1
|
Zhu J, Liu W, Guo L, Tan X, Sun W, Zhang H, Zhang H, Tian W, Jiang T, Meng W, Liu Y, Kang Z, Gao C, Lü C, Xu P, Ma C. Acetate production from corn stover hydrolysate using recombinant Escherichia coli BL21 (DE3) with an EP-bifido pathway. Microb Cell Fact 2024; 23:300. [PMID: 39523316 PMCID: PMC11552437 DOI: 10.1186/s12934-024-02575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Acetate is an important chemical feedstock widely applied in the food, chemical and textile industries. It is now mainly produced from petrochemical materials through chemical processes. Conversion of lignocellulose biomass to acetate by biotechnological pathways is both environmentally beneficial and cost-effective. However, acetate production from carbohydrate in lignocellulose hydrolysate via glycolytic pathways involving pyruvate decarboxylation often suffers from the carbon loss and results in low acetate yield. RESULTS Escherichia coli BL21 (DE3) was confirmed to have high tolerance to acetate in this work. Thus, it was selected from seven laboratory E. coli strains for acetate production from lignocellulose hydrolysate. The byproduct-producing genes frdA, ldhA, and adhE in E. coli BL21 (DE3) were firstly knocked out to decrease the generation of succinate, lactate, and ethanol. Then, the genes pfkA and edd were also deleted and bifunctional phosphoketolase and fructose-1,6-bisphosphatase were overexpressed to construct an EP-bifido pathway in E. coli BL21 (DE3) to increase the generation of acetate from glucose. The obtained strain E. coli 5K/pFF can produce 22.89 g/L acetate from 37.5 g/L glucose with a yield of 0.61 g/g glucose. Finally, the ptsG gene in E. coli 5K/pFF was also deleted to make the engineered strain E. coli 6K/pFF to simultaneously utilize glucose and xylose in lignocellulosic hydrolysates. E. coli 6K/pFF can produce 20.09 g/L acetate from corn stover hydrolysate with a yield of 0.52 g/g sugar. CONCLUSION The results presented here provide a promising alternative for acetate production with low cost substrate. Besides acetate production, other biotechnological processes might also be developed for other acetyl-CoA derivatives production with lignocellulose hydrolysate through further metabolic engineering of E. coli 6K/pFF.
Collapse
Affiliation(s)
- Jieni Zhu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Wei Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Leilei Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Xiaoxu Tan
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Weikang Sun
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Hongxu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Hui Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Wenjia Tian
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China.
| |
Collapse
|
2
|
Zahn LE, Gannon PM, Rajakovich LJ. Iron-sulfur cluster-dependent enzymes and molybdenum-dependent reductases in the anaerobic metabolism of human gut microbes. Metallomics 2024; 16:mfae049. [PMID: 39504489 PMCID: PMC11574389 DOI: 10.1093/mtomcs/mfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Metalloenzymes play central roles in the anaerobic metabolism of human gut microbes. They facilitate redox and radical-based chemistry that enables microbial degradation and modification of various endogenous, dietary, and xenobiotic nutrients in the anoxic gut environment. In this review, we highlight major families of iron-sulfur (Fe-S) cluster-dependent enzymes and molybdenum cofactor-containing enzymes used by human gut microbes. We describe the metabolic functions of 2-hydroxyacyl-CoA dehydratases, glycyl radical enzyme activating enzymes, Fe-S cluster-dependent flavoenzymes, U32 oxidases, and molybdenum-dependent reductases and catechol dehydroxylases in the human gut microbiota. We demonstrate the widespread distribution and prevalence of these metalloenzyme families across 5000 human gut microbial genomes. Lastly, we discuss opportunities for metalloenzyme discovery in the human gut microbiota to reveal new chemistry and biology in this important community.
Collapse
Affiliation(s)
- Leah E Zahn
- Department of Chemistry, University of Washington, Seattle, United States
| | - Paige M Gannon
- Department of Chemistry, University of Washington, Seattle, United States
| | | |
Collapse
|
3
|
Huening KA, Groves JT, Wildenthal JA, Tabita FR, North JA. Escherichia coli possessing the dihydroxyacetone phosphate shunt utilize 5'-deoxynucleosides for growth. Microbiol Spectr 2024; 12:e0308623. [PMID: 38441472 PMCID: PMC10986504 DOI: 10.1128/spectrum.03086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/17/2024] [Indexed: 03/08/2024] Open
Abstract
All organisms utilize S-adenosyl-l-methionine (SAM) as a key co-substrate for the methylation of biological molecules, the synthesis of polyamines, and radical SAM reactions. When these processes occur, 5'-deoxy-nucleosides are formed as byproducts such as S-adenosyl-l-homocysteine, 5'-methylthioadenosine (MTA), and 5'-deoxyadenosine (5dAdo). A prevalent pathway found in bacteria for the metabolism of MTA and 5dAdo is the dihydroxyacetone phosphate (DHAP) shunt, which converts these compounds into dihydroxyacetone phosphate and 2-methylthioacetaldehyde or acetaldehyde, respectively. Previous work in other organisms has shown that the DHAP shunt can enable methionine synthesis from MTA or serve as an MTA and 5dAdo detoxification pathway. Rather, the DHAP shunt in Escherichia coli ATCC 25922, when introduced into E. coli K-12, enables the use of 5dAdo and MTA as a carbon source for growth. When MTA is the substrate, the sulfur component is not significantly recycled back to methionine but rather accumulates as 2-methylthioethanol, which is slowly oxidized non-enzymatically under aerobic conditions. The DHAP shunt in ATCC 25922 is active under oxic and anoxic conditions. Growth using 5-deoxy-d-ribose was observed during aerobic respiration and anaerobic respiration with Trimethylamine N-oxide (TMAO), but not during fermentation or respiration with nitrate. This suggests the DHAP shunt may only be relevant for extraintestinal pathogenic E. coli lineages with the DHAP shunt that inhabit oxic or TMAO-rich extraintestinal environments. This reveals a heretofore overlooked role of the DHAP shunt in carbon and energy metabolism from ubiquitous SAM utilization byproducts and suggests a similar role may occur in other pathogenic and non-pathogenic bacteria with the DHAP shunt. IMPORTANCE The acquisition and utilization of organic compounds that serve as growth substrates are essential for Escherichia coli to grow and multiply. Ubiquitous enzymatic reactions involving S-adenosyl-l-methionine as a co-substrate by all organisms result in the formation of the 5'-deoxy-nucleoside byproducts, 5'-methylthioadenosine and 5'-deoxyadenosine. All E. coli possess a conserved nucleosidase that cleaves these 5'-deoxy-nucleosides into 5-deoxy-pentose sugars for adenine salvage. The DHAP shunt pathway is found in some extraintestinal pathogenic E. coli, but its function in E. coli possessing it has remained unknown. This study reveals that the DHAP shunt enables the utilization of 5'-deoxy-nucleosides and 5-deoxy-pentose sugars as growth substrates in E. coli strains with the pathway during aerobic respiration and anaerobic respiration with TMAO, but not fermentative growth. This provides an insight into the diversity of sugar compounds accessible by E. coli with the DHAP shunt and suggests that the DHAP shunt is primarily relevant in oxic or TMAO-rich extraintestinal environments.
Collapse
Affiliation(s)
| | - Joshua T. Groves
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - John A. Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - F. Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Justin A. North
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Khairunisa BH, Heryakusuma C, Ike K, Mukhopadhyay B, Susanti D. Evolving understanding of rumen methanogen ecophysiology. Front Microbiol 2023; 14:1296008. [PMID: 38029083 PMCID: PMC10658910 DOI: 10.3389/fmicb.2023.1296008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Production of methane by methanogenic archaea, or methanogens, in the rumen of ruminants is a thermodynamic necessity for microbial conversion of feed to volatile fatty acids, which are essential nutrients for the animals. On the other hand, methane is a greenhouse gas and its production causes energy loss for the animal. Accordingly, there are ongoing efforts toward developing effective strategies for mitigating methane emissions from ruminant livestock that require a detailed understanding of the diversity and ecophysiology of rumen methanogens. Rumen methanogens evolved from free-living autotrophic ancestors through genome streamlining involving gene loss and acquisition. The process yielded an oligotrophic lifestyle, and metabolically efficient and ecologically adapted descendants. This specialization poses serious challenges to the efforts of obtaining axenic cultures of rumen methanogens, and consequently, the information on their physiological properties remains in most part inferred from those of their non-rumen representatives. This review presents the current knowledge of rumen methanogens and their metabolic contributions to enteric methane production. It also identifies the respective critical gaps that need to be filled for aiding the efforts to mitigate methane emission from livestock operations and at the same time increasing the productivity in this critical agriculture sector.
Collapse
Affiliation(s)
| | - Christian Heryakusuma
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Kelechi Ike
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Biswarup Mukhopadhyay
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Dwi Susanti
- Microbial Discovery Research, BiomEdit, Greenfield, IN, United States
| |
Collapse
|
5
|
Wu M, Liu X, Tu W, Xia J, Zou Y, Gong X, Yu P, Huang WE, Wang H. Deep insight into oriented propionate production from food waste: Microbiological interpretation and design practice. WATER RESEARCH 2023; 243:120399. [PMID: 37499537 DOI: 10.1016/j.watres.2023.120399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Using mixed microbial cultures (MMCs) for oriented volatile fatty acids (VFAs) refining in an open environment is a typical challenge due to the microbial diversiform and the process complexity. Especially for carbohydrate-rich waste (such as food waste), butyrate-type fermentation is usually dominant in a single-stage MMCs anaerobic process, while the production of odd-carbon VFAs (such as propionate) is difficult although it plays a significant role in chemicals industries. In this study, firstly, we gave a new perspective on the rationality of the oriented propionate production using MMCs with lactate as feedstock by conducting in-depth microbial informatics and reaction analysis. Secondly, we verified the feasibility of the "food waste-lactate-propionate" route to reverse the original butyrate-type fermentation situation and explore mechanisms for maintaining stability. In the first stage, a defined lactate fermentation microbiome was used to produce lactate-containing broth (80% of total chemical oxygen demand) at pH=4. In the second stage, an undomesticated undefined anaerobic microbiome was used to drive propionate production (45.26% ± 2.23% of total VFAs) under optimized conditions (C/N = 100:1-200:1 and pH=5.0). The low pH environment in the first stage enhanced the lactic acid bacteria to resist the invasion of non-functional flanking bacteria, making the community stable. In the second stage, the system maintained the propionate-type fermentation due to the absence of the ecological niche of the invasive lactic acid bacteria; The selection of propionate-producing specialists was a necessary but not sufficient condition for propionate-type fermentation. At last, this study proposed an enhanced engineering strategy framework for understanding elaborate MMCs fermentation.
Collapse
Affiliation(s)
- Menghan Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinning Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weiming Tu
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Juntao Xia
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yina Zou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang Gong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peng Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Hui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Huening KA, Groves JT, Wildenthal JA, Tabita FR, North JA. Utilization of 5'-deoxy-nucleosides as Growth Substrates by Extraintestinal Pathogenic E. coli via the Dihydroxyacetone Phosphate Shunt. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552779. [PMID: 37609188 PMCID: PMC10441430 DOI: 10.1101/2023.08.10.552779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
All organisms utilize S-adenosyl-l-methionine (SAM) as a key co-substrate for methylation of biological molecules, synthesis of polyamines, and radical SAM reactions. When these processes occur, 5'-deoxy-nucleosides are formed as byproducts such as S-adenosyl-l-homocysteine (SAH), 5'-methylthioadenosine (MTA), and 5'-deoxyadenosine (5dAdo). One of the most prevalent pathways found in bacteria for the metabolism of MTA and 5dAdo is the DHAP shunt, which converts these compounds into dihydroxyacetone phosphate (DHAP) and 2-methylthioacetaldehyde or acetaldehyde, respectively. Previous work has shown that the DHAP shunt can enable methionine synthesis from MTA or serve as an MTA and 5dAdo detoxification pathway. Here we show that in Extraintestinal Pathogenic E. coil (ExPEC), the DHAP shunt serves none of these roles in any significant capacity, but rather physiologically functions as an assimilation pathway for use of MTA and 5dAdo as growth substrates. This is further supported by the observation that when MTA is the substrate for the ExPEC DHAP shunt, the sulfur components is not significantly recycled back to methionine, but rather accumulates as 2-methylthioethanol, which is slowly oxidized non-enzymatically under aerobic conditions. While the pathway is active both aerobically and anaerobically, it only supports aerobic ExPEC growth, suggesting that it primarily functions in oxygenic extraintestinal environments like blood and urine versus the predominantly anoxic gut. This reveals a heretofore overlooked role of the DHAP shunt in carbon assimilation and energy metabolism from ubiquitous SAM utilization byproducts and suggests a similar role may occur in other pathogenic and non-pathogenic bacteria with the DHAP shunt.
Collapse
Affiliation(s)
| | - Joshua T. Groves
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| | - John A. Wildenthal
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| | - F. Robert Tabita
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| | - Justin A. North
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| |
Collapse
|
7
|
Valle A, de la Calle ME, Muhamadali H, Hollywood KA, Xu Y, Lloyd JR, Goodacre R, Cantero D, Bolivar J. Metabolomics of Escherichia coli for Disclosing Novel Metabolic Engineering Strategies for Enhancing Hydrogen and Ethanol Production. Int J Mol Sci 2023; 24:11619. [PMID: 37511377 PMCID: PMC10380867 DOI: 10.3390/ijms241411619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The biological production of hydrogen is an appealing approach to mitigating the environmental problems caused by the diminishing supply of fossil fuels and the need for greener energy. Escherichia coli is one of the best-characterized microorganisms capable of consuming glycerol-a waste product of the biodiesel industry-and producing H2 and ethanol. However, the natural capacity of E. coli to generate these compounds is insufficient for commercial or industrial purposes. Metabolic engineering allows for the rewiring of the carbon source towards H2 production, although the strategies for achieving this aim are difficult to foresee. In this work, we use metabolomics platforms through GC-MS and FT-IR techniques to detect metabolic bottlenecks in the engineered ΔldhΔgndΔfrdBC::kan (M4) and ΔldhΔgndΔfrdBCΔtdcE::kan (M5) E. coli strains, previously reported as improved H2 and ethanol producers. In the M5 strain, increased intracellular citrate and malate were detected by GC-MS. These metabolites can be redirected towards acetyl-CoA and formate by the overexpression of the citrate lyase (CIT) enzyme and by co-overexpressing the anaplerotic human phosphoenol pyruvate carboxykinase (hPEPCK) or malic (MaeA) enzymes using inducible promoter vectors. These strategies enhanced specific H2 production by up to 1.25- and 1.49-fold, respectively, compared to the reference strains. Other parameters, such as ethanol and H2 yields, were also enhanced. However, these vectors may provoke metabolic burden in anaerobic conditions. Therefore, alternative strategies for a tighter control of protein expression should be addressed in order to avoid undesirable effects in the metabolic network.
Collapse
Affiliation(s)
- Antonio Valle
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Campus Universitario de Puerto Real, University of Cadiz, 11510 Puerto Real, Spain
- Institute of Viticulture and Agri-Food Research (IVAGRO)-International Campus of Excellence (ceiA3), University of Cadiz, 11510 Puerto Real, Spain
| | - Maria Elena de la Calle
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Campus Universitario de Puerto Real, University of Cadiz, 11510 Puerto Real, Spain
- Department of Chemical Engineering and Food Technology, Campus Universitario de Puerto Real, University of Cadiz, 11510 Puerto Real, Spain
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Katherine A Hollywood
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Department of Chemistry, Faculty of Science and Engineering, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Yun Xu
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Jonathan R Lloyd
- Williamson Research Centre, School of Earth & Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Domingo Cantero
- Institute of Viticulture and Agri-Food Research (IVAGRO)-International Campus of Excellence (ceiA3), University of Cadiz, 11510 Puerto Real, Spain
- Department of Chemical Engineering and Food Technology, Campus Universitario de Puerto Real, University of Cadiz, 11510 Puerto Real, Spain
| | - Jorge Bolivar
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Campus Universitario de Puerto Real, University of Cadiz, 11510 Puerto Real, Spain
- Institute of Biomolecules (INBIO), University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
8
|
Hirakawa H, Takita A, Sato Y, Hiramoto S, Hashimoto Y, Ohshima N, Minamishima YA, Murakami M, Tomita H. Inactivation of ackA and pta Genes Reduces GlpT Expression and Susceptibility to Fosfomycin in Escherichia coli. Microbiol Spectr 2023; 11:e0506922. [PMID: 37199605 PMCID: PMC10269713 DOI: 10.1128/spectrum.05069-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/29/2023] [Indexed: 05/19/2023] Open
Abstract
Fosfomycin is used to treat a variety of bacterial infections, including urinary tract infections caused by Escherichia coli. In recent years, quinolone-resistant and extended-spectrum β-lactamase (ESBL)-producing bacteria have been increasing. Because fosfomycin is effective against many of these drug-resistant bacteria, the clinical importance of fosfomycin is increasing. Against this background, information on the mechanisms of resistance and the antimicrobial activity of this drug is desired to enhance the usefulness of fosfomycin therapy. In this study, we aimed to explore novel factors affecting the antimicrobial activity of fosfomycin. Here, we found that ackA and pta contribute to fosfomycin activity against E. coli. ackA and pta mutant E. coli had reduced fosfomycin uptake capacity and became less sensitive to this drug. In addition, ackA and pta mutants had decreased expression of glpT that encodes one of the fosfomycin transporters. Expression of glpT is enhanced by a nucleoid-associated protein, Fis. We found that mutations in ackA and pta also caused a decrease in fis expression. Thus, we interpret the decrease in glpT expression in ackA and pta defective strains to be due to a decrease in Fis levels in these mutants. Furthermore, ackA and pta are conserved in multidrug-resistant E. coli isolated from patients with pyelonephritis and enterohemorrhagic E. coli, and deletion of ackA and pta from these strains resulted in decreased susceptibility to fosfomycin. These results suggest that ackA and pta in E. coli contribute to fosfomycin activity and that mutation of these genes may pose a risk of reducing the effect of fosfomycin. IMPORTANCE The spread of drug-resistant bacteria is a major threat in the field of medicine. Although fosfomycin is an old type of antimicrobial agent, it has recently come back into the limelight because of its effectiveness against many drug-resistant bacteria, including quinolone-resistant and ESBL-producing bacteria. Since fosfomycin is taken up into the bacteria by GlpT and UhpT transporters, its antimicrobial activity fluctuates with changes in GlpT and UhpT function and expression. In this study, we found that inactivation of the ackA and pta genes responsible for the acetic acid metabolism system reduced GlpT expression and fosfomycin activity. In other words, this study shows a new genetic mutation that leads to fosfomycin resistance in bacteria. The results of this study will lead to further understanding of the mechanism of fosfomycin resistance and the creation of new ideas to enhance fosfomycin therapy.
Collapse
Affiliation(s)
- Hidetada Hirakawa
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Ayako Takita
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yumika Sato
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Suguru Hiramoto
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yusuke Hashimoto
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Noriyasu Ohshima
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yoji A. Minamishima
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
- Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
9
|
Ceron-Chafla P, de Vrieze J, Rabaey K, van Lier JB, Lindeboom REF. Steering the product spectrum in high-pressure anaerobic processes: CO 2 partial pressure as a novel tool in biorefinery concepts. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:27. [PMID: 36803622 PMCID: PMC9938588 DOI: 10.1186/s13068-023-02262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Elevated CO2 partial pressure (pCO2) has been proposed as a potential steering parameter for selective carboxylate production in mixed culture fermentation. It is anticipated that intermediate product spectrum and production rates, as well as changes in the microbial community, are (in)directly influenced by elevated pCO2. However, it remains unclear how pCO2 interacts with other operational conditions, namely substrate specificity, substrate-to-biomass (S/X) ratio and the presence of an additional electron donor, and what effect pCO2 has on the exact composition of fermentation products. Here, we investigated possible steering effects of elevated pCO2 combined with (1) mixed substrate (glycerol/glucose) provision; (2) subsequent increments in substrate concentration to increase the S/X ratio; and (3) formate as an additional electron donor. RESULTS Metabolite predominance, e.g., propionate vs. butyrate/acetate, and cell density, depended on interaction effects between pCO2-S/X ratio and pCO2-formate. Individual substrate consumption rates were negatively impacted by the interaction effect between pCO2-S/X ratio and were not re-established after lowering the S/X ratio and adding formate. The product spectrum was influenced by the microbial community composition, which in turn, was modified by substrate type and the interaction effect between pCO2-formate. High propionate and butyrate levels strongly correlated with Negativicutes and Clostridia predominance, respectively. After subsequent pressurized fermentation phases, the interaction effect between pCO2-formate enabled a shift from propionate towards succinate production when mixed substrate was provided. CONCLUSIONS Overall, interaction effects between elevated pCO2, substrate specificity, high S/X ratio and availability of reducing equivalents from formate, rather than an isolated pCO2 effect, modified the proportionality of propionate, butyrate and acetate in pressurized mixed substrate fermentations at the expense of reduced consumption rates and increased lag-phases. The interaction effect between elevated pCO2 and formate was beneficial for succinate production and biomass growth with a glycerol/glucose mixture as the substrate. The positive effect may be attributed to the availability of extra reducing equivalents, likely enhanced carbon fixating activity and hindered propionate conversion due to increased concentration of undissociated carboxylic acids.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands.
| | - Jo de Vrieze
- grid.5342.00000 0001 2069 7798Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Korneel Rabaey
- grid.5342.00000 0001 2069 7798Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium ,grid.510907.aCenter for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Coupure Links 653, 9000 Ghent, Belgium
| | - Jules B. van Lier
- grid.5292.c0000 0001 2097 4740Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Ralph E. F. Lindeboom
- grid.5292.c0000 0001 2097 4740Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
10
|
Schubert C, Unden G. Fumarate, a central electron acceptor for Enterobacteriaceae beyond fumarate respiration and energy conservation. Adv Microb Physiol 2023; 82:267-299. [PMID: 36948656 DOI: 10.1016/bs.ampbs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C4-dicarboxylates (C4-DCs) such as fumarate, l-malate and l-aspartate are key substrates for Enterobacteria such as Escherichia coli or Salmonella typhimurium during anaerobic growth. In general, C4-DCs are oxidants during biosynthesis, e.g., of pyrimidine or heme, acceptors for redox balancing, a high-quality nitrogen source (l-aspartate) and electron acceptor for fumarate respiration. Fumarate reduction is required for efficient colonization of the murine intestine, even though the colon contains only small amounts of C4-DCs. However, fumarate can be produced endogenously by central metabolism, allowing autonomous production of an electron acceptor for biosynthesis and redox balancing. Bacteria possess a complex set of transporters for the uptake (DctA), antiport (DcuA, DcuB, TtdT) and excretion (DcuC) of C4-DCs. DctA and DcuB exert regulatory functions and link transport to metabolic control through interaction with regulatory proteins. The sensor kinase DcuS of the C4-DC two-component system DcuS-DcuR forms complexes with DctA (aerobic) or DcuB (anaerobic), representing the functional state of the sensor. Moreover, EIIAGlc from the glucose phospho-transferase system binds to DctA and presumably inhibits C4-DC uptake. Overall, the function of fumarate as an oxidant in biosynthesis and redox balancing explains the pivotal role of fumarate reductase for intestinal colonization, while the role of fumarate in energy conservation (fumarate respiration) is of minor importance.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Biotechnology; Johannes Gutenberg-University, Mainz, Germany; Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Biotechnology; Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
11
|
Alimajstorovic Z, Mollan SP, Grech O, Mitchell JL, Yiangou A, Thaller M, Lyons H, Sassani M, Seneviratne S, Hancox T, Jankevics A, Najdekr L, Dunn W, Sinclair AJ. Dysregulation of Amino Acid, Lipid, and Acylpyruvate Metabolism in Idiopathic Intracranial Hypertension: A Non-targeted Case Control and Longitudinal Metabolomic Study. J Proteome Res 2022; 22:1127-1137. [PMID: 36534069 PMCID: PMC10088035 DOI: 10.1021/acs.jproteome.2c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Idiopathic intracranial hypertension (IIH) is characterized by increased intracranial pressure occurring predominantly in women with obesity. The pathogenesis is not understood. We have applied untargeted metabolomic analysis using ultrahigh-performance liquid chromatography-mass spectrometry to characterize the cerebrospinal fluid (CSF) and serum in IIH compared to control subjects. Methods and findings: Samples were collected from IIH patients (n = 66) with active disease at baseline and again at 12 months following therapeutic weight loss. Control samples were collected from gender- and weight-matched healthy controls (n = 20). We identified annotated metabolites in CSF, formylpyruvate and maleylpyruvate/fumarylpyruvate, which were present at lower concentrations in IIH compared to control subjects and returned to values observed in controls following weight loss. These metabolites showed the opposite trend in serum at baseline. Multiple amino acid metabolic pathways and lipid classes were perturbed in serum and CSF in IIH alone. Serum lipid metabolite pathways were significantly increased in IIH. Conclusions: We observed a number of differential metabolic pathways related to amino acid, lipid, and acylpyruvate metabolism, in IIH compared to controls. These pathways were associated with clinical measures and normalized with disease remission. Perturbation of these metabolic pathways provides initial understanding of disease dysregulation in IIH.
Collapse
Affiliation(s)
- Zerin Alimajstorovic
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Susan P. Mollan
- Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham B15 2WB, U.K
| | - Olivia Grech
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - James L. Mitchell
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Andreas Yiangou
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Mark Thaller
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Hannah Lyons
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Matilde Sassani
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Senali Seneviratne
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Thomas Hancox
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andris Jankevics
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
- Phenome Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K
| | - Lukáš Najdekr
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
- Phenome Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K
- Institute of Molecular and Translational Medicine, Palacký University Olomouc, Hněvotínská 5, Olomouc 77900, Czech Republic
| | - Warwick Dunn
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
- Phenome Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Alexandra J. Sinclair
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, U.K
| |
Collapse
|
12
|
Steinhilper R, Höff G, Heider J, Murphy BJ. Structure of the membrane-bound formate hydrogenlyase complex from Escherichia coli. Nat Commun 2022; 13:5395. [PMID: 36104349 PMCID: PMC9474812 DOI: 10.1038/s41467-022-32831-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 01/30/2023] Open
Abstract
The prototypical hydrogen-producing enzyme, the membrane-bound formate hydrogenlyase (FHL) complex from Escherichia coli, links formate oxidation at a molybdopterin-containing formate dehydrogenase to proton reduction at a [NiFe] hydrogenase. It is of intense interest due to its ability to efficiently produce H2 during fermentation, its reversibility, allowing H2-dependent CO2 reduction, and its evolutionary link to respiratory complex I. FHL has been studied for over a century, but its atomic structure remains unknown. Here we report cryo-EM structures of FHL in its aerobically and anaerobically isolated forms at resolutions reaching 2.6 Å. This includes well-resolved density for conserved loops linking the soluble and membrane arms believed to be essential in coupling enzymatic turnover to ion translocation across the membrane in the complex I superfamily. We evaluate possible structural determinants of the bias toward hydrogen production over its oxidation and describe an unpredicted metal-binding site near the interface of FdhF and HycF subunits that may play a role in redox-dependent regulation of FdhF interaction with the complex. New cryo-EM structures of the formate hydrogenlyase complex from the model bacterium E. coli clarify how electrons and protons move through the complex and are combined to make H2 gas. The complex shows important similarities and differences to related bioenergetic complexes across the tree of life.
Collapse
|
13
|
Schubert C, Unden G. C 4-Dicarboxylates as Growth Substrates and Signaling Molecules for Commensal and Pathogenic Enteric Bacteria in Mammalian Intestine. J Bacteriol 2022; 204:e0054521. [PMID: 34978458 PMCID: PMC9017328 DOI: 10.1128/jb.00545-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C4-dicarboxylates (C4-DC) l-aspartate and l-malate have been identified as playing an important role in the colonization of mammalian intestine by enteric bacteria, such as Escherichia coli and Salmonella enterica serovar Typhimurium, and succinate as a signaling molecule for host-enteric bacterium interaction. Thus, endogenous and exogenous fumarate respiration and related functions are required for efficient initial growth of the bacteria. l-Aspartate represents a major substrate for fumarate respiration in the intestine and a high-quality substrate for nitrogen assimilation. During nitrogen assimilation, DcuA catalyzes an l-aspartate/fumarate antiport and serves as a nitrogen shuttle for the net uptake of ammonium only, whereas DcuB acts as a redox shuttle that catalyzes the l-malate/succinate antiport during fumarate respiration. The C4-DC two-component system DcuS-DcuR is active in the intestine and responds to intestinal C4-DC levels. Moreover, in macrophages and in mice, succinate is a signal that promotes virulence and survival of S. Typhimurium and pathogenic E. coli. On the other hand, intestinal succinate is an important signaling molecule for the host and activates response and protective programs. Therefore, C4-DCs play a major role in supporting colonization of enteric bacteria and as signaling molecules for the adaptation of host physiology.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg University, Mainz, Germany
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
14
|
Bretschneider L, Heuschkel I, Bühler K, Karande R, Bühler B. Rational orthologous pathway and biochemical process engineering for adipic acid production using Pseudomonas taiwanensis VLB120. Metab Eng 2022; 70:206-217. [DOI: 10.1016/j.ymben.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
|
15
|
Integrated metabolic and microbial analysis reveals host-microbial interactions in IgE-mediated childhood asthma. Sci Rep 2021; 11:23407. [PMID: 34862469 PMCID: PMC8642522 DOI: 10.1038/s41598-021-02925-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
A metabolomics-based approach to address the molecular mechanism of childhood asthma with immunoglobulin E (IgE) or allergen sensitization related to microbiome in the airways remains lacking. Fifty-three children with lowly sensitized non-atopic asthma (n = 15), highly sensitized atopic asthma (n = 13), and healthy controls (n = 25) were enrolled. Blood metabolomic analysis with 1H-nuclear magnetic resonance (NMR) spectroscopy and airway microbiome composition analysis by bacterial 16S rRNA sequencing were performed. An integrative analysis of their associations with allergen-specific IgE levels for lowly and highly sensitized asthma was also assessed. Four metabolites including tyrosine, isovalerate, glycine, and histidine were uniquely associated with lowly sensitized asthma, whereas one metabolite, acetic acid, was strongly associated with highly sensitized asthma. Metabolites associated with highly sensitized asthma (valine, isobutyric acid, and acetic acid) and lowly sensitized asthma (isovalerate, tyrosine, and histidine) were strongly correlated each other (P < 0.01). Highly sensitized asthma associated metabolites were mainly enriched in pyruvate and acetyl-CoA metabolisms. Metabolites associated with highly sensitized atopic asthma were mostly correlated with microbiota in the airways. Acetic acid, a short-chain fatty acid (SCFA), was negatively correlated with the genus Atopobium (P < 0.01), but positively correlated with the genus Fusobacterium (P < 0.05). In conclusion, metabolomics reveals microbes-related metabolic pathways associated with IgE responses to house dust mite allergens in childhood asthma. A strong correlation of metabolites related to highly sensitized atopic asthma with airway microbiota provides linkages between the host-microbial interactions and asthma endotypes.
Collapse
|
16
|
Clomburg JM, Cintolesi A, Gonzalez R. In silico and in vivo analyses reveal key metabolic pathways enabling the fermentative utilization of glycerol in Escherichia coli. Microb Biotechnol 2021; 15:289-304. [PMID: 34699695 PMCID: PMC8719807 DOI: 10.1111/1751-7915.13938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 09/16/2021] [Indexed: 11/29/2022] Open
Abstract
Most microorganisms can metabolize glycerol when external electron acceptors are available (i.e. under respiratory conditions). However, few can do so under fermentative conditions owing to the unique redox constraints imposed by the high degree of reduction of glycerol. Here, we utilize in silico analysis combined with in vivo genetic and biochemical approaches to investigate the fermentative metabolism of glycerol in Escherichia coli. We found that E. coli can achieve redox balance at alkaline pH by reducing protons to H2 , complementing the previously reported role of 1,2-propanediol synthesis under acidic conditions. In this new redox balancing mode, H2 evolution is coupled to a respiratory glycerol dissimilation pathway composed of glycerol kinase (GK) and glycerol-3-phosphate (G3P) dehydrogenase (G3PDH). GK activates glycerol to G3P, which is further oxidized by G3PDH to generate reduced quinones that drive hydrogenase-dependent H2 evolution. Despite the importance of the GK-G3PDH route under alkaline conditions, we found that the NADH-generating glycerol dissimilation pathway via glycerol dehydrogenase (GldA) and phosphoenolpyruvate (PEP)-dependent dihydroxyacetone kinase (DHAK) was essential under both alkaline and acidic conditions. We assessed system-wide metabolic impacts of the constraints imposed by the PEP dependency of the GldA-DHAK route. This included the identification of enzymes and pathways that were not previously known to be involved in glycerol metabolisms such as PEP carboxykinase, PEP synthetase, multiple fructose-1,6-bisphosphatases and the fructose phosphate bypass.
Collapse
Affiliation(s)
- James M Clomburg
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.,Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Angela Cintolesi
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.,Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
17
|
An Escherichia coli FdrA Variant Derived from Syntrophic Coculture with a Methanogen Increases Succinate Production Due to Changes in Allantoin Degradation. mSphere 2021; 6:e0065421. [PMID: 34494882 PMCID: PMC8550087 DOI: 10.1128/msphere.00654-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild-type Escherichia coli was adapted to syntrophic growth with Methanobacterium formicicum for glycerol fermentation over 44 weeks. Succinate production by E. coli started to increase in the early stages of syntrophic growth. Genetic analysis of the cultured E. coli population by pooled sequencing at eight time points suggests that (i) rapid evolution occurred through repeated emergence of mutators that introduced a large number of nucleotide variants and (ii) many mutators increased to high frequencies but remained polymorphic throughout the continuous cultivation. The evolved E. coli populations exhibited gains both in fitness and succinate production, but only for growth under glycerol fermentation with M. formicicum (the condition for this laboratory evolution) and not under other growth conditions. The mutant alleles of the 69 single nucleotide polymorphisms (SNPs) identified in the adapted E. coli populations were constructed individually in the ancestral wild-type E. coli. We analyzed the phenotypic changes caused by 84 variants, including 15 nonsense variants, and found that FdrAD296Y was the most significant variant leading to increased succinate production. Transcription of fdrA was induced under anaerobic allantoin degradation conditions, and FdrA was shown to play a crucial role in oxamate production. The FdrAD296Y variant increased glyoxylate conversion to malate by accelerating oxamate production, which promotes carbon flow through the C4 branch, leading to increased succinate production. IMPORTANCE Here, we demonstrate the ability of E. coli to perform glycerol fermentation in coculture with the methanogen M. formicicum to produce succinate. We found that the production of succinate by E. coli significantly increased during successive cocultivation. Genomic DNA sequencing, evaluation of relative fitness, and construction of SNPs were performed, from which FdrAD296Y was identified as the most significant variant to enable increased succinate production by E. coli. The function of FdrA is uncertain. In this study, experiments with gene expression assays and metabolic analysis showed for the first time that FdrA could be the “orphan enzyme” oxamate:carbamoyltransferase in anaerobic allantoin degradation. Furthermore, we demonstrate that the anaerobic allantoin degradation pathway is linked to succinate production via the glyoxylate pathway during glycerol fermentation.
Collapse
|
18
|
Metcalfe GD, Smith TW, Hippler M. On-line analysis and in situ pH monitoring of mixed acid fermentation by Escherichia coli using combined FTIR and Raman techniques. Anal Bioanal Chem 2020; 412:7307-7319. [PMID: 32794006 PMCID: PMC7497492 DOI: 10.1007/s00216-020-02865-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 11/01/2022]
Abstract
We introduce an experimental setup allowing continuous monitoring of bacterial fermentation processes by simultaneous optical density (OD) measurements, long-path FTIR headspace monitoring of CO2, acetaldehyde and ethanol, and liquid Raman spectroscopy of acetate, formate, and phosphate anions, without sampling. We discuss which spectral features are best suited for detection, and how to obtain partial pressures and concentrations by integrations and least squares fitting of spectral features. Noise equivalent detection limits are about 2.6 mM for acetate and 3.6 mM for formate at 5 min integration time, improving to 0.75 mM for acetate and 1.0 mM for formate at 1 h integration. The analytical range extends to at least 1 M with a standard deviation of percentage error of about 8%. The measurement of the anions of the phosphate buffer allows the spectroscopic, in situ determination of the pH of the bacterial suspension via a modified Henderson-Hasselbalch equation in the 6-8 pH range with an accuracy better than 0.1. The 4 m White cell FTIR measurements provide noise equivalent detection limits of 0.21 μbar for acetaldehyde and 0.26 μbar for ethanol in the gas phase, corresponding to 3.2 μM acetaldehyde and 22 μM ethanol in solution, using Henry's law. The analytical dynamic range exceeds 1 mbar ethanol corresponding to 85 mM in solution. As an application example, the mixed acid fermentation of Escherichia coli is studied. The production of CO2, ethanol, acetaldehyde, acids such as formate and acetate, and the changes in pH are discussed in the context of the mixed acid fermentation pathways. Formate decomposition into CO2 and H2 is found to be governed by a zeroth-order kinetic rate law, showing that adding exogenous formate to a bioreactor with E. coli is expected to have no beneficial effect on the rate of formate decomposition and biohydrogen production.
Collapse
Affiliation(s)
- George D Metcalfe
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Thomas W Smith
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
- Water and Environmental Engineering Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Michael Hippler
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
19
|
Metabolic Feedback Inhibition Influences Metabolite Secretion by the Human Gut Symbiont Bacteroides thetaiotaomicron. mSystems 2020; 5:5/5/e00252-20. [PMID: 32873608 PMCID: PMC7470985 DOI: 10.1128/msystems.00252-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteroides is a highly abundant taxon in the human gut, and Bacteroides thetaiotaomicron (B. theta) is a ubiquitous human symbiont that colonizes the host early in development and persists throughout its life span. The phenotypic plasticity of keystone organisms such as B. theta is important to understand in order to predict phenotype(s) and metabolic interactions under changing nutrient conditions such as those that occur in complex gut communities. Our study shows B. theta prioritizes energy conservation and suppresses secretion of “overflow metabolites” such as organic acids and amino acids when concentrations of acetate are high. Secreted metabolites, especially amino acids, can be a source of nutrients or signals for the host or other microbes in the community. Our study suggests that when metabolically stressed by acetate, B. theta stops sharing with its ecological partners. Microbial metabolism and trophic interactions between microbes give rise to complex multispecies communities in microbe-host systems. Bacteroides thetaiotaomicron (B. theta) is a human gut symbiont thought to play an important role in maintaining host health. Untargeted nuclear magnetic resonance metabolomics revealed B. theta secretes specific organic acids and amino acids in defined minimal medium. Physiological concentrations of acetate and formate found in the human intestinal tract were shown to cause dose-dependent changes in secretion of metabolites known to play roles in host nutrition and pathogenesis. While secretion fluxes varied, biomass yield was unchanged, suggesting feedback inhibition does not affect metabolic bioenergetics but instead redirects carbon and energy to CO2 and H2. Flux balance analysis modeling showed increased flux through CO2-producing reactions under glucose-limiting growth conditions. The metabolic dynamics observed for B. theta, a keystone symbiont organism, underscores the need for metabolic modeling to complement genomic predictions of microbial metabolism to infer mechanisms of microbe-microbe and microbe-host interactions. IMPORTANCEBacteroides is a highly abundant taxon in the human gut, and Bacteroides thetaiotaomicron (B. theta) is a ubiquitous human symbiont that colonizes the host early in development and persists throughout its life span. The phenotypic plasticity of keystone organisms such as B. theta is important to understand in order to predict phenotype(s) and metabolic interactions under changing nutrient conditions such as those that occur in complex gut communities. Our study shows B. theta prioritizes energy conservation and suppresses secretion of “overflow metabolites” such as organic acids and amino acids when concentrations of acetate are high. Secreted metabolites, especially amino acids, can be a source of nutrients or signals for the host or other microbes in the community. Our study suggests that when metabolically stressed by acetate, B. theta stops sharing with its ecological partners.
Collapse
|
20
|
Schütze A, Benndorf D, Püttker S, Kohrs F, Bettenbrock K. The Impact of ackA, pta, and ackA-pta Mutations on Growth, Gene Expression and Protein Acetylation in Escherichia coli K-12. Front Microbiol 2020; 11:233. [PMID: 32153530 PMCID: PMC7047895 DOI: 10.3389/fmicb.2020.00233] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/31/2020] [Indexed: 01/06/2023] Open
Abstract
Acetate is a characteristic by-product of Escherichia coli K-12 growing in batch cultures with glucose, both under aerobic as well as anaerobic conditions. While the reason underlying aerobic acetate production is still under discussion, during anaerobic growth acetate production is important for ATP generation by substrate level phosphorylation. Under both conditions, acetate is produced by a pathway consisting of the enzyme phosphate acetyltransferase (Pta) producing acetyl-phosphate from acetyl-coenzyme A, and of the enzyme acetate kinase (AckA) producing acetate from acetyl-phosphate, a reaction that is coupled to the production of ATP. Mutants in the AckA-Pta pathway differ from each other in the potential to produce and accumulate acetyl-phosphate. In the publication at hand, we investigated different mutants in the acetate pathway, both under aerobic as well as anaerobic conditions. While under aerobic conditions only small changes in growth rate were observed, all acetate mutants showed severe reduction in growth rate and changes in the by-product pattern during anaerobic growth. The AckA- mutant showed the most severe growth defect. The glucose uptake rate and the ATP concentration were strongly reduced in this strain. This mutant exhibited also changes in gene expression. In this strain, the atoDAEB operon was significantly upregulated under anaerobic conditions hinting to the production of acetoacetate. During anaerobic growth, protein acetylation increased significantly in the ackA mutant. Acetylation of several enzymes of glycolysis and central metabolism, of aspartate carbamoyl transferase, methionine synthase, catalase and of proteins involved in translation was increased. Supplementation of methionine and uracil eliminated the additional growth defect of the ackA mutant. The data show that anaerobic, fermentative growth of mutants in the AckA-Pta pathway is reduced but still possible. Growth reduction can be explained by the lack of an important ATP generating pathway of mixed acid fermentation. An ackA deletion mutant is more severely impaired than pta or ackA-pta deletion mutants. This is most probably due to the production of acetyl-P in the ackA mutant, leading to increased protein acetylation.
Collapse
Affiliation(s)
- Andrea Schütze
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| | - Sebastian Püttker
- Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| | - Fabian Kohrs
- Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| | - Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
21
|
Formate-removing inoculum dominated by Methanobacterium congolense supports succinate production from crude glycerol fermentation. J Ind Microbiol Biotechnol 2019; 46:625-634. [PMID: 30783892 DOI: 10.1007/s10295-019-02154-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
Abstract
We developed a formate-removing methanogenic inoculum (FRI) to facilitate succinate production from crude glycerol by Escherichia coli. FRI converted formate to methane, thereby enabling glycerol fermentation without additional electron acceptors under neutral pH. FRI was selectively enriched from sludge from the anaerobic digester of the Seonam sewage treatment plant (Seoul); this process was assessed via Illumina sequencing and scanning electron microscopy imaging. Methanobacterium congolense species occupied only 0.3% of the archaea community in the sludge and was enriched to 99.5% in complete FRI, wherein succinate-degrading bacteria were successfully eliminated. Co-culture with FRI improved glycerol fermentation and yielded 7.3 mM succinate from 28.7 mM crude glycerol, whereby FRI completely converted formate into methane. This study is the first to demonstrate methane production by M. congolense species, using formate. M. congolense-dominated FRI can serve as a renewable facilitator of waste feedstock fermentation and enable the production of commercially important compounds.
Collapse
|
22
|
De Mets F, Van Melderen L, Gottesman S. Regulation of acetate metabolism and coordination with the TCA cycle via a processed small RNA. Proc Natl Acad Sci U S A 2019; 116:1043-1052. [PMID: 30591570 PMCID: PMC6338826 DOI: 10.1073/pnas.1815288116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacterial regulatory small RNAs act as crucial regulators in central carbon metabolism by modulating translation initiation and degradation of target mRNAs in metabolic pathways. Here, we demonstrate that a noncoding small RNA, SdhX, is produced by RNase E-dependent processing from the 3'UTR of the sdhCDAB-sucABCD operon, encoding enzymes of the tricarboxylic acid (TCA) cycle. In Escherichia coli, SdhX negatively regulates ackA, which encodes an enzyme critical for degradation of the signaling molecule acetyl phosphate, while the downstream pta gene, encoding the enzyme critical for acetyl phosphate synthesis, is not significantly affected. This discoordinate regulation of pta and ackA increases the accumulation of acetyl phosphate when SdhX is expressed. Mutations in sdhX that abolish regulation of ackA lead to more acetate in the medium (more overflow metabolism), as well as a strong growth defect in the presence of acetate as sole carbon source, when the AckA-Pta pathway runs in reverse. SdhX overproduction confers resistance to hydroxyurea, via regulation of ackA SdhX abundance is tightly coupled to the transcription signals of TCA cycle genes but escapes all known posttranscriptional regulation. Therefore, SdhX expression directly correlates with transcriptional input to the TCA cycle, providing an effective mechanism for the cell to link the TCA cycle with acetate metabolism pathways.
Collapse
Affiliation(s)
- François De Mets
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, B-6041 Gosselies, Belgium
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-5430
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, B-6041 Gosselies, Belgium
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-5430
| |
Collapse
|
23
|
Kyselova L, Kreitmayer D, Kremling A, Bettenbrock K. Type and capacity of glucose transport influences succinate yield in two-stage cultivations. Microb Cell Fact 2018; 17:132. [PMID: 30153840 PMCID: PMC6112142 DOI: 10.1186/s12934-018-0980-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/22/2018] [Indexed: 12/03/2022] Open
Abstract
Background Glucose is the main carbon source of E. coli and a typical substrate in production processes. The main glucose uptake system is the glucose specific phosphotransferase system (Glc-PTS). The PTS couples glucose uptake with its phosphorylation. This is achieved by the concomitant conversion of phosphoenolpyruvate (PEP) to pyruvate. The Glc-PTS is hence unfavorable for the production of succinate as this product is derived from PEP. Results We studied, in a systematic manner, the effect of knocking out the Glc-PTS and of replacing it with the glucose facilitator (Glf) of Zymomonas mobilis on succinate yield and productivity. For this study a set of strains derived from MG1655, carrying deletions of ackA-pta, adhE and ldhA that prevent the synthesis of competing fermentation products, were constructed and tested in two-stage cultivations. The data show that inactivation of the Glc-PTS achieved a considerable increase in succinate yield and productivity. On the other hand, aerobic growth of this strain on glucose was strongly decreased. Expression of the alternative glucose transporter, Glf, in this strain enhanced aerobic growth but productivity and yield under anaerobic conditions were slightly decreased. This decrease in succinate yield was accompanied by pyruvate production. Yield could be increased in both Glc-PTS mutants by overexpressing phosphoenolpyruvate carboxykinase (Pck). Productivity on the other hand, was decreased in the strain without alternative glucose transporter but strongly increased in the strain expressing Glf. The experiments were complemented by flux balance analysis in order to check the observed yields against the maximal theoretical yields. Furthermore, the phosphorylation state of EIIAGlc was determined. The data indicate that the ratio of PEP to pyruvate is correlating with pyruvate excretion. This ratio is affected by the PTS reaction as well as by further reactions at the PEP/pyruvate node. Conclusions The results show that for optimization of succinate yield and productivity it is not sufficient to knock out or introduce single reactions. Rather, balancing of the fluxes of central metabolism most important at the PEP/pyruvate node is important. Electronic supplementary material The online version of this article (10.1186/s12934-018-0980-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Kyselova
- Team Experimental Systems Biology, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr.1, 39106, Magdeburg, Germany
| | - D Kreitmayer
- Systembiotechnologie, Technische Universität München, Bolzmannstr. 15, 85748, Garching, Germany
| | - A Kremling
- Systembiotechnologie, Technische Universität München, Bolzmannstr. 15, 85748, Garching, Germany
| | - K Bettenbrock
- Team Experimental Systems Biology, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr.1, 39106, Magdeburg, Germany.
| |
Collapse
|
24
|
Metabolic Reprogramming of Vibrio cholerae Impaired in Respiratory NADH Oxidation Is Accompanied by Increased Copper Sensitivity. J Bacteriol 2018; 200:JB.00761-17. [PMID: 29735761 DOI: 10.1128/jb.00761-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
The electrogenic, sodium ion-translocating NADH:quinone oxidoreductase (NQR) from Vibrio cholerae is frequent in pathogenic bacteria and a potential target for antibiotics. NQR couples the oxidation of NADH to the formation of a sodium motive force (SMF) and therefore drives important processes, such as flagellar rotation, substrate uptake, and energy-dissipating cation-proton antiport. We performed a quantitative proteome analysis of V. cholerae O395N1 compared to its variant lacking the NQR using minimal medium with glucose as the carbon source. We found 84 proteins (regulation factor of ≥2) to be changed in abundance. The loss of NQR resulted in a decrease in the abundance of enzymes of the oxidative branch of the tricarboxylic acid (TCA) cycle and an increase in abundance of virulence factors AcfC and TcpA. Most unexpected, the copper resistance proteins CopA, CopG, and CueR were decreased in the nqr deletion strain. As a consequence, the mutant exhibited diminished resistance to copper compared to the reference strain, as confirmed in growth studies using either glucose or mixed amino acids as carbon sources. We propose that the observed adaptations of the nqr deletion strain represent a coordinated response which counteracts a drop in transmembrane voltage that challenges V. cholerae in its different habitats.IMPORTANCE The importance of the central metabolism for bacterial virulence has raised interest in studying catabolic enzymes not present in the host, such as NQR, as putative targets for antibiotics. Vibrio cholerae lacking the NQR, which is studied here, is a model to estimate the impact of specific NQR inhibitors on the phenotype of a pathogen. Our comparative proteomic study provides a framework to evaluate the chances of success of compounds directed against NQR with respect to their bacteriostatic or bactericidal action.
Collapse
|
25
|
A synthetic pathway for the production of 2-hydroxyisovaleric acid in Escherichia coli. ACTA ACUST UNITED AC 2018; 45:579-588. [DOI: 10.1007/s10295-018-2005-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022]
Abstract
Abstract
Synthetic biology, encompassing the design and construction of novel artificial biological pathways and organisms and the redesign of existing natural biological systems, is rapidly expanding the number of applications for which biological systems can play an integral role. In the context of chemical production, the combination of synthetic biology and metabolic engineering approaches continues to unlock the ability to biologically produce novel and complex molecules from a variety of feedstocks. Here, we utilize a synthetic approach to design and build a pathway to produce 2-hydroxyisovaleric acid in Escherichia coli and demonstrate how pathway design can be supplemented with metabolic engineering approaches to improve pathway performance from various carbon sources. Drawing inspiration from the native pathway for the synthesis of the 5-carbon amino acid l-valine, we exploit the decarboxylative condensation of two molecules of pyruvate, with subsequent reduction and dehydration reactions enabling the synthesis of 2-hydroxyisovaleric acid. Key to our approach was the utilization of an acetolactate synthase which minimized kinetic and regulatory constraints to ensure sufficient flux entering the pathway. Critical host modifications enabling maximum product synthesis from either glycerol or glucose were then examined, with the varying degree of reduction of these carbons sources playing a major role in the required host background. Through these engineering efforts, the designed pathway produced 6.2 g/L 2-hydroxyisovaleric acid from glycerol at 58% of maximum theoretical yield and 7.8 g/L 2-hydroxyisovaleric acid from glucose at 73% of maximum theoretical yield. These results demonstrate how the combination of synthetic biology and metabolic engineering approaches can facilitate bio-based chemical production.
Collapse
|
26
|
Nitzschke A, Bettenbrock K. All three quinone species play distinct roles in ensuring optimal growth under aerobic and fermentative conditions in E. coli K12. PLoS One 2018; 13:e0194699. [PMID: 29614086 PMCID: PMC5882134 DOI: 10.1371/journal.pone.0194699] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/07/2018] [Indexed: 01/08/2023] Open
Abstract
The electron transport chain of E. coli contains three different quinone species, ubiquinone (UQ), menaquinone (MK) and demethylmenaquinone (DMK). The content and ratio of the different quinone species vary depending on the external conditions. To study the function of the different quinone species in more detail, strains with deletions preventing UQ synthesis, as well as MK and/or DMK synthesis were cultured under aerobic and anaerobic conditions. The strains were characterized with respect to growth and product synthesis. As quinones are also involved in the control of ArcB/A activity, we analyzed the phosphorylation state of the response regulator as well as the expression of selected genes.The data show reduced aerobic growth coupled to lactate production in the mutants defective in ubiquinone synthesis. This confirms the current assumption that ubiquinone is the main quinone under aerobic growth conditions. In the UQ mutant strains the amount of MK and DMK is significantly elevated. The strain synthesizing only DMK is less affected in growth than the strain synthesizing MK as well as DMK. An inhibitory effect of MK on aerobic growth due to increased oxidative stress is postulated.Under fermentative growth conditions the mutant synthesizing only UQ is severely impaired in growth. Obviously, UQ is not able to replace MK and DMK during anaerobic growth. Mutations affecting quinone synthesis have an impact on ArcA phosphorylation only under anaerobic conditions. ArcA phosphorylation is reduced in strains synthesizing only MK or MK plus DMK.
Collapse
Affiliation(s)
- Annika Nitzschke
- Max-Planck-Institute for Dynamics of Complex Technical Systems, Sandtorstraße, Magdeburg, Germany
| | - Katja Bettenbrock
- Max-Planck-Institute for Dynamics of Complex Technical Systems, Sandtorstraße, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
27
|
Long-term adaptation of Escherichia coli to methanogenic co-culture enhanced succinate production from crude glycerol. J Ind Microbiol Biotechnol 2017; 45:71-76. [PMID: 29230577 PMCID: PMC5762792 DOI: 10.1007/s10295-017-1994-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023]
Abstract
Escherichia coli can hardly grow anaerobically on glycerol without exogenous electron acceptor. The formate-consuming methanogen Methanobacterium formicicum plays a role as a living electron acceptor in glycerol fermentation of E. coli. Wild-type and mutant E. coli strains were screened for succinate production using glycerol in a co-culture with M. formicicum. Subsequently, E. coli was adapted to glycerol fermentation over 39 rounds (273 days) by successive co-culture with M. formicicum. The adapted E. coli (19.9 mM) produced twice as much succinate as non-adapted E. coli (9.7 mM) and 62% more methane. This study demonstrated improved succinate production from waste glycerol using an adapted wild-type strain of E. coli with wild-type M. formicicum, which is more useful than genetically modified strains. Crude glycerol, an economical feedstock, was used for the cultivation. Furthermore, the increase in methane production by M. formicicum during co-culture with adapted E. coli illustrated the possibility of energy-saving effects for the fermentation process.
Collapse
|
28
|
Hughes ER, Winter MG, Duerkop BA, Spiga L, Furtado de Carvalho T, Zhu W, Gillis CC, Büttner L, Smoot MP, Behrendt CL, Cherry S, Santos RL, Hooper LV, Winter SE. Microbial Respiration and Formate Oxidation as Metabolic Signatures of Inflammation-Associated Dysbiosis. Cell Host Microbe 2017; 21:208-219. [PMID: 28182951 DOI: 10.1016/j.chom.2017.01.005] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/16/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022]
Abstract
Intestinal inflammation is frequently associated with an alteration of the gut microbiota, termed dysbiosis, which is characterized by a reduced abundance of obligate anaerobic bacteria and an expansion of facultative Proteobacteria such as commensal E. coli. The mechanisms enabling the outgrowth of Proteobacteria during inflammation are incompletely understood. Metagenomic sequencing revealed bacterial formate oxidation and aerobic respiration to be overrepresented metabolic pathways in a chemically induced murine model of colitis. Dysbiosis was accompanied by increased formate levels in the gut lumen. Formate was of microbial origin since no formate was detected in germ-free mice. Complementary studies using commensal E. coli strains as model organisms indicated that formate dehydrogenase and terminal oxidase genes provided a fitness advantage in murine models of colitis. In vivo, formate served as electron donor in conjunction with oxygen as the terminal electron acceptor. This work identifies bacterial formate oxidation and oxygen respiration as metabolic signatures for inflammation-associated dysbiosis.
Collapse
Affiliation(s)
- Elizabeth R Hughes
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria G Winter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Breck A Duerkop
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luisella Spiga
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tatiane Furtado de Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270 Brazil
| | - Wenhan Zhu
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Caroline C Gillis
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lisa Büttner
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Madeline P Smoot
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie L Behrendt
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Renato L Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270 Brazil
| | - Lora V Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sebastian E Winter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
29
|
Létoffé S, Chalabaev S, Dugay J, Stressmann F, Audrain B, Portais JC, Letisse F, Ghigo JM. Biofilm microenvironment induces a widespread adaptive amino-acid fermentation pathway conferring strong fitness advantage in Escherichia coli. PLoS Genet 2017; 13:e1006800. [PMID: 28542503 PMCID: PMC5459495 DOI: 10.1371/journal.pgen.1006800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/05/2017] [Accepted: 05/04/2017] [Indexed: 11/28/2022] Open
Abstract
Bacterial metabolism has been studied primarily in liquid cultures, and exploration of other natural growth conditions may reveal new aspects of bacterial biology. Here, we investigate metabolic changes occurring when Escherichia coli grows as surface-attached biofilms, a common but still poorly characterized bacterial lifestyle. We show that E. coli adapts to hypoxic conditions prevailing within biofilms by reducing the amino acid threonine into 1-propanol, an important industrial commodity not known to be naturally produced by Enterobacteriaceae. We demonstrate that threonine degradation corresponds to a fermentation process maintaining cellular redox balance, which confers a strong fitness advantage during anaerobic and biofilm growth but not in aerobic conditions. Whereas our study identifies a fermentation pathway known in Clostridia but previously undocumented in Enterobacteriaceae, it also provides novel insight into how growth in anaerobic biofilm microenvironments can trigger adaptive metabolic pathways edging out competition with in mixed bacterial communities. Whereas Escherichia coli does not naturally produce the 1-propanol unless subjected to extensive genetic modifications, we show that this important industrial commodity is produced in hypoxic conditions inside biofilms. 1-propanol production corresponds to a native threonine fermentation pathway previously undocumented in E. coli and other Enterobacteriaceae. This widespread adaptive response contributes to maintain cellular redox balance and bacterial fitness in biofilms and other amino acid-rich hypoxic environments. This study therefore shows that mining complex lifestyles such as biofilm microenvironments provides new insight into the extent of bacterial metabolic potential and adaptive bacterial physiological responses.
Collapse
Affiliation(s)
- Sylvie Létoffé
- Institut Pasteur, Genetics of Biofilms Laboratory. 25–28 rue du Docteur Roux, France
| | - Sabina Chalabaev
- Institut Pasteur, Genetics of Biofilms Laboratory. 25–28 rue du Docteur Roux, France
| | - José Dugay
- Analytical, Bioanalytical Sciences and Miniaturization Laboratory, CNRS UMR CBI 8231, ESPCI Paris, 10 rue Vauquelin, Paris, France
| | - Franziska Stressmann
- Institut Pasteur, Genetics of Biofilms Laboratory. 25–28 rue du Docteur Roux, France
| | - Bianca Audrain
- Institut Pasteur, Genetics of Biofilms Laboratory. 25–28 rue du Docteur Roux, France
| | | | - Fabien Letisse
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Genetics of Biofilms Laboratory. 25–28 rue du Docteur Roux, France
- * E-mail:
| |
Collapse
|
30
|
Abstract
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute of Biology/Microbiology, Martin Luther University, Halle-Wittenberg, 06120 Halle, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
31
|
Cheong S, Clomburg JM, Gonzalez R. Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions. Nat Biotechnol 2016; 34:556-61. [DOI: 10.1038/nbt.3505] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/10/2016] [Indexed: 11/09/2022]
|
32
|
Pinske C, McDowall JS, Sargent F, Sawers RG. Analysis of hydrogenase 1 levels reveals an intimate link between carbon and hydrogen metabolism in Escherichia coli K-12. Microbiology (Reading) 2012; 158:856-868. [DOI: 10.1099/mic.0.056622-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Constanze Pinske
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | | | - Frank Sargent
- Division of Molecular Microbiology, University of Dundee, Dundee DD1 5EH, UK
| | - R. Gary Sawers
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| |
Collapse
|
33
|
Sun Z, Do PM, Rhee MS, Govindasamy L, Wang Q, Ingram LO, Shanmugam KT. Amino acid substitutions at glutamate-354 in dihydrolipoamide dehydrogenase of Escherichia coli lower the sensitivity of pyruvate dehydrogenase to NADH. MICROBIOLOGY-SGM 2012; 158:1350-1358. [PMID: 22343352 DOI: 10.1099/mic.0.055590-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pyruvate dehydrogenase (PDH) of Escherichia coli is inhibited by NADH. This inhibition is partially reversed by mutational alteration of the dihydrolipoamide dehydrogenase (LPD) component of the PDH complex (E354K or H322Y). Such a mutation in lpd led to a PDH complex that was functional in an anaerobic culture as seen by restoration of anaerobic growth of a pflB, ldhA double mutant of E. coli utilizing a PDH- and alcohol dehydrogenase-dependent homoethanol fermentation pathway. The glutamate at position 354 in LPD was systematically changed to all of the other natural amino acids to evaluate the physiological consequences. These amino acid replacements did not affect the PDH-dependent aerobic growth. With the exception of E354M, all changes also restored PDH-dependent anaerobic growth of and fermentation by an ldhA, pflB double mutant. The PDH complex with an LPD alteration E354G, E354P or E354W had an approximately 20-fold increase in the apparent K(i) for NADH compared with the native complex. The apparent K(m) for pyruvate or NAD(+) for the mutated forms of PDH was not significantly different from that of the native enzyme. A structural model of LPD suggests that the amino acid at position 354 could influence movement of NADH from its binding site to the surface. These results indicate that glutamate at position 354 plays a structural role in establishing the NADH sensitivity of LPD and the PDH complex by restricting movement of the product/substrate NADH, although this amino acid is not directly associated with NAD(H) binding.
Collapse
Affiliation(s)
- Zhentao Sun
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- College of Resources and Environmental Sciences, China Agricultural University, PR China
| | - Phi Minh Do
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Mun Su Rhee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Lakshmanan Govindasamy
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA
| | - Qingzhao Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Lonnie O Ingram
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - K T Shanmugam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
34
|
Pinske C, Bönn M, Krüger S, Lindenstrauß U, Sawers RG. Metabolic deficiences revealed in the biotechnologically important model bacterium Escherichia coli BL21(DE3). PLoS One 2011; 6:e22830. [PMID: 21826210 PMCID: PMC3149613 DOI: 10.1371/journal.pone.0022830] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/01/2011] [Indexed: 11/26/2022] Open
Abstract
The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing formate dehydrogenases and molybdenum-dependent nitrate reductase. Nevertheless, all of the structural genes necessary for the synthesis of the respective anaerobic metalloenzymes are present in the genome. However, the genes encoding the high-affinity molybdate transport system and the molybdenum-responsive transcriptional regulator ModE are absent from the genome. Moreover, BL21(DE3) has a nonsense mutation in the gene encoding the global oxygen-responsive transcriptional regulator FNR. The activities of the two hydrogen-oxidizing hydrogenases, therefore, could be restored to BL21(DE3) by supplementing the growth medium with high concentrations of Ni²⁺ (Ni²⁺-transport is FNR-dependent) or by introducing a wild-type copy of the fnr gene. Only combined addition of plasmid-encoded fnr and high concentrations of MoO₄²⁻ ions could restore hydrogen production to BL21(DE3); however, to only 25-30% of a K-12 wildtype. We could show that limited hydrogen production from the enzyme complex responsible for formate-dependent hydrogen evolution was due solely to reduced activity of the formate dehydrogenase (FDH-H), not the hydrogenase component. The activity of the FNR-dependent formate dehydrogenase, FDH-N, could not be restored, even when the fnr gene and MoO₄²⁻ were supplied; however, nitrate reductase activity could be recovered by combined addition of MoO₄²⁻ and the fnr gene. This suggested that a further component specific for biosynthesis or activity of formate dehydrogenases H and N was missing. Re-introduction of the gene encoding ModE could only partially restore the activities of both enzymes. Taken together these results demonstrate that BL21(DE3) has major defects in anaerobic metabolism, metal ion transport and metalloprotein biosynthesis.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Bönn
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sara Krüger
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ute Lindenstrauß
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - R. Gary Sawers
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
35
|
Murarka A, Clomburg JM, Gonzalez R. Metabolic flux analysis of wild-type Escherichia coli and mutants deficient in pyruvate-dissimilating enzymes during the fermentative metabolism of glucuronate. MICROBIOLOGY-SGM 2010; 156:1860-1872. [PMID: 20167619 DOI: 10.1099/mic.0.036251-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The fermentative metabolism of d-glucuronic acid (glucuronate) in Escherichia coli was investigated with emphasis on the dissimilation of pyruvate via pyruvate formate-lyase (PFL) and pyruvate dehydrogenase (PDH). In silico and in vivo metabolic flux analysis (MFA) revealed that PFL and PDH share the dissimilation of pyruvate in wild-type MG1655. Surprisingly, it was found that PDH supports fermentative growth on glucuronate in the absence of PFL. The PDH-deficient strain (Pdh-) exhibited a slower transition into the exponential phase and a decrease in specific rates of growth and glucuronate utilization. Moreover, a significant redistribution of metabolic fluxes was found in PDH- and PFL-deficient strains. Since no role had been proposed for PDH in the fermentative metabolism of E. coli, the metabolic differences between MG1655 and Pdh- were further investigated. An increase in the oxidative pentose phosphate pathway (ox-PPP) flux was observed in response to PDH deficiency. A comparison of the ox-PPP and PDH pathways led to the hypothesis that the role of PDH is the supply of reducing equivalents. The finding that a PDH deficiency lowers the NADH : NAD(+) ratio supported the proposed role of PDH. Moreover, the NADH : NAD(+) ratio in a strain deficient in both PDH and the ox-PPP (Pdh-Zwf-) was even lower than that observed for Pdh-. Strain Pdh-Zwf- also exhibited a slower transition into the exponential phase and a lower growth rate than Pdh-. Finally, a transhydrogenase-deficient strain grew more slowly than wild-type but did not show the slower transition into the exponential phase characteristic of Pdh- mutants. It is proposed that PDH fulfils two metabolic functions. First, by creating the appropriate internal redox state (i.e. appropriate NADH : NAD(+) ratio), PDH ensures the functioning of the glucuronate utilization pathway. Secondly, the NADH generated by PDH can be converted to NADPH by the action of transhydrogenases, thus serving as biosynthetic reducing power in the synthesis of building blocks and macromolecules.
Collapse
Affiliation(s)
- Abhishek Murarka
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - James M Clomburg
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Ramon Gonzalez
- Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| |
Collapse
|