1
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
2
|
Smith MB, Chen H, Oliver BGG. The Lungs in Space: A Review of Current Knowledge and Methodologies. Cells 2024; 13:1154. [PMID: 38995005 PMCID: PMC11240436 DOI: 10.3390/cells13131154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Space travel presents multiple risks to astronauts such as launch, radiation, spacewalks or extravehicular activities, and microgravity. The lungs are composed of a combination of air, blood, and tissue, making it a complex organ system with interactions between the external and internal environment. Gravity strongly influences the structure of the lung which results in heterogeneity of ventilation and perfusion that becomes uniform in microgravity as shown during parabolic flights, Spacelab, and Skylab experiments. While changes in lung volumes occur in microgravity, efficient gas exchange remains and the lungs perform as they would on Earth; however, little is known about the cellular response to microgravity. In addition to spaceflight and real microgravity, devices, such as clinostats and random positioning machines, are used to simulate microgravity to study cellular responses on the ground. Differential expression of cell adhesion and extracellular matrix molecules has been found in real and simulated microgravity. Immune dysregulation is a known consequence of space travel that includes changes in immune cell morphology, function, and number, which increases susceptibility to infections. However, the majority of in vitro studies do not have a specific respiratory focus. These studies are needed to fully understand the impact of microgravity on the function of the respiratory system in different conditions.
Collapse
Affiliation(s)
- Michaela B Smith
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie Park, NSW 2113, Australia
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hui Chen
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Brian G G Oliver
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie Park, NSW 2113, Australia
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Kim J, Tierney BT, Overbey EG, Dantas E, Fuentealba M, Park J, Narayanan SA, Wu F, Najjar D, Chin CR, Meydan C, Loy C, Mathyk B, Klotz R, Ortiz V, Nguyen K, Ryon KA, Damle N, Houerbi N, Patras LI, Schanzer N, Hutchinson GA, Foox J, Bhattacharya C, Mackay M, Afshin EE, Hirschberg JW, Kleinman AS, Schmidt JC, Schmidt CM, Schmidt MA, Beheshti A, Matei I, Lyden D, Mullane S, Asadi A, Lenz JS, Mzava O, Yu M, Ganesan S, De Vlaminck I, Melnick AM, Barisic D, Winer DA, Zwart SR, Crucian BE, Smith SM, Mateus J, Furman D, Mason CE. Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflight. Nat Commun 2024; 15:4954. [PMID: 38862516 PMCID: PMC11166952 DOI: 10.1038/s41467-024-49211-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Spaceflight induces an immune response in astronauts. To better characterize this effect, we generated single-cell, multi-ome, cell-free RNA (cfRNA), biochemical, and hematology data for the SpaceX Inspiration4 (I4) mission crew. We found that 18 cytokines/chemokines related to inflammation, aging, and muscle homeostasis changed after spaceflight. In I4 single-cell multi-omics data, we identified a "spaceflight signature" of gene expression characterized by enrichment in oxidative phosphorylation, UV response, immune function, and TCF21 pathways. We confirmed the presence of this signature in independent datasets, including the NASA Twins Study, the I4 skin spatial transcriptomics, and 817 NASA GeneLab mouse transcriptomes. Finally, we observed that (1) T cells showed an up-regulation of FOXP3, (2) MHC class I genes exhibited long-term suppression, and (3) infection-related immune pathways were associated with microbiome shifts. In summary, this study reveals conserved and distinct immune disruptions occurring and details a roadmap for potential countermeasures to preserve astronaut health.
Collapse
Affiliation(s)
- JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Center for STEM, University of Austin, Austin, TX, USA
- BioAstra, Inc, New York, NY, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Matias Fuentealba
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Jiwoon Park
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - S Anand Narayanan
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Fei Wu
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
| | - Christopher R Chin
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Conor Loy
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, NY, 14850, USA
| | - Begum Mathyk
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Khiem Nguyen
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
| | - Nadia Houerbi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Laura I Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Nathan Schanzer
- School of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Gwyneth A Hutchinson
- NASA Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Chandrima Bhattacharya
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Matthew Mackay
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Julian C Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, USA
| | - Caleb M Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, CO, USA
| | - Michael A Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Irina Matei
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David Lyden
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sean Mullane
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Amran Asadi
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Joan S Lenz
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, NY, 14850, USA
| | - Omary Mzava
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, NY, 14850, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Saravanan Ganesan
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Iwijn De Vlaminck
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, NY, 14850, USA
| | - Ari M Melnick
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Darko Barisic
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sara R Zwart
- University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Brian E Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Human Health and Performance Directorate, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Human Health and Performance Directorate, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Jaime Mateus
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - David Furman
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Stanford 1000 Immunomes Project, Stanford School of Medicine, Stanford, CA, 94306, USA.
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, 10021, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
4
|
Duscher AA, Vroom MM, Foster JS. Impact of modeled microgravity stress on innate immunity in a beneficial animal-microbe symbiosis. Sci Rep 2024; 14:2912. [PMID: 38316910 PMCID: PMC10844198 DOI: 10.1038/s41598-024-53477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The innate immune response is the first line of defense for all animals to not only detect invading microbes and toxins but also sense and interface with the environment. One such environment that can significantly affect innate immunity is spaceflight. In this study, we explored the impact of microgravity stress on key elements of the NFκB innate immune pathway. The symbiosis between the bobtail squid Euprymna scolopes and its beneficial symbiont Vibrio fischeri was used as a model system under a simulated microgravity environment. The expression of genes associated with the NFκB pathway was monitored over time as the symbiosis progressed. Results revealed that although the onset of the symbiosis was the major driver in the differential expression of NFκB signaling, the stress of simulated low-shear microgravity also caused a dysregulation of expression. Several genes were expressed at earlier time points suggesting that elements of the E. scolopes NFκB pathway are stress-inducible, whereas expression of other pathway components was delayed. The results provide new insights into the role of NFκB signaling in the squid-vibrio symbiosis, and how the stress of microgravity negatively impacts the host immune response. Together, these results provide a foundation to develop mitigation strategies to maintain host-microbe homeostasis during spaceflight.
Collapse
Affiliation(s)
- Alexandrea A Duscher
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
- Chesapeake Bay Governor's School, Warsaw, VA, 22572, USA
| | - Madeline M Vroom
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
- Vaxxinity, Space Life Sciences Lab, Merritt Island, FL, 32953, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA.
| |
Collapse
|
5
|
Leuti A, Fava M, Pellegrini N, Forte G, Fanti F, Della Valle F, De Dominicis N, Sergi M, Maccarrone M. Simulated Microgravity Affects Pro-Resolving Properties of Primary Human Monocytes. Cells 2024; 13:100. [PMID: 38201304 PMCID: PMC10778078 DOI: 10.3390/cells13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Space-related stressors such as microgravity are associated with cellular and molecular alterations of the immune and inflammatory homeostasis that have been linked to the disorders that astronauts suffer from during their missions. Most of the research of the past 30 years has consistently established that innate adaptive immune cells represent a target of microgravity, which leads to their defective or dysfunctional activation, as well as to an altered ability to produce soluble mediators-e.g., cytokines/chemokines and bioactive lipids-that altogether control tissue homeostasis. Bioactive lipids include a vast array of endogenous molecules of immune origin that control the induction, intensity and outcome of the inflammatory events. However, none of the papers published so far focus on a newly characterized class of lipid mediators called specialized pro-resolving mediators (SPMs), which orchestrate the "resolution of inflammation"-i.e., the active control and confinement of the inflammatory torrent mostly driven by eicosanoids. SPMs are emerging as crucial players in those processes that avoid acute inflammation to degenerate into a chronic event. Given that SPMs, along with their metabolism and signaling, are being increasingly linked to many inflammatory disorders, their study seems of the outmost importance in the research of pathological processes involved in space-related diseases, also with the perspective of developing therapeutic countermeasures. Here, we show that microgravity, simulated in the rotary cell culture system (RCCS) developed by NASA, rearranges SPM receptors both at the gene and protein level, in human monocytes but not in lymphocytes. Moreover, RCCS treatment reduces the biosynthesis of a prominent SPM like resolvin (Rv) D1. These findings strongly suggest that not only microgravity can impair the functioning of immune cells at the level of bioactive lipids directly involved in proper inflammation, but it does so in a cell-specific manner, possibly perturbing immune homeostasis with monocytes being primary targets.
Collapse
Affiliation(s)
- Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (N.P.); (G.F.)
- European Center for Brain Research, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Marina Fava
- European Center for Brain Research, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.F.); (F.D.V.)
| | - Niccolò Pellegrini
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (N.P.); (G.F.)
| | - Giulia Forte
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (N.P.); (G.F.)
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.F.); (F.D.V.)
| | - Francesco Della Valle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.F.); (F.D.V.)
| | - Noemi De Dominicis
- Department of Physics, University of Trento, 38123 Trento, Italy;
- Department of Biotechnological and Applied Clinical and Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Manuel Sergi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical and Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
6
|
Murali A, Sarkar RR. Mechano-immunology in microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:50-64. [PMID: 37087179 DOI: 10.1016/j.lssr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 05/03/2023]
Abstract
Life on Earth has evolved to thrive in the Earth's natural gravitational field; however, as space technology advances, we must revisit and investigate the effects of unnatural conditions on human health, such as gravitational change. Studies have shown that microgravity has a negative impact on various systemic parts of humans, with the effects being more severe in the human immune system. Increasing costs, limited experimental time, and sample handling issues hampered our understanding of this field. To address the existing knowledge gap and provide confidence in modelling the phenomena, in this review, we highlight experimental works in mechano-immunology under microgravity and different computational modelling approaches that can be used to address the existing problems.
Collapse
Affiliation(s)
- Anirudh Murali
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Lv H, Yang H, Jiang C, Shi J, Chen RA, Huang Q, Shao D. Microgravity and immune cells. J R Soc Interface 2023; 20:20220869. [PMID: 36789512 PMCID: PMC9929508 DOI: 10.1098/rsif.2022.0869] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The microgravity environment experienced during spaceflight severely impaired immune system, making astronauts vulnerable to various diseases that seriously threaten the health of astronauts. Immune cells are exceptionally sensitive to changes in gravity and the microgravity environment can affect multiple aspects of immune cells through different mechanisms. Previous reports have mainly summarized the role of microgravity in the classification of innate and adaptive immune cells, lacking an overall grasp of the laws that microgravity effects on immune cells at different stages of their entire developmental process, such as differentiation, activation, metabolism, as well as function, which are discussed and concluded in this review. The possible molecular mechanisms are also analysed to provide a clear understanding of the specific role of microgravity in the whole development process of immune cells. Furthermore, the existing methods by which to reverse the damage of immune cells caused by microgravity, such as the use of polysaccharides, flavonoids, other natural immune cell activators etc. to target cell proliferation, apoptosis and impaired function are summarized. This review will provide not only new directions and ideas for the study of immune cell function in the microgravity environment, but also an important theoretical basis for the development of immunosuppression prevention and treatment drugs for spaceflight.
Collapse
Affiliation(s)
- Hongfang Lv
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Huan Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Ren-an Chen
- Hematology Department, Shaanxi Provincial Tumor Hospital, 309 Yanta West Road, Xi'an, Shaanxi 710072, People's Republic of China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
8
|
Caswell G, Eshelby B. Skin microbiome considerations for long haul space flights. Front Cell Dev Biol 2022; 10:956432. [PMID: 36158225 PMCID: PMC9493037 DOI: 10.3389/fcell.2022.956432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Dysbiosis of the human skin microbiome has long been associated with changes to the pH of the skin, dermal immune function and chronic skin conditions. Dermatological issues have been noted as the most prevalent medical presentation in the microgravity environment of space. The change in gravitational forces has been implicated in human immuno-suppression, also impacted by changes in the gastrointestinal-skin axis and its impact on Vitamin D metabolism, altered microbial gene expression in resident flora (leading changes in biofilm formation) and increased virulence factors in potential pathogens. There are also other stressors to the skin microbiome unique to space travel, including increased exposure to radiation, prolonged periods of dry washing technique, air quality and changes in microbe replication and growth parameters. Optimal microbiome health leads to enhanced skin barrier manufacture and maintenance, along with improved skin immune function and healing. In a microgravity environment expected to be experienced during long space flights, disruptions to the skin microbiome, coupled with increased virulence of pathological viruses and bacteria has implications for holistic skin health, astronaut cognitive function and mental health, and is coupled with slowed rates of wound healing. Scenario management for holistic skin health and restoration of microbiome homeostasis on long space flights require consideration.
Collapse
|
9
|
Vroom MM, Troncoso-Garcia A, Duscher AA, Foster JS. Modeled microgravity alters apoptotic gene expression and caspase activity in the squid-vibrio symbiosis. BMC Microbiol 2022; 22:202. [PMID: 35982413 PMCID: PMC9389742 DOI: 10.1186/s12866-022-02614-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background Spaceflight is a novel and profoundly stressful environment for life. One aspect of spaceflight, microgravity, has been shown to perturb animal physiology thereby posing numerous health risks, including dysregulation of normal developmental pathways. Microgravity can also negatively impact the interactions between animals and their microbiomes. However, the effects of microgravity on developmental processes influenced by beneficial microbes, such as apoptosis, remains poorly understood. Here, the binary mutualism between the bobtail squid, Euprymna scolopes, and the gram-negative bacterium, Vibrio fischeri, was studied under modeled microgravity conditions to elucidate how this unique stressor alters apoptotic cell death induced by beneficial microbes. Results Analysis of the host genome and transcriptome revealed a complex network of apoptosis genes affiliated with extrinsic/receptor-mediated and intrinsic/stress-induced apoptosis. Expression of apoptosis genes under modeled microgravity conditions occurred earlier and at high levels compared to gravity controls, in particular the expression of genes encoding initiator and executioner caspases. Functional assays of these apoptotic proteases revealed heightened activity under modeled microgravity; however, these increases could be mitigated using caspase inhibitors. Conclusions The outcomes of this study indicated that modeled microgravity alters the expression of both extrinsic and intrinsic apoptosis gene expression and that this process is mediated in part by caspases. Modeled microgravity-associated increases of caspase activity can be pharmacologically inhibited suggesting that perturbations to the normal apoptosis signaling cascade can be mitigated, which may have broader implications for maintaining animal-microbial homeostasis in spaceflight. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02614-x.
Collapse
Affiliation(s)
- Madeline M Vroom
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Angel Troncoso-Garcia
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Alexandrea A Duscher
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA.
| |
Collapse
|
10
|
Vahlensieck C, Thiel CS, Pöschl D, Bradley T, Krammer S, Lauber B, Polzer J, Ullrich O. Post-Transcriptional Dynamics is Involved in Rapid Adaptation to Hypergravity in Jurkat T Cells. Front Cell Dev Biol 2022; 10:933984. [PMID: 35859900 PMCID: PMC9289288 DOI: 10.3389/fcell.2022.933984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
The transcriptome of human immune cells rapidly reacts to altered gravity in a highly dynamic way. We could show in previous experiments that transcriptional patterns show profound adaption after seconds to minutes of altered gravity. To gain further insight into these transcriptional alteration and adaption dynamics, we conducted a highly standardized RNA-Seq experiment with human Jurkat T cells exposed to 9xg hypergravity for 3 and 15 min, respectively. We investigated the frequency with which individual exons were used during transcription and discovered that differential exon usage broadly appeared after 3 min and became less pronounced after 15 min. Additionally, we observed a shift in the transcript pool from coding towards non-coding transcripts. Thus, adaption of gravity-sensitive differentially expressed genes followed a dynamic transcriptional rebound effect. The general dynamics were compatible with previous studies on the transcriptional effects of short hypergravity on human immune cells and suggest that initial up-regulatory changes mostly result from increased elongation rates. The shift correlated with a general downregulation of the affected genes. All chromosome bands carried homogenous numbers of gravity-sensitive genes but showed a specific tendency towards up- or downregulation. Altered gravity affected transcriptional regulation throughout the entire genome, whereby the direction of differential expression was strongly dependent on the structural location in the genome. A correlation analysis with potential mediators of the early transcriptional response identified a link between initially upregulated genes with certain transcription factors. Based on these findings, we have been able to further develop our model of the transcriptional response to altered gravity.
Collapse
Affiliation(s)
- Christian Vahlensieck
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
| | - Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center (KSC), Merritt Island, FL, United States
- Space Biotechnology, Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- *Correspondence: Cora S. Thiel, ; Oliver Ullrich,
| | - Daniel Pöschl
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Timothy Bradley
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Sonja Krammer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
| | - Beatrice Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center (KSC), Merritt Island, FL, United States
- Space Biotechnology, Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Space Medicine, Ernst-Abbe-Hochschule (EAH) Jena, Department of Industrial Engineering, Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- *Correspondence: Cora S. Thiel, ; Oliver Ullrich,
| |
Collapse
|
11
|
Barrila J, Yang J, Franco Meléndez KP, Yang S, Buss K, Davis TJ, Aronow BJ, Bean HD, Davis RR, Forsyth RJ, Ott CM, Gangaraju S, Kang BY, Hanratty B, Nydam SD, Nauman EA, Kong W, Steel J, Nickerson CA. Spaceflight Analogue Culture Enhances the Host-Pathogen Interaction Between Salmonella and a 3-D Biomimetic Intestinal Co-Culture Model. Front Cell Infect Microbiol 2022; 12:705647. [PMID: 35711662 PMCID: PMC9195300 DOI: 10.3389/fcimb.2022.705647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Physical forces associated with spaceflight and spaceflight analogue culture regulate a wide range of physiological responses by both bacterial and mammalian cells that can impact infection. However, our mechanistic understanding of how these environments regulate host-pathogen interactions in humans is poorly understood. Using a spaceflight analogue low fluid shear culture system, we investigated the effect of Low Shear Modeled Microgravity (LSMMG) culture on the colonization of Salmonella Typhimurium in a 3-D biomimetic model of human colonic epithelium containing macrophages. RNA-seq profiling of stationary phase wild type and Δhfq mutant bacteria alone indicated that LSMMG culture induced global changes in gene expression in both strains and that the RNA binding protein Hfq played a significant role in regulating the transcriptional response of the pathogen to LSMMG culture. However, a core set of genes important for adhesion, invasion, and motility were commonly induced in both strains. LSMMG culture enhanced the colonization (adherence, invasion and intracellular survival) of Salmonella in this advanced model of intestinal epithelium using a mechanism that was independent of Hfq. Although S. Typhimurium Δhfq mutants are normally defective for invasion when grown as conventional shaking cultures, LSMMG conditions unexpectedly enabled high levels of colonization by an isogenic Δhfq mutant. In response to infection with either the wild type or mutant, host cells upregulated transcripts involved in inflammation, tissue remodeling, and wound healing during intracellular survival. Interestingly, infection by the Δhfq mutant led to fewer transcriptional differences between LSMMG- and control-infected host cells relative to infection with the wild type strain. This is the first study to investigate the effect of LSMMG culture on the interaction between S. Typhimurium and a 3-D model of human intestinal tissue. These findings advance our understanding of how physical forces can impact the early stages of human enteric salmonellosis.
Collapse
Affiliation(s)
- Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- *Correspondence: Jennifer Barrila, ; Cheryl A. Nickerson,
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Karla P. Franco Meléndez
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, FL, United States
| | - Shanshan Yang
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, United States
| | - Kristina Buss
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, United States
| | - Trenton J. Davis
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Heather D. Bean
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Richard R. Davis
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Rebecca J. Forsyth
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | - Sandhya Gangaraju
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Bianca Y. Kang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Brian Hanratty
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, United States
| | - Seth D. Nydam
- Department of Animal Care & Technologies, Arizona State University, Tempe, AZ, United States
| | - Eric A. Nauman
- School of Mechanical Engineering, Weldon School of Biomedical Engineering and Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Wei Kong
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, United States
| | - Jason Steel
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, United States
| | - Cheryl A. Nickerson
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- *Correspondence: Jennifer Barrila, ; Cheryl A. Nickerson,
| |
Collapse
|
12
|
Tesei D, Jewczynko A, Lynch AM, Urbaniak C. Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life (Basel) 2022; 12:life12040495. [PMID: 35454986 PMCID: PMC9031868 DOI: 10.3390/life12040495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
During space missions, astronauts are faced with a variety of challenges that are unique to spaceflight and that have been known to cause physiological changes in humans over a period of time. Several of these changes occur at the microbiome level, a complex ensemble of microbial communities residing in various anatomic sites of the human body, with a pivotal role in regulating the health and behavior of the host. The microbiome is essential for day-to-day physiological activities, and alterations in microbiome composition and function have been linked to various human diseases. For these reasons, understanding the impact of spaceflight and space conditions on the microbiome of astronauts is important to assess significant health risks that can emerge during long-term missions and to develop countermeasures. Here, we review various conditions that are caused by long-term space exploration and discuss the role of the microbiome in promoting or ameliorating these conditions, as well as space-related factors that impact microbiome composition. The topics explored pertain to microgravity, radiation, immunity, bone health, cognitive function, gender differences and pharmacomicrobiomics. Connections are made between the trifecta of spaceflight, the host and the microbiome, and the significance of these interactions for successful long-term space missions.
Collapse
Affiliation(s)
- Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Anna Jewczynko
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Anne M. Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc., Middleburg Heights, OH 44130, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Correspondence:
| |
Collapse
|
13
|
Ludtka C, Moore E, Allen JB. The Effects of Simulated Microgravity on Macrophage Phenotype. Biomedicines 2021; 9:biomedicines9091205. [PMID: 34572391 PMCID: PMC8472625 DOI: 10.3390/biomedicines9091205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
The effects of spaceflight, including prolonged exposure to microgravity, can have significant effects on the immune system and human health. Altered immune cell function can lead to adverse health events, though precisely how and to what extent a microgravity environment impacts these cells remains uncertain. Macrophages, a key immune cell, effect the inflammatory response as well as tissue remodeling and repair. Specifically, macrophage function can be dictated by phenotype that can exist between spectrums of M0 macrophage: the classically activated, pro-inflammatory M1, and the alternatively activated, pro-healing M2 phenotypes. This work assesses the effects of simulated microgravity via clinorotation on M0, M1, and M2 macrophage phenotypes. We focus on phenotypic, inflammatory, and angiogenic gene and protein expression. Our results show that across all three phenotypes, microgravity results in a decrease in TNF-α expression and an increase in IL-12 and VEGF expression. IL-10 was also significantly increased in M1 and M2, but not M0 macrophages. The phenotypic cytokine expression profiles observed may be related to specific gravisensitive signal transduction pathways previously implicated in microgravity regulation of macrophage gene and protein expression. Our results highlight the far-reaching effects that simulated microgravity has on macrophage function and provides insight into macrophage phenotypic function in microgravity.
Collapse
Affiliation(s)
- Christopher Ludtka
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Erika Moore
- Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Josephine B. Allen
- Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA;
- Correspondence:
| |
Collapse
|
14
|
Stability of Antimicrobial Drug Molecules in Different Gravitational and Radiation Conditions in View of Applications during Outer Space Missions. Molecules 2021; 26:molecules26082221. [PMID: 33921448 PMCID: PMC8069917 DOI: 10.3390/molecules26082221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
The evolution of different antimicrobial drugs in terrestrial, microgravity and hypergravity conditions is presented within this review, in connection with their implementation during human space exploration. Drug stability is of utmost importance for applications in outer space. Instabilities may be radiation-induced or micro-/hypergravity produced. The antimicrobial agents used in space may have diminished effects not only due to the microgravity-induced weakened immune response of astronauts, but also due to the gravity and radiation-altered pathogens. In this context, the paper provides schemes and procedures to find reliable ways of fighting multiple drug resistance acquired by microorganisms. It shows that the role of multipurpose medicines modified at the molecular scale by optical methods in long-term space missions should be considered in more detail. Solutions to maintain drug stability, even in extreme environmental conditions, are also discussed, such as those that would be encountered during long-duration space exploratory missions. While the microgravity conditions may not be avoided in space, the suggested approaches deal with the radiation-induced modifications in humans, bacteria and medicines onboard, which may be fought by novel pharmaceutical formulation strategies along with radioprotective packaging and storage.
Collapse
|
15
|
Evaluating the effect of spaceflight on the host-pathogen interaction between human intestinal epithelial cells and Salmonella Typhimurium. NPJ Microgravity 2021; 7:9. [PMID: 33750813 PMCID: PMC7943786 DOI: 10.1038/s41526-021-00136-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Spaceflight uniquely alters the physiology of both human cells and microbial pathogens, stimulating cellular and molecular changes directly relevant to infectious disease. However, the influence of this environment on host-pathogen interactions remains poorly understood. Here we report our results from the STL-IMMUNE study flown aboard Space Shuttle mission STS-131, which investigated multi-omic responses (transcriptomic, proteomic) of human intestinal epithelial cells to infection with Salmonella Typhimurium when both host and pathogen were simultaneously exposed to spaceflight. To our knowledge, this was the first in-flight infection and dual RNA-seq analysis using human cells.
Collapse
|
16
|
Sun Y, Kuang Y, Zuo Z. The Emerging Role of Macrophages in Immune System Dysfunction under Real and Simulated Microgravity Conditions. Int J Mol Sci 2021; 22:2333. [PMID: 33652750 PMCID: PMC7956436 DOI: 10.3390/ijms22052333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
In the process of exploring space, the astronaut's body undergoes a series of physiological changes. At the level of cellular behavior, microgravity causes significant alterations, including bone loss, muscle atrophy, and cardiovascular deconditioning. At the level of gene expression, microgravity changes the expression of cytokines in many physiological processes, such as cell immunity, proliferation, and differentiation. At the level of signaling pathways, the mitogen-activated protein kinase (MAPK) signaling pathway participates in microgravity-induced immune malfunction. However, the mechanisms of these changes have not been fully elucidated. Recent studies suggest that the malfunction of macrophages is an important breakthrough for immune disorders in microgravity. As the first line of immune defense, macrophages play an essential role in maintaining homeostasis. They activate specific immune responses and participate in large numbers of physiological activities by presenting antigen and secreting cytokines. The purpose of this review is to summarize recent advances on the dysfunction of macrophages arisen from microgravity and to discuss the mechanisms of these abnormal responses. Hopefully, our work will contribute not only to the future exploration on the immune system in space, but also to the development of preventive and therapeutic drugs against the physiological consequences of spaceflight.
Collapse
Affiliation(s)
- Yulong Sun
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (Y.K.); (Z.Z.)
| | | | | |
Collapse
|
17
|
Paul AM, Mhatre SD, Cekanaviciute E, Schreurs AS, Tahimic CGT, Globus RK, Anand S, Crucian BE, Bhattacharya S. Neutrophil-to-Lymphocyte Ratio: A Biomarker to Monitor the Immune Status of Astronauts. Front Immunol 2020; 11:564950. [PMID: 33224136 PMCID: PMC7667275 DOI: 10.3389/fimmu.2020.564950] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
A comprehensive understanding of spaceflight factors involved in immune dysfunction and the evaluation of biomarkers to assess in-flight astronaut health are essential goals for NASA. An elevated neutrophil-to-lymphocyte ratio (NLR) is a potential biomarker candidate, as leukocyte differentials are altered during spaceflight. In the reduced gravity environment of space, rodents and astronauts displayed elevated NLR and granulocyte-to-lymphocyte ratios (GLR), respectively. To simulate microgravity using two well-established ground-based models, we cultured human whole blood-leukocytes in high-aspect rotating wall vessels (HARV-RWV) and used hindlimb unloaded (HU) mice. Both HARV-RWV simulation of leukocytes and HU-exposed mice showed elevated NLR profiles comparable to spaceflight exposed samples. To assess mechanisms involved, we found the simulated microgravity HARV-RWV model resulted in an imbalance of redox processes and activation of myeloperoxidase-producing inflammatory neutrophils, while antioxidant treatment reversed these effects. In the simulated microgravity HU model, mitochondrial catalase-transgenic mice that have reduced oxidative stress responses showed reduced neutrophil counts, NLR, and a dampened release of selective inflammatory cytokines compared to wildtype HU mice, suggesting simulated microgravity induced oxidative stress responses that triggered inflammation. In brief, both spaceflight and simulated microgravity models caused elevated NLR, indicating this as a potential biomarker for future in-flight immune health monitoring.
Collapse
Affiliation(s)
- Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Universities Space Research Association, Columbia, MD, United States
| | - Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,COSMIAC Research Center, University of New Mexico, Albuquerque, NM, United States.,KBR, Houston, TX, United States
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,COSMIAC Research Center, University of New Mexico, Albuquerque, NM, United States.,Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Sulekha Anand
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States
| | - Brian E Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Science Center, Houston, TX, United States
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| |
Collapse
|
18
|
Netea MG, Domínguez-Andrés J, Eleveld M, op den Camp HJM, van der Meer JWM, Gow NAR, de Jonge MI. Immune recognition of putative alien microbial structures: Host-pathogen interactions in the age of space travel. PLoS Pathog 2020; 16:e1008153. [PMID: 31999804 PMCID: PMC6991955 DOI: 10.1371/journal.ppat.1008153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human space travel is on the verge of visiting Mars and, in the future, even more distant places in the solar system. These journeys will be also made by terrestrial microorganisms (hitchhiking on the bodies of astronauts or on scientific instruments) that, upon arrival, will come into contact with new planetary environments, despite the best measures to prevent contamination. These microorganisms could potentially adapt and grow in the new environments and subsequently recolonize and infect astronauts. An even more challenging situation would be if truly alien microorganisms will be present on these solar system bodies: What will be their pathogenic potential, and how would our immune host defenses react? It will be crucial to anticipate these situations and investigate how the immune system of humans might cope with modified terrestrial or alien microbes. We propose several scenarios that may be encountered and how to respond to these challenges.
Collapse
Affiliation(s)
- Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marc Eleveld
- Department of Laboratory Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Huub J. M. op den Camp
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Jos W. M. van der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Neil A. R. Gow
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Marien I. de Jonge
- Department of Laboratory Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
19
|
A Simulated Microgravity Environment Causes a Sustained Defect in Epithelial Barrier Function. Sci Rep 2019; 9:17531. [PMID: 31772208 PMCID: PMC6879622 DOI: 10.1038/s41598-019-53862-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Intestinal epithelial cell (IEC) junctions constitute a robust barrier to invasion by viruses, bacteria and exposure to ingested agents. Previous studies showed that microgravity compromises the human immune system and increases enteropathogen virulence. However, the effects of microgravity on epithelial barrier function are poorly understood. The aims of this study were to identify if simulated microgravity alters intestinal epithelial barrier function (permeability), and susceptibility to barrier-disrupting agents. IECs (HT-29.cl19a) were cultured on microcarrier beads in simulated microgravity using a rotating wall vessel (RWV) for 18 days prior to seeding on semipermeable supports to measure ion flux (transepithelial electrical resistance (TER)) and FITC-dextran (FD4) permeability over 14 days. RWV cells showed delayed apical junction localization of the tight junction proteins, occludin and ZO-1. The alcohol metabolite, acetaldehyde, significantly decreased TER and reduced junctional ZO-1 localization, while increasing FD4 permeability in RWV cells compared with static, motion and flask control cells. In conclusion, simulated microgravity induced an underlying and sustained susceptibility to epithelial barrier disruption upon removal from the microgravity environment. This has implications for gastrointestinal homeostasis of astronauts in space, as well as their capability to withstand the effects of agents that compromise intestinal epithelial barrier function following return to Earth.
Collapse
|
20
|
Blue RS, Bayuse TM, Daniels VR, Wotring VE, Suresh R, Mulcahy RA, Antonsen EL. Supplying a pharmacy for NASA exploration spaceflight: challenges and current understanding. NPJ Microgravity 2019; 5:14. [PMID: 31231676 PMCID: PMC6565689 DOI: 10.1038/s41526-019-0075-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/26/2019] [Indexed: 02/05/2023] Open
Abstract
In order to maintain crew health and performance during long-duration spaceflight outside of low-Earth orbit, NASA and its international partners must be capable of providing a safe and effective pharmacy. Given few directed studies of pharmaceuticals in the space environment, it is difficult to characterize pharmaceutical effectiveness or stability during spaceflight; this in turn makes it challenging to select an appropriate formulary for exploration. Here, we present the current state of literature regarding pharmaceutical stability, metabolism, and effectiveness during spaceflight. In particular, we have attempted to highlight the gaps in current knowledge and the difficulties in translating terrestrial-based drug studies to a meaningful interpretation of drug stability, safety, and effectiveness in space. We hope to identify high-yield opportunities for future research that might better define and mitigate pharmaceutical risk for exploration missions.
Collapse
Affiliation(s)
- Rebecca S Blue
- 1Aerospace Medicine and Vestibular Research Laboratory, The Mayo Clinic Arizona, Scottsdale, AZ 85054 USA.,2GeoControl Systems, Inc, Houston, TX 77058 USA
| | | | | | - Virginia E Wotring
- 4Department of Pharmacology and Chemical Biology and Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| | - Rahul Suresh
- 5Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555-1110 USA
| | - Robert A Mulcahy
- 6National Aeronautics and Space Administration (NASA), Johnson Space Center, Houston, TX 77058 USA
| | - Erik L Antonsen
- 6National Aeronautics and Space Administration (NASA), Johnson Space Center, Houston, TX 77058 USA.,7Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
21
|
Guéguinou N, Jeandel J, Kaminski S, Baatout S, Ghislin S, Frippiat JP. Modulation of Iberian Ribbed Newt Complement Component C3 by Stressors Similar to those Encountered during a Stay Onboard the International Space Station. Int J Mol Sci 2019; 20:ijms20071579. [PMID: 30934839 PMCID: PMC6479312 DOI: 10.3390/ijms20071579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/08/2023] Open
Abstract
The complement system plays an important role in inflammation, innate and acquired immunity, as well as homeostasis. Despite these functions, the effects of spaceflight conditions on the complement system have not yet been intensively studied. Consequently, we investigated the effects of five types of chronic stressors, similar to those encountered during a stay onboard the International Space Station, on C3 expression in larvae of the urodele amphibian Pleurodeles waltl. We focused on C3 because it is a critical component of this system. These studies were completed by the analysis of adult mice exposed to two models of inflight stressors. Our data show that simulating space radiation, or combining a modification of the circadian rhythm with simulated microgravity, affects the amount of C3 proteins. These results suggest that C3 expression could be modified under real spaceflight conditions, potentially increasing the risk of inflammation and associated tissue damage.
Collapse
Affiliation(s)
- Nathan Guéguinou
- Stress Immunity Pathogens Laboratory, EA 7300, Faculty of Medicine, Université de Lorraine, 9 avenue de la Foret de Haye, F-54500 Vandœuvre-lès-Nancy, France.
| | - Jérémy Jeandel
- Stress Immunity Pathogens Laboratory, EA 7300, Faculty of Medicine, Université de Lorraine, 9 avenue de la Foret de Haye, F-54500 Vandœuvre-lès-Nancy, France.
| | - Sandra Kaminski
- Stress Immunity Pathogens Laboratory, EA 7300, Faculty of Medicine, Université de Lorraine, 9 avenue de la Foret de Haye, F-54500 Vandœuvre-lès-Nancy, France.
| | - Sarah Baatout
- Radiobiology Unit, SCK·CEN, Boeretang 200, B-2400 Mol, Belgium.
| | - Stéphanie Ghislin
- Stress Immunity Pathogens Laboratory, EA 7300, Faculty of Medicine, Université de Lorraine, 9 avenue de la Foret de Haye, F-54500 Vandœuvre-lès-Nancy, France.
| | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, EA 7300, Faculty of Medicine, Université de Lorraine, 9 avenue de la Foret de Haye, F-54500 Vandœuvre-lès-Nancy, France.
| |
Collapse
|
22
|
Kashirina DN, Percy AJ, Pastushkova LK, Borchers CH, Kireev KS, Ivanisenko VA, Kononikhin AS, Nikolaev EN, Larina IM. The molecular mechanisms driving physiological changes after long duration space flights revealed by quantitative analysis of human blood proteins. BMC Med Genomics 2019; 12:45. [PMID: 30871558 PMCID: PMC6416832 DOI: 10.1186/s12920-019-0490-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The conditions of space flight have a significant effect on the physiological processes in the human body, yet the molecular mechanisms driving physiological changes remain unknown. METHODS Blood samples of 18 Russian cosmonauts who had conducted long-duration missions to the International Space Station were collected 30 days before launch and on the first and seventh days after landing. RESULTS A panel of 125 proteins in the blood plasma was quantitated by a well-established and highly regarded targeted mass spectrometry approach. This method involves the monitoring of multiple reactions in conjunction with stable isotope-labeled standards at the University of Victoria - Genome BC Proteomics Centre. CONCLUSIONS Reduction of circulating plasma volume during space flight and activation of fluid retention at the final stage of the flight affect the changes in plasma protein concentrations present in the first days after landing. Using an ANOVA approach, it was revealed that only 1 protein (S100A9) reliably responded to space flight conditions. This protein plays an important role in the functioning of the endothelium and can serve as a marker for activation of inflammatory reactions. Concentrations of the proteins of complement, coagulation cascades, and acute phase reactants increase in the blood of cosmonauts as measured the first day after landing. Most of these proteins' concentrations continue to increase by the 7th day after space flight. Similar dynamics are observed for proteases and their inhibitors. Thus, there is a shift in proteolytic blood systems, which is necessary for the restoration of muscle tissue and maintenance of oncotic homeostasis.
Collapse
Affiliation(s)
- Daria N. Kashirina
- Institute for Biomedical Problems – Russian Federation State Scientific Research Center of RAS, Moscow, Russia
| | - Andrew J. Percy
- Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC Canada
| | - Liudmila Kh. Pastushkova
- Institute for Biomedical Problems – Russian Federation State Scientific Research Center of RAS, Moscow, Russia
| | - Christoph H. Borchers
- Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC Canada
| | - Kirill S. Kireev
- Yu.A.Gagarin Research and Test Cosmonaut Training Center, Star City, Moscow Region, Russia
| | - Vladimir A. Ivanisenko
- Institute of Cytology and Genetics of SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alexey S. Kononikhin
- Institute for Biomedical Problems – Russian Federation State Scientific Research Center of RAS, Moscow, Russia
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
| | - Eugene N. Nikolaev
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
- Skolkovo Institute of Science and Technology, Skoltech, Moscow region, Russia
| | - Irina M. Larina
- Institute for Biomedical Problems – Russian Federation State Scientific Research Center of RAS, Moscow, Russia
| |
Collapse
|
23
|
Smith JK. IL-6 and the dysregulation of immune, bone, muscle, and metabolic homeostasis during spaceflight. NPJ Microgravity 2018; 4:24. [PMID: 30534586 PMCID: PMC6279793 DOI: 10.1038/s41526-018-0057-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
We have previously reported that exercise-related secretion of IL-6 by peripheral blood mononuclear cells is proportionate to body weight, suggesting that IL-6 is gravisensitive and that suboptimal production of this key cytokine may contribute to homeostatic dysregulations that occur during spaceflight. This review details what is known about the role of this key cytokine in innate and adaptive immunity, hematopoiesis, and in bone, muscle and metabolic homeostasis on Earth and in the microgravity of space and suggests an experimental approach to confirm or disavow the role of IL-6 in space-related dysregulations.
Collapse
Affiliation(s)
- John Kelly Smith
- Departments of Academic Affairs and Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN USA
| |
Collapse
|
24
|
Gaignier F, Legrand-Frossi C, Stragier E, Mathiot J, Merlin JL, Cohen-Salmon C, Lanfumey L, Frippiat JP. A Model of Chronic Exposure to Unpredictable Mild Socio-Environmental Stressors Replicates Some Spaceflight-Induced Immunological Changes. Front Physiol 2018; 9:514. [PMID: 29867558 PMCID: PMC5954118 DOI: 10.3389/fphys.2018.00514] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/20/2018] [Indexed: 02/02/2023] Open
Abstract
During spaceflight, astronauts face radiations, mechanical, and socio-environmental stressors. To determine the impact of chronic socio-environmental stressors on immunity, we exposed adult male mice to chronic unpredictable mild psychosocial and environmental stressors (CUMS model) for 3 weeks. This duration was chosen to simulate a long flight at the human scale. Our data show that this combination of stressors induces an increase of serum IgA, a reduction of normalized splenic mass and tends to reduce the production of pro-inflammatory cytokines, as previously reported during or after space missions. However, CUMS did not modify major splenic lymphocyte sub-populations and the proliferative responses of splenocytes suggesting that these changes could be due to other factors such as gravity changes. Thus, CUMS, which is an easy to implement model, could contribute to deepen our understanding of some spaceflight-associated immune alterations and could be useful to test countermeasures.
Collapse
Affiliation(s)
- Fanny Gaignier
- Stress Immunity Pathogens Laboratory, EA7300, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christine Legrand-Frossi
- Stress Immunity Pathogens Laboratory, EA7300, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Emilien Stragier
- INSERM UMR894, Centre de Psychiatrie et Neuroscience, Paris, France
| | - Julianne Mathiot
- Stress Immunity Pathogens Laboratory, EA7300, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine, Service de Biopathologie and CNRS UMR 7039 CRAN, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Charles Cohen-Salmon
- INSERM U1141, PROTECT, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | | | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, EA7300, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
25
|
Gene-metabolite profile integration to understand the cause of spaceflight induced immunodeficiency. NPJ Microgravity 2018; 4:4. [PMID: 29387784 PMCID: PMC5788863 DOI: 10.1038/s41526-017-0038-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 11/06/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022] Open
Abstract
Spaceflight presents a spectrum of stresses very different from those associated with terrestrial conditions. Our previous study (BMC Genom. 15: 659, 2014) integrated the expressions of mRNAs, microRNAs, and proteins and results indicated that microgravity induces an immunosuppressive state that can facilitate opportunistic pathogenic attack. However, the existing data are not sufficient for elucidating the molecular drivers of the given immunosuppressed state. To meet this knowledge gap, we focused on the metabolite profile of spaceflown human cells. Independent studies have attributed cellular energy deficiency as a major cause of compromised immunity of the host, and metabolites that are closely associated with energy production could be a robust signature of atypical energy fluctuation. Our protocol involved inoculation of human endothelial cells in cell culture modules in spaceflight and on the ground concurrently. Ten days later, the cells in space and on the ground were exposed to lipopolysaccharide (LPS), a ubiquitous membrane endotoxin of Gram-negative bacteria. Nucleic acids, proteins, and metabolites were collected 4 and 8 h post-LPS exposure. Untargeted profiling of metabolites was followed by targeted identification of amino acids and knowledge integration with gene expression profiles. Consistent with the past reports associating microgravity with increased energy expenditure, we identified several markers linked to energy deficiency, including various amino acids such as tryptophan, creatinine, dopamine, and glycine, and cofactors such as lactate and pyruvate. The present study revealed a molecular architecture linking energy metabolism and immunodeficiency in microgravity. The energy-deficient condition potentially cascaded into dysregulation of protein metabolism and impairment of host immunity. This project is limited by a small sample size. Although a strict statistical screening was carefully implemented, the present results further emphasize the need for additional studies with larger sample sizes. Validating this hypothesis using an in vivo model is essential to extend the knowledge towards identifying markers of diagnostic and therapeutic value. Human cells challenged with a bacterial toxin show more signs of energy deficiency when flown in space than when cultured on the ground. Rasha Hammamieh from the US Army Center for Environmental Health Research in Frederick, Maryland, and colleagues exposed human endothelial cells in spaceflight to lipopolysaccharide, an immune response-triggering part of the bacterial membrane. They then collected nucleic acids, proteins and metabolites 4 and 8 h later, and saw a molecular architecture consistent with increased energy expenditure compared to matched control cells grown on Earth. Combined with the researchers’ previous finding that microgravity can induce an immunosuppressive state, the results suggest that energy imbalances potentially lead to problems with protein metabolism that ultimately impair the immune system. The authors propose that reversing this energy depletion could help enhance the immune health of astronauts.
Collapse
|
26
|
Frippiat JP, Crucian BE, de Quervain DJF, Grimm D, Montano N, Praun S, Roozendaal B, Schelling G, Thiel M, Ullrich O, Choukèr A. Towards human exploration of space: The THESEUS review series on immunology research priorities. NPJ Microgravity 2016; 2:16040. [PMID: 28725745 PMCID: PMC5515533 DOI: 10.1038/npjmgrav.2016.40] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/19/2023] Open
Abstract
Dysregulation of the immune system occurs during spaceflight and may represent a crew health risk during exploration missions because astronauts are challenged by many stressors. Therefore, it is crucial to understand the biology of immune modulation under spaceflight conditions in order to be able to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent to scientists around the world. From the review of collected answers, they deduced a list of key issues and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space, and to increase increments duration for some ISS crew members to 12 months or longer. These recommendations should contribute to improve our knowledge about spaceflight effects on the immune system and the development of countermeasures that, beyond astronauts, could have a societal impact.
Collapse
Affiliation(s)
- Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, EA7300, Lorraine University, Nancy, France
| | | | | | - Daniela Grimm
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| | - Nicola Montano
- Cardiovascular Neuroscience Laboratory, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Centre and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Gustav Schelling
- Department of Anaesthesiology, 'Stress and Immunity' Laboratory, University of Munich, Munich, Germany
| | - Manfred Thiel
- Department of Anaesthesiology and Surgical Intensive Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Alexander Choukèr
- Department of Anaesthesiology, 'Stress and Immunity' Laboratory, University of Munich, Munich, Germany
| |
Collapse
|
27
|
XU XI, LI PINGPING, ZHANG PENG, CHU MING, LIU HONGJU, CHEN XIAOPING, GE QING. Differential effects of Rhodiola rosea on regulatory T cell differentiation and interferon-γ production in vitro and in vivo. Mol Med Rep 2016; 14:529-36. [DOI: 10.3892/mmr.2016.5278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/09/2016] [Indexed: 11/06/2022] Open
|
28
|
Abstract
Manned space flight induces a reduction in immune competence among crew and is likely to cause deleterious changes to the composition of the gastrointestinal, nasal, and respiratory bacterial flora, leading to an increased risk of infection. The space flight environment may also affect the susceptibility of microorganisms within the spacecraft to antibiotics, key components of flown medical kits, and may modify the virulence characteristics of bacteria and other microorganisms that contaminate the fabric of the International Space Station and other flight platforms. This review will consider the impact of true and simulated microgravity and other characteristics of the space flight environment on bacterial cell behavior in relation to the potential for serious infections that may appear during missions to astronomical objects beyond low Earth orbit.
Collapse
|
29
|
Li P, Shi J, Zhang P, Wang K, Li J, Liu H, Zhou Y, Xu X, Hao J, Sun X, Pang X, Li Y, Wu H, Chen X, Ge Q. Simulated microgravity disrupts intestinal homeostasis and increases colitis susceptibility. FASEB J 2015; 29:3263-73. [PMID: 25877215 DOI: 10.1096/fj.15-271700] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 01/01/2023]
Abstract
The immune systems can be altered by spaceflight in many aspects, but microgravity-related mucosal immune changes and its clinical significance have not been well studied. The purpose of this study was to investigate whether simulated microgravity influences the intestinal homeostasis and increases the susceptibility to colon inflammation. The hindlimb unloading (HU) mouse model was used to simulate the microgravity condition. Three percent dextran sulfate sodium (DSS) was given to mice to induce colitis. Compared to ground control (Ctrl) mice, the HU ones revealed an impaired intestinal homeostasis and increased susceptibility to DSS-induced colitis. This includes an early-onset, 4-fold expansion of segmented filamentous bacteria (SFB), more than 2-fold decrease in regulatory T (Treg) cell numbers and IL-10 production, ∼2-fold increase in colonic IL-1β expression, 2-fold increase in circulating neutrophils, and colonic neutrophil infiltration. The application of antibiotics ameliorated the Treg and IL-10 reductions but did not significantly dampen neutrophilia and elevated expression of colonic IL-1β. These results indicate that the intestinal microflora and innate immune system both respond to simulated microgravity and together, contribute to the proinflammatory shift in the gut microenvironment. The data also emphasize the necessity for evaluating the susceptibility to inflammatory bowel diseases (IBDs) in distant space travels.
Collapse
Affiliation(s)
- Pingping Li
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Junxiu Shi
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Peng Zhang
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Ke Wang
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Jinglong Li
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Hongju Liu
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Yu Zhou
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Xi Xu
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Jie Hao
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Xiuyuan Sun
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Xuewen Pang
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Yan Li
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Hounan Wu
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Xiaoping Chen
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Qing Ge
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| |
Collapse
|
30
|
Brungs S, Kolanus W, Hemmersbach R. Syk phosphorylation - a gravisensitive step in macrophage signalling. Cell Commun Signal 2015; 13:9. [PMID: 25644261 PMCID: PMC4326470 DOI: 10.1186/s12964-015-0088-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recognition of pathogen patterns followed by the production of reactive oxygen species (ROS) during the oxidative burst is one of the major functions of macrophages. This process is the first line of defence and is crucial for the prevention of pathogen-associated diseases. There are indications that the immune system of astronauts is impaired during spaceflight, which could result in an increased susceptibility to infections. Several studies have indicated that the oxidative burst of macrophages is highly impaired after spaceflight, but the underlying mechanism remained to be elucidated. Here, we investigated the characteristics of reactive oxygen species production during the oxidative burst after pathogen pattern recognition in simulated microgravity by using a fast-rotating Clinostat to mimic the condition of microgravity. Furthermore, spleen tyrosine kinase (Syk) phosphorylation, which is required for ROS production, and the translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) to the nucleus were monitored to elucidate the influence of altered gravity on macrophage signalling. RESULTS Simulated microgravity leads to significantly diminished ROS production in macrophages upon zymosan, curdlan and lipopolysaccharide stimulation. To address the signalling mechanisms involved, Syk phosphorylation was examined, revealing significantly reduced phosphorylation in simulated microgravity compared to normal gravity (1 g) conditions. In contrast, a later signalling step, the translocation of NF-κB to the nucleus, demonstrated no gravity-dependent alterations. CONCLUSIONS The results obtained in simulated microgravity show that ROS production in macrophages is a highly gravisensitive process, caused by a diminished Syk phosphorylation. In contrast, NF-κB signalling remains consistent in simulated microgravity. This difference reveals that early signalling steps, such as Syk phosphorylation, are affected by microgravity, whereas the lack of effects in later steps might indicate adaptation processes. Taken together, this study clearly demonstrates that macrophages display impaired signalling upon pattern recognition when exposed to simulated microgravity conditions, which if verified in real microgravity this may be one reason why astronauts display higher susceptibility to infections.
Collapse
Affiliation(s)
- Sonja Brungs
- Biomedical Research Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147, Koeln, Germany.
| | - Waldemar Kolanus
- Molecular Immunology, LIMES Institute, University of Bonn, Carl-Troll Str. 31, 53115, Bonn, Germany.
| | - Ruth Hemmersbach
- Biomedical Research Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147, Koeln, Germany.
| |
Collapse
|
31
|
Novoselova EG, Lunin SM, Khrenov MO, Parfenyuk SB, Novoselova TV, Shenkman BS, Fesenko EE. Changes in immune cell signalling, apoptosis and stress response functions in mice returned from the BION-M1 mission in space. Immunobiology 2014; 220:500-9. [PMID: 25468559 DOI: 10.1016/j.imbio.2014.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
Abstract
To explore the effect of the spaceflight environment on immunity in animals, C57/BL6 mice flown on a 30-day space high-orbit satellite mission (BION-M1) were analyzed. Cytokine response in mice was measured in tandem with the following parameters: the synthesis of inducible forms of the heat shock proteins HSP72 and HSP90α; activity of the NF-κB, IFR3, and SAPK/JNK signalling pathways; and TLR4 expression. In addition, apoptosis in the thymus was measured by caspase-3 and ph-p53/p53 ratio testing. In response to flight environment exposure, mice had a reduction in spleen and thymus masses and decreased splenic and thymic lymphocyte counts. Plasma concentration of IL-6 and IFN-γ but not TNF-α was decreased in C57BL6 mice. The NF-κB activity in splenic lymphocytes through the canonical pathway involving IκB degradation was significantly increased at 12h after landing. One week after landing, however, the activity of NF-κB was markedly decreased below even the control values. Non-canonical NF-κB activity increased during the whole observation period. The activities of SAPK/JNK and IRF-3 were invariable at 12h but significantly increased 7 days after landing. The expression of Hsp72 and Hsp90α was somewhat increased 12h (Hsp72) and 7 days (Hsp90α). TLR4 expression in splenic cells was significantly increased only at 12h, returning to normal 7 days after landing. To assess the apoptosis in thymus lymphocytes, caspase-3 and levels of p53 protein along with its phosphorylated form were measured in thymic lymphocytes. The results indicated that the high-orbit spaceflight environment caused an increase in the level of p53 but more notably in the activated, phosphorylated form of the p53 protein. The calculated ratio of the active to inactive forms of the protein (ph-53/p53) 12h after landing increased by more than twofold, indicating the apparent induction of apoptosis in thymus cells. Interestingly, 7 days after the landing, this ratio was not restored, but rather increased: the specified ratio was four times higher compared to the ground-based control. Measurements of caspase-3 in thymic cells indicated more expressive increase in apoptosis. Taken together, the results of the present study indicate that spaceflight induces an imbalance in the immunity of mice, showing variation in signalling, apoptosis and stress response that are not restored by 7 days after landing. These changes are distinguished from classic stress-related alterations usually caused by conventional stressors.
Collapse
Affiliation(s)
- E G Novoselova
- Institute of Cell Biophysics, Pushchino, Moscow Region, Russia.
| | - S M Lunin
- Institute of Cell Biophysics, Pushchino, Moscow Region, Russia
| | - M O Khrenov
- Institute of Cell Biophysics, Pushchino, Moscow Region, Russia
| | - S B Parfenyuk
- Institute of Cell Biophysics, Pushchino, Moscow Region, Russia
| | - T V Novoselova
- Institute of Cell Biophysics, Pushchino, Moscow Region, Russia
| | - B S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - E E Fesenko
- Institute of Cell Biophysics, Pushchino, Moscow Region, Russia
| |
Collapse
|
32
|
Mehta SK, Laudenslager ML, Stowe RP, Crucian BE, Sams CF, Pierson DL. Multiple latent viruses reactivate in astronauts during Space Shuttle missions. Brain Behav Immun 2014; 41:210-7. [PMID: 24886968 DOI: 10.1016/j.bbi.2014.05.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 01/26/2023] Open
Abstract
Latent virus reactivation and diurnal salivary cortisol and dehydroepiandrosterone were measured prospectively in 17 astronauts (16 male and 1 female) before, during, and after short-duration (12-16 days) Space Shuttle missions. Blood, urine, and saliva samples were collected during each of these phases. Antiviral antibodies and viral load (DNA) were measured for Epstein-Barr virus (EBV), varicella-zoster virus (VZV), and cytomegalovirus (CMV). Three astronauts did not shed any virus in any of their samples collected before, during, or after flight. EBV was shed in the saliva in all of the remaining 14 astronauts during all 3 phases of flight. Seven of the 14 EBV-shedding subjects also shed VZV during and after the flight in their saliva samples, and 8 of 14 EBV-shedders also shed CMV in their urine samples before, during, and after flight. In 6 of 14 crewmembers, all 3 target viruses were shed during one or more flight phases. Both EBV and VZV DNA copies were elevated during the flight phase relative to preflight or post-flight levels. EBV DNA in peripheral blood was increased preflight relative to post-flight. Eighteen healthy controls were also included in the study. Approximately 2-5% of controls shed EBV while none shed VZV or CMV. Salivary cortisol measured preflight and during flight were elevated relative to post-flight. In contrast DHEA decreased during the flight phase relative to both preflight and post-flight. As a consequence, the molar ratio of the area under the diurnal curve of cortisol to DHEA with respect to ground (AUCg) increased significantly during flight. This ratio was unrelated to viral shedding. In summary, three herpes viruses can reactivate individually or in combination during spaceflight.
Collapse
Affiliation(s)
- S K Mehta
- Enterprise Advisory Services, Inc., 1290 Hercules, Houston, TX 77058, USA.
| | - M L Laudenslager
- University of Colorado Denver, Anschutz Medical Campus, 12700 E. 19(th) Ave, Aurora, CO 80045, USA.
| | - R P Stowe
- Microgen Laboratories, 903 Texas Ave, La Marque, TX 77568, USA.
| | - B E Crucian
- NASA Johnson Space Center, Mail code SK, 2101 NASA Parkway, Houston, TX 77058, USA.
| | - C F Sams
- NASA Johnson Space Center, Mail code SK, 2101 NASA Parkway, Houston, TX 77058, USA.
| | - D L Pierson
- NASA Johnson Space Center, Mail code SK, 2101 NASA Parkway, Houston, TX 77058, USA.
| |
Collapse
|
33
|
Rosenzweig JA, Ahmed S, Eunson J, Chopra AK. Low-shear force associated with modeled microgravity and spaceflight does not similarly impact the virulence of notable bacterial pathogens. Appl Microbiol Biotechnol 2014; 98:8797-807. [PMID: 25149449 DOI: 10.1007/s00253-014-6025-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 12/18/2022]
Abstract
As their environments change, microbes experience various threats and stressors, and in the hypercompetitive microbial world, dynamism and the ability to rapidly respond to such changes allow microbes to outcompete their nutrient-seeking neighbors. Viewed in that light, the very difference between microbial life and death depends on effective stress response mechanisms. In addition to the more commonly studied temperature, nutritional, and chemical stressors, research has begun to characterize microbial responses to physical stress, namely low-shear stress. In fact, microbial responses to low-shear modeled microgravity (LSMMG), which emulates the microgravity experienced in space, have been studied quite widely in both prokaryotes and eukaryotes. Interestingly, LSMMG-induced changes in the virulence potential of several Gram-negative enteric bacteria, e.g., an increased enterotoxigenic Escherichia coli-mediated fluid secretion in ligated ileal loops of mice, an increased adherent invasive E. coli-mediated infectivity of Caco-2 cells, an increased Salmonella typhimurium-mediated invasion of both epithelial and macrophage cells, and S. typhimurium hypervirulence phenotype in BALB/c mice when infected by the intraperitoneal route. Although these were some examples where virulence of the bacteria was increased, there are instances where organisms became less virulent under LSMMG, e.g., hypovirulence of Yersinia pestis in cell culture infections and hypovirulence of methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, and Listeria monocytogenes in a Caenorhabditis elegans infection model. In general, a number of LSMMG-exposed bacteria (but not all) seemed better equipped to handle subsequent stressors such as osmotic shock, acid shock, heat shock, and exposure to chemotherapeutics. This mini-review primarily discusses both LSMMG-induced as well as bona fide spaceflight-specific alterations in bacterial virulence potential, demonstrating that pathogens' responses to low-shear forces vary dramatically. Ultimately, a careful characterization of numerous bacterial pathogens' responses to low-shear forces is necessary to evaluate a more complete picture of how this physical stress impacts bacterial virulence since a "one-size-fits-all" response is clearly not the case.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology and Center for Bionanotechnology and Environmental Research, Texas Southern University, 3100 Cleburne Street, Houston, TX, 77004, USA,
| | | | | | | |
Collapse
|
34
|
Chakraborty N, Gautam A, Muhie S, Miller SA, Jett M, Hammamieh R. An integrated omics analysis: impact of microgravity on host response to lipopolysaccharide in vitro. BMC Genomics 2014; 15:659. [PMID: 25102863 PMCID: PMC4287545 DOI: 10.1186/1471-2164-15-659] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/30/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Microgravity facilitates the opportunistic infections by augmenting the pathogenic virulence and suppressing the host resistance. Hence the extraterrestrial infections may activate potentially novel bionetworks different from the terrestrial equivalent, which could only be probed by investigating the host-pathogen relationship with a minimum of terrestrial bias. RESULTS We customized a cell culture module to expose human endothelial cells to lipopolysaccharide (LPS). The assay was carried out onboard the STS-135 spaceflight, and a concurrent ground study constituted the baseline. Transcriptomic investigation revealed a possible immune blunting in microgravity suppressing in particular Lbp, MyD88 and MD-2, which encode proteins responsible for early LPS uptake. Certain cytokines, such as IL-6 and IL-8, surged in response to LPS insult in microgravity, as suggested by the proteomics study. Contrasting proteomic expressions of B2M, TIMP-1 and VEGRs suggested impaired pro-survival adaptation and healing mechanisms. Differential expression of miR-200a and miR-146b suggested the susceptibility of hosts in spaceflight to oxidative stress and further underscored the influence of microgravity on the immunity. CONCLUSIONS A molecular interpretation explaining the etiology of the microgravitational impact on the host-pathogen relationship elucidated comprehensive immune blunting of the host cells responding to LPS challenges. Longer LPS exposure prompted a delayed host response, potentially ineffectual in preventing pathogens from opportunistic invasion. Significant consequences include the subsequent failure in recruiting the growth factors and a debilitated apoptosis. Follow up studies with larger sample size are warranted.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD 21702-5010 USA
| | - Aarti Gautam
- US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD 21702-5010 USA
| | - Seid Muhie
- US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD 21702-5010 USA
| | - Stacy-Ann Miller
- US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD 21702-5010 USA
| | - Marti Jett
- US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD 21702-5010 USA
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD 21702-5010 USA
| |
Collapse
|
35
|
Verhaar AP, Hoekstra E, Tjon ASW, Utomo WK, Deuring JJ, Bakker ERM, Muncan V, Peppelenbosch MP. Dichotomal effect of space flight-associated microgravity on stress-activated protein kinases in innate immunity. Sci Rep 2014; 4:5468. [PMID: 24968806 PMCID: PMC4073167 DOI: 10.1038/srep05468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/22/2014] [Indexed: 01/09/2023] Open
Abstract
Space flight strongly moderates human immunity but is in general well tolerated. Elucidation of the mechanisms by which zero gravity interacts with human immunity may provide clues for developing rational avenues to deal with exaggerated immune responses, e.g. as in autoimmune disease. Using two sounding rockets and one manned Soyuz launch, the influence of space flight on immunological signal transduction provoked by lipopolysaccharide (LPS) stimulation was investigated in freshly isolated peripheral blood monocytes and was compared to samples obtained from on-board centrifuge-loaded 1 g controls. The effect of microgravity on immunological signal transduction is highly specific, since LPS dependent Jun-N-terminal kinase activation is impaired in the 0 g condition, while the corresponding LPS dependent activation of p38 MAP kinase remains unaffected. Thus our results identify Jun-N-terminal kinase as a relevant target in immunity for microgravity and support using Jun-N-terminal kinase specific inhibitors for combating autoimmune disease.
Collapse
Affiliation(s)
- Auke P Verhaar
- Department of Gastroenterology and Hepatology. Erasmus MC, University Medical Center Rotterdam, 's Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| | - Elmer Hoekstra
- Department of Gastroenterology and Hepatology. Erasmus MC, University Medical Center Rotterdam, 's Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| | - Angela S W Tjon
- Department of Gastroenterology and Hepatology. Erasmus MC, University Medical Center Rotterdam, 's Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| | - Wesley K Utomo
- Department of Gastroenterology and Hepatology. Erasmus MC, University Medical Center Rotterdam, 's Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| | - J Jasper Deuring
- Department of Gastroenterology and Hepatology. Erasmus MC, University Medical Center Rotterdam, 's Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| | - Elvira R M Bakker
- Department of Gastroenterology and Hepatology. Erasmus MC, University Medical Center Rotterdam, 's Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| | - Vanesa Muncan
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Centre, Meibergdreef 9, NL-1105 AZ Amsterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology. Erasmus MC, University Medical Center Rotterdam, 's Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| |
Collapse
|
36
|
Foster JS, Wheeler RM, Pamphile R. Host-microbe interactions in microgravity: assessment and implications. Life (Basel) 2014; 4:250-66. [PMID: 25370197 PMCID: PMC4187166 DOI: 10.3390/life4020250] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 01/07/2023] Open
Abstract
Spaceflight imposes several unique stresses on biological life that together can have a profound impact on the homeostasis between eukaryotes and their associated microbes. One such stressor, microgravity, has been shown to alter host-microbe interactions at the genetic and physiological levels. Recent sequencing of the microbiomes associated with plants and animals have shown that these interactions are essential for maintaining host health through the regulation of several metabolic and immune responses. Disruptions to various environmental parameters or community characteristics may impact the resiliency of the microbiome, thus potentially driving host-microbe associations towards disease. In this review, we discuss our current understanding of host-microbe interactions in microgravity and assess the impact of this unique environmental stress on the normal physiological and genetic responses of both pathogenic and mutualistic associations. As humans move beyond our biosphere and undergo longer duration space flights, it will be essential to more fully understand microbial fitness in microgravity conditions in order to maintain a healthy homeostasis between humans, plants and their respective microbiomes.
Collapse
Affiliation(s)
- Jamie S Foster
- Space Life Science Lab, University of Florida, 505 Odyssey Way, Merritt Island, FL 32953, USA.
| | | | - Regine Pamphile
- Space Life Science Lab, University of Florida, 505 Odyssey Way, Merritt Island, FL 32953, USA.
| |
Collapse
|
37
|
Kennedy AR. Biological Effects of Space Radiation and Development of Effective Countermeasures. LIFE SCIENCES IN SPACE RESEARCH 2014; 1:10-43. [PMID: 25258703 PMCID: PMC4170231 DOI: 10.1016/j.lssr.2014.02.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.
Collapse
Affiliation(s)
- Ann R Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6072
| |
Collapse
|
38
|
Contribution of the urodele amphibian Pleurodeles waltl to the analysis of spaceflight-associated immune system deregulation. Mol Immunol 2013; 56:434-41. [DOI: 10.1016/j.molimm.2013.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022]
|
39
|
Xu X, Tan C, Li P, Zhang S, Pang X, Liu H, Li L, Sun X, Zhang Y, Wu H, Chen X, Ge Q. Changes of cytokines during a spaceflight analog--a 45-day head-down bed rest. PLoS One 2013; 8:e77401. [PMID: 24143230 PMCID: PMC3797033 DOI: 10.1371/journal.pone.0077401] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/02/2013] [Indexed: 12/16/2022] Open
Abstract
Spaceflight is associated with deregulation in the immune system. Head-down bed rest (HDBR) at -6° is believed to be the most practical model for examining multi-system responses to microgravity in humans during spaceflight. In the present study, a 45-day HDBR was performed to investigate the alterations in human immune cell distributions and their functions in response to various stimuli. The effect of countermeasure, Rhodiola rosea (RR) treatment, was also examined. A significant decrease of interferon-γ (IFN-γ) and interleukin-17 (IL-17) productions by activated T cells, increase of IL-1β and IL-18 by activated B and myeloid cells were observed during HDBR. The upregulation of serum cortisol was correlated with the changes of IL-1 family cytokines. In addition, a significant increase of memory T and B cell and regulatory T cells (Treg) were also detected. The uptake of RR further decreased IFN-γ level and slowed down the upregulation of IL-1 family cytokines. These data suggest that for prolonged HDBR and spaceflight, the decreased protective T cell immunity and enhanced proinflammatory cytokines should be closely monitored. The treatment with RR may play an important role in suppressing proinflammatory cytokines but not in boosting protective T cell immunity.
Collapse
Affiliation(s)
- Xi Xu
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Sciences Center, Beijing, P. R. China
| | - Cheng Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, P. R. China
| | - Pingping Li
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Sciences Center, Beijing, P. R. China
| | - Shusong Zhang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Sciences Center, Beijing, P. R. China
| | - Xuewen Pang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Sciences Center, Beijing, P. R. China
| | - Hongju Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, P. R. China
| | - Li Li
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, P. R. China
| | - Xiuyuan Sun
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Sciences Center, Beijing, P. R. China
| | - Yu Zhang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Sciences Center, Beijing, P. R. China
| | - Hounan Wu
- Peking University Medical and Health Analytical Center, Peking University Health Science Center, Beijing, P. R. China
- * E-mail: (QG); (HW); (XC)
| | - Xiaoping Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, P. R. China
- * E-mail: (QG); (HW); (XC)
| | - Qing Ge
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Sciences Center, Beijing, P. R. China
- * E-mail: (QG); (HW); (XC)
| |
Collapse
|
40
|
Gridley DS, Mao XW, Stodieck LS, Ferguson VL, Bateman TA, Moldovan M, Cunningham CE, Jones TA, Slater JM, Pecaut MJ. Changes in mouse thymus and spleen after return from the STS-135 mission in space. PLoS One 2013; 8:e75097. [PMID: 24069384 PMCID: PMC3777930 DOI: 10.1371/journal.pone.0075097] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/08/2013] [Indexed: 11/21/2022] Open
Abstract
Our previous results with flight (FLT) mice showed abnormalities in thymuses and spleens that have potential to compromise immune defense mechanisms. In this study, the organs were further evaluated in C57BL/6 mice after Space Shuttle Atlantis returned from a 13-day mission. Thymuses and spleens were harvested from FLT mice and ground controls housed in similar animal enclosure modules (AEM). Organ and body mass, DNA fragmentation and expression of genes related to T cells and cancer were determined. Although significance was not obtained for thymus mass, DNA fragmentation was greater in the FLT group (P<0.01). Spleen mass alone and relative to body mass was significantly decreased in FLT mice (P<0.05). In FLT thymuses, 6/84 T cell-related genes were affected versus the AEM control group (P<0.05; up: IL10, Il18bp, Il18r1, Spp1; down: Ccl7, IL6); 15/84 cancer-related genes had altered expression (P<0.05; up: Casp8, FGFR2, Figf, Hgf, IGF1, Itga4, Ncam1, Pdgfa, Pik3r1, Serpinb2, Sykb; down: Cdc25a, E2F1, Mmp9, Myc). In the spleen, 8/84 cancer-related genes were affected in FLT mice compared to AEM controls (P<0.05; up: Cdkn2a; down: Birc5, Casp8, Ctnnb1, Map2k1, Mdm2, NFkB1, Pdgfa). Pathway analysis (apoptosis signaling and checkpoint regulation) was used to map relationships among the cancer–related genes. The results showed that a relatively short mission in space had a significant impact on both organs. The findings also indicate that immune system aberrations due to stressors associated with space travel should be included when estimating risk for pathologies such as cancer and infection and in designing appropriate countermeasures. Although this was the historic last flight of NASA’s Space Shuttle Program, exploration of space will undoubtedly continue.
Collapse
Affiliation(s)
- Daila S. Gridley
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Louis S. Stodieck
- BioServe Space Technologies, Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, United States of America
| | - Virginia L. Ferguson
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, United States of America
| | - Ted A. Bateman
- Department of Bioengineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Maria Moldovan
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Christopher E. Cunningham
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Tamako A. Jones
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Jerry M. Slater
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Michael J. Pecaut
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| |
Collapse
|
41
|
Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis. Sci Rep 2013; 3:1340. [PMID: 23439280 PMCID: PMC3581829 DOI: 10.1038/srep01340] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/08/2013] [Indexed: 11/09/2022] Open
Abstract
The microgravity environment during space flight imposes numerous adverse effects on animal and microbial physiology. It is unclear, however, how microgravity impacts those cellular interactions between mutualistic microbes and their hosts. Here, we used the symbiosis between the host squid Euprymna scolopes and its luminescent bacterium Vibrio fischeri as a model system. We examined the impact of simulated microgravity on the timeline of bacteria-induced development in the host light organ, the site of the symbiosis. To simulate the microgravity environment, host squid and symbiosis-competent bacteria were incubated together in high-aspect ratio rotating wall vessel bioreactors and examined throughout the early stages of the bacteria-induced morphogenesis. The host innate immune response was suppressed under simulated microgravity; however, there was an acceleration of bacteria-induced apoptosis and regression in the host tissues. These results suggest that the space flight environment may alter the cellular interactions between animal hosts and their natural healthy microbiome.
Collapse
|
42
|
Özçivici E. Effects of spaceflight on cells of bone marrow origin. Turk J Haematol 2013; 30:1-7. [PMID: 24385745 PMCID: PMC3781669 DOI: 10.4274/tjh.2012.0127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/27/2012] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Once only a subject for science fiction novels, plans for establishing habitation on space stations, the Moon, and distant planets now appear among the short-term goals of space agencies. This article reviews studies that present biomedical issues that appear to challenge humankind for long-term spaceflights. With particularly focus on cells of bone marrow origin, studies involving changes in bone, immune, and red blood cell populations and their functions due to extended weightlessness were reviewed. Furthermore, effects of mechanical disuse on primitive stem cells that reside in the bone marrow were also included in this review. Novel biomedical solutions using space biotechnology will be required in order to achieve the goal of space exploration without compromising the functions of bone marrow, as spaceflight appears to disrupt homeostasis for all given cell types. CONFLICT OF INTEREST None declared.
Collapse
Affiliation(s)
- Engin Özçivici
- İzmir Institute of Technology, Department of Mechanical Engineering, İzmir, Turkey
| |
Collapse
|
43
|
Mehta S, Crucian B, Stowe R, Simpson R, Ott C, Sams C, Pierson D. Reactivation of latent viruses is associated with increased plasma cytokines in astronauts. Cytokine 2013; 61:205-9. [DOI: 10.1016/j.cyto.2012.09.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/29/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
44
|
Zhou Y, Ni H, Li M, Sanzari JK, Diffenderfer ES, Lin L, Kennedy AR, Weissman D. Effect of solar particle event radiation and hindlimb suspension on gastrointestinal tract bacterial translocation and immune activation. PLoS One 2012; 7:e44329. [PMID: 23028522 PMCID: PMC3446907 DOI: 10.1371/journal.pone.0044329] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/01/2012] [Indexed: 01/26/2023] Open
Abstract
The environmental conditions that could lead to an increased risk for the development of an infection during prolonged space flight include: microgravity, stress, radiation, disturbance of circadian rhythms, and altered nutritional intake. A large body of literature exists on the impairment of the immune system by space flight. With the advent of missions outside the Earth's magnetic field, the increased risk of adverse effects due to exposure to radiation from a solar particle event (SPE) needs to be considered. Using models of reduced gravity and SPE radiation, we identify that either 2 Gy of radiation or hindlimb suspension alone leads to activation of the innate immune system and the two together are synergistic. The mechanism for the transient systemic immune activation is a reduced ability of the GI tract to contain bacterial products. The identification of mechanisms responsible for immune dysfunction during extended space missions will allow the development of specific countermeasures.
Collapse
Affiliation(s)
- Yu Zhou
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Houping Ni
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Minghong Li
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jenine K. Sanzari
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric S. Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Liyong Lin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ann R. Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Drew Weissman
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
45
|
Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl Environ Microbiol 2010; 77:1221-30. [PMID: 21169425 DOI: 10.1128/aem.01582-10] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Assessing bacterial behavior in microgravity is important for risk assessment and prevention of infectious diseases during spaceflight missions. Furthermore, this research field allows the unveiling of novel connections between low-fluid-shear regions encountered by pathogens during their natural infection process and bacterial virulence. This study is the first to characterize the spaceflight-induced global transcriptional and proteomic responses of Pseudomonas aeruginosa, an opportunistic pathogen that is present in the space habitat. P. aeruginosa responded to spaceflight conditions through differential regulation of 167 genes and 28 proteins, with Hfq as a global transcriptional regulator. Since Hfq was also differentially regulated in spaceflight-grown Salmonella enterica serovar Typhimurium, Hfq represents the first spaceflight-induced regulator acting across bacterial species. The major P. aeruginosa virulence-related genes induced in spaceflight were the lecA and lecB lectin genes and the gene for rhamnosyltransferase (rhlA), which is involved in rhamnolipid production. The transcriptional response of spaceflight-grown P. aeruginosa was compared with our previous data for this organism grown in microgravity analogue conditions using the rotating wall vessel (RWV) bioreactor. Interesting similarities were observed, including, among others, similarities with regard to Hfq regulation and oxygen metabolism. While RWV-grown P. aeruginosa mainly induced genes involved in microaerophilic metabolism, P. aeruginosa cultured in spaceflight presumably adopted an anaerobic mode of growth, in which denitrification was most prominent. Whether the observed changes in pathogenesis-related gene expression in response to spaceflight culture could lead to an alteration of virulence in P. aeruginosa remains to be determined and will be important for infectious disease risk assessment and prevention, both during spaceflight missions and for the general public.
Collapse
|
46
|
Bernardo J, Long HJ, Simons ER. Initial cytoplasmic and phagosomal consequences of human neutrophil exposure to Staphylococcus epidermidis. Cytometry A 2010; 77:243-52. [PMID: 19937952 DOI: 10.1002/cyto.a.20827] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microorganisms are recognized by specific phagocyte surface receptors. Liganded receptors then signal a series of events leading to phagocytosis and destruction of the organism by oxidative, lytic, and associated processes. Some organisms, such as Mycobacterium tuberculosis (Mtb), Cryptococcus neoformans (Cf), and others, evade such destruction, surviving and sometimes multiplying within the phagosome to later cause disease. To study such evasion, we developed protocols which permit simultaneous kinetic measurement of early cytoplasmic signaling and of phagosomal pH (pH(p)) and oxidative burst, on a cell-by-cell basis, of polymorphonuclear (PMN) leukocytes exposed to fluorescently labeled, nonpathogenic Staphylococcus epidermidis (Se). The availability of a new, highly sensitive pH probe, pHrodo, permits observation of increasing pH(p). Simultaneous labeling of the organism, applicable to any phagocyte target, with a probe insensitive to pH and oxidative species, such as AlexaFluor350, permits distinction between binding and functional responses to it by ratioing fluorescences. Addition of an extracellular-specific quencher (Trypan blue) permits distinction between bound and phagosome-enclosed targets, so that conditions within the closed phagosome can be studied. We found that opsonization is required for functional activation of PMN by Se, that the organism causes early alkalinization of the phagosome (in contrast to Cf which hyperacidifies it), and that extracellular Ca(2+) is not required for cytoplasmic Ca(2+) signaling but contributes markedly to binding of Se to PMN and to ensuant bactericidal functions. These findings lead to a new approach to the study of select organisms, like Cf and Mtb, which evade killing by manipulating the phagosomal environment.
Collapse
Affiliation(s)
- John Bernardo
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | |
Collapse
|
47
|
Simons ER. Measurement of phagocytosis and of the phagosomal environment in polymorphonuclear phagocytes by flow cytometry. ACTA ACUST UNITED AC 2010; Chapter 9:Unit9.31. [PMID: 20069529 DOI: 10.1002/0471142956.cy0931s51] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phagocytes are the most important early components of the immune response, programmed to recognize, engulf, and destroy immune complexes (formed when antibodies recognize their specific antigens), foreign particles, bacteria, mycobacteria, apoptotic cells, etc. Neutrophils, monocytes, macrophages, and dendritic cells all participate in this process. Flow cytometry permits observation of phagocytes that have responded and, with the appropriate fluorescent probes, of the environment in the phagosome that has enclosed the foreign matter. This unit gives the background and the protocols for performing such studies.
Collapse
|
48
|
Guéguinou N, Huin-Schohn C, Bascove M, Bueb JL, Tschirhart E, Legrand-Frossi C, Frippiat JP. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth's orbit? J Leukoc Biol 2009; 86:1027-38. [DOI: 10.1189/jlb.0309167] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|