1
|
Chen S, Daly P, Anjago WM, Wang R, Zhao Y, Wen X, Zhou D, Deng S, Lin X, Voglmeir J, Cai F, Shen Q, Druzhinina IS, Wei L. Genus-wide analysis of Trichoderma antagonism toward Pythium and Globisporangium plant pathogens and the contribution of cellulases to the antagonism. Appl Environ Microbiol 2024; 90:e0068124. [PMID: 39109875 PMCID: PMC11409678 DOI: 10.1128/aem.00681-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 09/19/2024] Open
Abstract
Parasitism is an important lifestyle in the Trichoderma genus but has not been studied in a genus-wide way toward Pythium and Globisporangium hosts. Our approach screened a genus-wide set of 30 Trichoderma species in dual culture assays with two soil-borne Pythium and three Globisporangium plant-parasitic species and used exo-proteomic analyses, with the aim to correlate Trichoderma antagonism with potential strategies for attacking Pythium and Globisporangium. The Trichoderma spp. showed a wide range of antagonism from strong to weak, but the same Trichoderma strain showed similar levels toward all the Pythium and Globisporangium species. The Trichoderma enzymes from strong (Trichoderma asperellum, Trichoderma atroviride, and Trichoderma virens), moderate (Trichoderma cf. guizhouense and Trichoderma reesei), and weak (Trichoderma parepimyces) antagonists were induced by the autoclaved mycelia of one of the screened Pythium species, Pythium myriotylum. The variable proportions of putative cellulases, proteases, and redox enzymes suggested diverse as well as shared strategies amongst the antagonists. There was a partial positive correlation between antagonism from microscopy and the cellulase activity induced by autoclaved P. myriotylum mycelia in different Trichoderma species. The deletion of the cellulase transcriptional activator XYR1 in T. reesei led to lower antagonism toward Pythium and Globisporangium. The antagonism of Pythium and Globisporangium appears to be a generic property of Trichoderma as most of the Trichoderma species were at least moderately antagonistic. While a role for cellulases in the antagonism was uncovered, cellulases did not appear to make a major contribution to T. reesei antagonism, and other factors are also likely contributing.IMPORTANCETrichoderma is an important genus widely distributed in nature with broad ecological impacts and applications in the biocontrol of plant diseases. The Pythium and Globisporangium genera of fungus-like water molds include many important soil-borne plant pathogens that cause various diseases. Most of the Trichoderma species showed at least a moderate ability to compete with or antagonize the Pythium and Globisporangium hosts, and microscopy showed examples of parasitism (a slow type of killing) and predation (a fast type of killing). Hydrolytic enzymes such as cellulases and proteases produced by Trichoderma likely contribute to the antagonism. A mutant deficient in cellulase activity had reduced antagonism. Interestingly, Pythium and Globisporangium species contain cellulose in their cell walls (unlike true fungi such as Trichoderma), and the cellulolytic ability of Trichoderma appears beneficial for antagonism of water molds.
Collapse
Affiliation(s)
- Siqiao Chen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Paul Daly
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wilfred Mabeche Anjago
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Wang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yishen Zhao
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xian Wen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Dongmei Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sheng Deng
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xisha Lin
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng Cai
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Irina S. Druzhinina
- Department of Accelerated Taxonomy, The Royal Botanic Gardens Kew, London, United Kingdom
| | - Lihui Wei
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
2
|
Yan J, Wang R, Wu M, Cai M, Qu J, Liu L, Xie J, Yin W, Luo C. Transcriptional Activator UvXlnR Is Required for Conidiation and Pathogenicity of Rice False Smut Fungus Ustilaginoidea virens. PHYTOPATHOLOGY 2024; 114:1603-1611. [PMID: 38506745 DOI: 10.1094/phyto-01-24-0038-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Transcription factors play critical roles in diverse biological processes in fungi. XlnR, identified as a transcriptional activator that regulates the expression of the extracellular xylanase genes in fungi, has not been extensively studied for its function in fungal development and pathogenicity in rice false smut fungus Ustilaginoidea virens. In this study, we characterized UvXlnR in U. virens and established that the full-length, N-terminal, and C-terminal forms have the ability to activate transcription. The study further demonstrated that UvXlnR plays crucial roles in various aspects of U. virens biology. Deletion of UvXlnR affected growth, conidiation, and stress response. UvXlnR mutants also exhibited reduced pathogenicity, which could be partially attributed to the reduced expression of xylanolytic genes and extracellular xylanase activity of U. virens during the infection process. Our results indicate that UvXlnR is involved in regulating growth, conidiation, stress response, and pathogenicity.
Collapse
Affiliation(s)
- Jiali Yan
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Wang
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyao Wu
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Minzheng Cai
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Qu
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianmeng Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiatao Xie
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weixiao Yin
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Castañeda-Casasola CC, Nieto-Jacobo MF, Soares A, Padilla-Padilla EA, Anducho-Reyes MA, Brown C, Soth S, Esquivel-Naranjo EU, Hampton J, Mendoza-Mendoza A. Unveiling a Microexon Switch: Novel Regulation of the Activities of Sugar Assimilation and Plant-Cell-Wall-Degrading Xylanases and Cellulases by Xlr2 in Trichoderma virens. Int J Mol Sci 2024; 25:5172. [PMID: 38791210 PMCID: PMC11121469 DOI: 10.3390/ijms25105172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Functional microexons have not previously been described in filamentous fungi. Here, we describe a novel mechanism of transcriptional regulation in Trichoderma requiring the inclusion of a microexon from the Xlr2 gene. In low-glucose environments, a long mRNA including the microexon encodes a protein with a GAL4-like DNA-binding domain (Xlr2-α), whereas in high-glucose environments, a short mRNA that is produced encodes a protein lacking this DNA-binding domain (Xlr2-β). Interestingly, the protein isoforms differ in their impact on cellulase and xylanase activity. Deleting the Xlr2 gene reduced both xylanase and cellulase activity and growth on different carbon sources, such as carboxymethylcellulose, xylan, glucose, and arabinose. The overexpression of either Xlr2-α or Xlr2-β in T. virens showed that the short isoform (Xlr2-β) caused higher xylanase activity than the wild types or the long isoform (Xlr2-α). Conversely, cellulase activity did not increase when overexpressing Xlr2-β but was increased with the overexpression of Xlr2-α. This is the first report of a novel transcriptional regulation mechanism of plant-cell-wall-degrading enzyme activity in T. virens. This involves the differential expression of a microexon from a gene encoding a transcriptional regulator.
Collapse
Affiliation(s)
- Cynthia Coccet Castañeda-Casasola
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Laboratorio de AgroBiotecnología, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, ExHacienda de Santa Bárbara, Zempoala 43830, Mexico;
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Centro Nacional de Referencia Fitosanitaria, Tecamac 55740, Mexico
| | | | - Amanda Soares
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Emir Alejandro Padilla-Padilla
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 04510, Mexico
| | - Miguel Angel Anducho-Reyes
- Laboratorio de AgroBiotecnología, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, ExHacienda de Santa Bárbara, Zempoala 43830, Mexico;
| | - Chris Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
| | - Sereyboth Soth
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Edgardo Ulises Esquivel-Naranjo
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76230, Mexico
| | - John Hampton
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Artemio Mendoza-Mendoza
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| |
Collapse
|
4
|
Wang L, Zhao Y, Chen S, Wen X, Anjago WM, Tian T, Chen Y, Zhang J, Deng S, Jiu M, Fu P, Zhou D, Druzhinina IS, Wei L, Daly P. Growth, Enzymatic, and Transcriptomic Analysis of xyr1 Deletion Reveals a Major Regulator of Plant Biomass-Degrading Enzymes in Trichoderma harzianum. Biomolecules 2024; 14:148. [PMID: 38397385 PMCID: PMC10887015 DOI: 10.3390/biom14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
The regulation of plant biomass degradation by fungi is critical to the carbon cycle, and applications in bioproducts and biocontrol. Trichoderma harzianum is an important plant biomass degrader, enzyme producer, and biocontrol agent, but few putative major transcriptional regulators have been deleted in this species. The T. harzianum ortholog of the transcriptional activator XYR1/XlnR/XLR-1 was deleted, and the mutant strains were analyzed through growth profiling, enzymatic activities, and transcriptomics on cellulose. From plate cultures, the Δxyr1 mutant had reduced growth on D-xylose, xylan, and cellulose, and from shake-flask cultures with cellulose, the Δxyr1 mutant had ~90% lower β-glucosidase activity, and no detectable β-xylosidase or cellulase activity. The comparison of the transcriptomes from 18 h shake-flask cultures on D-fructose, without a carbon source, and cellulose, showed major effects of XYR1 deletion whereby the Δxyr1 mutant on cellulose was transcriptionally most similar to the cultures without a carbon source. The cellulose induced 43 plant biomass-degrading CAZymes including xylanases as well as cellulases, and most of these had massively lower expression in the Δxyr1 mutant. The expression of a subset of carbon catabolic enzymes, other transcription factors, and sugar transporters was also lower in the Δxyr1 mutant on cellulose. In summary, T. harzianum XYR1 is the master regulator of cellulases and xylanases, as well as regulating carbon catabolic enzymes.
Collapse
Affiliation(s)
- Lunji Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (L.W.); (Y.Z.); (X.W.); (M.J.)
| | - Yishen Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (L.W.); (Y.Z.); (X.W.); (M.J.)
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Siqiao Chen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing 210095, China
| | - Xian Wen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (L.W.); (Y.Z.); (X.W.); (M.J.)
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Wilfred Mabeche Anjago
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Tianchi Tian
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Yajuan Chen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining and Technology, Xuzhou 221116, China
| | - Jinfeng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Sheng Deng
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Min Jiu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (L.W.); (Y.Z.); (X.W.); (M.J.)
| | - Pengxiao Fu
- Jiangsu Coastal Ecological Science and Technology Development Co., Ltd., Nanjing 210036, China;
| | - Dongmei Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Irina S. Druzhinina
- Department of Accelerated Taxonomy, The Royal Botanic Gardens Kew, London TW9 3AE, UK;
| | - Lihui Wei
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Paul Daly
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| |
Collapse
|
5
|
Zhao Q, Yang Z, Xiao Z, Zhang Z, Xing J, Liang H, Gao L, Zhao J, Qu Y, Liu G. Structure-guided engineering of transcriptional activator XYR1 for inducer-free production of lignocellulolytic enzymes in Trichoderma reesei. Synth Syst Biotechnol 2023; 8:732-740. [PMID: 38187093 PMCID: PMC10770280 DOI: 10.1016/j.synbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 01/09/2024] Open
Abstract
The filamentous fungus Trichoderma reesei is widely used for the production of lignocellulolytic enzymes in industry. XYR1 is the major transcriptional activator of cellulases and hemicellulases in T. reesei. However, rational engineering of XYR1 for improved lignocellulolytic enzymes production has been limited by the lack of structure information. Here, alanine 873 was identified as a new potential target for the engineering of XYR1 based on its structure predicted by AlphaFold2. The mutation of this residue to tyrosine enabled significantly enhanced production of xylanolytic enzymes in the medium with cellulose as the carbon source. Moreover, xylanase and cellulase production increased by 56.7- and 3.3-fold, respectively, when glucose was used as the sole carbon source. Under both conditions, the improvements of lignocellulolytic enzyme production were higher than those in the previously reported V821F mutant. With the enriched hemicellulases and cellulases, the crude enzymes secreted by the A873Y mutant strain produced 51 % more glucose and 52 % more xylose from pretreated corn stover than those of the parent strain. The results provide a novel strategy for engineering the lignocellulolytic enzyme-producing capacity of T. reesei, and would be helpful for understanding the molecular mechanisms of XYR1 regulation.
Collapse
Affiliation(s)
- Qinqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zezheng Yang
- Taishan College, Shandong University, Qingdao, 266237, China
| | - Ziyang Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jing Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Huiqi Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Liwei Gao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Taishan College, Shandong University, Qingdao, 266237, China
| |
Collapse
|
6
|
Alharake J, Bidard F, Aouam T, Sénamaud-Beaufort C, Margeot A, Heiss-Blanquet S. Effect of the res2 transcription factor gene deletion on protein secretion and stress response in the hyperproducer strain Trichoderma reesei Rut-C30. BMC Microbiol 2023; 23:374. [PMID: 38036984 PMCID: PMC10687790 DOI: 10.1186/s12866-023-03125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The fungus Trichoderma reesei is one of the most used industrial cellulase producers due to its high capacity of protein secretion. Strains of T. reesei with enhanced protein secretion capacity, such as Rut-C30, have been obtained after several rounds of random mutagenesis. The strain was shown to possess an expanded endoplasmic reticulum, but the genetic factors responsible for this phenotype remain still unidentified. Recently, three new transcription factors were described in Neurospora crassa which were demonstrated to be involved in protein secretion. One of them, RES2, was involved in upregulation of secretion-related genes. The aim of our present study was therefore to analyze the role of RES2, on protein secretion in the T. reesei Rut-C30 strain. RESULT Deletion of the res2 gene in Rut-C30 resulted in slightly slower growth on all substrates tested, and lower germination rate as well as lower protein secretion compared to the parental strain Rut-C30. Transcriptomic analysis of the Rut-C30 and the Δres2 mutant strain in secretion stress conditions showed remarkably few differences : 971 genes were differentially expressed (DE) in both strains while 192 genes out of 1163 (~ 16.5%) were DE in Rut-C30 only and 693 out of 1664 genes (~ 41.6%) displayed differential expression solely in Δres2. Notably, induction of protein secretion by cultivating on lactose and addition of secretion stress inducer DTT induced many genes of the secretion pathway similarly in both strains. Among the differentially expressed genes, those coding for amino acid biosynthesis genes, transporters and genes involved in lipid metabolism were found to be enriched specifically in the Δres2 strain upon exposure to lactose or DTT. Besides, redox homeostasis and DNA repair genes were specifically upregulated in the Δres2 strain, indicating an altered stress response. CONCLUSION These results indicate that in the T. reesei Rut-C30 strain, RES2 does not act as a master regulator of the secretion pathway, but it contributes to a higher protein secretion by adjusting the expression of genes involved in different steps of protein synthesis and the secretion pathway.
Collapse
Affiliation(s)
- Jawad Alharake
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France
| | - Frédérique Bidard
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France
| | - Thiziri Aouam
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France
| | - Catherine Sénamaud-Beaufort
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Université PSL, École normale supérieure, Paris, 75005, France
| | - Antoine Margeot
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France
| | - Senta Heiss-Blanquet
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France.
| |
Collapse
|
7
|
Xu W, Ren Y, Xia Y, Liu L, Meng X, Chen G, Zhang W, Liu W. A novel transcriptional repressor specifically regulates xylanase gene 1 in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:161. [PMID: 37891680 PMCID: PMC10612264 DOI: 10.1186/s13068-023-02417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND The well-known industrial fungus Trichoderma reesei has an excellent capability of secreting a large amount of cellulases and xylanases. The induced expression of cellulase and xylanase genes is tightly controlled at the transcriptional level. However, compared to the intensive studies on the intricate regulatory mechanism of cellulase genes, efforts to understand how xylanase genes are regulated are relatively limited, which impedes the further improvement of xylanase production by T. reesei via rational strain engineering. RESULTS To identify transcription factors involved in regulating xylanase gene expression in T. reesei, yeast one-hybrid screen was performed based on the promoters of two major extracellular xylanase genes xyn1 and xyn2. A putative transcription factor named XTR1 showing significant binding capability to the xyn1 promoter but not that of xyn2, was successfully isolated. Deletion of xtr1 significantly increased the transcriptional level of xyn1, but only exerted a minor promoting effect on that of xyn2. The xylanase activity was increased by ~ 50% with XTR1 elimination but the cellulase activity was hardly affected. Subcellular localization analysis of XTR1 fused to a green fluorescence protein demonstrated that XTR1 is a nuclear protein. Further analyses revealed the precise binding site of XTR1 and nucleotides critical for the binding within the xyn1 promoter. Moreover, competitive EMSAs indicated that XTR1 competes with the essential transactivator XYR1 for binding to the xyn1 promoter. CONCLUSIONS XTR1 represents a new transcriptional repressor specific for controlling xylanase gene expression. Isolation and functional characterization of this new factor not only contribute to further understanding the stringent regulatory network of xylanase genes, but also provide important clues for boosting xylanase biosynthesis in T. reesei.
Collapse
Affiliation(s)
- Wenqiang Xu
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, 266237, People's Republic of China
- Shandong Lishan Biotechnology Co., LTD, Jinan, China
| | - Yajing Ren
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Yuxiao Xia
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Lin Liu
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, 266237, People's Republic of China.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, 266237, People's Republic of China
| |
Collapse
|
8
|
Giwa AS, Ali N, Akhter MS. Cellulose Degradation Enzymes in Filamentous Fungi, A Bioprocessing Approach Towards Biorefinery. Mol Biotechnol 2023:10.1007/s12033-023-00900-1. [PMID: 37839042 DOI: 10.1007/s12033-023-00900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023]
Abstract
The economic exploration of renewable energy resources has hot fundamentals among the countries besides dwindling energy resources and increasing public pressure. Cellulose accumulation is a major bio-natural resource from agricultural waste. Cellulases are the most potential enzymes that systematically degrade cellulosic biomass into monomers which could be further processed into several efficient value-added products via chemical and biological reactions including useful biomaterial for human benefits. This could lower the environmental risks problems followed by an energy crisis. Cellulases are mainly synthesized by special fungal genotypes. The strain Trichoderma orientalis could highly express cellulases and was regarded as an ideal strain for further research, as the genetic tools have found compatibility for cellulose breakdown by producing effective cellulose-degrading enzymes. This strain has found a cellulase production of about 35 g/L that needs further studies for advancement. The enzyme activity of strain Trichoderma orientalis needed to be further improved from a molecular level which is one of the important methods. Considering synthetic biological approaches to unveil the genetic tools will boost the knowledge about commercial cellulases bioproduction. Several genetic transformation methods were significantly cited in this study. The transformation approaches that are currently researchers are exploring is transcription regulatory factors that are deeply explained in this study, that are considered essential regulators of gene expression.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- School of Environment and Civil Engineering, Nanchang Institute of Science and Technology, Nanchang, 330108, China
| | - Nasir Ali
- Institute of Biotechnology Genetic Engineering, The University of Agriculture, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan.
| | - Mohammed Salim Akhter
- Department of Chemistry, College of Science, University of Bahrain, Sakheer Campus Bahrain, Zallaq, Bahrain
| |
Collapse
|
9
|
Kerkaert JD, Huberman LB. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5873-5898. [PMID: 37540250 PMCID: PMC10983054 DOI: 10.1007/s00253-023-12680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Organisms must accurately sense and respond to nutrients to survive. In filamentous fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in continued, rapid growth for the exploitation of environmental resources. To ensure efficient nutrient utilization, fungi have evolved a combination of activating and repressing genetic networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, which require minimal energy and resources to utilize, and nonpreferred nutrients, which have more energy-intensive catabolic requirements. Genes necessary for the utilization of nonpreferred carbon sources are activated by transcription factors that respond to the presence of the specific nutrient and repressed by transcription factors that respond to the presence of preferred carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription factors. Pathway-specific transcription factors respond to the presence of a specific nonpreferred nitrogen source, while another transcription factor activates genes in the absence of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen sources and their roles in regulating carbon and nitrogen catabolism. KEY POINTS: • Interplay of activating and repressing transcriptional networks regulates catabolism. • Nutrient-specific activating transcriptional pathways provide metabolic specificity. • Repressing regulatory systems differentiate nutrients in mixed nutrient environments.
Collapse
Affiliation(s)
- Joshua D Kerkaert
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lori B Huberman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Lv D, Zhang W, Meng X, Liu W. Single Mutation in Transcriptional Activator Xyr1 Enhances Cellulase and Xylanase Production in Trichoderma reesei on Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11993-12003. [PMID: 37523749 DOI: 10.1021/acs.jafc.3c03466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
To achieve cost-effective production of lignocellulolytic enzymes for biorefinery processes, engineering transcription factors represents a powerful strategy to boost cellulase and xylanase in Trichoderma reesei. In this study, a novel mutation (R434L) in xylanase regulator 1 (Xyr1) was identified based on the yeast one-hybrid screening system. The point mutation was located in the middle homology region of Xyr1 with unclear functions, indicating a significant role for this domain in tuning Xyr1 transactivation. When constitutively expressed in T. reesei Δxyr1 (OEXR434L), Xyr1R434L led to highly improved production of both cellulases and xylanases on glucose compared with a strain similarly expressing Xyr1 (OEX). The respective 0.8- and 0.7-fold increases in extracellular pNPCase and xylanolytic activity were further verified to result from the greatly elevated transcription of major cellulase and xylanase genes in OEXR434L. Moreover, the saccharification efficiency of corn stover with OEXR434L enzyme cocktails was enhanced by 21% compared with that of OEX.
Collapse
Affiliation(s)
- Dongmei Lv
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| |
Collapse
|
11
|
Yan S, Xu Y, Yu XW. Role of cellulose response transporter-like protein CRT2 in cellulase induction in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:118. [PMID: 37488642 PMCID: PMC10364367 DOI: 10.1186/s13068-023-02371-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Induction of cellulase in cellulolytic fungi Trichoderma reesei is strongly activated by cellulosic carbon sources. The transport of cellulosic inducer and the perception of inducing signal is generally considered as the critical process for cellulase induction, that the inducing signal would be perceived by a sugar transporter/transceptor in T. reesei. Several sugar transporters are coexpressed during the induction stage, but which function they serve and how they work collaboratively are still difficult to elucidate. RESULTS In this study, we found that the constitutive expression of the cellulose response transporter-like protein CRT2 (previously identified as putative lactose permease TRE77517) improves cellulase induction on a cellulose, cellobiose or lactose medium. Functional studies indicate that the membrane-bound CRT2 is not a transporter of cellobiose, lactose or glucose in a yeast system, and it also does not affect cellobiose and lactose utilization in T. reesei. Further study reveals that CRT2 has a slightly similar function to the cellobiose transporter CRT1 in cellulase induction. Overexpression of CRT2 led to upregulation of CRT1 and the key transcription factor XYR1. Moreover, overexpression of CRT2 could partially compensate for the function loss of CRT1 on cellulase induction. CONCLUSIONS Our study uncovers the novel function of CRT2 in cellulase induction collaborated with CRT1 and XYR1, possibly as a signal transductor. These results deepen the understanding of the influence of sugar transporters in cellulase production.
Collapse
Affiliation(s)
- Su Yan
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Wei Yu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
12
|
Li N, Li J, Chen Y, Shen Y, Wei D, Wang W. Mechanism of Zn 2+ regulation of cellulase production in Trichoderma reesei Rut-C30. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:73. [PMID: 37118821 PMCID: PMC10148476 DOI: 10.1186/s13068-023-02323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Trichoderma reesei Rut-C30 is a hypercellulolytic mutant strain that degrades abundant sources of lignocellulosic plant biomass, yielding renewable biofuels. Although Zn2+ is an activator of enzymes in almost all organisms, its effects on cellulase activity in T. reesei have yet to be reported. RESULTS Although high concentrations of Zn2+ severely suppressed the extension of T. reesei mycelia, the application of 1-4 mM Zn2+ enhanced cellulase and xylanase production in the high-yielding cellulase-producing Rut-C30 strain of T. reesei. Expression of the major cellulase, xylanase, and two essential transcription activator genes (xyr1 and ace3) increased in response to Zn2+ stimulation. Transcriptome analysis revealed that the mRNA levels of plc-e encoding phospholipase C, which is involved in the calcium signaling pathway, were enhanced by Zn2+ application. The disruption of plc-e abolished the cellulase-positive influence of Zn2+ in the early phase of induction, indicating that plc-e is involved in Zn2+-induced cellulase production. Furthermore, treatment with LaCl3 (a plasma membrane Ca2+ channel blocker) and deletion of crz1 (calcineurin-responsive zinc finger transcription factor 1) indicated that calcium signaling is partially involved in this process. Moreover, we identified the zinc-responsive transcription factor zafA, the transcriptional levels of which declined in response to Zn2+ stress. Deletion of zafA indicates that this factor plays a prominent role in mediating the Zn2+-induced excessive production of cellulase. CONCLUSIONS For the first time, we have demonstrated that Zn2+ is toxic to T. reesei, although promotes a marked increase in cellulase production. This positive influence of Zn2+ is facilitated by the plc-e gene and zafA transcription factor. These findings provide insights into the role of Zn2+ in T. reesei and the mechanisms underlying signal transduction in cellulase synthesis.
Collapse
Affiliation(s)
- Ni Li
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Jing Li
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Yumeng Chen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Yaling Shen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Dongzhi Wei
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Wei Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China.
| |
Collapse
|
13
|
Gu S, Zhao Z, Xue F, Liu D, Liu Q, Li J, Tian C. The arabinose transporter MtLat-1 is involved in hemicellulase repression as a pentose transceptor in Myceliophthora thermophila. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:51. [PMID: 36966330 PMCID: PMC10040116 DOI: 10.1186/s13068-023-02305-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Filamentous fungi possess an array of secreted enzymes to depolymerize the structural polysaccharide components of plant biomass. Sugar transporters play an essential role in nutrient uptake and sensing of extracellular signal molecules to inhibit or trigger the induction of lignocellulolytic enzymes. However, the identities and functions of transceptors associated with the induction of hemicellulase genes remain elusive. RESULTS In this study, we reveal that the L-arabinose transporter MtLat-1 is associated with repression of hemicellulase gene expression in the filamentous fungus Myceliophthora thermophila. The absence of Mtlat-1 caused a decrease in L-arabinose uptake and consumption rates. However, mycelium growth, protein production, and hemicellulolytic activities were markedly increased in a ΔMtlat-1 mutant compared with the wild-type (WT) when grown on arabinan. Comparative transcriptomic analysis showed a different expression profile in the ΔMtlat-1 strain from that in the WT in response to arabinan, and demonstrated that MtLat-1 was involved in the repression of the main hemicellulase-encoding genes. A point mutation that abolished the L-arabinose transport activity of MtLat-1 did not impact the repression of hemicellulase gene expression when the mutant protein was expressed in the ΔMtlat-1 strain. Thus, the involvement of MtLat-1 in the expression of hemicellulase genes is independent of its transport activity. The data suggested that MtLat-1 is a transceptor that senses and transduces the molecular signal, resulting in downstream repression of hemicellulolytic gene expression. MtAra-1 protein directly regulated the expression of Mtlat-1 by binding to its promoter region. Transcriptomic profiling indicated that the transcription factor MtAra-1 also plays an important role in expression of arabinanolytic enzyme genes and L-arabinose catabolism. CONCLUSIONS M. thermophila MtLat-1 functions as a transceptor that is involved in L-arabinose transport and signal transduction associated with suppression of the expression of hemicellulolytic enzyme-encoding genes. The data presented in this study add to the models of the regulation of hemicellulases in filamentous fungi.
Collapse
Affiliation(s)
- Shuying Gu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhen Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fanglei Xue
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Defei Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Qian Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jingen Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Chaoguang Tian
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| |
Collapse
|
14
|
Lv D, Zhang W, Meng X, Liu W. A novel fusion transcription factor drives high cellulase and xylanase production on glucose in Trichoderma reesei. BIORESOURCE TECHNOLOGY 2023; 370:128520. [PMID: 36565817 DOI: 10.1016/j.biortech.2022.128520] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
To reduce the high cost of (hemi)cellulase production in lignocellulose biorefining, it is important to develop strategies to enhance enzyme productivity from economic and also readily manipulatable carbon sources. In this study, an artificial transcription factor XT was designed by fusing the DNA binding domain of Xyr1 to the transactivation domain of Tmac1. When overexpressed in Trichoderma reesei QM9414 Δxyr1, the XT recombinant strain (OEXT) greatly improved (hemi)cellulase production on repressing glucose compared with QM9414 on Avicel with 1.7- and 8.2-fold increases in pNPCase and xylanase activity, respectively. Both activities were even higher (0.9- and 33.8-fold higher, respectively) than the recombinant strain similarly overexpressing Xyr1. The dramatically enhanced xylanase activities in OEXT resulted from the elevated expression of various hemicellulases in the secretome. Moreover, the enzyme cocktail from OEXT improved the saccharification efficiency toward corn stover by 60% compared with enzymes from QM9414 with equal volume loading.
Collapse
Affiliation(s)
- Dongmei Lv
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
15
|
Role of the Nitrogen Metabolism Regulator TAM1 in Regulation of Cellulase Gene Expression in Trichoderma reesei. Appl Environ Microbiol 2023; 89:e0142122. [PMID: 36602369 PMCID: PMC9888229 DOI: 10.1128/aem.01421-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The filamentous fungus Trichoderma reesei is one of the most prolific cellulase producers and has been established as a model microorganism for investigating mechanisms modulating eukaryotic gene expression. Identification and functional characterization of transcriptional regulators involved in complex and stringent regulation of cellulase genes are, however, not yet complete. Here, a Zn(II)2Cys6-type transcriptional factor TAM1 that is homologous to Aspergillus nidulans TamA involved in nitrogen metabolism, was found not only to regulate ammonium utilization but also to control cellulase gene expression in T. reesei. Whereas Δtam1 cultivated with peptone as a nitrogen source did not exhibit a growth defect that was observed on ammonium, it was still significantly compromised in cellulase biosynthesis. The absence of TAM1 almost fully abrogated the rapid cellulase gene induction in a resting-cell-inducing system. Overexpression of gdh1 encoding the key ammonium assimilatory enzyme in Δtam1 rescued the growth defect on ammonium but not the defect in cellulase gene expression. Of note, mutation of the Zn(II)2Cys6 DNA-binding motif of TAM1 hardly affected cellulase gene expression, while a truncated ARE1 mutant lacking the C-terminal 12 amino acids that are required for the interaction with TAM1 interfered with cellulase biosynthesis. The defect in cellulase induction of Δtam1 was rescued by overexpression of the key transactivator for cellulase gene, XYR1. Our results thus identify a nitrogen metabolism regulator as a new modulator participating in the regulation of induced cellulase gene expression. IMPORTANCE Transcriptional regulators are able to integrate extracellular nutrient signals and exert a combinatorial control over various metabolic genes. A plethora of such factors therefore constitute a complex regulatory network ensuring rapid and accurate cellular response to acquire and utilize nutrients. Despite the in-depth mechanistic studies of functions of the Zn(II)2Cys6-type transcriptional regulator TamA and its orthologues in nitrogen utilization, their involvement in additional physiological processes remains unknown. In this study, we demonstrated that TAM1 exerts a dual regulatory role in mediating ammonium utilization and induced cellulase production in the well known cellulolytic fungus Trichoderma reesei, suggesting a potentially converged regulatory node between nitrogen utilization and cellulase biosynthesis. This study not only contributes to unveiling the intricate regulatory network underlying cellulase gene expression in cellulolytic fungus but also helps expand our knowledge of fungal strategies to achieve efficient and coordinated nutrient acquisition for rapid propagation.
Collapse
|
16
|
Botrytis cinerea Transcription Factor BcXyr1 Regulates (Hemi-)Cellulase Production and Fungal Virulence. mSystems 2022; 7:e0104222. [PMID: 36468854 PMCID: PMC9765177 DOI: 10.1128/msystems.01042-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Botrytis cinerea is an agriculturally notorious plant-pathogenic fungus with a broad host range. During plant colonization, B. cinerea secretes a wide range of plant-cell-wall-degrading enzymes (PCWDEs) that help in macerating the plant tissue, but their role in pathogenicity has been unclear. Here, we report on the identification of a transcription factor, BcXyr1, that regulates the production of (hemi-)cellulases and is necessary for fungal virulence. Deletion of the bcxyr1 gene led to impaired spore germination and reduced fungal virulence and reactive oxygen species (ROS) production in planta. Secreted proteins collected from the bcxyr1 deletion strain displayed a weaker cell-death-inducing effect than the wild-type secretome when infiltrated to Nicotiana benthamiana leaves. Transcriptome sequencing (RNA-seq) analysis revealed 41 genes with reduced expression in the Δbcxyr1 mutant compared with those in the wild-type strain, of which half encode secreted proteins that are particularly enriched in carbohydrate-active enzyme (CAZyme)-encoding genes. Among them, we identified a novel putative expansin-like protein that was necessary for fungal virulence, supporting the involvement of BcXyr1 in the regulation of extracellular virulence factors. IMPORTANCE PCWDEs are considered important components of the virulence arsenal of necrotrophic plant pathogens. However, despite intensive research, the role of PCWDEs in the pathogenicity of necrotrophic phytopathogenic fungi remains ambiguous. Here, we demonstrate that the transcription factor BcXyr1 regulates the expression of a specific set of secreted PCWDE-encoding genes and that it is essential for fungal virulence. Furthermore, we identified a BcXyr1-regulated expansin-like gene that is required for fungal virulence. Our findings provide strong evidence for the importance of PCWDEs in the pathogenicity of B. cinerea and highlight specific PCWDEs that might be more important than others.
Collapse
|
17
|
Shen L, Yan A, Wang Y, Wang Y, Liu H, Zhong Y. Tailoring the expression of Xyr1 leads to efficient production of lignocellulolytic enzymes in Trichoderma reesei for improved saccharification of corncob residues. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:142. [PMID: 36528622 PMCID: PMC9759857 DOI: 10.1186/s13068-022-02240-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The filamentous fungus Trichoderma reesei is extensively used for the industrial-scale cellulase production. It has been well known that the transcription factor Xyr1 plays an important role in the regulatory network controlling cellulase gene expression. However, the role of Xyr1 in the regulation of cellulase expression has not been comprehensively elucidated, which hinders further improvement of lignocellulolytic enzyme production. RESULTS Here, the expression dosage of xyr1 was tailored in T. reesei by differentially overexpressing the xyr1 gene under the control of three strong promoters (Pegl2, Pcbh1, and Pcdna1), and the transcript abundance of xyr1 was elevated 5.8-, 12.6-, and 47.2-fold, respectively. We found expression of cellulase genes was significantly increased in the Pegl2-driven xyr1 overexpression strain QE2X, whereas relatively low in the Pcbh1- and Pcdna1-driven overexpression strains. We also found that the Pegl2-driven overexpression of xyr1 caused a more significant opening of chromatin in the core promoter region of the prominent cellulase genes. Furthermore, the cellulase activity showed a 3.2-fold increase in the strain QE2X, while insignificant improvement in the Pcbh1- and Pcdna1-driven strains. Finally, the saccharification efficiency toward acid-pretreated corncob residues containing high-content lignin by the crude enzyme from QE2X was increased by 57.2% compared to that from the parental strain. Moreover, LC-MS/MS and RT-qPCR analysis revealed that expression of accessory proteins (Cip1, Cip2, Swo1, and LPMOs) was greatly improved in QE2X, which partly explained the promoting effect of the Pegl2-driven overexpression on enzymatic hydrolysis of lignocellulose biomass. CONCLUSIONS Our results underpin that the precise tailoring expression of xyr1 is essential for highly efficient cellulase synthesis, which provide new insights into the role of Xyr1 in regulating cellulase expression in T. reesei. Moreover, these results also provides a prospective strategy for strain improvement to enhance the lignocellulolytic enzyme production for use in biorefinery applications.
Collapse
Affiliation(s)
- Linjing Shen
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Aiqin Yan
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yifan Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yubo Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Hong Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yaohua Zhong
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| |
Collapse
|
18
|
Sun X, Liang Y, Wang Y, Zhang H, Zhao T, Yao B, Luo H, Huang H, Su X. Simultaneous manipulation of multiple genes within a same regulatory stage for iterative evolution of Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:26. [PMID: 35248141 PMCID: PMC8898424 DOI: 10.1186/s13068-022-02122-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/19/2022] [Indexed: 11/12/2022]
Abstract
Background While there is growing interest in developing non-canonical filamentous fungi as hosts for producing secretory proteins, genetic engineering of filamentous fungi for improved expression often relies heavily on the understanding of regulatory mechanisms. Results In this study, using the cellulase-producing filamentous fungus Trichoderma reesei as a model system, we designed a semi-rational strategy by arbitrarily dividing the regulation of cellulase production into three main stages-transcription, secretion, and cell metabolism. Selected regulatory or functional genes that had been experimentally verified or predicted to enhance cellulase production were overexpressed using strong inducible or constitutive promoters, while those that would inhibit cellulase production were repressed via RNAi-mediated gene silencing. A T. reesei strain expressing the surface-displayed DsRed fluorescent protein was used as the recipient strain. After three consecutive rounds of engineering, the cellulase activity increased to up to 4.35-fold and the protein concentration increased to up to 2.97-fold in the genetically modified strain. Conclusions We demonstrated that, as a proof-of-concept, selected regulatory or functional genes within an arbitrarily defined stage could be pooled to stimulate secretory cellulase production, and moreover, this method could be iteratively used for further improvement. This method is semi-rational and can essentially be used in filamentous fungi with little regulatory information. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02122-0.
Collapse
|
19
|
In Vitro Characterization of a Nuclear Receptor-like Domain of the Xylanase Regulator 1 from Trichoderma reesei. J Fungi (Basel) 2022; 8:jof8121254. [PMID: 36547587 PMCID: PMC9784857 DOI: 10.3390/jof8121254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Engineering transcription factors is an interesting research target gaining increasing attention, such as in the case of industrially used organisms. With respect to sustainability, biomass-degrading saprophytic fungi, such as Trichoderma reesei, are promising industrial work horses because they exhibit a high secretory capacity of native and heterologously expressed enzymes and compounds. A single-point mutation in the main transactivator of xylanase and cellulase expressions in T. reesei Xyr1 led to a strongly deregulated and enhanced xylanase expression. Circular dichroism spectroscopy revealed a change in secondary structure caused by this mutation. According to electrophoretic mobility shift assays and determination of the equilibrium-binding constants, the DNA-binding affinity of the mutated Xyr1 was considerably reduced compared to the wild-type Xyr1. Both techniques were also used to investigate the allosteric response to carbohydrates (D-glucose-6-phosphate, D-xylose, and sophorose) signalling the repression or induction of Xyr1 target genes. The mutated Xyr1 no longer exhibited a conformational change in response to these carbohydrates, indicating that the observed deregulation is not a simple matter of a change in DNA-binding of the transactivator. Altogether, we postulate that the part of Xyr1 where the mutation is located functions as a nuclear receptor-like domain that mediates carbohydrate signals and modulates the Xyr1 transactivating activity.
Collapse
|
20
|
Arai T, Ichinose S, Shibata N, Kakeshita H, Kodama H, Igarashi K, Takimura Y. Inducer-free cellulase production system based on the constitutive expression of mutated XYR1 and ACE3 in the industrial fungus Trichoderma reesei. Sci Rep 2022; 12:19445. [PMID: 36376415 PMCID: PMC9663580 DOI: 10.1038/s41598-022-23815-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Trichoderma reesei is a widely used host for producing cellulase and hemicellulase cocktails for lignocellulosic biomass degradation. Here, we report a genetic modification strategy for industrial T. reesei that enables enzyme production using simple glucose without inducers, such as cellulose, lactose and sophorose. Previously, the mutated XYR1V821F or XYR1A824V was known to induce xylanase and cellulase using only glucose as a carbon source, but its enzyme composition was biased toward xylanases, and its performance was insufficient to degrade lignocellulose efficiently. Therefore, we examined combinations of mutated XYR1V821F and constitutively expressed CRT1, BGLR, VIB1, ACE2, or ACE3, known as cellulase regulators and essential factors for cellulase expression to the T. reesei E1AB1 strain that has been highly mutagenized for improving enzyme productivity and expressing a ß-glucosidase for high enzyme performance. The results showed that expression of ACE3 to the mutated XYR1V821F expressing strain promoted cellulase expression. Furthermore, co-expression of these two transcription factors also resulted in increased productivity, with enzyme productivity 1.5-fold higher than with the conventional single expression of mutated XYR1V821F. Additionally, that productivity was 5.5-fold higher compared to productivity with an enhanced single expression of ACE3. Moreover, although the DNA-binding domain of ACE3 had been considered essential for inducer-free cellulase production, we found that ACE3 with a partially truncated DNA-binding domain was more effective in cellulase production when co-expressed with a mutated XYR1V821F. This study demonstrates that co-expression of the two transcription factors, the mutated XYR1V821F or XYR1A824V and ACE3, resulted in optimized enzyme composition and increased productivity.
Collapse
Affiliation(s)
- Toshiharu Arai
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Sakurako Ichinose
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Nozomu Shibata
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Hiroshi Kakeshita
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan.
| | - Hiroshi Kodama
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Kazuaki Igarashi
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Yasushi Takimura
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| |
Collapse
|
21
|
MtTRC-1, a Novel Transcription Factor, Regulates Cellulase Production via Directly Modulating the Genes Expression of the Mthac-1 and Mtcbh-1 in Myceliophthora thermophila. Appl Environ Microbiol 2022; 88:e0126322. [PMID: 36165620 PMCID: PMC9552611 DOI: 10.1128/aem.01263-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The thermophilic fungus Myceliophthora thermophila has been used to produce industrial enzymes and biobased chemicals. In saprotrophic fungi, the mechanisms regulating cellulase production have been studied, which revealed the involvement of multiple transcription factors. However, in M. thermophila, the transcription factors influencing cellulase gene expression and secretion remain largely unknown. In this study, we identified and characterized a novel cellulase regulator (MtTRC-1) in M. thermophila through a combination of functional genomics and genetic analyses. Deletion of Mttrc-1 resulted in significantly decreased cellulase production and activities. Transcriptome analysis revealed downregulation of not only the encoding genes of main cellulases but also the transcriptional regulator MtHAC-1 of UPR pathway after disruption of MtTRC-1 under cellulolytic induction conditions. Herein, we also characterized the ortholog of the yeast HAC1p in M. thermophila. We show that Mthac-1 mRNA undergoes an endoplasmic reticulum (ER) stress-induced splicing by removing a 23-nucleotide (nt) intron. Notably, the protein secretion on cellulose was dramatically impaired by the deletion of MtHAC-1. Moreover, the colonial growth on various carbon sources was defective in the absence of MtHAC-1. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays verified MtTRC-1 regulates the transcription of Mthac-1 and the major cellulase gene Mtcbh-1 by binding directly to the promoters in vitro and in vivo. Furthermore, DNase I footprinting assays identified the putative consensus binding site (5′-GNG/C-3′). These results revealed the importance of MtTRC-1 for positively regulating cellulase production. This finding has clarified the complex regulatory pathways involved in cellulolytic enzyme production. IMPORTANCE In the present study, we characterized a novel regulator MtTRC-1 in M. thermophila, which regulated cellulase production through direct transcriptional regulation of the Mthac-1 and Mtcbh-1 genes. Our data demonstrated that MtHAC-1 is a key factor for the cellulase secretion capacity of M. thermophila. Our data indicate that this thermophilic fungus regulates cellulase production through a multilevels network, in which the protein secretory pathway is modulated by MtHAC-1-dependent UPR pathway and the cellulase gene expression is directly regulated in parallel by transcription factors. The conservation of Mttrc1 in filamentous fungi suggests this mechanism may be exploited to engineer filamentous fungal cell factories capable of producing proteins on an industrial scale.
Collapse
|
22
|
Li N, Zeng Y, Chen Y, Shen Y, Wang W. Induction of cellulase production by Sr 2+ in Trichoderma reesei via calcium signaling transduction. BIORESOUR BIOPROCESS 2022; 9:96. [PMID: 38647894 PMCID: PMC10992071 DOI: 10.1186/s40643-022-00587-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
Trichoderma reesei RUT-C30 is a well-known high-yielding cellulase-producing fungal strain that converts lignocellulose into cellulosic sugar for resource regeneration. Calcium is a ubiquitous secondary messenger that regulates growth and cellulase production in T. reesei. We serendipitously found that adding Sr2+ to the medium significantly increased cellulase activity in the T. reesei RUT-C30 strain and upregulated the expression of cellulase-related genes. Further studies showed that Sr2+ supplementation increased the cytosolic calcium concentration and activated the calcium-responsive signal transduction pathway of Ca2+-calcineurin-responsive zinc finger transcription factor 1 (CRZ1). Using the plasma membrane Ca2+ channel blocker, LaCl3, we demonstrated that Sr2+ induces cellulase production via the calcium signaling pathway. Supplementation with the corresponding concentrations of Sr2+ also inhibited colony growth. Sr2+ supplementation led to an increase in intracellular reactive oxygen species (ROS) and upregulated the transcriptional levels of intracellular superoxide dismutase (sod1) and catalase (cat1). We further demonstrated that ROS content was detrimental to cellulase production, which was alleviated by the ROS scavenger N-acetyl cysteine (NAC). This study demonstrated for the first time that Sr2+ supplementation stimulates cellulase production and upregulates cellulase genes via the calcium signaling transduction pathway. Sr2+ leads to an increase in intracellular ROS, which is detrimental to cellulase production and can be alleviated by the ROS scavenger NAC. Our results provide insights into the mechanistic study of cellulase synthesis and the discovery of novel inducers of cellulase.
Collapse
Affiliation(s)
- Ni Li
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Zeng
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yumeng Chen
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yaling Shen
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Wang
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
23
|
Wang Z, Yang R, Lv W, Zhang W, Meng X, Liu W. Functional Characterization of Sugar Transporter CRT1 Reveals Differential Roles of Its C-Terminal Region in Sugar Transport and Cellulase Induction in Trichoderma reesei. Microbiol Spectr 2022; 10:e0087222. [PMID: 35852347 PMCID: PMC9431493 DOI: 10.1128/spectrum.00872-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022] Open
Abstract
The expression of cellulase genes in lignocellulose-degrading fungus Trichoderma reesei is induced by insoluble cellulose and its soluble derivatives. Membrane-localized transporter/transceptor proteins have been thought to be involved in nutrient uptake and/or sensing to initiate the subsequent signal transduction during cellulase gene induction. Crt1 is a sugar transporter proven to be essential for cellulase gene induction although the detailed mechanism of Crt1-triggered cellulase induction remains elusive. In this study, we focused on the C-terminus region of Crt1 which is predicted to exist as an unstructured cytoplasmic tail in T. reesei. Serial C-terminal truncation of Crt1 revealed that deleting the last half of the C-terminal region of Crt1 hardly affected its transporting activity or ability to mediate the induction of cellulase gene expression. In contrast, removal of the entire C-terminus region eliminated both activities. Of note, Crt1-C5, retaining only the first five amino acids of C-terminus, was found to be capable of transporting lactose but failed to restore cellulase gene induction in the Δcrt1 strain. Analysis of the cellular localization of Crt1 showed that Crt1 existed both at the plasma membrane and at the periphery of the nucleus although the functional relevance is not clear at present. Finally, we showed that the cellulase production defect of Δcrt1 was corrected by overexpressing Xyr1, indicating that Xyr1 is a potential regulatory target of the signaling cascade initiated from Crt1. IMPORTANCE The lignocellulose-degrading fungus T. reesei has been widely used in industrial cellulases production. Understanding the precise cellulase gene regulatory network is critical for its genetic engineering to enhance the mass production of cellulases. As the key membrane protein involved in cellulase expression in T. reesei, the detailed mechanism of Crt1 in mediating cellulase induction remains to be investigated. In this study, the C-terminal region of Crt1 was found to be vital for its transport and signaling receptor functions. These two functions are, however, separable because a C-terminal truncation mutant is capable of sugar transporting but loses the ability to mediate cellulase gene expression. Furthermore, the key transcriptional activator Xyr1 represents a downstream target of the Crt1-initiated signaling cascade. Together, our research provides new insights into the function of Crt1 and further contributes to the unveiling of the intricate signal transduction process leading to efficient cellulase gene expression in T. reesei.
Collapse
Affiliation(s)
- Zhixing Wang
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Renfei Yang
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Wenhao Lv
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People’s Republic of China
| |
Collapse
|
24
|
The Transcription Factor Roc1 Is a Key Regulator of Cellulose Degradation in the Wood-Decaying Mushroom
Schizophyllum commune. mBio 2022; 13:e0062822. [PMID: 35604096 PMCID: PMC9239231 DOI: 10.1128/mbio.00628-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wood-degrading fungi in the phylum Basidiomycota play a crucial role in nutrient recycling by breaking down all components of wood. Fungi have evolved transcriptional networks that regulate expression of wood-degrading enzymes, allowing them to prioritize one nutrient source over another.
Collapse
|
25
|
Gámez-Arjona FM, Vitale S, Voxeur A, Dora S, Müller S, Sancho-Andrés G, Montesinos JC, Di Pietro A, Sánchez-Rodríguez C. Impairment of the cellulose degradation machinery enhances Fusarium oxysporum virulence but limits its reproductive fitness. SCIENCE ADVANCES 2022; 8:eabl9734. [PMID: 35442735 PMCID: PMC9020665 DOI: 10.1126/sciadv.abl9734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fungal pathogens grow in the apoplastic space, in constant contact with the plant cell wall (CW) that hinders microbe progression while representing a source of nutrients. Although numerous fungal CW modifying proteins have been identified, their role during host colonization remains underexplored. Here, we show that the root-infecting plant pathogen Fusarium oxysporum (Fo) does not require its complete arsenal of cellulases to infect the host plant. Quite the opposite: Fo mutants impaired in cellulose degradation become hypervirulent by enhancing the secretion of virulence factors. On the other hand, the reduction in cellulase activity had a severe negative effect on saprophytic growth and microconidia production during the final stages of the Fo infection cycle. These findings enhance our understanding of the function of plant CW degradation on the outcome of host-microbe interactions and reveal an unexpected role of cellulose degradation in a pathogen's reproductive success.
Collapse
Affiliation(s)
| | - Stefania Vitale
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Aline Voxeur
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Susanne Dora
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sascha Müller
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | | | | | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14014 Córdoba, Spain
| | | |
Collapse
|
26
|
Beier S, Stiegler M, Hitzenhammer E, Monika S. Screening for genes involved in cellulase regulation by expression under the control of a novel constitutive promoter in Trichoderma reesei. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
27
|
Mattam AJ, Chaudhari YB, Velankar HR. Factors regulating cellulolytic gene expression in filamentous fungi: an overview. Microb Cell Fact 2022; 21:44. [PMID: 35317826 PMCID: PMC8939176 DOI: 10.1186/s12934-022-01764-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/27/2022] [Indexed: 12/19/2022] Open
Abstract
The growing demand for biofuels such as bioethanol has led to the need for identifying alternative feedstock instead of conventional substrates like molasses, etc. Lignocellulosic biomass is a relatively inexpensive feedstock that is available in abundance, however, its conversion to bioethanol involves a multistep process with different unit operations such as size reduction, pretreatment, saccharification, fermentation, distillation, etc. The saccharification or enzymatic hydrolysis of cellulose to glucose involves a complex family of enzymes called cellulases that are usually fungal in origin. Cellulose hydrolysis requires the synergistic action of several classes of enzymes, and achieving the optimum secretion of these simultaneously remains a challenge. The expression of fungal cellulases is controlled by an intricate network of transcription factors and sugar transporters. Several genetic engineering efforts have been undertaken to modulate the expression of cellulolytic genes, as well as their regulators. This review, therefore, focuses on the molecular mechanism of action of these transcription factors and their effect on the expression of cellulases and hemicellulases.
Collapse
Affiliation(s)
- Anu Jose Mattam
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India
| | - Yogesh Babasaheb Chaudhari
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India
| | - Harshad Ravindra Velankar
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India.
| |
Collapse
|
28
|
Rosolen RR, Aono AH, Almeida DA, Ferreira Filho JA, Horta MAC, De Souza AP. Network Analysis Reveals Different Cellulose Degradation Strategies Across Trichoderma harzianum Strains Associated With XYR1 and CRE1. Front Genet 2022; 13:807243. [PMID: 35281818 PMCID: PMC8912865 DOI: 10.3389/fgene.2022.807243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Trichoderma harzianum, whose gene expression is tightly controlled by the transcription factors (TFs) XYR1 and CRE1, is a potential candidate for hydrolytic enzyme production. Here, we performed a network analysis of T. harzianum IOC-3844 and T. harzianum CBMAI-0179 to explore how the regulation of these TFs varies between these strains. In addition, we explored the evolutionary relationships of XYR1 and CRE1 protein sequences among Trichoderma spp. The results of the T. harzianum strains were compared with those of Trichoderma atroviride CBMAI-0020, a mycoparasitic species. Although transcripts encoding carbohydrate-active enzymes (CAZymes), TFs, transporters, and proteins with unknown functions were coexpressed with cre1 or xyr1, other proteins indirectly related to cellulose degradation were identified. The enriched GO terms describing the transcripts of these groups differed across all strains, and several metabolic pathways with high similarity between both regulators but strain-specific differences were identified. In addition, the CRE1 and XYR1 subnetworks presented different topology profiles in each strain, likely indicating differences in the influences of these regulators according to the fungi. The hubs of the cre1 and xyr1 groups included transcripts not yet characterized or described as being related to cellulose degradation. The first-neighbor analyses confirmed the results of the profile of the coexpressed transcripts in cre1 and xyr1. The analyses of the shortest paths revealed that CAZymes upregulated under cellulose degradation conditions are most closely related to both regulators, and new targets between such signaling pathways were discovered. Although the evaluated T. harzianum strains are phylogenetically close and their amino acid sequences related to XYR1 and CRE1 are very similar, the set of transcripts related to xyr1 and cre1 differed, suggesting that each T. harzianum strain used a specific regulation strategy for cellulose degradation. More interestingly, our findings may suggest that XYR1 and CRE1 indirectly regulate genes encoding proteins related to cellulose degradation in the evaluated T. harzianum strains. An improved understanding of the basic biology of fungi during the cellulose degradation process can contribute to the use of their enzymes in several biotechnological applications and pave the way for further studies on the differences across strains of the same species.
Collapse
Affiliation(s)
- Rafaela Rossi Rosolen
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Déborah Aires Almeida
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jaire Alves Ferreira Filho
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Anete Pereira De Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Anete Pereira De Souza,
| |
Collapse
|
29
|
Xu W, Fang Y, Ding M, Ren Y, Meng X, Chen G, Zhang W, Liu W. Elimination of the Sugar Transporter GAT1 Increased Xylanase I Production in Trichoderma reesei. Front Microbiol 2022; 13:810066. [PMID: 35154055 PMCID: PMC8825865 DOI: 10.3389/fmicb.2022.810066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
The filamentous fungus Trichoderma reesei secretes large quantities of cellulases and hemicellulases that have found wide applications in industry. Compared with extensive studies on the mechanism controlling cellulase gene expression, less is known about the regulatory mechanism behind xylanase gene expression. Herein, several putative sugar transporter encoding genes that showed significant upregulation on xylan were identified in T. reesei. Deletion of one such gene, gat1, resulted in increased xylanase production but hardly affected cellulase induction. Further analyses demonstrated that deletion of gat1 markedly increased XYNI production at the transcriptional level and only exerted a minor effect on XYNII synthesis. In contrast, overexpressing gat1 caused a continuous decrease in xyn1 expression. Deletion of gat1 also affected the expression of xyn1 and pectinase genes when T. reesei was cultivated with galacturonic acid as the sole carbon source. Transcriptome analyses of Δgat1 and its parental strain identified 255 differentially expressed genes that are enriched in categories of glycoside hydrolases, lipid metabolism, transporters, and transcriptional factors. The results thus implicate a repressive role of the sugar transporter GAT1 in xyn1 expression and reveal that distinct regulatory mechanisms may exist in controlling the expression of different xylanase genes in T. reesei.
Collapse
Affiliation(s)
- Wenqiang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mingyang Ding
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yajing Ren
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
30
|
Zhang X, Hu Y, Liu G, Liu M, Li Z, Zhao J, Song X, Zhong Y, Qu Y, Wang L, Qin Y. The complex Tup1-Cyc8 bridges transcription factor ClrB and putative histone methyltransferase LaeA to activate the expression of cellulolytic genes. Mol Microbiol 2022; 117:1002-1022. [PMID: 35072962 DOI: 10.1111/mmi.14885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
The degradation of lignocellulosic biomass by cellulolytic enzymes is involved in the global carbon cycle. The hydrolysis of lignocellulosic biomass into fermentable sugars is potential as excellent industrial resource to produce a variety of chemical products. The production of cellulolytic enzymes is regulated mainly at the transcriptional level in filamentous fungi. Transcription factor ClrB and the putative histone methyltransferase LaeA, are both necessary for the expression of cellulolytic genes. However, the mechanism by which transcription factors and methyltransferase coordinately regulate cellulolytic genes is still unknown. Here, we reveal a transcriptional regulatory mechanism involving Penicillium oxalicum transcription factor ClrB (PoClrB), complex Tup1-Cyc8, and putative histone methyltransferase LaeA (PoLaeA). As the transcription factor, PoClrB binds the targeted promoters of cellulolytic genes, recruits PoTup1-Cyc8 complex via direct interaction with PoTup1. PoTup1 interacts with PoCyc8 to form the coactivator complex PoTup1-Cyc8. Then, PoTup1 recruits putative histone methyltransferase PoLaeA to modify the chromatin structure of the upstream region of cellulolytic genes, thereby facilitating the binding of transcription machinery to activating the corresponding cellulolytic gene expression. Our results contribute to a better understanding of complex transcriptional regulation mechanisms of cellulolytic genes and will be valuable for lignocellulosic biorefining.
Collapse
Affiliation(s)
- Xiujun Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.,School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yueyan Hu
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Guodong Liu
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Meng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zhonghai Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xin Song
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yinbo Qu
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
31
|
Zhang W, Guo J, Wu X, Ren Y, Li C, Meng X, Liu W. Reformulating the Hydrolytic Enzyme Cocktail of Trichoderma reesei by Combining XYR1 Overexpression and Elimination of Four Major Cellulases to Improve Saccharification of Corn Fiber. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:211-222. [PMID: 34935374 DOI: 10.1021/acs.jafc.1c05946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The industrial fungus Trichoderma reesei has an outstanding capability of secreting an enzyme cocktail comprising multiple plant biomass-degrading enzymes. Herein, the overexpression of XYR1, the master transactivator controlling (hemi)cellulase gene expression, was performed in T. reesei lacking four main cellulase-encoding genes. The resultant strain Δ4celOExyr1 was able to produce a dramatically different profile of secretory proteins on soluble glucose or lactose compared with that of the wild-type T. reesei. The Δ4celOExyr1 secretome included cellulases EGIII and BGLI as well as several hemicellulases and nonhydrolytic cellulose degradation-associated proteins that are not preferentially induced in the wild-type T. reesei strain. Δ4celOExyr1 produced a significant amount of α-arabinofuranosidase I on lactose, and the crude enzyme cocktail of Δ4celOExyr1 not only released a considerable quantity of glucose but also exhibited remarkable performance in the hydrolytic release of xylose, arabinose, and mannose from un-pretreated corn fiber. These results showed that the engineered T. reesei strain holds great potential for improving the saccharification efficiency of the hemicellulosic constituents within corn fiber.
Collapse
Affiliation(s)
- Weixin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Junqi Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Xiaoxiao Wu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Yajing Ren
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Chunyan Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| |
Collapse
|
32
|
Paul M, Mohapatra S, Kumar Das Mohapatra P, Thatoi H. Microbial cellulases - An update towards its surface chemistry, genetic engineering and recovery for its biotechnological potential. BIORESOURCE TECHNOLOGY 2021; 340:125710. [PMID: 34365301 DOI: 10.1016/j.biortech.2021.125710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The inherent resistance of lignocellulosic biomass makes it impervious for industrially important enzymes such as cellulases to hydrolyze cellulose. Further, the competitive absorption behavior of lignin and hemicellulose for cellulases, due to their electron-rich surfaces augments the inappropriate utilization of these enzymes. Hence, modification of the surface charge of the cellulases to reduce its non-specific binding to lignin and enhance its affinity for cellulose is an urgent necessity. Further, maintaining the stability of cellulases by the preservation of their secondary structures using immobilization techniques will also play an integral role in its industrial production. In silico approaches for increasing the catalytic activity of cellulase enzymes is also significant along with a range of substrate specificity. In addition, enhanced productivity of cellulases by tailoring the related genes through the process of genetic engineering and higher cellulase recovery after saccharification seems to be promising areas for efficient and large-scale enzyme production concepts.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada 757003, Odisha, India
| | - Sonali Mohapatra
- Department of Biotechnology, College of Engineering & Technology, Bhubaneswar 751003, Odisha, India
| | - Pradeep Kumar Das Mohapatra
- Department of Microbiology, Raiganj University, Raiganj - 733134, Uttar Dinajpur, West Bengal, India; PAKB Environment Conservation Centre, Raiganj University, Raiganj - 733134, Uttar Dinajpur, West Bengal, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada 757003, Odisha, India.
| |
Collapse
|
33
|
Filho JAF, Rosolen RR, Almeida DA, de Azevedo PHC, Motta MLL, Aono AH, dos Santos CA, Horta MAC, de Souza AP. Trends in biological data integration for the selection of enzymes and transcription factors related to cellulose and hemicellulose degradation in fungi. 3 Biotech 2021; 11:475. [PMID: 34777932 PMCID: PMC8548487 DOI: 10.1007/s13205-021-03032-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Fungi are key players in biotechnological applications. Although several studies focusing on fungal diversity and genetics have been performed, many details of fungal biology remain unknown, including how cellulolytic enzymes are modulated within these organisms to allow changes in main plant cell wall compounds, cellulose and hemicellulose, and subsequent biomass conversion. With the advent and consolidation of DNA/RNA sequencing technology, different types of information can be generated at the genomic, structural and functional levels, including the gene expression profiles and regulatory mechanisms of these organisms, during degradation-induced conditions. This increase in data generation made rapid computational development necessary to deal with the large amounts of data generated. In this context, the origination of bioinformatics, a hybrid science integrating biological data with various techniques for information storage, distribution and analysis, was a fundamental step toward the current state-of-the-art in the postgenomic era. The possibility of integrating biological big data has facilitated exciting discoveries, including identifying novel mechanisms and more efficient enzymes, increasing yields, reducing costs and expanding opportunities in the bioprocess field. In this review, we summarize the current status and trends of the integration of different types of biological data through bioinformatics approaches for biological data analysis and enzyme selection.
Collapse
Affiliation(s)
- Jaire A. Ferreira Filho
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Rafaela R. Rosolen
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Deborah A. Almeida
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Paulo Henrique C. de Azevedo
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Maria Lorenza L. Motta
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Alexandre H. Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Clelton A. dos Santos
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| | - Maria Augusta C. Horta
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Anete P. de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Department of Plant Biology, Institute of Biology, UNICAMP, Universidade Estadual de Campinas, Campinas, SP 13083-875 Brazil
| |
Collapse
|
34
|
Fan C, Zhang W, Su X, Ji W, Luo H, Zhang Y, Liu B, Yao B, Huang H, Xu X. CRISPR/Cas9-mediated genome editing directed by a 5S rRNA-tRNA Gly hybrid promoter in the thermophilic filamentous fungus Humicola insolens. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:206. [PMID: 34688310 PMCID: PMC8542335 DOI: 10.1186/s13068-021-02057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Humicola insolens is a filamentous fungus with high potential of producing neutral and heat- and alkali-resistant cellulase. However, the genetic engineering tools, particularly the genome-editing tool, are scarce, hindering the study of cellulase expression regulation in this organism. RESULTS Herein, a CRISPR/Cas9 genome-editing system was established in H. insolens based on a hybrid 5S rRNA-tRNAGly promoter. This system is superior to the HDV (hepatitis delta virus) system in genome editing, allowing highly efficient single gene destruction in H. insolens with rates of deletion up to 84.1% (37/44). With this system, a putative pigment synthesis gene pks and the transcription factor xyr1 gene were disrupted with high efficiency. Moreover, the extracellular protein concentration and cellulase activity largely decreased when xyr1 was deleted, demonstrating for the first time that Xyr1 plays an important role in cellulase expression regulation. CONCLUSIONS The established CRISPR/Cas9 system is a powerful genetic operation tool for H. insolens, which will accelerate studies on the regulation mechanism of cellulase expression and engineering of H. insolens for higher cellulase production.
Collapse
Affiliation(s)
- Chao Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Xiaoyun Su
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
| | - Wangli Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Huiying Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Bin Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
| | - Huoqing Huang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China.
| | - Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China.
| |
Collapse
|
35
|
Chen Y, Wang W, Liu P, Lin A, Fan X, Wu C, Li N, Wei L, Wei D. The novel repressor Rce2 competes with Ace3 to regulate cellulase gene expression in the filamentous fungus Trichoderma reesei. Mol Microbiol 2021; 116:1298-1314. [PMID: 34608686 DOI: 10.1111/mmi.14825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/22/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
The filamentous fungus Trichoderma reesei is widely used for industrial cellulase production. In T. reesei, cellulase gene expression is tightly controlled by a regulatory network involving multiple transcription factors. Here, we isolated a novel protein, Rce2, using a pull-down assay and mass spectrometry analysis, from a partial carbon catabolite de-repression mutant, T. reesei Rut-C30, cultured under glucose-repressing conditions. Deletion and overexpression of Rce2 in T. reesei wild-type QM6a and mutant Rut-C30 revealed that Rce2 acts as a repressor of cellulase gene expression. DNase I footprinting assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays revealed that Rce2 was located in the nucleus and bound to the consensus sequences 5'-(T/A)NNNNCCG-3' and 5'-CGGNNNN(T/A)-3' in the promoters of cellulase-related genes to repress their transcription. Additionally, Rce2 antagonized Ace3 binding to the cbh1 promoter to repress its transcription. However, Rce2 was not involved in Cre1-mediated carbon catabolite repression. These results demonstrate the mechanism through which Rce2 represses the expression of cellulase genes and provide novel insights into the regulatory system of cellulases and methods that can be used for the regulation of gene expression in T. reesei.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Pei Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Aibo Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xingjia Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chuan Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ni Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liujing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
36
|
Martzy R, Mello-de-Sousa TM, Mach RL, Yaver D, Mach-Aigner AR. The phenomenon of degeneration of industrial Trichoderma reesei strains. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:193. [PMID: 34598727 PMCID: PMC8487154 DOI: 10.1186/s13068-021-02043-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Even if the loss of production capacity of a microorganism is said to be a serious problem in various biotechnology industries, reports in literature are rather rare. Strains of the genera Trichoderma reesei are used for large-scale production of cellulases, which are needed in food and feed, textile, paper industries and biofuel production. RESULTS Here, we describe the phenomenon of spontaneous degeneration of T. reesei strains during large-scale cultivation. The phenotype of the degenerated population is characterized most importantly by a loss of any cellulase formation. Interestingly, promoter regions of relevant genes had a more compact chromatin in the (cel -) strains compared to productive strains. For a systematic investigation of the phenomenon a protocol for artificially induced and lab-scaled strain degeneration was developed. This workflow allows to determine the degeneration rate and thus, to compare the occurrence of a degenerated population in differently productive strains on the one hand, and to monitor the success of any strategies to prevent or decrease the degeneration on the other hand. While highly productive strains have higher degeneration rates compared to moderate producers, the degeneration can hardly be triggered in moderate producers. The observed (cel -) phenotype is not caused by a mutation in the gene encoding the essential transactivator Xyr1. The development of a non-producing population is also not triggered by any compounds released by either producing or non-producing cells. CONCLUSIONS The extent of the occurrence of a degenerated strain population relates to the production capacity of the strain and goes along with chromatin condensation in relevant promoter regions.
Collapse
Affiliation(s)
- R Martzy
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - T M Mello-de-Sousa
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - R L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - D Yaver
- Production Strain Technology, Novozymes Inc., Davis, CA, USA
| | - A R Mach-Aigner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria.
| |
Collapse
|
37
|
Xia C, Gao L, Li Z, Liu G, Song X. Functional analysis of the transcriptional activator XlnR of Penicillium oxalicum. J Appl Microbiol 2021; 132:1112-1120. [PMID: 34467597 DOI: 10.1111/jam.15276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/31/2021] [Accepted: 08/23/2021] [Indexed: 12/01/2022]
Abstract
AIMS The aim of this article is to study the functional features of Penicillium oxalicum transcriptional activator XlnR. METHODS AND RESULTS The yeast reporter system was used to identify transcriptional activation domain of XlnR in P. oxalicum. The expression cassette was introduced into the xlnR locus of P. oxalicum by homologous recombination. In this study, several putative structural domains in P. oxalicum XlnR were predicted by bioinformatics analysis, and the transcriptional activation domain (351-694 region) was identified in XlnR relying on reporter gene system in yeast. In addition, the amino acid at XlnR 871 site (alanine) located in the regulatory region could influence the regulatory activity of XlnR directly. When the alanine at XlnR 871 site was replaced by stronger hydrophobic amino acid (e.g. valine or isoleucine), the regulatory activity will be greatly improved, especially for the regulation of hemicellulase genes expression. When alanine at XlnR 871 site was mutated to a hydrophilic amino acid (e.g. aspartic acid or arginine), the regulatory activity of XlnR will be reduced. CONCLUSIONS The 351-694 region of P. oxalicum XlnR was identified as transcriptional activation domain, and the regulatory activity of XlnR was greatly influenced by hydrophobicity of amino acid at 871 site of XlnR in P. oxalicum. SIGNIFICANCE AND IMPACT OF THE STUDY The results will provide an effective target site to regulate the activity of XlnR and improve cellulase production of P. oxalicum.
Collapse
Affiliation(s)
- Chengqiang Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong Province, China.,College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Liwei Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong Province, China
| | - Zhonghai Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong Province, China.,National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province, China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong Province, China.,National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province, China
| |
Collapse
|
38
|
Katayama R, Kobayashi N, Kawaguchi T, Tani S. Serine-arginine protein kinase-like protein, SrpkF, stimulates both cellobiose-responsive and D-xylose-responsive signaling pathways in Aspergillus aculeatus. Curr Genet 2021; 68:143-152. [PMID: 34453575 DOI: 10.1007/s00294-021-01207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Aspergillus aculeatus produces cellulolytic enzymes in the presence of their substrates. We screened a library of 12,000 A. aculeatus T-DNA-inserted mutants to identify a regulatory factor involved in the expression of their enzyme genes in response to inducers. We found one mutant that reduced the expression of FIII-avicelase (chbI) in response to cellulose. T-DNA was inserted into a putative protein kinase gene similar to AN10082 in A. nidulans, serine-arginine protein kinase F, SrpkF. Fold increases in srpkF gene expression in response to various carbon sources were 2.3 (D-xylose), 44 (Avicel®), 59 (Bacto™ Tryptone), and 98 (no carbon) compared with D-glucose. Deletion of srpkF in A. aculeatus resulted in a significant reduction in cellulose-responsive expression of chbI, hydrocellulase (cel7b), and FIb-xylanase (xynIb) genes at an early induction phase. Further, the srpkF-overexpressing strain showed upregulation of the srpkF gene from four- to nine-fold higher than in the control strain. srpkF overexpression upregulated cbhI and cel7b in response to cellobiose and the FI-carboxymethyl cellulase gene (cmc1) and xynIb in response to D-xylose. However, the srpkF deletion did not affect the expression of xynIb in response to D-xylose due to the less expression of srpkF under the D-xylose condition. Our data demonstrate that SrpkF is primarily involved in cellulose-responsive expression, though it has a potential to stimulate gene expression in response to both cellobiose and D-xylose in A. aculeatus.
Collapse
Affiliation(s)
- Ryohei Katayama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan
| | - Natsumi Kobayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
39
|
Chen X, Song B, Liu M, Qin L, Dong Z. Understanding the Role of Trichoderma reesei Vib1 in Gene Expression during Cellulose Degradation. J Fungi (Basel) 2021; 7:jof7080613. [PMID: 34436152 PMCID: PMC8397228 DOI: 10.3390/jof7080613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Vib1, a member of the Ndt80/PhoG-like transcription factor family, has been shown to be essential for cellulase production of Trichoderma reesei. Here, we combined transcriptomic and genetic analyses to gain mechanistic insights into the roles of Vib1 during cellulose degradation. Our transcriptome analysis showed that the vib1 deletion caused 586 genes with decreased expression and 431 genes with increased expression on cellulose. The downregulated genes were enriched for Gene Ontology terms associated with carbohydrate metabolism, transmembrane transport, oxidoreductase activity, and transcription factor activity. Of the 258 genes induced by cellulose, 229 showed no or decreased expression in Δvib1 on cellulose, including almost all (hemi)cellulase genes, crucial sugar transporter genes (IDs:69957, 3405), and the genes encoding main transcriptional activators Xyr1 and Ace3. Additionally, Vib1 also regulated the expression of genes involved in secondary metabolism. Further comparison of the transcriptomes of Δvib1 and Δxyr1 in cellulose revealed that the genes regulated by Vib1 had much overlap with Xyr1 targets especially for the gene set induced by cellulose, presumably whose expression requires the cooperativity between Vib1 and Xyr1. Genetic evidence indicated that Vib1 regulates cellulase gene expression partially via Xyr1. Our results will provide new clues for strain improvement.
Collapse
Affiliation(s)
- Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
| | - Bingran Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
| | - Minglu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
| | - Lina Qin
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China;
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
- Correspondence:
| |
Collapse
|
40
|
Trichoderma reesei ACE4, a Novel Transcriptional Activator Involved in the Regulation of Cellulase Genes during Growth on Cellulose. Appl Environ Microbiol 2021; 87:e0059321. [PMID: 34047636 DOI: 10.1128/aem.00593-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous fungus Trichoderma reesei is a model strain for cellulase production. Cellulase gene expression in T. reesei is controlled by multiple transcription factors. Here, we identified by comparative genomic screening a novel transcriptional activator, ACE4 (activator of cellulase expression 4), that positively regulates cellulase gene expression on cellulose in T. reesei. Disruption of the ace4 gene significantly decreased expression of four main cellulase genes and the essential cellulase transcription factor-encoding gene ace3. Overexpression of ace4 increased cellulase production by approximately 22% compared to that in the parental strain. Further investigations using electrophoretic mobility shift assays, DNase I footprinting assays, and chromatin immunoprecipitation assays indicated that ACE4 directly binds to the promoter of cellulase genes by recognizing the two adjacent 5'-GGCC-3' sequences. Additionally, ACE4 directly binds to the promoter of ace3 and, in turn, regulates the expression of ACE3 to facilitate cellulase production. Collectively, these results demonstrate an important role for ACE4 in regulating cellulase gene expression, which will contribute to understanding the mechanism underlying cellulase expression in T. reesei. IMPORTANCE T. reesei is commonly utilized in industry to produce cellulases, enzymes that degrade lignocellulosic biomass for the production of bioethanol and bio-based products. T. reesei is capable of rapidly initiating the biosynthesis of cellulases in the presence of cellulose, which has made it useful as a model fungus for studying gene expression in eukaryotes. Cellulase gene expression is controlled through multiple transcription factors at the transcriptional level. However, the molecular mechanisms by which transcription is controlled remain unclear. In the present study, we identified a novel transcription factor, ACE4, which regulates cellulase expression on cellulose by binding to the promoters of cellulase genes and the cellulase activator gene ace3. Our study not only expands the general functional understanding of the novel transcription factor ACE4 but also provides evidence for the regulatory mechanism mediating gene expression in T. reesei.
Collapse
|
41
|
Li Y, Yu J, Zhang P, Long T, Mo Y, Li J, Li Q. Comparative transcriptome analysis of Trichoderma reesei reveals different gene regulatory networks induced by synthetic mixtures of glucose and β-disaccharide. BIORESOUR BIOPROCESS 2021; 8:57. [PMID: 38650287 PMCID: PMC10991369 DOI: 10.1186/s40643-021-00411-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/26/2021] [Indexed: 11/10/2022] Open
Abstract
The mixture of glucose and β-disaccharide (MGD) synthesized by transglycosylation of glucose as a low-cost soluble carbon source can efficiently induce cellulase production in Trichoderma reesei, which holds potential for the biorefining of lignocellulosic biomass. However, it is not yet fully understood how MGD induces T. reesei cellulase. In this study, transcriptomic analyses were conducted to investigate the molecular basis of MGD for lignocellulose-degrading enzyme production of T. reesei Rut C30 compared with that on lactose. Particular attention was paid to CAZymes, transcription factors, transporters and other protein processing pathways related to lignocellulose degradation. As a result, MGD can elicit transcription of GH5-, GH6- and GH7-encoding cellulases that is up to 1.4-fold higher than that induced by lactose, but GH11- and GH74-encoding xylanases are downregulated by 1.7- and 4.4-fold, respectively. Gene expression profiles suggest that the transcription activators xyr1 and vib1 are significantly upregulated and that the mitogen-activated protein kinase pathway is strengthened compared to the case of lactose induction. In addition, hac1-encoding UPR-specific transcription factors are significantly upregulated by MGD, which may be enhanced due to proper folding and processing of nascent proteins. These findings provide a theoretical basis for further understanding the characterization of efficient cellulase production using MGD as an inducer in T. reesei and offer potential strategies for strain improvement.
Collapse
Affiliation(s)
- Yonghao Li
- Chongqing Key Laboratory of Industrial Fermentation Microorganism and School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Jingze Yu
- Chongqing Key Laboratory of Industrial Fermentation Microorganism and School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Peng Zhang
- Chongqing Key Laboratory of Industrial Fermentation Microorganism and School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tingting Long
- Chongqing Key Laboratory of Industrial Fermentation Microorganism and School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yi Mo
- Chongqing Key Laboratory of Industrial Fermentation Microorganism and School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Jianghong Li
- Chongqing Key Laboratory of Industrial Fermentation Microorganism and School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Qian Li
- Chongqing Key Laboratory of Industrial Fermentation Microorganism and School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| |
Collapse
|
42
|
Tõlgo M, Hüttner S, Rugbjerg P, Thuy NT, Thanh VN, Larsbrink J, Olsson L. Genomic and transcriptomic analysis of the thermophilic lignocellulose-degrading fungus Thielavia terrestris LPH172. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:131. [PMID: 34082802 PMCID: PMC8176577 DOI: 10.1186/s13068-021-01975-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Biomass-degrading enzymes with improved activity and stability can increase substrate saccharification and make biorefineries economically feasible. Filamentous fungi are a rich source of carbohydrate-active enzymes (CAZymes) for biomass degradation. The newly isolated LPH172 strain of the thermophilic Ascomycete Thielavia terrestris has been shown to possess high xylanase and cellulase activities and tolerate low pH and high temperatures. Here, we aimed to illuminate the lignocellulose-degrading machinery and novel carbohydrate-active enzymes in LPH172 in detail. RESULTS We sequenced and analyzed the 36.6-Mb genome and transcriptome of LPH172 during growth on glucose, cellulose, rice straw, and beechwood xylan. 10,128 predicted genes were found in total, which included 411 CAZy domains. Compared to other fungi, auxiliary activity (AA) domains were particularly enriched. A higher GC content was found in coding sequences compared to the overall genome, as well as a high GC3 content, which is hypothesized to contribute to thermophilicity. Primarily auxiliary activity (AA) family 9 lytic polysaccharide monooxygenase (LPMO) and glycoside hydrolase (GH) family 7 glucanase encoding genes were upregulated when LPH172 was cultivated on cellulosic substrates. Conventional hemicellulose encoding genes (GH10, GH11 and various CEs), as well as AA9 LPMOs, were upregulated when LPH172 was cultivated on xylan. The observed co-expression and co-upregulation of genes encoding AA9 LPMOs, other AA CAZymes, and (hemi)cellulases point to a complex and nuanced degradation strategy. CONCLUSIONS Our analysis of the genome and transcriptome of T. terrestris LPH172 elucidates the enzyme arsenal that the fungus uses to degrade lignocellulosic substrates. The study provides the basis for future characterization of potential new enzymes for industrial biomass saccharification.
Collapse
Affiliation(s)
- Monika Tõlgo
- Wallenberg Wood Science Centre, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Silvia Hüttner
- Wallenberg Wood Science Centre, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Peter Rugbjerg
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Nguyen Thanh Thuy
- Center for Industrial Microbiology, Food Industries Research Institute, Thanh Xuan, Hanoi, Vietnam
| | - Vu Nguyen Thanh
- Center for Industrial Microbiology, Food Industries Research Institute, Thanh Xuan, Hanoi, Vietnam
| | - Johan Larsbrink
- Wallenberg Wood Science Centre, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Lisbeth Olsson
- Wallenberg Wood Science Centre, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
43
|
Sukumaran RK, Christopher M, Kooloth-Valappil P, Sreeja-Raju A, Mathew RM, Sankar M, Puthiyamadam A, Adarsh VP, Aswathi A, Rebinro V, Abraham A, Pandey A. Addressing challenges in production of cellulases for biomass hydrolysis: Targeted interventions into the genetics of cellulase producing fungi. BIORESOURCE TECHNOLOGY 2021; 329:124746. [PMID: 33610429 DOI: 10.1016/j.biortech.2021.124746] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic materials are the favoured feedstock for biorefineries due to their abundant availability and non-completion with food. Biobased technologies for refining these materials are limited mainly by the cost of biomass hydrolyzing enzymes, typically sourced from filamentous fungi. Therefore, considerable efforts have been directed at improving the quantity and quality of secreted lignocellulose degrading enzymes from fungi in order to attain overall economic viability. Process improvements and media engineering probably have reached their thresholds and further production enhancements require modifying the fungal metabolism to improve production and secretion of these enzymes. This review focusses on the types and mechanisms of action of known fungal biomass degrading enzymes, our current understanding of the genetic control exerted on their expression, and possible routes for intervention, especially on modulating catabolite repression, transcriptional regulators, signal transduction, secretion pathways etc., in order to improve enzyme productivity, activity and stability.
Collapse
Affiliation(s)
- Rajeev K Sukumaran
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Meera Christopher
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Prajeesh Kooloth-Valappil
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - AthiraRaj Sreeja-Raju
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Reshma M Mathew
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Meena Sankar
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anoop Puthiyamadam
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Velayudhanpillai-Prasannakumari Adarsh
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Aswathi Aswathi
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Valan Rebinro
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Amith Abraham
- Department of Chemical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
44
|
Zhao Q, Liu Q, Wang Q, Qin Y, Zhong Y, Gao L, Liu G, Qu Y. Disruption of the Trichoderma reesei gul1 gene stimulates hyphal branching and reduces broth viscosity in cellulase production. J Ind Microbiol Biotechnol 2021; 48:6132311. [PMID: 33693788 PMCID: PMC9113457 DOI: 10.1093/jimb/kuab012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/05/2021] [Indexed: 12/03/2022]
Abstract
Hyphal morphology is considered to have a close relationship with the production
level of secreted proteins by filamentous fungi. In this study, the
gul1 gene, which encodes a putative mRNA-binding protein,
was disrupted in cellulase-producing fungus Trichoderma reesei.
The hyphae of Δgul1 strain produced more lateral
branches than the parent strain. Under the condition for cellulase production,
disruption of gul1 resulted in smaller mycelial clumps and
significantly lower viscosity of fermentation broth. In addition, cellulase
production was improved by 22% relative to the parent strain.
Transcriptome analysis revealed that a set of genes encoding cell wall
remodeling enzymes as well as hydrophobins were differentially expressed in the
Δgul1 strain. The results suggest that the
regulatory role of gul1 in cell morphogenesis is likely
conserved in filamentous fungi. To our knowledge, this is the first report on
the engineering of gul1 in an industrially important
fungus.
Collapse
Affiliation(s)
- Qinqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, 266237 Qingdao, China
| | - Qin Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, 266237 Qingdao, China
| | - Qi Wang
- National Glycoengineering Research Center, Shandong University, 27 Binhai Road, 266237 Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, 27 Binhai Road, 266237 Qingdao, China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, 266237 Qingdao, China
| | - Liwei Gao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, 266237 Qingdao, China.,Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 11 Keyuanjingsi Road, 266101 Qingdao, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, 266237 Qingdao, China.,National Glycoengineering Research Center, Shandong University, 27 Binhai Road, 266237 Qingdao, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, 266237 Qingdao, China.,National Glycoengineering Research Center, Shandong University, 27 Binhai Road, 266237 Qingdao, China
| |
Collapse
|
45
|
Csarman F, Obermann T, Zanjko MC, Man P, Halada P, Seiboth B, Ludwig R. Functional expression and characterization of two laccases from the brown rot Fomitopsis pinicola. Enzyme Microb Technol 2021; 148:109801. [PMID: 34116754 DOI: 10.1016/j.enzmictec.2021.109801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Laccase is predominantly found in lignin degrading filamentous white rot fungi, where it is involved in the oxidative degradation of this recalcitrant heteropolymer. In brown rot fungi it is much less prevalent: laccases from only a few brown rots have been detected and only two have been characterized. This study tries to understand the role of this ligninolytic enzyme in brown rots by investigating the catalytic properties of laccases secreted by Fomitopsis pinicola FP58527 SS1. When grown on either poplar or spruce wood blocks, several laccases were detected in the secretome. Two of them (FpLcc1 and FpLcc2) were heterologously produced using Trichoderma reesei QM9414 Δxyr1 as expression host and purified to homogeneity by consecutive steps of hydrophobic interaction, anion exchange and size exclusion chromatography. With the substrates 2,2-azino-bis(3-ethylthiazoline-6-sulfonate) (ABTS), 2,6-dimethoxyphenol (2,6-DMP) and guaiacol both laccases showed similar, low pH-optima below 3 for ABTS and 2,6-DMP and at pH 3.5 for guaiacol which is at the acidic end of laccases isolated from white rot fungi. The determined KM values were low while kcat values measured at acidic conditions were comparable to those reported for other laccases from white rot fungi. While both enzymes showed a moderate decrease in activity in the presence of oxalic and citric acid FpLcc2 was activated by acetic acid up to 3.7 times. This activation effect is much more pronounced at pH 5.0 compared to pH 3.0 and could already be observed at a concentration of 1 mM acetic acid.
Collapse
Affiliation(s)
- Florian Csarman
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Tobias Obermann
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; BioCeV - Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Mihael Colar Zanjko
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Petr Man
- BioCeV - Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Petr Halada
- BioCeV - Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria.
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
46
|
Dual Regulatory Role of Chromatin Remodeler ISW1 in Coordinating Cellulase and Secondary Metabolite Biosynthesis in Trichoderma reesei. mBio 2021; 13:e0345621. [PMID: 35130719 PMCID: PMC8822348 DOI: 10.1128/mbio.03456-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The saprophytic filamentous fungus Trichoderma reesei represents one of the most prolific cellulase producers isolated from nature. T. reesei also produces a typical yellow pigment identified as sorbicillinoids during cultivation. Here, we identified an evolutionarily conserved histone remodeling factor, ISW1, in T. reesei that simultaneously participates in regulating cellulase and the yellow pigment biosynthesis. Trisw1 deletion almost abolished vegetable growth, asexual spore formation, and cellulase gene expression. However, its absence significantly enhanced the production of the yellow pigment. The observed dual regulatory role of TrISW1 was dependent on its ATPase activity. We demonstrated that Trisw1 disruption elevated the transcription of ypr1 coding for the transcriptional activator of sor genes encoding the polyketide synthases catalyzing the biosynthesis of sorbicillinoids but compromised that of xyr1 encoding the key transcriptional activator of cellulase genes. Discrete T. reesei homologous ISW1 accessory factors were also found to exert differential effects on the expression of these two types of genes. Further analyses showed that TrISW1 was recruited to cellulase gene promoters, and its absence interfered with loss of histone H4 at the cbh1 and eg1 promoters upon cellulose induction. To the contrary, Trisw1 deletion facilitated loss of H4 at the sor locus. These data indicate that TrISW1 represents an important chromatin remodeler with a dual role in coordinating the cellulolytic response and biosynthesis of the major secondary metabolite in T. reesei. IMPORTANCE Microorganisms, including Trichoderma reesei, constantly face the challenge to outcompete other species to ensure efficient colonization in their natural habitat. They achieve this usually by adopting two alternative strategies by either maintaining fast growth on limited nutrient resources or producing a versatile array of secondary metabolites to fight against competitors. These two strategies, however, have to be subtly controlled to balance the assignment of and thus make the best use of cellular resources. Here, we identified a chromatin remodeling factor, TrISW1, with a dual role in coordinating the cellulolytic response and biosynthesis of the major secondary metabolite in T. reesei. The data also provide a novel insight into how T. reesei takes advantage of a chromatin remodeler to exquisitely balance two different adaptive strategies to ensure an efficient allocation of cellular resources to achieve efficient colonization in a specific environment.
Collapse
|
47
|
Effects of the Transcription Factor Ace2 from Trichoderma reesei on Cellulase and Hemicellulase Expression in Trichoderma orientalis EU7-22. Appl Biochem Biotechnol 2021; 193:2098-2109. [PMID: 33608806 DOI: 10.1007/s12010-021-03529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Trichoderma orientalis (T. orientalis) EU7-22 has a complete cellulase system and shows a remarkable enzyme activity with high potential in the industry. Ace2 is an important transcriptional factor for cellulase and hemicellulase expression in Trichoderma reesei (T. reesei). However, the ace2 gene cannot be found in the genome of T. orientalis. Researches show that the mechanism of cellulase transcriptional regulation in T. orientalis keeps high similarity with T. reesei up till now. So, in this study, the ace2 of Trichoderma reesei QM9414 was heterologous expressed in T. orientalis EU7-22. As a result, xylanase activity and β-glucosidase activity of ace2 heterogeneous expression strains are improved and total cellulase activity is decreased. The result of qPCR is in accordance with enzyme activities. This study provides a reference for an in-depth study on transcriptional regulation mechanisms of T. orientalis.
Collapse
|
48
|
Shibata N, Kakeshita H, Igarashi K, Takimura Y, Shida Y, Ogasawara W, Koda T, Hasunuma T, Kondo A. Disruption of alpha-tubulin releases carbon catabolite repression and enhances enzyme production in Trichoderma reesei even in the presence of glucose. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:39. [PMID: 33557925 PMCID: PMC7869464 DOI: 10.1186/s13068-021-01887-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/19/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Trichoderma reesei is a filamentous fungus that is important as an industrial producer of cellulases and hemicellulases due to its high secretion of these enzymes and outstanding performance in industrial fermenters. However, the reduction of enzyme production caused by carbon catabolite repression (CCR) has long been a problem. Disruption of a typical transcriptional regulator, Cre1, does not sufficiently suppress this reduction in the presence of glucose. RESULTS We found that deletion of an α-tubulin (tubB) in T. reesei enhanced both the amount and rate of secretory protein production. Also, the tubulin-disrupted (ΔtubB) strain had high enzyme production and the same enzyme profile even if the strain was cultured in a glucose-containing medium. From transcriptome analysis, the ΔtubB strain exhibited upregulation of both cellulase and hemicellulase genes including some that were not originally induced by cellulose. Moreover, cellobiose transporter genes and the other sugar transporter genes were highly upregulated, and simultaneous uptake of glucose and cellobiose was also observed in the ΔtubB strain. These results suggested that the ΔtubB strain was released from CCR. CONCLUSION Trichoderma reesei α-tubulin is involved in the transcription of cellulase and hemicellulase genes, as well as in CCR. This is the first report of overcoming CCR by disrupting α-tubulin gene in T. reesei. The disruption of α-tubulin is a promising approach for creating next-generation enzyme-producing strains of T. reesei.
Collapse
Affiliation(s)
- Nozomu Shibata
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hiroshi Kakeshita
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| | - Kazuaki Igarashi
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Yasushi Takimura
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Tohru Koda
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
49
|
Wang L, Zhang W, Cao Y, Zheng F, Zhao G, Lv X, Meng X, Liu W. Interdependent recruitment of CYC8/TUP1 and the transcriptional activator XYR1 at target promoters is required for induced cellulase gene expression in Trichoderma reesei. PLoS Genet 2021; 17:e1009351. [PMID: 33606681 PMCID: PMC7894907 DOI: 10.1371/journal.pgen.1009351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
Cellulase production in filamentous fungus Trichoderma reesei is highly responsive to various environmental cues involving multiple positive and negative regulators. XYR1 (Xylanase regulator 1) has been identified as the key transcriptional activator of cellulase gene expression in T. reesei. However, the precise mechanism by which XYR1 achieves transcriptional activation of cellulase genes is still not fully understood. Here, we identified the TrCYC8/TUP1 complex as a novel coactivator for XYR1 in T. reesei. CYC8/TUP1 is the first identified transcriptional corepressor complex mediating repression of diverse genes in Saccharomyces cerevisiae. Knockdown of Trcyc8 or Trtup1 resulted in markedly impaired cellulase gene expression in T. reesei. We found that TrCYC8/TUP1 was recruited to cellulase gene promoters upon cellulose induction and this recruitment is dependent on XYR1. We further observed that repressed Trtup1 or Trcyc8 expression caused a strong defect in XYR1 occupancy and loss of histone H4 at cellulase gene promoters. The defects in XYR1 binding and transcriptional activation of target genes in Trtup1 or Trcyc8 repressed cells could not be overcome by XYR1 overexpression. Our results reveal a novel coactivator function for TrCYC8/TUP1 at the level of activator binding, and suggest a mechanism in which interdependent recruitment of XYR1 and TrCYC8/TUP1 to cellulase gene promoters represents an important regulatory circuit in ensuring the induced cellulase gene expression. These findings thus contribute to unveiling the intricate regulatory mechanism underlying XYR1-mediated cellulase gene activation and also provide an important clue that will help further improve cellulase production by T. reesei.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Yanli Cao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Fanglin Zheng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Guolei Zhao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Xinxing Lv
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
50
|
Wohlschlager L, Csarman F, Zrilić M, Seiboth B, Ludwig R. Comparative characterization of glyoxal oxidase from Phanerochaete chrysosporium expressed at high levels in Pichia pastoris and Trichoderma reesei. Enzyme Microb Technol 2021; 145:109748. [PMID: 33750543 DOI: 10.1016/j.enzmictec.2021.109748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/28/2023]
Abstract
In the secretome of Phanerochaete chrysosporium, a white-rot fungus serving as a model organism to elucidate lignocellulose deconstruction, the copper containing metalloprotein glyoxal oxidase (GLOX) is potentially involved in the crucial production of hydrogen peroxide to fuel and initiate oxidative biomass degradation by lignin-degrading peroxidases. Its ability to oxidize a variety of aldehydes and α-hydroxy carbonyls with the concomitant reduction of dioxygen to hydrogen peroxide has attracted attention for its application as green biocatalyst in different industrial fields. Here we report and compare two efficient processes for the heterologous production of GLOX from P. chrysosporium using the well-established methanolytic yeast Pichia pastoris and the filamentous fungus Trichoderma reesei as expression hosts with subsequent purification by anion exchange and hydrophobic interaction chromatography. Both processes were shown to be suitable for the production of the target protein at high levels. GLOX produced in T. reesei carries mainly Man5 glycosylation while the enzyme produced in P. pastoris exhibits the typical high-mannose type N-glycosylation. The enzyme expressed in P. pastoris showed slightly higher specific activities which correlates with the higher copper loading of 65.5 % compared to 51.9 % for the protein from T. reesei. The pH optimum for both recombinant proteins was 6.0, however, GLOX activity was found to be highly affected by different buffer species. Both enzymes showed very similar substrate affinities and turnover numbers with the highest catalytic efficiency observed for methylglyoxal. GLOX from both expression hosts is therefore a suitable enzyme for further mechanistic characterization and application studies.
Collapse
Affiliation(s)
- Lena Wohlschlager
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Florian Csarman
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Matea Zrilić
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060, Vienna, Austria.
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|