, Taibah University, Al-Madinah Al-Munwarah, Jeddah, north Obhur, Abdullah Althagfi
| |
Collapse
|
21
|
Fu JYL, Chua CL, Abu Bakar AS, Vythilingam I, Wan Sulaiman WY, Alphey L, Chan YF, Sam IC. Susceptibility of Aedes albopictus, Ae. aegypti and human populations to Ross River virus in Kuala Lumpur, Malaysia. PLoS Negl Trop Dis 2023; 17:e0011423. [PMID: 37307291 DOI: 10.1371/journal.pntd.0011423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/28/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Emerging arboviruses such as chikungunya and Zika viruses have unexpectedly caused widespread outbreaks in tropical and subtropical regions recently. Ross River virus (RRV) is endemic in Australia and has epidemic potential. In Malaysia, Aedes mosquitoes are abundant and drive dengue and chikungunya outbreaks. We assessed risk of an RRV outbreak in Kuala Lumpur, Malaysia by determining vector competence of local Aedes mosquitoes and local seroprevalence as a proxy of human population susceptibility. METHODOLOGY/PRINCIPAL FINDINGS We assessed oral susceptibility of Malaysian Ae. aegypti and Ae. albopictus by real-time PCR to an Australian RRV strain SW2089. Replication kinetics in midgut, head and saliva were determined at 3 and 10 days post-infection (dpi). With a 3 log10 PFU/ml blood meal, infection rate was higher in Ae. albopictus (60%) than Ae. aegypti (15%; p<0.05). Despite similar infection rates at 5 and 7 log10 PFU/ml blood meals, Ae. albopictus had significantly higher viral loads and required a significantly lower median oral infectious dose (2.7 log10 PFU/ml) than Ae. aegypti (4.2 log10 PFU/ml). Ae. albopictus showed higher vector competence, with higher viral loads in heads and saliva, and higher transmission rate (RRV present in saliva) of 100% at 10 dpi, than Ae. aegypti (41%). Ae. aegypti demonstrated greater barriers at either midgut escape or salivary gland infection, and salivary gland escape. We then assessed seropositivity against RRV among 240 Kuala Lumpur inpatients using plaque reduction neutralization, and found a low rate of 0.8%. CONCLUSIONS/SIGNIFICANCE Both Ae. aegypti and Ae. albopictus are susceptible to RRV, but Ae. albopictus displays greater vector competence. Extensive travel links with Australia, abundant Aedes vectors, and low population immunity places Kuala Lumpur, Malaysia at risk of an imported RRV outbreak. Surveillance and increased diagnostic awareness and capacity are imperative to prevent establishment of new arboviruses in Malaysia.
Collapse
Affiliation(s)
- Jolene Yin Ling Fu
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chong Long Chua
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Luke Alphey
- Arthropod Genetics Group, The Pirbright Institute, Woking, United Kingdom
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
de Vries EM, Cogan NOI, Gubala AJ, Rodoni BC, Lynch SE. Fine-scale genomic tracking of Ross River virus using nanopore sequencing. Parasit Vectors 2023; 16:186. [PMID: 37280650 PMCID: PMC10243270 DOI: 10.1186/s13071-023-05734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/11/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Ross River virus (RRV) is Australia's most common and widespread mosquito-transmitted arbovirus and is of significant public health concern. With increasing anthropogenic impacts on wildlife and mosquito populations, it is important that we understand how RRV circulates in its endemic hotspots to determine where public health efforts should be directed. Current surveillance methods are effective in locating the virus but do not provide data on the circulation of the virus and its strains within the environment. This study examined the ability to identify single nucleotide polymorphisms (SNPs) within the variable E2/E3 region by generating full-length haplotypes from a range of mosquito trap-derived samples. METHODS A novel tiled primer amplification workflow for amplifying RRV was developed with analysis using Oxford Nanopore Technology's MinION and a custom ARTIC/InterARTIC bioinformatic protocol. By creating a range of amplicons across the whole genome, fine-scale SNP analysis was enabled by specifically targeting the variable region that was amplified as a single fragment and established haplotypes that informed spatial-temporal variation of RRV in the study site in Victoria. RESULTS A bioinformatic and laboratory pipeline was successfully designed and implemented on mosquito whole trap homogenates. Resulting data showed that genotyping could be conducted in real time and that whole trap consensus of the viruses (with major SNPs) could be determined in a timely manner. Minor variants were successfully detected from the variable E2/E3 region of RRV, which allowed haplotype determination within complex mosquito homogenate samples. CONCLUSIONS The novel bioinformatic and wet laboratory methods developed here will enable fast detection and characterisation of RRV isolates. The concepts presented in this body of work are transferable to other viruses that exist as quasispecies in samples. The ability to detect minor SNPs, and thus haplotype strains, is critically important for understanding the epidemiology of viruses their natural environment.
Collapse
Affiliation(s)
- Ellen M. de Vries
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
| | - Noel O. I. Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
| | - Aneta J. Gubala
- Sensors and Effectors Division, Defence Science & Technology Group, Fishermans Bend, VIC 3207 Australia
| | - Brendan C. Rodoni
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
| | - Stacey E. Lynch
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| |
Collapse
|
23
|
Kim AS, Diamond MS. A molecular understanding of alphavirus entry and antibody protection. Nat Rev Microbiol 2023; 21:396-407. [PMID: 36474012 PMCID: PMC9734810 DOI: 10.1038/s41579-022-00825-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Alphaviruses are arthropod-transmitted RNA viruses that cause epidemics of human infection and disease on a global scale. These viruses are classified as either arthritogenic or encephalitic based on their genetic relatedness and the clinical syndromes they cause. Although there are currently no approved therapeutics or vaccines against alphaviruses, passive transfer of monoclonal antibodies confers protection in animal models. This Review highlights recent advances in our understanding of the host factors required for alphavirus entry, the mechanisms of action by which protective antibodies inhibit different steps in the alphavirus infection cycle and candidate alphavirus vaccines currently under clinical evaluation that focus on humoral immunity. A comprehensive understanding of alphavirus entry and antibody-mediated protection may inform the development of new classes of countermeasures for these emerging viruses.
Collapse
Affiliation(s)
- Arthur S Kim
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
24
|
Li FS, Carpentier KS, Hawman DW, Lucas CJ, Ander SE, Feldmann H, Morrison TE. Species-specific MARCO-alphavirus interactions dictate chikungunya virus viremia. Cell Rep 2023; 42:112418. [PMID: 37083332 DOI: 10.1016/j.celrep.2023.112418] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Arboviruses are public health threats that cause explosive outbreaks. Major determinants of arbovirus transmission, geographic spread, and pathogenesis are the magnitude and duration of viremia in vertebrate hosts. Previously, we determined that multiple alphaviruses are cleared efficiently from murine circulation by the scavenger receptor MARCO (Macrophage receptor with collagenous structure). Here, we define biochemical features on chikungunya (CHIKV), o'nyong 'nyong (ONNV), and Ross River (RRV) viruses required for MARCO-dependent clearance in vivo. In vitro, MARCO expression promotes binding and internalization of CHIKV, ONNV, and RRV via the scavenger receptor cysteine-rich (SRCR) domain. Furthermore, we observe species-specific effects of the MARCO SRCR domain on CHIKV internalization, where those from known amplification hosts fail to promote CHIKV internalization. Consistent with this observation, CHIKV is inefficiently cleared from the circulation of rhesus macaques in contrast with mice. These findings suggest a role for MARCO in determining whether a vertebrate serves as an amplification or dead-end host following CHIKV infection.
Collapse
Affiliation(s)
- Frances S Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kathryn S Carpentier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Cormac J Lucas
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephanie E Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
25
|
Staples K, Richardson S, Neville PJ, Oosthuizen J. A Multi-Species Simulation of Mosquito Disease Vector Development in Temperate Australian Tidal Wetlands Using Publicly Available Data. Trop Med Infect Dis 2023; 8:215. [PMID: 37104341 PMCID: PMC10145111 DOI: 10.3390/tropicalmed8040215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Worldwide, mosquito monitoring and control programs consume large amounts of resources in the effort to minimise mosquito-borne disease incidence. On-site larval monitoring is highly effective but time consuming. A number of mechanistic models of mosquito development have been developed to reduce the reliance on larval monitoring, but none for Ross River virus, the most commonly occurring mosquito-borne disease in Australia. This research modifies existing mechanistic models for malaria vectors and applies it to a wetland field site in Southwest, Western Australia. Environmental monitoring data were applied to an enzyme kinetic model of larval mosquito development to simulate timing of adult emergence and relative population abundance of three mosquito vectors of the Ross River virus for the period of 2018-2020. The model results were compared with field measured adult mosquitoes trapped using carbon dioxide light traps. The model showed different patterns of emergence for the three mosquito species, capturing inter-seasonal and inter-year variation, and correlated well with field adult trapping data. The model provides a useful tool to investigate the effects of different weather and environmental variables on larval and adult mosquito development and can be used to investigate the possible effects of changes to short-term and long-term sea level and climate changes.
Collapse
Affiliation(s)
- Kerry Staples
- Occupational and Environmental Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Steven Richardson
- School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Peter J. Neville
- Occupational and Environmental Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
- Biological and Applied Environmental Health, Environmental Health Directorate, Department of Health, Perth 6849, Australia
| | - Jacques Oosthuizen
- Occupational and Environmental Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| |
Collapse
|
26
|
Prevalence of Barmah Forest Virus, Chikungunya Virus and Ross River Virus Antibodies among Papua New Guinea Military Personnel before 2019. Viruses 2023; 15:v15020394. [PMID: 36851608 PMCID: PMC9966107 DOI: 10.3390/v15020394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Barmah Forest virus (BFV), Chikungunya virus (CHIKV) and Ross River virus (RRV) belong to the Alphavirus genus of the family Togaviridae. All three virus infections have been reported in Papua New Guinea (PNG) previously, but the exact prevalence and distribution of these three alphaviruses in PNG has not been established. Sera collected from 204 PNG Military Personnel (PNGMP) study participants in April 2019 was tested for the presence of anti-BFV, anti-CHIKV and anti-RRV immunoglobulin G (IgG) antibodies using commercially available enzyme-linked immunosorbent assay (ELISA) IgG detection kits, as well as for specific neutralizing antibodies (NAb) against individual viruses. Overall, sero-positivity of the sera was anti-BFV IgG 12.3% (25/204), anti-BFV NAb 8.3% (17/204); anti-CHIKV IgG 47.1% (96/204), anti-CHIKV NAb 34.8% (71/204); and anti-RRV IgG 93.1% (190/204), anti-RRV NAb 56.4% (115/204), respectively. Of the 137/204 participants that were Nab-positive for at least one virus, we identified 4 BFV, 40 CHIKV and 73 RRV single infections, and 9 RRV+CHIKV and 11 BFV+RRV double infections. The lower proportion of NAb sero-positive compared to the ELISA IgG sero-positive assay samples suggests that the currently available commercial ELISA detection kits for these three alphaviruses may not be suitable for diagnostic/surveillance purposes in endemic areas such as PNG, due to serological cross-reactivity among these three alphaviruses. Laboratory testing using known positive control sera indicated no cross-neutralization between BFV and RRV; however, some RRV or BFV single infection human sera demonstrated low-level cross-neutralization against CHIKV (the ratio of RRV/CHIKV NAb titers or BFV/CHIKV ≥ 4). Our preliminary results indicate that the majority of PNGMP have previously been exposed to RRV, with mild exposure to CHIKV and low-level exposure to BFV, suggesting that multiple alphaviruses have been circulating among PNGMP. The transmission landscapes of these three alphaviruses across PNG should be prioritized for further investigation, including identification of specific vectors and hosts that mediate human spillover in order to mitigate future outbreaks. Ongoing education regarding precautionary and protective measures are needed to better protect individuals who travel to PNG.
Collapse
|
27
|
Zimmerman O, Holmes AC, Kafai NM, Adams LJ, Diamond MS. Entry receptors - the gateway to alphavirus infection. J Clin Invest 2023; 133:e165307. [PMID: 36647825 PMCID: PMC9843064 DOI: 10.1172/jci165307] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alphaviruses are enveloped, insect-transmitted, positive-sense RNA viruses that infect humans and other animals and cause a range of clinical manifestations, including arthritis, musculoskeletal disease, meningitis, encephalitis, and death. Over the past four years, aided by CRISPR/Cas9-based genetic screening approaches, intensive research efforts have focused on identifying entry receptors for alphaviruses to better understand the basis for cellular and species tropism. Herein, we review approaches to alphavirus receptor identification and how these were used for discovery. The identification of new receptors advances our understanding of viral pathogenesis, tropism, and evolution and is expected to contribute to the development of novel strategies for prevention and treatment of alphavirus infection.
Collapse
Affiliation(s)
| | | | | | | | - Michael S. Diamond
- Department of Medicine
- Department of Pathology and Immunology
- Department of Molecular Microbiology, and
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Stelder JJ, Mihalca AD, Olesen AS, Kjær LJ, Boklund AE, Rasmussen TB, Marinov M, Alexe V, Balmoş OM, Bødker R. Potential mosquito vector attraction to- and feeding preferences for pigs in Romanian backyard farms. Front Vet Sci 2023; 9:1046263. [PMID: 36686172 PMCID: PMC9846066 DOI: 10.3389/fvets.2022.1046263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Mosquitoes either biologically or mechanically transmit various vector-borne pathogens affecting pigs. Mosquito species display a wide variety of host preference, as well as host attraction and behaviours. Mosquito species attraction rates to- and feeding rates on pigs or other potential hosts, as well as the seasonal abundance of the mosquito species affects their pathogen transmission potential. Methods We caught mosquitoes in experimental cages containing pigs situated in Romanian backyard farms. The host species of blood meals were identified with PCR and sequencing. Results High feeding preferences for pigs were observed in Aedes vexans (90%), Anopheles maculipennis (80%) and Culiseta annulata (72.7%). However, due to a high abundance in the traps, Culex pipiens/torrentium were responsible for 37.9% of all mosquito bites on pigs in the Romanian backyards, despite low feeding rates on pigs in the cages (18.6%). We also found that other predominantly ornithophilic mosquito species, as well as mosquitoes that are already carrying a blood meal from a different (mammalian) host, were attracted to backyard pigs or their enclosure. Discussion These results indicate that viraemic blood carrying, for instance, African swine fever virus, West-Nile virus or Japanese encephalitis virus could be introduced to these backyard pig farms and therefore cause an infection, either through subsequent feeding, via ingestion by the pig or by environmental contamination.
Collapse
Affiliation(s)
- Jonno Jorn Stelder
- Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Copenhagen University, Copenhagen, Denmark
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Ann Sofie Olesen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Lene Jung Kjær
- Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Copenhagen University, Copenhagen, Denmark
| | - Anette Ella Boklund
- Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Copenhagen University, Copenhagen, Denmark
| | - Thomas Bruun Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Mihai Marinov
- Department of Biodiversity Conservation and Sustainable Use of Natural Resources, Danube Delta National Institute for Research and Development, Tulcea, Romania
| | - Vasile Alexe
- Department of Biodiversity Conservation and Sustainable Use of Natural Resources, Danube Delta National Institute for Research and Development, Tulcea, Romania
| | - Oana Maria Balmoş
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - René Bødker
- Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
29
|
Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023; 209:105476. [PMID: 36436722 PMCID: PMC9840710 DOI: 10.1016/j.antiviral.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3245, Albuquerque, NM, 87131, USA.
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3330A, Albuquerque, NM, 87131, USA.
| |
Collapse
|
30
|
Lim EXY, Webster JA, Rudd PA, Herrero LJ. Pathways Activated by Infected and Bystander Chondrocytes in Response to Ross River Virus Infection. Viruses 2022; 15:136. [PMID: 36680176 PMCID: PMC9864161 DOI: 10.3390/v15010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Old world alphaviruses, such as Ross River virus (RRV), cause debilitating arthralgia during acute and chronic stages of the disease. RRV-induced cartilage degradation has been implicated as a cause of joint pain felt by RRV patients. Chondrocytes are a major cell type of cartilage and are involved in the production and maintenance of the cartilage matrix. It is thought that these cells may play a vital role in RRV disease pathogenesis. In this study, we used RNA-sequencing (RNA-Seq) to examine the transcriptomes of RRV-infected and bystander chondrocytes in the same environment. RRV containing green fluorescent protein (GFP) allowed for the separation of RRV-infected (GFP+) and bystander uninfected cells (GFP-). We found that whereas GFP+ and GFP- populations commonly presented similar gene expression profiles during infection, there were also unique signatures. For example, RIMS2 and FOXJ1 were unique to GFP+ cells, whilst Aim2 and CCL8 were only found in bystander chondrocytes. This indicates that careful selection of potential therapeutic targets is important to minimise adverse effects to the neighbouring uninfected cell populations. Our study serves as a resource to provide more information about the pathways and responses elicited by RRV in cells which are both infected and stimulated because of neighbouring infected cells.
Collapse
|
31
|
Batovska J, Mee PT, Sawbridge TI, Rodoni BC, Lynch SE. Enhanced Arbovirus Surveillance with High-Throughput Metatranscriptomic Processing of Field-Collected Mosquitoes. Viruses 2022; 14:v14122759. [PMID: 36560765 PMCID: PMC9782886 DOI: 10.3390/v14122759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Surveillance programs are essential for the prevention and control of mosquito-borne arboviruses that cause serious human and animal diseases. Viral metatranscriptomic sequencing can enhance surveillance by enabling untargeted, high-throughput arbovirus detection. We used metatranscriptomic sequencing to screen field-collected mosquitoes for arboviruses to better understand how metatranscriptomics can be utilised in routine surveillance. Following a significant flood event in 2016, more than 56,000 mosquitoes were collected over seven weeks from field traps set up in Victoria, Australia. The traps were split into samples of 1000 mosquitoes or less and sequenced on the Illumina HiSeq. Five arboviruses relevant to public health (Ross River virus, Sindbis virus, Trubanaman virus, Umatilla virus, and Wongorr virus) were detected a total of 33 times in the metatranscriptomic data, with 94% confirmed using reverse transcription quantitative PCR (RT-qPCR). Analysis of metatranscriptomic cytochrome oxidase I (COI) sequences enabled the detection of 12 mosquito and two biting midge species. Screening of the same traps by an established public health arbovirus surveillance program corroborated the metatranscriptomic arbovirus and mosquito species detections. Assembly of genome sequences from the metatranscriptomic data also led to the detection of 51 insect-specific viruses, both known and previously undescribed, and allowed phylogenetic comparison to past strains. We have demonstrated how metatranscriptomics can enhance surveillance by enabling untargeted arbovirus detection, providing genomic epidemiological data, and simultaneously identifying vector species from large, unsorted mosquito traps.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Peter T. Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Tim I. Sawbridge
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Brendan C. Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Stacey E. Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
32
|
Qian W, Harley D, Glass K, Viennet E, Hurst C. Prediction of Ross River virus incidence in Queensland, Australia: building and comparing models. PeerJ 2022; 10:e14213. [PMID: 36389410 PMCID: PMC9651042 DOI: 10.7717/peerj.14213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Transmission of Ross River virus (RRV) is influenced by climatic, environmental, and socio-economic factors. Accurate and robust predictions based on these factors are necessary for disease prevention and control. However, the complicated transmission cycle and the characteristics of RRV notification data present challenges. Studies to compare model performance are lacking. In this study, we used RRV notification data and exposure data from 2001 to 2020 in Queensland, Australia, and compared ten models (including generalised linear models, zero-inflated models, and generalised additive models) to predict RRV incidence in different regions of Queensland. We aimed to compare model performance and to evaluate the effect of statistical over-dispersion and zero-inflation of RRV surveillance data, and non-linearity of predictors on model fit. A variable selection strategy for screening important predictors was developed and was found to be efficient and able to generate consistent and reasonable numbers of predictors across regions and in all training sets. Negative binomial models generally exhibited better model fit than Poisson models, suggesting that over-dispersion in the data is the primary factor driving model fit compared to non-linearity of predictors and excess zeros. All models predicted the peak periods well but were unable to fit and predict the magnitude of peaks, especially when there were high numbers of cases. Adding new variables including historical RRV cases and mosquito abundance may improve model performance. The standard negative binomial generalised linear model is stable, simple, and effective in prediction, and is thus considered the best choice among all models.
Collapse
Affiliation(s)
- Wei Qian
- The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, Australia
| | - David Harley
- The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, Australia
| | - Kathryn Glass
- Research School of Population Health, Australian National University, Acton, Australian Capital Territory, Australia
| | - Elvina Viennet
- Clinical Services and Research, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia,Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Brisbane, Queensland, Australia,Department of Statistics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
33
|
Dobbs JE, Tritsch SR, Encinales L, Cadena A, Suchowiecki K, Simon G, Mores C, Insignares S, Orozco VPV, Ospino M, Echavez LA, Gomez CAH, Crespo YG, Amdur R, Jimenez ADC, Hernandez CAP, Zapata JCM, Hernandez AS, Silvera PB, Rosales W, Mendoza E, Osorio-Llanes E, Castellar J, Jimenez D, Cooper DM, Firestein GS, Martins K, Chang AY. Regulatory T-cells and GARP expression are decreased in exercise-associated chikungunya viral arthritis flares. Front Immunol 2022; 13:1007106. [PMID: 36275717 PMCID: PMC9585177 DOI: 10.3389/fimmu.2022.1007106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Chikungunya virus (CHIKV) causes persistent arthritis, and our prior study showed that approximately one third of CHIKV arthritis patients had exacerbated arthritis associated with exercise. The underlying mechanism of exercise-associated chikungunya arthritis flare (EACAF) is unknown, and this analysis aimed to examine the regulatory T-cell immune response related to CHIKV arthritis flares. Methods In our study, 124 Colombian patients with a history of CHIKV infection four years prior were enrolled and 113 cases with serologically confirmed CHIKV IgG were used in this analysis. Patient information was gathered via questionnaires, and blood samples were taken to identify total live peripheral blood mononuclear cells, CD4+ cells, T regulatory cells, and their immune markers. We compared outcomes in CHIKV patients with (n = 38) vs. without (n = 75) EACAF using t-tests to assess means and the Fisher’s exact test, chi-squared to evaluate categorical variables, and Kruskal-Wallis tests in the setting of skewed distributions (SAS 9.3). Results 33.6% of CHIKV cases reported worsening arthritis with exercise. EACAF patients reported higher global assessments of arthritis disease ranging from 0-100 (71.2 ± 19.7 vs. 59.9 ± 28.0, p=0.03). EACAF patients had lower ratios of T regulatory (Treg)/CD4+ T-cells (1.95 ± 0.73 vs. 2.4 ± 1.29, p = 0.04) and lower percentage of GARP (glycoprotein-A repetitions predominant) expression per Treg (0.13 ± 0.0.33 vs. 0.16 ± 0.24 p= 0.020). Conclusion These findings suggest relative decreases in GARP expression may indicate a decreased level of immune suppression. Treg populations in patients with CHIKV arthritis may contribute to arthritis flares during exercise, though current research is conflicting.
Collapse
Affiliation(s)
- John E. Dobbs
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- *Correspondence: John E. Dobbs,
| | - Sarah R. Tritsch
- Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | | | | | - Karol Suchowiecki
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Gary Simon
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Christopher Mores
- Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | | | | | | | | | | | | | - Richard Amdur
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | | | | | | | | | | | | | - Evelyn Mendoza
- Allied Research Society, Barranquilla, Colombia
- Universidad Libre, Barranquilla, Colombia
| | | | | | - Dennys Jimenez
- University of Texas Health Science Center San Antonio, TX, United States
| | - Dan M. Cooper
- University of California Irvine, Irvine, CA, United States
| | | | - Karen Martins
- Biomedical Advanced Research and Development Authority, Bethesda, MD, United States
| | - Aileen Y. Chang
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
34
|
Yuen KY, Henning J, Eng MD, Wang ASW, Lenz MF, Caldwell KM, Coyle MP, Bielefeldt-Ohmann H. Epidemiological Study of Multiple Zoonotic Mosquito-Borne Alphaviruses in Horses in Queensland, Australia (2018-2020). Viruses 2022; 14:v14091846. [PMID: 36146651 PMCID: PMC9504300 DOI: 10.3390/v14091846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
The increased frequency of extreme weather events due to climate change has complicated the epidemiological pattern of mosquito-borne diseases, as the host and vector dynamics shift to adapt. However, little is known about the seroprevalence of common mosquito-borne virus infections in horses in Australia. In this study, serological surveys for multiple alphaviruses were performed on samples taken from 622 horses across two horse populations (racehorses and horses residing on The University of Queensland (UQ) campus) in Queensland using the gold standard virus neutralization test. As is the case in humans across Australia, Ross River virus (RRV) is the most common arbovirus infection in horses, followed by Barmah Forest virus, with an overall apparent seroprevalence of 48.6% (302/622) and 4.3% (26/607), respectively. Horses aged over 6 years old (OR 1.86, p = 0.01) and residing at UQ (OR 5.8, p < 0.001) were significantly associated with seroconversion to RRV. A significant medium correlation (r = 0.626, p < 0.001) between RRV and Getah virus (GETV) neutralizing antibody titers was identified. Collectively, these results advance the current epidemiological knowledge of arbovirus exposure in a susceptible host in Australia. The potential use of horses as sentinels for arbovirus monitoring should be considered. Furthermore, since GETV is currently exotic to Australia, antibodies cross-reactivity between RRV and GETV should be further investigated for cross-protection, which may also help to inform vaccine developments.
Collapse
Affiliation(s)
- Ka Y. Yuen
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Joerg Henning
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Melodie D. Eng
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Althea S. W. Wang
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Martin F. Lenz
- Queensland Racing Integrity Commission, Brisbane, QLD 4010, Australia
| | - Karen M. Caldwell
- Queensland Racing Integrity Commission, Brisbane, QLD 4010, Australia
| | - Mitchell P. Coyle
- Equine Unit, Office of the Director Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
35
|
Sandler CX, Cvejic E, Valencia BM, Li H, Hickie IB, Lloyd AR. Predictors of Chronic Fatigue Syndrome and Mood Disturbance After Acute Infection. Front Neurol 2022; 13:935442. [PMID: 35959390 PMCID: PMC9359311 DOI: 10.3389/fneur.2022.935442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Prospective cohort studies following individuals from acute infections have documented a prevalent post-infective fatigue state meeting diagnostic criteria for chronic fatigue syndrome (CFS) – that is, a post-infective fatigue syndrome (PIFS). The Dubbo Infection Outcomes Study (DIOS) was a prospective cohort following individuals from acute infection with Epstein-Barr virus (EBV), Ross River virus (RRV), or Q fever through to assessment of caseness for CFS designated by physician and psychiatrist assessments at 6 months. Previous studies in DIOS have revealed that functional genetic polymorphisms in both immunological (pro- and anti-inflammatory cytokines) and neurological (the purinergic receptor, P2X7) genes are associated with both the severity of the acute infection and subsequent prolonged illness. Principal components analysis was applied to self-report data from DIOS to describe the severity and course of both the overall illness and concurrent mood disturbance. Associations between demographics and acute infection characteristics, with prolonged illness course as well as the PIFS outcome were examined using multivariable statistics. Genetic haplotype-driven functional variations in the neuropeptide Y (NPY) gene previously shown to be associated with brain responses to stress, and to trait anxiety were also examined as predictors. The sample included 484 subjects (51% female, median age 32, IQR 19–44), of whom 90 (19%) met diagnostic criteria for CFS at 6 months. Participants with greater overall illness severity and concurrent mood disturbance in the acute illness had a more prolonged illness severity (HR = 0.39, 95% CI: 0.34–0.46, p < 0.001) and mood disturbance (HR = 0.36, 95% CI: 0.30–0.42, p < 0.001), respectively. Baseline illness severity and RRV infection were associated with delayed recovery. Female gender and mood disturbance in the acute illness were associated with prolonged mood disturbance. Logistic regression showed that the odds of an individual being diagnosed with PIFS increased with greater baseline illness severity (OR = 2.24, 95% CI: 1.71–2.94, p < 0.001). There was no association between the NPY haplotypes with overall illness severity or mood disturbance either during the acute illness phase or with prolonged illness (p > 0.05). Severe acute infective illnesses predicted prolonged illness, prolonged mood disturbance and PIFS. These factors may facilitate early intervention to manage both PIFS and mood disturbances.
Collapse
Affiliation(s)
- Carolina X. Sandler
- Laboratory Viral Immunology Systems Program, Kirby Institute, The University of New South Wales (UNSW Sydney), Sydney, NSW, Australia
- Sport and Exercise Science, School of Health Science, Western Sydney University, Sydney, NSW, Australia
- Menzies Health Institute Queensland, Griffith University Brisbane, Queensland, QLD, Australia
| | - Erin Cvejic
- The University of Sydney, Faculty of Medicine and Health, School of Public Health, Sydney, NSW, Australia
| | - Braulio M. Valencia
- Laboratory Viral Immunology Systems Program, Kirby Institute, The University of New South Wales (UNSW Sydney), Sydney, NSW, Australia
| | - Hui Li
- Laboratory Viral Immunology Systems Program, Kirby Institute, The University of New South Wales (UNSW Sydney), Sydney, NSW, Australia
| | - Ian B. Hickie
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - Andrew R. Lloyd
- Laboratory Viral Immunology Systems Program, Kirby Institute, The University of New South Wales (UNSW Sydney), Sydney, NSW, Australia
- *Correspondence: Andrew R. Lloyd
| |
Collapse
|
36
|
Hime NJ, Wickens M, Doggett SL, Rahman K, Toi C, Webb C, Vyas A, Lachireddy K. Weather extremes associated with increased Ross River virus and Barmah Forest virus notifications in NSW: learnings for public health response. Aust N Z J Public Health 2022; 46:842-849. [DOI: 10.1111/1753-6405.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/01/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Neil J. Hime
- Environmental Health Branch, Health Protection NSW NSW Health St Leonards New South Wales
- Discipline of Public Health, the School of Public Health, the Faculty of Medicine and Health The University of Sydney New South Wales
| | - Meredith Wickens
- Communicable Diseases Branch, Health Protection NSW NSW Health St Leonards New South Wales
| | - Stephen L. Doggett
- Department of Medical Entomology, NSW Health Pathology‐Institute of Clinical Pathology and Medical Research Westmead Hospital Westmead New South Wales
| | - Kazi Rahman
- North Coast Public Health Unit, Mid North Coast and Northern NSW Local Health Districts NSW Health Lismore New South Wales
| | - Cheryl Toi
- Department of Medical Entomology, NSW Health Pathology‐Institute of Clinical Pathology and Medical Research Westmead Hospital Westmead New South Wales
| | - Cameron Webb
- Discipline of Public Health, the School of Public Health, the Faculty of Medicine and Health The University of Sydney New South Wales
- Department of Medical Entomology, NSW Health Pathology‐Institute of Clinical Pathology and Medical Research Westmead Hospital Westmead New South Wales
| | - Aditya Vyas
- Environmental Health Branch, Health Protection NSW NSW Health St Leonards New South Wales
| | - Kishen Lachireddy
- Environmental Health Branch, Health Protection NSW NSW Health St Leonards New South Wales
| |
Collapse
|
37
|
Damtew YT, Tong M, Varghese BM, Hansen A, Liu J, Dear K, Zhang Y, Morgan G, Driscoll T, Capon T, Bi P. Associations between temperature and Ross river virus infection: A systematic review and meta-analysis of epidemiological evidence. Acta Trop 2022; 231:106454. [PMID: 35405101 DOI: 10.1016/j.actatropica.2022.106454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/01/2022]
Abstract
Ross River virus (RRV) infection is one of the emerging and prevalent arboviral diseases in Australia and the Pacific Islands. Although many studies have been conducted to establish the relationship between temperature and RRV infection, there has been no comprehensive review of the association so far. In this study, we performed a systematic review and meta-analysis to assess the effect of temperature on RRV transmission. We searched PubMed, Scopus, Embase, and Web of Science with additional lateral searches from references. The quality and strength of evidence from the included studies were evaluated following the Navigation Guide framework. We have qualitatively synthesized the evidence and conducted a meta-analysis to pool the relative risks (RRs) of RRV infection per 1 °C increase in temperature. Subgroup analyses were performed by climate zones, temperature metrics, and lag periods. A total of 17 studies met the inclusion criteria, of which six were included in the meta-analysis The meta-analysis revealed that the overall RR for the association between temperature and the risk of RRV infection was 1.09 (95% confidence interval (CI): 1.02, 1.17). Subgroup analyses by climate zones showed an increase in RRV infection per 1 °C increase in temperature in humid subtropical and cold semi-arid climate zones. The overall quality of evidence was "moderate" and we rated the strength of evidence to be "limited", warranting additional evidence to reduce uncertainty. The results showed that the risk of RRV infection is positively associated with temperature. However, the risk varies across different climate zones, temperature metrics and lag periods. These findings indicate that future studies on the association between temperature and RRV infection should consider local and regional climate, socio-demographic, and environmental factors to explore vulnerability at local and regional levels.
Collapse
|
38
|
Ammar SE, Mclntyre M, Baker MG, Hales S. New Zealand travellers to high-risk destinations for arbovirus infection make little effort to avoid mosquito bites. J R Soc N Z 2022; 53:209-218. [PMID: 39439921 PMCID: PMC11459766 DOI: 10.1080/03036758.2022.2071951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
There has been no local transmission of arbovirus disease recorded in New Zealand to date. However, in the past two decades, there have been increasing numbers of overseas-acquired cases of arbovirus infections in New Zealand, mainly dengue, Zika, chikungunya and Ross River viruses. The repeated introduction of these viruses to the immunologically naïve New Zealand population through viraemic travellers represents a potential risk for local transmission by resident or new mosquito vectors. This study assessed the extent to which these imported arbovirus disease cases used the bite-avoidance measures recommended by the New Zealand Ministry of Health between 2001-2017. The majority of notified cases reported making little effort to avoid mosquito bites even during high-risk periods and outbreaks. This suggests that the infection of New Zealand travellers might be due to underestimation or unawareness of the risk of travel-related mosquito-borne diseases. New Zealand travellers to endemic or epidemic areas, mainly in the Asia-Pacific region, should be informed about ongoing risks according to season and epidemic activity at the destination and updated on the latest disease situation and new trends. This would reduce the likelihood of pathogen introduction and, therefore, local transmission of arbovirus infection in New Zealand.
Collapse
Affiliation(s)
- Sherif E. Ammar
- Department of Public Health, University of Otago, Wellington, New Zealand
- Institute of Environmental Science and Research (ESR), Wellington, New Zealand
| | - Mary Mclntyre
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Michael G. Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Simon Hales
- Department of Public Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
39
|
Agarwal A, Sarma DK, Chaurasia D, Maan HS. Novel molecular approaches to combat vectors and vector-borne viruses: Special focus on RNA interference (RNAi) mechanisms. Acta Trop 2022; 233:106539. [PMID: 35623398 DOI: 10.1016/j.actatropica.2022.106539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Vector-borne diseases, such as dengue, chikungunya, zika, yellow fever etc pose significant burden among the infectious diseases globally, especially in tropical and sub-tropical regions. Globalization, deforestation, urbanization, climate change, uncontrolled population growth, inadequate waste management and poor vector-management infrastructure have all contributed to the expansion of vector habitats and subsequent increase in vector-borne diseases throughout the world. Conventional vector control methods, such as use of insecticides, have significant negative environmental repercussions in addition to developing resistance in vectors. Till date, a very few vaccines or antiviral therapies have been approved for the treatment of vector borne diseases. In this review, we have discussed emerging molecular approaches like CRISPR (clustered regularly interspaced short palindromic repeats)/Cas-9, sterile insect technique (SIT), release of insects carrying a dominant lethal (RIDL), Wolbachia (virus transmission blocking) and RNA interference (RNAi) to combat vector and vector-borne viruses. Due to the extensive advancements in RNAi research, a special focus has been given on its types, biogenesis, mechanism of action, delivery and experimental studies evaluating their application as anti-mosquito and anti-viral agent. These technologies appear to be highly promising in terms of contributing to vector control and antiviral drug development, and hence can be used to reduce global vector and vector-borne disease burden.
Collapse
Affiliation(s)
- Ankita Agarwal
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India.
| | - Devojit Kumar Sarma
- ICMR-National Institute for Research in Environmental Health, Bhopal 462030, Madhya Pradesh, India
| | - Deepti Chaurasia
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India
| | - Harjeet Singh Maan
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India
| |
Collapse
|
40
|
Madzokere ET, Qian W, Webster JA, Walker DMH, Lim EXY, Harley D, Herrero LJ. Human Seroprevalence for Dengue, Ross River, and Barmah Forest viruses in Australia and the Pacific: A systematic review spanning seven decades. PLoS Negl Trop Dis 2022; 16:e0010314. [PMID: 35486651 PMCID: PMC9094520 DOI: 10.1371/journal.pntd.0010314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 05/11/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Dengue (DENV), Ross River (RRV) and Barmah Forest viruses (BFV) are the most common human arboviral infections in Australia and the Pacific Island Countries and Territories (PICTs) and are associated with debilitating symptoms. All are nationally notifiable in Australia, but routine surveillance is limited to a few locations in the PICTs. Understanding the level of human exposure to these viruses can inform disease management and mitigation strategies. To assess the historic and current seroprevalence of DENV, RRV and BFV in Australia and the PICTs we conducted a systematic literature review of all published quantitative serosurveys.
Methodology and principal findings
The Preferred Reporting of Items for Systematic Reviews and Meta-Analyses procedures were adopted to produce a protocol to systematically search for published studies reporting the seroprevalence of DENV, RRV and BFV in Australia and the PICTs. Data for author, research year, location, study population, serosurvey methods and positive tests were extracted. A total of 41 papers, reporting 78 serosurveys of DENV, RRV and BFV including 62,327 samples met the inclusion criteria for this review. Seroprevalence varied depending on the assay used, strategy of sample collection and location of the study population. Significant differences were observed in reported seropositivity depending on the sample collection strategy with clinically targeted sampling reporting the highest seroprevalence across all three viruses. Non-stratified seroprevalence showed wide ranges in reported positivity with DENV 0.0% – 95.6%, RRV 0.0% – 100.0%, and BFV 0.3% – 12.5%. We discuss some of the causes of variation including serological methods used, selection bias in sample collection including clinical or environmental associations, and location of study site. We consider the extent to which serosurveys reflect the epidemiology of the viruses and provide broad recommendations regarding the conduct and reporting of arbovirus serosurveys.
Conclusions and significance
Human serosurveys provide important information on the extent of human exposure to arboviruses across: (1) time, (2) place, and (3) person (e.g., age, gender, clinical presentation etc). Interpreting results obtained at these scales has the potential to inform us about transmission cycles, improve diagnostic surveillance, and mitigate future outbreaks. Future research should streamline methods and reduce bias to allow a better understanding of the burden of these diseases and the factors associated with seroprevalence. Greater consideration should be given to the interpretation of seroprevalence in studies, and increased rigour applied in linking seroprevalence to transmission dynamics.
Collapse
Affiliation(s)
- Eugene T. Madzokere
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Australia
| | - Wei Qian
- Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Julie A. Webster
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Daniel M. H. Walker
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Australia
| | - Elisa X. Y. Lim
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Australia
| | - David Harley
- Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Lara J. Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Australia
- * E-mail:
| |
Collapse
|
41
|
TIR-Domain-Containing Adapter-Inducing Interferon-β (TRIF)-Dependent Antiviral Responses Protect Mice against Ross River Virus Disease. mBio 2022; 13:e0336321. [PMID: 35089088 PMCID: PMC8725586 DOI: 10.1128/mbio.03363-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ross River virus (RRV) is the major mosquito-borne virus in the South Pacific region. RRV infections are characterized by arthritic symptoms, which can last from several weeks to months. Type I interferon (IFN), the primary antiviral innate immune response, is able to modulate adaptive immune responses. The relationship between the protective role of type I IFN and the induction of signaling proteins that drive RRV disease pathogenesis remains poorly understood. In the present study, the role of TIR-domain-containing adapter-inducing interferon-β (TRIF), an essential signaling adaptor protein downstream of Toll-like receptor (TLR) 3, a key single-stranded RNA (ssRNA)-sensing receptor, was investigated. We found that TRIF-/- mice were highly susceptible to RRV infection, with severe disease, high viremia, and a low type I IFN response early during disease development, which suggests the TLR3-TRIF axis may engage early in response to RRV infection. The number and the activation level of CD4+ T cells, CD8+ T cells, and NK cells were reduced in TRIF-/- mice compared to those in infected wild-type (WT) mice. In addition, the number of germinal center B cells was lower in TRIF-/- mice than WT mice following RRV infection, with lower titers of IgG antibodies detected in infected TRIF-/- mice compared to WT. Interestingly, the requirement for TRIF to promote immunoglobulin class switch recombination was at the level of the local immune microenvironment rather than B cells themselves. The slower resolution of RRV disease in TRIF-/- mice was associated with persistence of the RRV genome in muscle tissue and a continuing IFN response. IMPORTANCE RRV has been prevalent in the South Pacific region for decades and causes substantial economic and social costs. Though RRV is geographically restricted, a number of other alphaviruses have spread globally due to expansion of the mosquito vectors and increased international travel. Since over 30 species of mosquitoes have been implicated as potent vectors for RRV dissemination, RRV has the potential to further expand its distribution. In the pathogenesis of RRV disease, it is still not clear how innate immune responses synergize with adaptive immune responses. Type I IFN is crucial for bridging innate to adaptive immune responses to viral invasion. Hence, key signaling proteins in type I IFN induction pathways, which are important for type I IFN modulation, may also play critical roles in viral pathogenesis. This study provides insight into the role of TRIF in RRV disease development.
Collapse
|
42
|
Johnson BJ, Manby R, Devine GJ. The Use of Automated Traps to Assess the Efficacy of Insecticide Barrier Treatments Against Abundant Mosquitoes in Remote Environments. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:384-389. [PMID: 34748002 DOI: 10.1093/jme/tjab178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Commercially available 'smart' trap technology has not yet been widely used to evaluate interventions against mosquitoes despite potential benefits. These benefits include the ability to capture data continuously at fine temporal scales without the human resources usually required for conventional trap deployment. Here, we used a commercially available smart trap (BG-Counter, Biogents) to assess the efficacy of an insecticide barrier treatment (BiFlex AquaMax) in reducing mosquito nuisance in a logistically challenging coastal environment in Queensland, Australia. Adoption of smart trap technology permitted us to conduct a uniquely detailed assessment of barrier treatments, ultimately allowing us to demonstrate significant reductions in mosquito collections from treated properties over all temporal scales. On average, daily mosquito collections from treated properties were reduced by 74.6% for the duration of the post-treatment period (56 d). This observation was supported by similar reductions (73.3%) in mosquito collections across all hours of the day. It was further found that underlying mosquito population dynamics were comparable across all study sites as evidenced by the high congruence in daily collection patterns among traps (Pearson r = 0.64). Despite limitations related to trap costs and replication, the results demonstrate that smart traps offer new precision tools for the assessment of barrier treatments and other mosquito control interventions.
Collapse
Affiliation(s)
- Brian J Johnson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Russell Manby
- Pest Management, Redland City Council, Redland City Council, Cleveland, QLD, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
43
|
Lucas CJ, Morrison TE. Animal models of alphavirus infection and human disease. Adv Virus Res 2022; 113:25-88. [DOI: 10.1016/bs.aivir.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
44
|
Pyke AT, Shivas MA, Darbro JM, Onn MB, Johnson PH, Crunkhorn A, Montgomery I, Burtonclay P, Jansen CC, van den Hurk AF. Uncovering the genetic diversity within the Aedes notoscriptus virome and isolation of new viruses from this highly urbanised and invasive mosquito. Virus Evol 2021; 7:veab082. [PMID: 34712491 PMCID: PMC8546932 DOI: 10.1093/ve/veab082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
The Australian backyard mosquito, Aedes notoscriptus, is a highly urbanised pest species that has invaded New Zealand and the USA. Importantly, Ae. notoscriptus has been implicated as a vector of Ross River virus, a common and arthritogenic arbovirus in Australia, and is a laboratory vector of numerous other pathogenic viruses, including West Nile, yellow fever, and Zika viruses. To further explore live viruses harboured by field populations of Ae. notoscriptus and, more specifically, assess the genetic diversity of its virome, we processed 495 pools, comprising a total of 6,674 female Ae. notoscriptus collected across fifteen suburbs in Brisbane, Australia, between January 2018 and May 2019. Nine virus isolates were recovered and characterised by metagenomic sequencing and phylogenetics. The principal viral family represented was Flaviviridae. Known viruses belonging to the genera Flavivirus, Orbivirus, Mesonivirus, and Nelorpivirus were identified together with two novel virus species, including a divergent Thogoto-like orthomyxovirus and an insect-specific flavivirus. Among these, we recovered three Stratford virus (STRV) isolates and an isolate of Wongorr virus (WGRV), which for these viral species is unprecedented for the geographical area of Brisbane. Thus, the documented geographical distribution of STRV and WGRV, both known for their respective medical and veterinary importance, has now been expanded to include this major urban centre. Phylogenies of the remaining five viruses, namely, Casuarina, Ngewotan, the novel Thogoto-like virus, and two new flavivirus species, suggested they are insect-specific viruses. None of these viruses have been previously associated with Ae. notoscriptus or been reported in Brisbane. These findings exemplify the rich genetic diversity and viral abundance within the Ae. notoscriptus virome and further highlight this species as a vector of concern with the potential to transmit viruses impacting human or animal health. Considering it is a common pest and vector in residential areas and is expanding its global distribution, ongoing surveillance, and ecological study of Ae. notoscriptus, together with mapping of its virome and phenotypic characterisation of isolated viruses, is clearly warranted. Immanently, these initiatives are essential for future understanding of both the mosquito virome and the evolution of individual viral species.
Collapse
Affiliation(s)
- Alyssa T Pyke
- Department of Health, Public Health Virology Laboratory, Forensic and Scientific Services, Queensland Government, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Martin A Shivas
- Brisbane City Council, 20 Tradecoast Drive, Eagle Farm, Brisbane, QLD 4009, Australia
| | | | - Michael B Onn
- Brisbane City Council, 20 Tradecoast Drive, Eagle Farm, Brisbane, QLD 4009, Australia
| | | | - Andrew Crunkhorn
- Metro North Public Health Unit, Queensland Health, Bryden Street, Windsor, QLD 4030, Australia
| | - Ivan Montgomery
- Brisbane City Council, 20 Tradecoast Drive, Eagle Farm, Brisbane, QLD 4009, Australia
| | | | - Cassie C Jansen
- Communicable Diseases Branch, Queensland Health, 15 Butterfield Street, Herston, QLD 4006, Australia
| | - Andrew F van den Hurk
- Department of Health, Public Health Virology Laboratory, Forensic and Scientific Services, Queensland Government, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| |
Collapse
|
45
|
Wang P, Yue C, Liu K, Lu D, Liu S, Yao S, Li X, Su X, Ren K, Chai Y, Qi J, Zhao Y, Lou Y, Sun Z, Gao GF, Liu WJ. Peptide Presentations of Marsupial MHC Class I Visualize Immune Features of Lower Mammals Paralleled with Bats. THE JOURNAL OF IMMUNOLOGY 2021; 207:2167-2178. [PMID: 34535575 DOI: 10.4049/jimmunol.2100350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
Marsupials are one of three major mammalian lineages that include the placental eutherians and the egg-laying monotremes. The marsupial brushtail possum is an important protected species in the Australian forest ecosystem. Molecules encoded by the MHC genes are essential mediators of adaptive immune responses in virus-host interactions. Yet, nothing is known about the peptide presentation features of any marsupial MHC class I (MHC I). This study identified a series of possum MHC I Trvu-UB*01:01 binding peptides derived from wobbly possum disease virus (WPDV), a lethal virus of both captive and feral possum populations, and unveiled the structure of marsupial peptide/MHC I complex. Notably, we found the two brushtail possum-specific insertions, the 3-aa Ile52Glu53Arg54 and 1-aa Arg154 insertions are located in the Trvu-UB*01:01 peptide binding groove (PBG). The 3-aa insertion plays a pivotal role in maintaining the stability of the N terminus of Trvu-UB*01:01 PBG. This aspect of marsupial PBG is unexpectedly similar to the bat MHC I Ptal-N*01:01 and is shared with lower vertebrates from elasmobranch to monotreme, indicating an evolution hotspot that may have emerged from the pathogen-host interactions. Residue Arg154 insertion, located in the α2 helix, is available for TCR recognition, and it has a particular influence on promoting the anchoring of peptide WPDV-12. These findings add significantly to our understanding of adaptive immunity in marsupials and its evolution in vertebrates. Our findings have the potential to impact the conservation of the protected species brushtail possum and other marsupial species.
Collapse
Affiliation(s)
- Pengyan Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Can Yue
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Dan Lu
- Savaid Medical School, University of Chinese Academy of Science, Beijing, China
| | - Sai Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sijia Yao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - George F Gao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; .,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - William J Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; .,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
46
|
Glud HA, George S, Skovgaard K, Larsen LE. Zoonotic and reverse zoonotic transmission of viruses between humans and pigs. APMIS 2021; 129:675-693. [PMID: 34586648 PMCID: PMC9297979 DOI: 10.1111/apm.13178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/28/2021] [Indexed: 12/30/2022]
Abstract
Humans and pigs share a close contact relationship, similar biological traits, and one of the highest estimated number of viruses compared to other mammalian species. The contribution and directionality of viral exchange between humans and pigs remain unclear for some of these viruses, but their transmission routes are important to characterize in order to prevent outbreaks of disease in both host species. This review collects and assesses the evidence to determine the likely transmission route of 27 viruses between humans and pigs.
Collapse
Affiliation(s)
- Helena Aagaard Glud
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sophie George
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Kain MP, Skinner EB, van den Hurk AF, McCallum H, Mordecai EA. Physiology and ecology combine to determine host and vector importance for Ross River virus. eLife 2021; 10:e67018. [PMID: 34414887 PMCID: PMC8457839 DOI: 10.7554/elife.67018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/19/2021] [Indexed: 01/19/2023] Open
Abstract
Identifying the key vector and host species that drive the transmission of zoonotic pathogens is notoriously difficult but critical for disease control. We present a nested approach for quantifying the importance of host and vectors that integrates species' physiological competence with their ecological traits. We apply this framework to a medically important arbovirus, Ross River virus (RRV), in Brisbane, Australia. We find that vertebrate hosts with high physiological competence are not the most important for community transmission; interactions between hosts and vectors largely underpin the importance of host species. For vectors, physiological competence is highly important. Our results identify primary and secondary vectors of RRV and suggest two potential transmission cycles in Brisbane: an enzootic cycle involving birds and an urban cycle involving humans. The framework accounts for uncertainty from each fitted statistical model in estimates of species' contributions to transmission and has has direct application to other zoonotic pathogens.
Collapse
Affiliation(s)
- Morgan P Kain
- Department of Biology, Stanford UniversityStanfordUnited States
- Natural Capital Project, Woods Institute for the Environment, Stanford UniversityStanfordUnited States
| | - Eloise B Skinner
- Department of Biology, Stanford UniversityStanfordUnited States
- Centre for Planetary Health and Food Security, Griffith UniversityGold CoastAustralia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of HealthBrisbaneAustralia
| | - Hamish McCallum
- Centre for Planetary Health and Food Security, Griffith UniversityGold CoastAustralia
| | - Erin A Mordecai
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
48
|
Qian W, Hurst C, Glass K, Harley D, Viennet E. Spatial and Temporal Patterns of Ross River Virus in Queensland, 2001-2020. Trop Med Infect Dis 2021; 6:145. [PMID: 34449729 PMCID: PMC8396220 DOI: 10.3390/tropicalmed6030145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
Ross River virus (RRV), the most common human arbovirus infection in Australia, causes significant morbidity and substantial medical costs. About half of Australian cases occur in Queensland. We describe the spatial and temporal patterns of RRV disease in Queensland over the past two decades. RRV notifications, human population data, and weather data from 2001 to 2020 were analysed by the Statistical Area Level 2 (SA2) area. Spatial interpolation or linear extrapolation were used for missing weather values and the estimated population in 2020, respectively. Notifications and incidence rates were analysed through space and time. During the study period, there were 43,699 notifications in Queensland. The highest annual number of notifications was recorded in 2015 (6182), followed by 2020 (3160). The average annual incidence rate was 5 per 10,000 people and the peak period for RRV notifications was March to May. Generally, SA2 areas in northern Queensland had higher numbers of notifications and higher incidence rates than SA2 areas in southern Queensland. The SA2 areas with high incidence rates were in east coastal areas and western Queensland. The timely prediction may aid disease prevention and routine vector control programs, and RRV management plans are important for these areas.
Collapse
Affiliation(s)
- Wei Qian
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4059, Australia; (W.Q.); (D.H.)
| | - Cameron Hurst
- Department of Statistics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Kathryn Glass
- Research School of Population Health, Australian National University, Acton, ACT 2601, Australia;
| | - David Harley
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4059, Australia; (W.Q.); (D.H.)
| | - Elvina Viennet
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Clinical Services and Research, The Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
49
|
Knox A, Beddoe T. Isothermal Nucleic Acid Amplification Technologies for the Detection of Equine Viral Pathogens. Animals (Basel) 2021; 11:ani11072150. [PMID: 34359278 PMCID: PMC8300645 DOI: 10.3390/ani11072150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Equine viral diseases remain a prominent concern for human and equine health globally. Many of these viruses are of primary biosecurity concern to countries that import equines where these viruses are not present. In addition, several equine viruses are zoonotic, which can have a significant impact on human health. Current diagnostic techniques are both time consuming and laboratory-based. The ability to accurately detect diseases will lead to better management, treatment strategies, and health outcomes. This review outlines the current modern isothermal techniques for diagnostics, such as loop-mediated isothermal amplification and insulated isothermal polymerase chain reaction, and their application as point-of-care diagnostics for the equine industry. Abstract The global equine industry provides significant economic contributions worldwide, producing approximately USD $300 billion annually. However, with the continuous national and international movement and importation of horses, there is an ongoing threat of a viral outbreak causing large epidemics and subsequent significant economic losses. Additionally, horses serve as a host for several zoonotic diseases that could cause significant human health problems. The ability to rapidly diagnose equine viral diseases early could lead to better management, treatment, and biosecurity strategies. Current serological and molecular methods cannot be field-deployable and are not suitable for resource-poor laboratories due to the requirement of expensive equipment and trained personnel. Recently, isothermal nucleic acid amplification technologies, such as loop-mediated isothermal amplification (LAMP) and insulated isothermal polymerase chain reaction (iiPCR), have been developed to be utilized in-field, and provide rapid results within an hour. We will review current isothermal diagnostic techniques available to diagnose equine viruses of biosecurity and zoonotic concern and provide insight into their potential for in-field deployment.
Collapse
|
50
|
Roncati L, Gianotti G, Gravina D, Attolini G, Zanelli G, Rosa ND, Adani R. Carpal, cubital or tarsal tunnel syndrome after SARS-CoV-2 infection: A causal link? Med Hypotheses 2021; 153:110638. [PMID: 34217126 PMCID: PMC8223113 DOI: 10.1016/j.mehy.2021.110638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
COVID-19 is a complex disease with many clinicopathological issues, including respiratory, gastrointestinal, neurological, renal, cutaneous, and coagulative ones; in addition, reactive arthritis has been reported by different authors. Here, we hypothesize that a peripheral microangiopathy involving nerve supply, a viral demyelination, or an immune-mediated irritating antigenic stimulus on synovial sheaths after SARS-CoV-2 infection may all induce a carpal, cubital or tarsal tunnel syndrome of variable entity in genetically predisposed subjects associated with myxoid nerve degeneration.
Collapse
Affiliation(s)
- Luca Roncati
- Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy.
| | - Greta Gianotti
- Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Davide Gravina
- Unit of Orthopedics and Traumatology, University Hospital of Modena, Modena, Italy
| | - Giovanna Attolini
- Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuliana Zanelli
- Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Norman Della Rosa
- Unit of Hand Surgery and Microsurgery, University Hospital of Modena, Modena, Italy
| | - Roberto Adani
- Unit of Hand Surgery and Microsurgery, University Hospital of Modena, Modena, Italy
| |
Collapse
|