1
|
Relimpio D, Serna Moreno MDC, Horta Muñoz S, Viaplana E, Mancera JC, Urniza A, de la Fuente J, Gortázar C. Improved stability and specificity of baits for oral administration of substances to wild boar. Prev Vet Med 2024; 229:106241. [PMID: 38878496 DOI: 10.1016/j.prevetmed.2024.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
Oral vaccination is one of the most effective interventions for disease control in wildlife. As a result of the recent global reemergence of African swine fever and ongoing classical swine fever and animal tuberculosis, oral vaccination of Eurasian wild boar (Sus scrofa) receives increased interest. Several baits for wild boar and feral pigs have been described, but developing more stable and personalized formulations is important. This paper proposes a new bait formulation primarily composed of corn flour, piglet feed, sugar, and honey as a binder to obtain improved elasticity. The bait consists of a matrix with no protective coats, has a hemispherical shape (ø 3.4 ×1.6 cm), and displays an anise aroma and blue color. The color and aroma did not affect bait choice by wild boar, while bait coloring contributed to avoid consumption by non-target species (corvids). Baits with the new formulation were significantly more resistant to humidity and high temperatures than previous versions. Simulations suggest that baits with the new formulation are elastic enough to resist impacts from a maximum altitude of 750 m. Thus, the new bait prototype solves several problems of previous bait formulations while keeping a format that can be selectively consumed by piglets and adult wild boar.
Collapse
Affiliation(s)
- David Relimpio
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC & UCLM), Ronda de Toledo 12, Ciudad Real 13003, Spain
| | - María Del Carmen Serna Moreno
- UCLM, Instituto de Investigación Aplicada a la Industria Aeronáutica, Escuela de Ingeniería Industrial y Aeroespacial de Toledo, Campus de Fábrica de Armas, Av. de Carlos III, Toledo 45004, Spain
| | - Sergio Horta Muñoz
- UCLM, Instituto de Investigación Aplicada a la Industria Aeronáutica, Escuela de Ingeniería Industrial y Aeroespacial de Toledo, Campus de Fábrica de Armas, Av. de Carlos III, Toledo 45004, Spain
| | - Elisenda Viaplana
- Zoetis Manufacturing and Research Spain, Carr. De Camprodon, s/n, L'Hostalnou de Bianya, Girona 17813, Spain
| | | | - Alicia Urniza
- Zoetis Manufacturing and Research Spain, Carr. De Camprodon, s/n, L'Hostalnou de Bianya, Girona 17813, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC & UCLM), Ronda de Toledo 12, Ciudad Real 13003, Spain; Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC & UCLM), Ronda de Toledo 12, Ciudad Real 13003, Spain.
| |
Collapse
|
2
|
Juste RA, Blanco-Vázquez C, Barral M, Prieto JM, Varela-Castro L, Lesellier S, Dave D, Sevilla IA, Martín Ezquerra AB, Adriaensen H, Herrero-García G, Garrido JM, Casais R, Balseiro A. Efficacy of heat-inactivated Mycobacterium bovis vaccine delivered to European badgers ( Meles meles) through edible bait. Heliyon 2023; 9:e19349. [PMID: 37662827 PMCID: PMC10474426 DOI: 10.1016/j.heliyon.2023.e19349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
Badgers (Meles meles) are a major tuberculosis (TB) reservoir in Europe, with the potential to transmit infection to cattle. Here we assessed whether a recently described oral tuberculosis vaccine based on heat-inactivated Mycobacterium bovis (HIMB), delivered as edible baits, can protect badgers from infection. Eight badgers were given individually five baits, each one consisting of a ball of peanut butter, natural peanut and oat flakes including a dose of the vaccine containing 5 × 107 colony-forming units. In parallel, a control group of seven badgers did not receive the vaccine. One month and a half later a second dose of the vaccine was offered to the vaccinated group. Ninety-four days after the second dose, all badgers were challenged with M. bovis (103 colony-forming units per animal) delivered endobronchially to the right middle lung lobe. Clinical, immunological, pathological and bacteriological variables were measured throughout the whole study to assess the efficacy of the vaccine. Two vaccinated animals showed high bacterial load of M. bovis and worsening of pathological lesions of TB. Conversely, the other six vaccinated animals showed slight improvement in bacterial load and pathology with respect to the control group. These results suggest that delivering the TB vaccine via food bait can partially protect wild badger populations, although vaccination can lead to either protection or tolerization, likely depending on the animal's immune status and general condition at the time of vaccination. Further optimization of the vaccination trial/strategy is needed to reduce the rate of tolerization, such as altering vaccine dose, number of doses, type of bait, use of adjuvants or route of administration.
Collapse
Affiliation(s)
- Ramón A. Juste
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - Cristina Blanco-Vázquez
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394, Asturias, Spain
| | - Marta Barral
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - José Miguel Prieto
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394, Asturias, Spain
| | - Lucía Varela-Castro
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - Sandrine Lesellier
- Nancy Laboratory for Rabies and Wildlife, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), 54220, Malzéville, France
| | - Dipesh Dave
- Bacteriology Department, Animal and Plant Health Agency (APHA, Weybridge), KT15 3NB, Surrey, United Kingdom
| | - Iker A. Sevilla
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - Ana Belén Martín Ezquerra
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Hans Adriaensen
- PIXANIM Plateform, Service Imagerie, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR PR China, Val-de-Loire, 37380, Nouzilly, France
| | - Gloria Herrero-García
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Joseba M. Garrido
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - Rosa Casais
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394, Asturias, Spain
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| |
Collapse
|
3
|
Jensen KJ, Hansen MS, Skovgaard K, Svensson E, Larsen LE, Heegaard PMH, Benn CS, Jungersen G. Immunogenicity of Bacillus Calmette-Guérin in pigs: potential as a translational model of non-specific effects of BCG. Front Immunol 2023; 14:1219006. [PMID: 37520542 PMCID: PMC10374211 DOI: 10.3389/fimmu.2023.1219006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background Clinical and immunological studies in humans show that the live attenuated Bacillus Calmette-Guérin (BCG) vaccine has beneficial non-specific effects, increasing resistance against diseases other than tuberculosis. The underlying mechanisms are currently being explored. The pig exhibits considerable physiological similarity to humans in anatomy and physiology, suggesting that similar responses to BCG could be expected. Studies of the non-specific effects of BCG in pigs are scarce. We investigated the feasibility of using pigs as a large animal model to investigate the non-specific immunological effects of BCG. Methods In a series of experiments, we randomized newborn or young piglets from conventional farms to receiving BCG or placebo and investigated the persistence of live BCG bacteria in various tissues, the immunogenicity of BCG in ex vivo blood and in vitro stimulation assays, and the acute phase protein and clinical responses to heterologous infectious challenge with influenza A virus or Actinobacillus pleuropneumoniae. Results The BCG vaccine was generally well tolerated. In contrast to humans, no skin reaction in the form of abscesses, ulcers, or scars was observed. Live BCG was recovered from draining lymph nodes in 2/13 animals 20 weeks after vaccination. Specific in vitro responses of IFN-γ to antigen-specific re-stimulation with mycobacterial antigen were increased but not TNF-responses to TLR2 or TLR4 agonists. A few genes were differentially expressed in blood after vaccination, including the antiviral genes RIG-I and CSF1, although the effect disappeared after correction for multiple testing. Clinical symptoms after heterologous bacterial or viral respiratory infections did not differ, nor did virus copies in nasopharyngeal samples after the challenge. However, the acute phase protein response was significantly reduced in BCG-vaccinated animals after influenza challenge but not after A. pleuropneumoniae challenge. Discussion BCG was safe in pigs, inducing specific immunological responses, but our model did not corroborate the innate immunological responsiveness to BCG seen in humans. The dose of BCG or the bacterial and viral challenges may have been sub-optimal. Even so, the acute phase protein response to influenza infection was significantly reduced in BCG-vaccinated animals.
Collapse
Affiliation(s)
- Kristoffer Jarlov Jensen
- Bandim Health Project, University of Southern Denmark, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Copenhagen Phase IV Unit, Center for Clinical Research and Prevention and Department of Clinical Pharmacology, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Frederiksberg, Denmark
| | - Mette Sif Hansen
- Institute for Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Center for Diagnostics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Erik Svensson
- Department of Tuberculosis and Mycobacteria, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Erik Larsen
- Institute for Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter M. H. Heegaard
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Christine Stabell Benn
- Bandim Health Project, University of Southern Denmark, Copenhagen, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Gregers Jungersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
4
|
Melgarejo C, Planas C, Cobos A, Arrieta-Villegas C, Sevilla IA, Bezos J, Moll X, Espada Y, Garrido JM, Domingo M, Vidal E, Pérez de Val B. A proof-of-concept study to investigate the efficacy of heat-inactivated autovaccines in Mycobacterium caprae experimentally challenged goats. Sci Rep 2022; 12:22132. [PMID: 36550177 PMCID: PMC9780325 DOI: 10.1038/s41598-022-26683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to assess the efficacy of a heat-inactivated Mycobacterium caprae (HIMC) vaccine in goats experimentally challenged with the same strain of M. caprae. Twenty-one goats were divided into three groups of seven: vaccinated with heat-inactivated Mycobacterium bovis (HIMB), with HIMC and unvaccinated. At 7 weeks post-vaccination all animals were endobronchially challenged with M. caprae. Blood samples were collected for immunological assays and clinical signs were recorded throughout the experiment. All goats were euthanized at 9 weeks post-challenge. Gross pathological examination, analysis of lung pathology using computed tomography, and bacterial load quantification in pulmonary lymph nodes (LN) by qPCR were carried out. Only HIMC vaccinated goats showed a significant reduction of lung lesions volume and mycobacterial DNA load in LN compared to unvaccinated controls. Both vaccinated groups showed also a significant reduction of the other pathological parameters, an improved clinical outcome and a higher proportion of IFN-γ-producing central memory T cells after vaccination. The results indicated that homologous vaccination of goats with HIMC induced enhanced protection against M. caprae challenge by reducing lung pathology and bacterial load compared to the heterologous vaccine (HIMB). Further large-scale trials are necessary to assess the efficacy of autovaccines under field conditions.
Collapse
Affiliation(s)
- Cristian Melgarejo
- grid.424716.2Unitat Mixta d’investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA. Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia Spain
| | - Carles Planas
- grid.7080.f0000 0001 2296 0625Departament de Medicina i Cirurgía Animals, Universitat Autònoma de Barcelona, Bellaterra, Catalonia Spain
| | - Alex Cobos
- grid.424716.2Unitat Mixta d’investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA. Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia Spain ,grid.7080.f0000 0001 2296 0625Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Catalonia Spain
| | - Claudia Arrieta-Villegas
- grid.424716.2Unitat Mixta d’investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA. Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia Spain
| | - Iker A. Sevilla
- grid.509696.50000 0000 9853 6743Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA). Derio, Bizkaia, Basque Country Spain
| | - Javier Bezos
- grid.4795.f0000 0001 2157 7667Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain ,grid.4795.f0000 0001 2157 7667VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Xavier Moll
- grid.7080.f0000 0001 2296 0625Departament de Medicina i Cirurgía Animals, Universitat Autònoma de Barcelona, Bellaterra, Catalonia Spain ,grid.7080.f0000 0001 2296 0625Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Catalonia Spain
| | - Yvonne Espada
- grid.7080.f0000 0001 2296 0625Departament de Medicina i Cirurgía Animals, Universitat Autònoma de Barcelona, Bellaterra, Catalonia Spain ,grid.7080.f0000 0001 2296 0625Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Catalonia Spain
| | - Joseba M. Garrido
- grid.509696.50000 0000 9853 6743Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA). Derio, Bizkaia, Basque Country Spain
| | - Mariano Domingo
- grid.424716.2Unitat Mixta d’investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA. Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia Spain ,grid.7080.f0000 0001 2296 0625Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Catalonia Spain
| | - Enric Vidal
- grid.424716.2Unitat Mixta d’investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA. Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia Spain
| | - Bernat Pérez de Val
- grid.424716.2Unitat Mixta d’investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA. Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Catalonia Spain
| |
Collapse
|
5
|
Vaz-Rodrigues R, Ferreras-Colino E, Ugarte-Ruíz M, Pesciaroli M, Thomas J, García-Seco T, Sevilla IA, Pérez-Sancho M, Mateo R, Domínguez L, Gortazar C, Risalde MA. Nonspecific protection of heat-inactivated Mycobacterium bovis against Salmonella Choleraesuis infection in pigs. Vet Res 2022; 53:31. [PMID: 35436975 PMCID: PMC9014587 DOI: 10.1186/s13567-022-01047-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractTrained immunity is the capacity of innate immune cells to produce an improved response against a secondary infection after a previous unrelated infection. Salmonellosis represents a public health issue and affects the pig farming industry. In general, vaccination against salmonellosis is still facing problems regarding the control of distinct serovars. Therefore, we hypothesized that an immunostimulant based on heat inactivated Mycobacterium bovis (HIMB) could have an immune training effect in pigs challenged with Salmonella enterica serovar Choleraesuis (S. Choleraesuis) and decided to explore the amplitude of this non-specific immune response. For this purpose, twenty-four 10 days-old female piglets were randomly separated in three groups: immunized group (n = 10) received orally two doses of HIMB prior to the intratracheal S. Choleraesuis-challenge, positive control group (n = 9) that was only challenged with S. Choleraesuis, and negative control group (n = 5) that was neither immunized nor infected. All individuals were necropsied 21 days post-challenge. HIMB improved weight gain and reduced respiratory symptoms and pulmonary lesions caused by S. Choleraesuis in pigs. Pigs immunized with HIMB showed higher cytokine production, especially of serum TNFα and lung CCL28, an important mediator of mucosal trained immunity. Moreover, immunized pigs showed lower levels of the biomarker of lipid oxidation malondialdehyde and higher activity of the antioxidant enzyme superoxide dismutase than untreated challenged pigs. However, the excretion and tissue colonization of S. Choleraesuis remained unaffected. This proof-of-concept study suggests beneficial clinical, pathological, and heterologous immunological effects against bacterial pathogens within the concept of trained immunity, opening avenues for further research.
Collapse
|
6
|
Orłowska B, Krajewska-Wędzina M, Augustynowicz-Kopeć E, Kozińska M, Brzezińska S, Zabost A, Didkowska A, Welz M, Kaczor S, Żmuda P, Anusz K. Epidemiological characterization of Mycobacterium caprae strains isolated from wildlife in the Bieszczady Mountains, on the border of Southeast Poland. BMC Vet Res 2020; 16:362. [PMID: 32993648 PMCID: PMC7526380 DOI: 10.1186/s12917-020-02581-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 01/28/2023] Open
Abstract
Background The majority of animal tuberculosis (TB) cases reported in wildlife in Poland over the past 20 years have concerned the European bison inhabiting the Bieszczady Mountains in Southeast Poland: an area running along the border of Southeast Poland. As no TB cases have been reported in domestic animals in this region since 2005, any occurrence of TB in the free-living animals inhabiting this area might pose a real threat to local livestock and result in the loss of disease-free status. The aim of the study was to describe the occurrence of tuberculosis in the wildlife of the Bieszczady Mountains and determine the microbiological and molecular characteristics of any cultured strains. Lymph node samples were collected for analysis from 274 free-living animals, including European bison, red foxes, badgers, red deer, wild boar and roe deer between 2011 and 2017. Löwenstein–Jensen and Stonebrink media were used for culture. Molecular identification of strains was performed based on hsp65 sequence analysis, the GenoType®MTBC (Hain Lifescience, Germany) test, spoligotyping and MIRU-VNTR analysis. Results Mycobacterium caprae was isolated from the lymph nodes of 21 out of 55 wild boar (38.2%; CI 95%: 26.5%, 51.4%) and one roe deer. Since 2014, no new TB cases have been reported in the Bieszczady European bison population. Conclusions The identification of TB in wild boar in the Bieszczady is an alarming phenomenon, which requires further investigation. The Bieszczady mountains are a precious, unique area, home to many protected species. However, it is also the only area in Poland where TB cases have been reported in free-living animals. The occurrence of TB in wild boar inhabiting this area might pose a real threat to local livestock and many of the protected species (for example European bison that can share feeding places with wild boar). Given this situation, ongoing monitoring of the prevalence of TB should be conducted, and protective measures should be considered.
Collapse
Affiliation(s)
- Blanka Orłowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland.
| | - Monika Krajewska-Wędzina
- Department of Microbiology, National Veterinary Research Institute, Partyzantów 57, 24-100, Puławy, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute (NTLD), Płocka 26, 01-138, Warsaw, Poland
| | - Monika Kozińska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute (NTLD), Płocka 26, 01-138, Warsaw, Poland
| | - Sylwia Brzezińska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute (NTLD), Płocka 26, 01-138, Warsaw, Poland
| | - Anna Zabost
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute (NTLD), Płocka 26, 01-138, Warsaw, Poland
| | - Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Mirosław Welz
- General Veterinary Inspectorate, Wspólna 30, 00-930, Warsaw, Poland
| | - Stanisław Kaczor
- County Veterinary Inspectorate, Młynarska 45, 38-500, Sanok, Poland
| | - Piotr Żmuda
- University Centre of Veterinary Medicine UJ-UR, al. Mickiewicza 24/28, 30-059, Cracow, Poland
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland
| |
Collapse
|
7
|
Local Lung Immune Response to Mycobacterium bovis Challenge after BCG and M. bovis Heat-Inactivated Vaccination in European Badger ( Meles meles). Pathogens 2020; 9:pathogens9060456. [PMID: 32526872 PMCID: PMC7350352 DOI: 10.3390/pathogens9060456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) vaccination could be used as a key part of integrated strategies for the disease’s control if an effective and safe vaccine under field conditions is obtained. Recent studies in Spain have evaluated the protective efficacy of two oral vaccines against experimental challenge with live intra-bronchial Mycobacterium bovis in captive badgers: the live-attenuated M. bovis BCG vaccine (Danish strain) and a heat-inactivated M. bovis (HIMB) vaccine. With the objective of increasing the knowledge of the cellular development progress of infection and generating further tools to discriminate between mild and severe TB lesions between and within animals, the immunopathology of tuberculous lesions was studied to characterize the local immune response (cell type profile) within lung granulomas from control (non-vaccinated), BCG vaccinated and HIMB-vaccinated experimentally infected badgers with M. bovis. Four immunohistochemical protocols, for the specific detection of macrophages, T lymphocytes, B lymphocytes and plasma cells within TB granulomas in formalin fixed sections of the right middle lung lobe (lobe targeted for the M. bovis delivery), were performed. Immunolabelled sections were scanned and five randomly selected areas were analyzed with digital image analysis software. The results were expressed as the proportion of the positively immunolabelled area within the total area of the selected site. Data was analyzed using the statistical analysis software (SAS). In the three treatment groups, macrophages were the most abundant inflammatory cells within the granulomas, followed by B lymphocytes and plasma cells. T lymphocyes were absent in those granulomas. This would suggest a predominance of a non-specific innate response mediated by phagocytic cells over an adaptative humoral immune response. The proportion of macrophages and plasma cells was higher in BCG and HIMB-vaccinated badgers, respectively, suggesting the establishment of an adaptative humoral response in HIMB-vaccinated badgers. The lower bacterial load at the lung level, as well as the volume of lesions in lungs using magnetic resonance imaging in badgers with the HIMB vaccine in relation with local immune response presented, must be highlighted, since it would be an advantage in favor of its use under field conditions in terms of reducing TB transmission and environmental contamination.
Collapse
|
8
|
Fattorini N, Ferretti F. Estimating wild boar density and rooting activity in a Mediterranean protected area. Mamm Biol 2020. [DOI: 10.1007/s42991-020-00030-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Gormley E, Corner LAL. Wild Animal Tuberculosis: Stakeholder Value Systems and Management of Disease. Front Vet Sci 2018; 5:327. [PMID: 30622951 PMCID: PMC6308382 DOI: 10.3389/fvets.2018.00327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/10/2018] [Indexed: 11/13/2022] Open
Abstract
When human health is put at risk from the transmission of animal diseases, the options for intervention often require input from stakeholders whose differing values systems contribute to decisions on disease management. Animal tuberculosis (TB), caused principally by Mycobacterium bovis is an archetypical zoonotic pathogen in that it can be transmitted from animals to humans and vice versa. Although elimination of zoonotic transmission of TB to humans is frequently promoted as the raison d'être for TB management in livestock, in many countries the control strategies are more likely based on minimizing the impact of sustained infection on the agricultural industry. Where wild animals are implicated in the epidemiology of the disease, the options for control and eradication can require involvement of additional stakeholder groups. Conflict can arise when different monetary and/or societal values are assigned to the affected animals. This may impose practical and ethical dilemmas for decision makers where one or more species of wild animal is seen by some stakeholders to have a greater value than the affected livestock. Here we assess the role of stakeholder values in influencing TB eradication strategies in a number of countries including Ireland, the UK, the USA, Spain, France, Australia, New Zealand and South Africa. What it reveals is that the level of stakeholder involvement increases with the complexity of the epidemiology, and that similar groups of stakeholders may agree to a set of control and eradication measures in one region only to disagree with applying the same measures in another. The level of consensus depends on the considerations of the reservoir status of the infected host, the societal values assigned to each species, the type of interventions proposed, ethical issues raised by culling of sentient wild animals, and the economic cost benefit effectiveness of dealing with the problem in one or more species over a long time frame. While there is a societal benefit from controlling TB, the means to achieve this requires identification and long-term engagement with all key stakeholders in order to reach agreement on ethical frameworks that prioritize and justify control options, particularly where culling of wild animals is concerned.
Collapse
Affiliation(s)
- Eamonn Gormley
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Leigh A L Corner
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Buddle BM, Vordermeier HM, Chambers MA, de Klerk-Lorist LM. Efficacy and Safety of BCG Vaccine for Control of Tuberculosis in Domestic Livestock and Wildlife. Front Vet Sci 2018; 5:259. [PMID: 30417002 PMCID: PMC6214331 DOI: 10.3389/fvets.2018.00259] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/01/2018] [Indexed: 01/24/2023] Open
Abstract
Bovine tuberculosis (TB) continues to be an intractable problem in many countries, particularly where "test and slaughter" policies cannot be implemented or where wildlife reservoirs of Mycobacterium bovis infection serve as a recurrent source of infection for domestic livestock. Alternative control measures are urgently required and vaccination is a promising option. Although the M. bovis bacille Calmette-Guérin (BCG) vaccine has been used in humans for nearly a century, its use in animals has been limited, principally as protection against TB has been incomplete and vaccination may result in animals reacting in the tuberculin skin test. Valuable insights have been gained over the past 25 years to optimise protection induced by BCG vaccine in animals and in the development of tests to differentiate infected from vaccinated animals (DIVA). This review examines factors affecting the efficacy of BCG vaccine in cattle, recent field trials, use of DIVA tests and the effectiveness of BCG vaccine in other domestic livestock as well as in wildlife. Oral delivery of BCG vaccine to wildlife reservoirs of infection such as European badgers, brushtail possums, wild boar, and deer has been shown to induce protection against TB and could prove to be a practical means to vaccinate these species at scale. Testing of BCG vaccine in a wide range of animal species has indicated that it is safe and vaccination has the potential to be a valuable tool to assist in the control of TB in both domestic livestock and wildlife.
Collapse
Affiliation(s)
- Bryce M Buddle
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | | | - Mark A Chambers
- Animal and Plant Health Agency, Addlestone, United Kingdom.,Faculty of Health & Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Lin-Mari de Klerk-Lorist
- Veterinary Wildlife Services, Kruger National Park, Department of Agriculture, Forestry and Fisheries, Pretoria, South Africa
| |
Collapse
|
11
|
Impact of piglet oral vaccination against tuberculosis in endemic free-ranging wild boar populations. Prev Vet Med 2018; 155:11-20. [DOI: 10.1016/j.prevetmed.2018.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/19/2018] [Accepted: 04/04/2018] [Indexed: 12/26/2022]
|
12
|
Arrieta-Villegas C, Perálvarez T, Vidal E, Puighibet Z, Moll X, Canturri A, Sevilla IA, Espada Y, Juste RA, Domingo M, Pérez de Val B. Efficacy of parenteral vaccination against tuberculosis with heat-inactivated Mycobacterium bovis in experimentally challenged goats. PLoS One 2018; 13:e0196948. [PMID: 29742150 PMCID: PMC5942842 DOI: 10.1371/journal.pone.0196948] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) in animals is a re-emerging disease with a wide range of hosts that causes large economic losses in livestock. Goats are particularly susceptible to TB and, in endemic areas, vaccination may be a valuable measure to control the disease. The main aim of this study was to evaluate the efficacy of parenteral vaccination of goats with a heat-inactivated Mycobacterium bovis (HIMB) vaccine, and compare it to M. bovis Bacille Calmette–Guérin (BCG) vaccine. Twenty-four goat kids were divided in 3 groups as following: HIMB vaccinated group (n = 8), BCG vaccinated group (n = 8) and unvaccinated group (n = 8). Afterwards, goats were experimentally challenged with Mycobacterium caprae by the endobronchial route. Antigen specific interferon-γ release assays and serology were performed after vaccination and challenge. Pathological and bacteriological parameters were evaluated after necropsy at 9 weeks post-challenge (p.c.). HIMB vaccine showed similar levels of protection to BCG in terms of volume reduction of thoracic TB lesions, presence of extra-pulmonary lesions, as well as a slight reduction of bacterial load in pulmonary lymph nodes. Moreover, HIMB vaccine did not induce interferences on the interferon-γ release assay based on reagents previously developed to differentiate infected from BCG vaccinated individuals. The results indicate that HIMB is a suitable vaccine candidate for further larger-scale trials under field conditions in goats.
Collapse
Affiliation(s)
- Claudia Arrieta-Villegas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Tania Perálvarez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Enric Vidal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Zoë Puighibet
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, Spain
| | - Xavier Moll
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, Spain
| | - Albert Canturri
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, Spain
| | - Iker A. Sevilla
- NEIKER-Tecnalia, Instituto Vasco de Investigación y Desarrollo Agrario, Departamento de Sanidad Animal, Derio, Bizkaia, Basque Country, Spain
| | - Yvonne Espada
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, Spain
| | - Ramón A. Juste
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Centro de Biotecnología Animal, Gijón, Asturias, Spain
| | - Mariano Domingo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, Spain
| | - Bernat Pérez de Val
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
- * E-mail:
| |
Collapse
|
13
|
Perrett S, Lesellier S, Rogers F, Williams GA, Gowtage S, Palmer S, Dalley D, Davé D, Weyer U, Wood E, Salguero FJ, Nunez A, Reed N, Chambers MA. Assessment of the safety of Bacillus Calmette-Guérin vaccine administered orally to badgers (Meles meles). Vaccine 2018. [PMID: 29525277 DOI: 10.1016/j.vaccine.2018.02.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
European badgers (Meles meles) are a wildlife reservoir for Mycobacterium bovis (M. bovis) in parts of England, Wales and Ireland, constituting a potential source of tuberculosis (TB) infection for cattle. Vaccination of badgers against TB is one of the tools available for helping reduce the prevalence of bovine TB in badgers, made possible by the licensing in 2010 of Bacillus Calmette-Guérin (BCG) vaccine for intramuscular administration to badgers (BadgerBCG). However, practical limitations associated with administering an injected vaccine to wild animals make an oral, bait-delivered form of the vaccine highly desirable. Evaluation of the safety of oral BCG to badgers and the environment is a mandatory step on the road to licensing an oral vaccine. This study had the following objectives: (a) to determine whether adverse effects followed the oral administration of BCG vaccine to badgers; (b) to measure the quantity and frequency of BCG excreted in the faeces of vaccinated badgers; and (c) to assess whether there was evidence of the vaccine spreading to unvaccinated, 'sentinel' badgers sharing the same environment as vaccinated animals. We report here that the oral administration per badger of ≥6.4 × 109 cfu BCG, followed 14 days later by a single oral dose of ≥6.4 × 107 cfu BCG caused no adverse physical effects and did not affect the social behaviour and feeding habits of the vaccinated animals. BCG was cultured from the faeces of two of nine vaccinated animals (372 cfu/g and 996 cfu/g, respectively) approximately 48 h after the higher dose of BCG was administered and by one of the nine vaccinated animal (80 cfu/g) approximately 24 h after receiving the lower dose of BCG. We found no evidence for the transmission of BCG to unvaccinated, sentinel, badgers housed with the vaccinated animals despite the occasional excretion of BCG in faeces.
Collapse
Affiliation(s)
- Simon Perrett
- Scientific Services Unit, Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Sandrine Lesellier
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Fiona Rogers
- National Wildlife Management Centre, Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Gareth A Williams
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Sonya Gowtage
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Si Palmer
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Deanna Dalley
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Dipesh Davé
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Ute Weyer
- Animal Services Unit, Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Emma Wood
- Surveillance and Laboratory Services, Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Francisco J Salguero
- Department of Pathology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alex Nunez
- Department of Pathology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Nick Reed
- Scientific Services Unit, Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Mark A Chambers
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK.
| |
Collapse
|
14
|
Ferretti F, Coats J, Cowan DP, Pietravalle S, Massei G. Seasonal variation in effectiveness of the boar-operated system to deliver baits to wild boar. PEST MANAGEMENT SCIENCE 2018; 74:422-429. [PMID: 28869327 DOI: 10.1002/ps.4723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Wild boar and feral pig numbers are growing worldwide and have substantial economic and environmental impacts. Bait-delivered pharmaceuticals such as disease vaccines, toxicants and contraceptives are advocated to mitigate these impacts. Effective campaigns based on these pharmaceuticals rely on optimising the target species' bait uptake, which may differ between seasons. We investigated seasonal differences in the use of Boar-Operated Systems (BOSs) by wild boar and non-target species in an English woodland. RESULTS In a pre-trial phase (BOS left open), wild boar, wild mammals, birds, livestock and companion animals fed on the peanuts and maize used as bait in the BOS. During the trial (BOS closed), only wild boar consumed the baits. Wild boar visited and fed from a larger number of BOSs in spring than in summer or winter. No aggressive intra-group interactions were recorded when wild boar fed from the BOSs but adult males were observed to monopolise two BOSs. Group size was highest in spring and bait uptake was lowest in winter. CONCLUSION The study confirmed the species-specificity of the BOS throughout the year and highlighted that, at least in this area, bait uptake by wild boar for baits delivered through the BOS would be maximised in spring. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francesco Ferretti
- Research Unit of Behavioural Ecology, Ethology and Wildlife Management, Department of Life Sciences, Siena, Italy
- Maremma Regional Park Agency, Grosseto, Italy
| | - Julia Coats
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, UK
| | - Dave P Cowan
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, UK
| | - Stéphane Pietravalle
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, UK
| | - Giovanna Massei
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, UK
| |
Collapse
|
15
|
The response of red deer to oral administration of heat-inactivated Mycobacterium bovis and challenge with a field strain. Vet Microbiol 2017; 208:195-202. [PMID: 28888638 DOI: 10.1016/j.vetmic.2017.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/16/2023]
Abstract
Deer species (family Cervidae) are often part of the Mycobacterium tuberculosis complex maintenance host community, and tuberculosis (TB) control in deer, including vaccination, is consequently an area of ongoing research. However, most research into deer vaccination against TB is focused on using the live bacillus Calmette Guerin (BCG). Oral inactivated vaccines represent an interesting alternative to either oral or parenteral BCG, since neither diagnostic cross-reactions nor vaccine strain survival are likely to occur. In order to describe the red deer response to heat-inactivated M. bovis (IV) as compared to BCG and to unvaccinated controls (n=5/group), we ran an experiment with five month-old vaccinated red deer, which were challenged with a virulent M. bovis strain 70days later and necropsied at 60days post-challenge. A reduction in the IV group infection burden was discovered. There were significant differences between the IV group and the control group (53% lesion reduction) as regards to the TB lesion scores, but not between other pairs. Complement component 3 plasma levels increased after challenge, and there were no differences between groups. The plasma cytokines (IL-1β, TNFα, IFNγ, IL-10 and IL-12) levels did not change after vaccination, but IL-1β, TNFα and IL-10 did so following the challenge. The IL-1β level increased in all the groups while TNFα levels had a distinct response pattern in the IV group and IL-10 had a distinct response pattern in control group. The results showed that oral vaccination with IV reduces the TB lesion score in red deer challenged with a M. bovis field strain without interfering with the in vivo diagnosis of infection in this species.
Collapse
|
16
|
Roy A, Risalde MA, Casal C, Romero B, de Juan L, Menshawy AM, Díez-Guerrier A, Juste RA, Garrido JM, Sevilla IA, Gortázar C, Domínguez L, Bezos J. Oral Vaccination with Heat-Inactivated Mycobacterium bovis Does Not Interfere with the Antemortem Diagnostic Techniques for Tuberculosis in Goats. Front Vet Sci 2017; 4:124. [PMID: 28824927 PMCID: PMC5545688 DOI: 10.3389/fvets.2017.00124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022] Open
Abstract
Vaccination against tuberculosis (TB) is prohibited in cattle or other species subjected to specific TB eradication campaigns, due to the interference that it may cause with the official diagnostic tests. However, immunization with a heat-inactivated (HI) Mycobacterium bovis vaccine via the oral route has been suggested to overcome this issue. In this study, the main goal was to assess the interference of the HI vaccine by different routes of administration using a previous vaccination and re-vaccination (boosting) protocol. TB-free kid goats were divided into three groups: oral (n = 16), intramuscular (IM; n = 16), and control (n = 16). Results showed that there was a significant difference in the percentage of animals positive to the single intradermal test (SIT) and blood based interferon-gamma release assay (IGRA) caused by vaccination when performed in the IM group compared to the oral group (p < 0.001). Nevertheless, no positivity to the SIT or IGRA test was observed in orally vaccinated goats regardless of the different interpretation criteria applied. None of the groups presented positive antibody titers using an in-house ELISA and samples collected 2 months after the boost. These results suggest the potential usefulness of the HI vaccine by the oral route in goats to minimize the interference on diagnostic tests (skin and IGRA tests) and reducing the necessity of defined antigens to replace the traditional purified protein derivatives for diagnosis. Finally, the results pave the way to future efficacy studies in goats using different routes of HI vaccination.
Collapse
Affiliation(s)
- Alvaro Roy
- CZ Veterinaria S.A., Porriño, Pontevedra, Spain
| | - María A Risalde
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Carmen Casal
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Beatriz Romero
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Lucía de Juan
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain.,Faculty of Veterinary Medicine, Department of Animal Health, Complutense University of Madrid, Madrid, Spain
| | - Ahmed M Menshawy
- Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Alberto Díez-Guerrier
- Faculty of Veterinary Medicine, Department of Animal Health, Complutense University of Madrid, Madrid, Spain.,MAEVA SERVET S.L., Madrid, Spain
| | - Ramon A Juste
- Servicio Regional de Investigación y Desarrollo Agrario (SERIDA), Villaviciosa, Spain
| | - Joseba M Garrido
- Animal Health Department, NEIKER-Tecnalia, Derio, Bizkaia, Spain
| | - Iker A Sevilla
- Animal Health Department, NEIKER-Tecnalia, Derio, Bizkaia, Spain
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain.,Faculty of Veterinary Medicine, Department of Animal Health, Complutense University of Madrid, Madrid, Spain
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain.,MAEVA SERVET S.L., Madrid, Spain
| |
Collapse
|
17
|
Chambers MA, Aldwell F, Williams GA, Palmer S, Gowtage S, Ashford R, Dalley DJ, Davé D, Weyer U, Salguero FJ, Nunez A, Nadian AK, Crawshaw T, Corner LAL, Lesellier S. The Effect of Oral Vaccination with Mycobacterium bovis BCG on the Development of Tuberculosis in Captive European Badgers ( Meles meles). Front Cell Infect Microbiol 2017; 7:6. [PMID: 28174695 PMCID: PMC5258709 DOI: 10.3389/fcimb.2017.00006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/05/2017] [Indexed: 12/03/2022] Open
Abstract
The European badger (Meles meles) is a reservoir host of Mycobacterium bovis and responsible for a proportion of the tuberculosis (TB) cases seen in cattle in the United Kingdom and Republic of Ireland. An injectable preparation of the bacillus Calmette-Guérin (BCG) vaccine is licensed for use in badgers in the UK and its use forms part of the bovine TB eradication plans of England and Wales. However, there are practical limitations to the widespread application of an injectable vaccine for badgers and a research priority is the development of an oral vaccine deliverable to badgers in bait. Previous studies reported the successful vaccination of badgers with oral preparations of 108 colony forming units (CFU) of both Pasteur and Danish strains of BCG contained within a lipid matrix composed of triglycerides of fatty acids. Protection against TB in these studies was expressed as a reduction in the number and apparent progression of visible lesions, and reductions in the bacterial load and dissemination of infection. To reduce the cost of an oral vaccine and reduce the potential for environmental contamination with BCG, it is necessary to define the minimal efficacious dose of oral BCG for badgers. The objectives of the two studies reported here were to compare the efficacy of BCG Danish strain in a lipid matrix with unformulated BCG given orally, and to evaluate the efficacy of BCG Danish in a lipid matrix at a 10-fold lower dose than previously evaluated in badgers. In the first study, both BCG unformulated and in a lipid matrix reduced the number and apparent progression of visible lesions and the dissemination of infection from the lung. In the second study, vaccination with BCG in the lipid matrix at a 10-fold lower dose produced a similar outcome, but with greater intra-group variability than seen with the higher dose in the first study. Further research is needed before we are able to recommend a final dose of BCG for oral vaccination of badgers against TB or to know whether oral vaccination of wild badgers with BCG will significantly reduce transmission of the disease.
Collapse
Affiliation(s)
- Mark A Chambers
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| | - Frank Aldwell
- Immune Solutions Ltd, University of Otago Dunedin, New Zealand
| | - Gareth A Williams
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| | - Si Palmer
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| | - Sonya Gowtage
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| | - Roland Ashford
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| | - Deanna J Dalley
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| | - Dipesh Davé
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| | - Ute Weyer
- Animal Services Unit, Animal and Plant Health Agency Addlestone, UK
| | - Francisco J Salguero
- Department of Pathology, Animal and Plant Health AgencyAddlestone, UK; School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of SurreyGuildford, UK
| | - Alejandro Nunez
- Department of Pathology, Animal and Plant Health Agency Addlestone, UK
| | - Allan K Nadian
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| | | | - Leigh A L Corner
- School of Veterinary Medicine, University College Dublin Dublin, Ireland
| | - Sandrine Lesellier
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| |
Collapse
|
18
|
Gowtage S, Williams GA, Henderson R, Aylett P, MacMorran D, Palmer S, Robertson A, Lesellier S, Carter SP, Chambers MA. Testing of a palatable bait and compatible vaccine carrier for the oral vaccination of European badgers (Meles meles) against tuberculosis. Vaccine 2017; 35:987-992. [PMID: 28077246 DOI: 10.1016/j.vaccine.2016.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/08/2023]
Abstract
The oral vaccination of wild badgers (Meles meles) with live Bacillus Calmette-Guérin (BCG) is one of the tools being considered for the control of bovine tuberculosis (caused by Mycobacterium bovis) in the UK. The design of a product for oral vaccination requires that numerous, and often competing, conditions are met. These include the need for a highly palatable, but physically stable bait that will meet regulatory requirements, and one which is also compatible with the vaccine formulation; in this case live BCG. In collaboration with two commercial bait companies we have developed a highly attractive and palatable bait recipe designed specifically for European badgers (Meles meles) that meets these requirements. The palatability of different batches of bait was evaluated against a standardised palatable control bait using captive badgers. The physical properties of the bait are described e.g. firmness and colour. The microbial load in the bait was assessed against European and US Pharmacopoeias. The bait was combined with an edible vaccine carrier made of hydrogenated peanut oil in which BCG vaccine was stable during bait manufacture and cold storage, demonstrating <0.5 log10 reduction in titre after 117weeks' storage at -20°C. BCG stability in bait was also evaluated at +4°C and under simulated environmental conditions (20°C, 98% Relative Humidity; RH). Finally, iophenoxic acid biomarkers were utilised as a surrogate for the BCG vaccine, to test variants of the vaccine-bait design for their ability to deliver biomarker to the gastrointestinal tract of individual animals. These data provide the first detailed description of a bait-vaccine delivery system developed specifically for the oral vaccination of badgers against Mycobacterium bovis using live BCG.
Collapse
Affiliation(s)
- Sonya Gowtage
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, Surrey KT15 3NB, UK.
| | - Gareth A Williams
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, Surrey KT15 3NB, UK.
| | - Ray Henderson
- Pest-Tech Ltd., Branch Drain Road, Brookside, RD2 Leeston, New Zealand.
| | - Paul Aylett
- Connovation Ltd., East Tamaki, Manukau 2013, New Zealand.
| | | | - Si Palmer
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, Surrey KT15 3NB, UK.
| | - Andy Robertson
- National Wildlife Management Centre, Animal and Plant Health Agency, Woodchester Park, Gloucestershire GL10 3UJ, UK; Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9EZ, UK.
| | - Sandrine Lesellier
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, Surrey KT15 3NB, UK.
| | - Stephen P Carter
- National Wildlife Management Centre, Animal and Plant Health Agency, Woodchester Park, Gloucestershire GL10 3UJ, UK.
| | - Mark A Chambers
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, Surrey KT15 3NB, UK; School of Veterinary Medicine, Faculty of Health & Medical Sciences, Vet School Main Building, Daphne Jackson Road, University of Surrey, Guildford GU2 7AL, UK.
| |
Collapse
|
19
|
Oral vaccination of cattle with heat inactivated Mycobacterium bovis does not compromise bovine TB diagnostic tests. Vet Immunol Immunopathol 2016; 182:85-88. [PMID: 27863556 DOI: 10.1016/j.vetimm.2016.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/05/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022]
Abstract
In this study we investigated whether oral uptake of a heat inactivated M. bovis wildlife vaccine by domestic cattle induced systemic immune responses that compromised the use of tuberculin or defined antigens in diagnostic tests for bovine TB. Positive skin test and blood-based IFN-γ release assay (IGRA) results were observed in all calves vaccinated via the parenteral route (i.e. intramuscular). In contrast, no positive responses to tuberculin or defined antigens were observed in either the skin test or IGRA test when performed in calves vaccinated via the oral route. In conclusion, our results suggest that the heat inactivated M. bovis vaccine could be used to vaccinate wildlife in a baited form in conjunction with the following in cattle: (i) continuation of existing tuberculin skin testing or novel skin test formats based on defined antigens; and (ii) the use of IGRA tests utilizing tuberculin or defined antigens.
Collapse
|
20
|
LaHue NP, Baños JV, Acevedo P, Gortázar C, Martínez-López B. Spatially explicit modeling of animal tuberculosis at the wildlife-livestock interface in Ciudad Real province, Spain. Prev Vet Med 2016; 128:101-11. [DOI: 10.1016/j.prevetmed.2016.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/28/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
|
21
|
Pérez de Val B, Vidal E, López-Soria S, Marco A, Cervera Z, Martín M, Mercader I, Singh M, Raeber A, Domingo M. Assessment of safety and interferon gamma responses of Mycobacterium bovis BCG vaccine in goat kids and milking goats. Vaccine 2016; 34:881-6. [PMID: 26795364 DOI: 10.1016/j.vaccine.2016.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
Vaccination of domestic animals has emerged as an alternative long-term strategy for the control of tuberculosis (TB). A trial under field conditions was conducted in a TB-free goat herd to assess the safety of the Mycobacterium bovis BCG vaccine. Eleven kids and 10 milking goats were vaccinated with BCG. Bacterial shedding and interferon gamma (IFN-γ) responses were monitored throughout the study. Comprehensive pathological examination and mycobacterial culture of target tissues were performed. BCG vaccine strain was only isolated from the draining lymph node of the injection site of a kid euthanized at week 8 post-vaccination. The remaining animals were euthanized at week 24. Six out of 20 showed small granulomas at the injection site. BCG shedding was not detected in either faeces or in milk throughout the study. All vaccinated kids showed BCG-induced IFN-γ responses at week 8 post-vaccination. BCG vaccination of goats showed no lack of biological safety for the animals, environment and public health, and local adverse reactions were negligible.
Collapse
Affiliation(s)
- Bernat Pérez de Val
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain.
| | - Enric Vidal
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Sergio López-Soria
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Alberto Marco
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Zoraida Cervera
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Maite Martín
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Irene Mercader
- Departament d'Agricultura, Ramaderia, Pesca i Alimentació de la Generalitat de Catalunya, 08007 Barcelona, Catalonia, Spain
| | - Mahavir Singh
- Lionex Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany
| | - Alex Raeber
- Thermo Fisher Scientific, Schlieren, 8952 Zürich, Switzerland
| | - Mariano Domingo
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
22
|
Abstract
In approaching the development of a veterinary vaccine, researchers must choose from a bewildering array of options that can be combined to enhance benefit. The choice and combination of options is not just driven by efficacy, but also consideration of the cost, practicality, and challenges faced in licensing the product. In this review we set out the different choices faced by veterinary vaccine developers, highlight some issues, and propose some pressing needs to be addressed.
Collapse
Affiliation(s)
- Mark A Chambers
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK.
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK.
| | - Simon P Graham
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
| |
Collapse
|
23
|
Gortázar C, Che Amat A, O'Brien DJ. Open questions and recent advances in the control of a multi-host infectious disease: animal tuberculosis. Mamm Rev 2015. [DOI: 10.1111/mam.12042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christian Gortázar
- Animal Health; SaBio IREC (CSIC - UCLM - JCCM); Ronda de Toledo s/n Ciudad Real 13071 Spain
| | - Azlan Che Amat
- Faculty of Veterinary Medicine; Universiti Putra Malaysia; 43400 Serdang Selangor Malaysia
| | - Daniel J. O'Brien
- Wildlife Disease Laboratory; Michigan Department of Natural Resources; 4125 Beaumont Rd., Room 250 Lansing Michigan 48910-8106 USA
| |
Collapse
|
24
|
Chambers MA, Carter SP, Wilson GJ, Jones G, Brown E, Hewinson RG, Vordermeier M. Vaccination against tuberculosis in badgers and cattle: an overview of the challenges, developments and current research priorities in Great Britain. Vet Rec 2015; 175:90-6. [PMID: 25059963 DOI: 10.1136/vr.102581] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bovine tuberculosis (TB) is a significant threat to the cattle industry in England and Wales. It is widely acknowledged that a combination of measures targeting both cattle and wildlife will be required to eradicate bovine TB or reduce its prevalence until European official freedom status is achieved. Vaccination of cattle and/or badgers could contribute to bovine TB control in Great Britain, although there are significant gaps in our knowledge regarding the impact that vaccination would actually have on bovine TB incidence. Laboratory studies have demonstrated that vaccination with BCG can reduce the progression and severity of TB in both badgers and cattle. This is encouraging in terms of the prospect of a sustained vaccination programme achieving reductions in disease prevalence; however, developing vaccines for tackling the problem of bovine TB is challenging, time-consuming and resource-intensive, as this review article sets out to explain.
Collapse
Affiliation(s)
- M A Chambers
- School of Veterinary Medicine, University of Surrey, Surrey GU2 7XH, UK and AHVLA, Addlestone, Surrey KT15 3NB, UK
| | - S P Carter
- AHVLA, Woodchester Park, Tinkley Lane, Stonehouse, Gloucestershire GL10 3UJ
| | - G J Wilson
- AHVLA, Woodchester Park, Tinkley Lane, Stonehouse, Gloucestershire GL10 3UJ
| | - G Jones
- AHVLA, Addlestone, Surrey KT15 3NB, UK
| | - E Brown
- Veterinary and Science Policy Advice, AHVLA, c/o Defra, 17 Smith Square, Nobel House, London SW1P 3JR, UK
| | | | | |
Collapse
|
25
|
Gortazar C, Diez-Delgado I, Barasona JA, Vicente J, De La Fuente J, Boadella M. The Wild Side of Disease Control at the Wildlife-Livestock-Human Interface: A Review. Front Vet Sci 2015; 1:27. [PMID: 26664926 PMCID: PMC4668863 DOI: 10.3389/fvets.2014.00027] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022] Open
Abstract
The control of diseases shared with wildlife requires the development of strategies that will reduce pathogen transmission between wildlife and both domestic animals and human beings. This review describes and criticizes the options currently applied and attempts to forecast wildlife disease control in the coming decades. Establishing a proper surveillance and monitoring scheme (disease and population wise) is the absolute priority before even making the decision as to whether or not to intervene. Disease control can be achieved by different means, including: (1) preventive actions, (2) arthropod vector control, (3) host population control through random or selective culling, habitat management or reproductive control, and (4) vaccination. The alternative options of zoning or no-action should also be considered, particularly in view of a cost/benefit assessment. Ideally, tools from several fields should be combined in an integrated control strategy. The success of disease control in wildlife depends on many factors, including disease ecology, natural history, and the characteristics of the pathogen, the availability of suitable diagnostic tools, the characteristics of the domestic and wildlife host(s) and vectors, the geographical spread of the problem, the scale of the control effort and stakeholders’ attitudes.
Collapse
Affiliation(s)
- Christian Gortazar
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain
| | - Iratxe Diez-Delgado
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain ; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid , Spain
| | - Jose Angel Barasona
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain
| | - Joaquin Vicente
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain
| | - Jose De La Fuente
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain ; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, OK , USA
| | - Mariana Boadella
- SABIOtec Spin-Off, Edificio Polivalente UCLM , Ciudad Real , Spain
| |
Collapse
|
26
|
Barasona JA, Latham MC, Acevedo P, Armenteros JA, Latham ADM, Gortazar C, Carro F, Soriguer RC, Vicente J. Spatiotemporal interactions between wild boar and cattle: implications for cross-species disease transmission. Vet Res 2014; 45:122. [PMID: 25496754 PMCID: PMC4264384 DOI: 10.1186/s13567-014-0122-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/25/2014] [Indexed: 11/10/2022] Open
Abstract
Controlling infectious diseases at the wildlife/livestock interface is often difficult because the ecological processes driving transmission between wildlife reservoirs and sympatric livestock populations are poorly understood. Thus, assessing how animals use their environment and how this affects interspecific interactions is an important factor in determining the local risk for disease transmission and maintenance. We used data from concurrently monitored GPS-collared domestic cattle and wild boar (Sus scrofa) to assess spatiotemporal interactions and associated implications for bovine tuberculosis (TB) transmission in a complex ecological and epidemiological system, Doñana National Park (DNP, South Spain). We found that fine-scale spatial overlap of cattle and wild boar was seasonally high in some habitats. In general, spatial interactions between the two species were highest in the marsh-shrub ecotone and at permanent water sources, whereas shrub-woodlands and seasonal grass-marshlands were areas with lower predicted relative interactions. Wild boar and cattle generally used different resources during winter and spring in DNP. Conversely, limited differences in resource selection during summer and autumn, when food and water availability were limiting, resulted in negligible spatial segregation and thus probably high encounter rates. The spatial gradient in potential overlap between the two species across DNP corresponded well with the spatial variation in the observed incidence of TB in cattle and prevalence of TB in wild boar. We suggest that the marsh-shrub ecotone and permanent water sources act as important points of TB transmission in our system, particularly during summer and autumn. Targeted management actions are suggested to reduce potential interactions between cattle and wild boar in order to prevent disease transmission and design effective control strategies.
Collapse
Affiliation(s)
- Jose A Barasona
- SaBio (Health and Biotechnology), IREC, National Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ferretti F, Sforzi A, Coats J, Massei G. The BOS™ as a species-specific method to deliver baits to wild boar in a Mediterranean area. EUR J WILDLIFE RES 2014. [DOI: 10.1007/s10344-014-0808-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|