1
|
Nobs E, Laschanzky K, Munke K, Movert E, Valfridsson C, Carlsson F. Cytosolic serpins act in a cytoprotective feedback loop that limits ESX-1-dependent death of Mycobacterium marinum-infected macrophages. mBio 2024; 15:e0038424. [PMID: 39087767 PMCID: PMC11389378 DOI: 10.1128/mbio.00384-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/28/2024] [Indexed: 08/02/2024] Open
Abstract
Serine protease inhibitors (serpins) constitute the largest family of protease inhibitors expressed in humans, but their role in infection remains largely unexplored. In infected macrophages, the mycobacterial ESX-1 type VII secretion system permeabilizes internal host membranes and causes leakage into the cytosol of host DNA, which induces type I interferon (IFN) production via the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) surveillance pathway, and promotes infection in vivo. Using the Mycobacterium marinum infection model, we show that ESX-1-mediated type I IFN signaling in macrophages selectively induces the expression of serpina3f and serpina3g, two cytosolic serpins of the clade A3. The membranolytic activity of ESX-1 also caused leakage of cathepsin B into the cytosol where it promoted cell death, suggesting that the induction of type I IFN comes at the cost of lysosomal rupture and toxicity. However, the production of cytosolic serpins suppressed the protease activity of cathepsin B in this compartment and thus limited cell death, a function that was associated with increased bacterial growth in infected mice. These results suggest that cytosolic serpins act in a type I IFN-dependent cytoprotective feedback loop to counteract the inevitable toxic effect of ESX-1-mediated host membrane rupture. IMPORTANCE The ESX-1 type VII secretion system is a key virulence determinant of pathogenic mycobacteria. The ability to permeabilize host cell membranes is critical for several ESX-1-dependent virulence traits, including phagosomal escape and induction of the type I interferon (IFN) response. We find that it comes at the cost of lysosomal leakage and subsequent host cell death. However, our results suggest that ESX-1-mediated type I IFN signaling selectively upregulates serpina3f and serpina3g and that these cytosolic serpins limit cell death caused by cathepsin B that has leaked into the cytosol, a function that is associated with increased bacterial growth in vivo. The ability to rupture host membranes is widespread among bacterial pathogens, and it will be of interest to evaluate the role of cytosolic serpins and this type I IFN-dependent cytoprotective feedback loop in the context of human infection.
Collapse
Affiliation(s)
- Esther Nobs
- Department of Biology, Lund University, Lund, Sweden
| | | | - Kristina Munke
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elin Movert
- Department of Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
2
|
Hortle E, Tran VL, Wright K, Fontaine AR, Pinello N, O'Rourke MB, Wong JJL, Hansbro PM, Britton WJ, Oehlers SH. OXSR1 inhibits inflammasome activation by limiting potassium efflux during mycobacterial infection. Life Sci Alliance 2022; 5:5/9/e202201476. [PMID: 35545295 PMCID: PMC9107790 DOI: 10.26508/lsa.202201476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Mycobacteria up-regulate host kinase OXSR1 preventing potassium efflux and inflammasome activation. Depletion or inhibition of OXSR1 potentiates inflammasome activation and decreases bacterial burden. Pathogenic mycobacteria inhibit inflammasome activation to establish infection. Although it is known that potassium efflux is a trigger for inflammasome activation, the interaction between mycobacterial infection, potassium efflux, and inflammasome activation has not been investigated. Here, we use Mycobacterium marinum infection of zebrafish embryos and Mycobacterium tuberculosis infection of THP-1 cells to demonstrate that pathogenic mycobacteria up-regulate the host WNK signalling pathway kinases SPAK and OXSR1 which control intracellular potassium balance. We show that genetic depletion or inhibition of OXSR1 decreases bacterial burden and intracellular potassium levels. The protective effects of OXSR1 depletion are at least partially mediated by NLRP3 inflammasome activation, caspase-mediated release of IL-1β, and downstream activation of protective TNF-α. The elucidation of this druggable pathway to potentiate inflammasome activation provides a new avenue for the development of host-directed therapies against intracellular infections.
Collapse
Affiliation(s)
- Elinor Hortle
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia .,The University of Sydney, Discipline of Infectious Diseases and Immunology and Sydney Institute for Infectious Diseases, Camperdown, Australia.,Centre for Inflammation and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Vi Lt Tran
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Kathryn Wright
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Angela Rm Fontaine
- Centenary Imaging and Sydney Cytometry at the Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Natalia Pinello
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, Australia.,The University of Sydney, Faculty of Medicine and Health, Camperdown, Australia
| | - Matthew B O'Rourke
- Centre for Inflammation and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, Australia.,The University of Sydney, Faculty of Medicine and Health, Camperdown, Australia
| | - Philip M Hansbro
- Centre for Inflammation and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Warwick J Britton
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia.,Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia .,The University of Sydney, Discipline of Infectious Diseases and Immunology and Sydney Institute for Infectious Diseases, Camperdown, Australia.,A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
3
|
Rastogi S, Briken V. Interaction of Mycobacteria With Host Cell Inflammasomes. Front Immunol 2022; 13:791136. [PMID: 35237260 PMCID: PMC8882646 DOI: 10.3389/fimmu.2022.791136] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
The inflammasome complex is important for host defense against intracellular bacterial infections. Mycobacterium tuberculosis (Mtb) is a facultative intracellular bacterium which is able to survive in infected macrophages. Here we discuss how the host cell inflammasomes sense Mtb and other related mycobacterial species. Furthermore, we describe the molecular mechanisms of NLRP3 inflammasome sensing of Mtb which involve the type VII secretion system ESX-1, cell surface lipids (TDM/TDB), secreted effector proteins (LpqH, PPE13, EST12, EsxA) and double-stranded RNA acting on the priming and/or activation steps of inflammasome activation. In contrast, Mtb also mediates inhibition of the NLRP3 inflammasome by limiting exposure of cell surface ligands via its hydrolase, Hip1, by inhibiting the host cell cathepsin G protease via the secreted Mtb effector Rv3364c and finally, by limiting intracellular triggers (K+ and Cl- efflux and cytosolic reactive oxygen species production) via its serine/threonine kinase PknF. In addition, Mtb inhibits the AIM2 inflammasome activation via an unknown mechanism. Overall, there is good evidence for a tug-of-war between Mtb trying to limit inflammasome activation and the host cell trying to sense Mtb and activate the inflammasome. The detailed molecular mechanisms and the importance of inflammasome activation for virulence of Mtb or host susceptibility have not been fully investigated.
Collapse
Affiliation(s)
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
4
|
Abstract
Interleukin-1 (IL-1) is a key player in the immune response to pathogens due to its role in promoting inflammation and recruiting immune cells to the site of infection. In tuberculosis (TB), tight regulation of IL-1 responses is critical to ensure host resistance to infection while preventing immune pathology. In the mouse model of Mycobacterium tuberculosis infection, both IL-1 absence and overproduction result in exacerbated disease and mortality. In humans, several polymorphisms in the IL1B gene have been associated with increased susceptibility to TB. Importantly, M. tuberculosis itself has evolved several strategies to manipulate and regulate host IL-1 responses for its own benefit. Given all this, IL-1 appears as a promising target for host-directed therapies in TB. However, for that to succeed, more detailed knowledge on the biology and mechanisms of action of IL-1 in vivo, together with a deep understanding of how host-M. tuberculosis interactions modulate IL-1, is required. Here, we discuss the most recent advances in the biology and therapeutic potential of IL-1 in TB as well as the outstanding questions that remain to be answered.
Collapse
|
5
|
Kurane T, Matsunaga T, Ida T, Sawada K, Nishimura A, Fukui M, Umemura M, Nakayama M, Ohara N, Matsumoto S, Akaike T, Matsuzaki G, Takaesu G. GRIM-19 is a target of mycobacterial Zn 2+ metalloprotease 1 and indispensable for NLRP3 inflammasome activation. FASEB J 2021; 36:e22096. [PMID: 34907600 DOI: 10.1096/fj.202101074rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022]
Abstract
Tuberculosis is a communicable disease caused by Mycobacterium tuberculosis which primarily infects macrophages and establishes intracellular parasitism. A mycobacterial virulence factor Zn2+ metalloprotease 1 (Zmp1) is known to suppress interleukin (IL)-1β production by inhibiting caspase-1 resulting in phagosome maturation arrest. However, the molecular mechanism of caspase-1 inhibition by Zmp1 is still elusive. Here, we identified GRIM-19 (also known as NDUFA13), an essential subunit of mitochondrial respiratory chain complex I, as a novel Zmp1-binding protein. Using the CRISPR/Cas9 system, we generated GRIM-19 knockout murine macrophage cell line J774.1 and found that GRIM-19 is essential for IL-1β production during mycobacterial infection as well as in response to NLRP3 inflammasome-activating stimuli such as extracellular ATP or nigericin. We also found that GRIM-19 is required for the generation of mitochondrial reactive oxygen species and NLRP3-dependent activation of caspase-1. Loss of GRIM-19 or forced expression of Zmp1 resulted in a decrease in mitochondrial membrane potential. Our study revealed a previously unrecognized role of GRIM-19 as an essential regulator of NLRP3 inflammasome and a molecular mechanism underlying Zmp1-mediated suppression of IL-1β production during mycobacterial infection.
Collapse
Affiliation(s)
- Tomomi Kurane
- Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuko Sawada
- Molecular Microbiology Group, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Akira Nishimura
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Fukui
- Molecular Microbiology Group, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Masayuki Umemura
- Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.,Molecular Microbiology Group, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masaaki Nakayama
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Naoya Ohara
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University School of Medicine, Niigata, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Goro Matsuzaki
- Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.,Molecular Microbiology Group, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Giichi Takaesu
- Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.,Molecular Microbiology Group, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
6
|
Rastogi S, Ellinwood S, Augenstreich J, Mayer-Barber KD, Briken V. Mycobacterium tuberculosis inhibits the NLRP3 inflammasome activation via its phosphokinase PknF. PLoS Pathog 2021; 17:e1009712. [PMID: 34324582 PMCID: PMC8321130 DOI: 10.1371/journal.ppat.1009712] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) has evolved to evade host innate immunity by interfering with macrophage functions. Interleukin-1β (IL-1β) is secreted by macrophages after the activation of the inflammasome complex and is crucial for host defense against Mtb infections. We have previously shown that Mtb is able to inhibit activation of the AIM2 inflammasome and subsequent pyroptosis. Here we show that Mtb is also able to inhibit host cell NLRP3 inflammasome activation and pyroptosis. We identified the serine/threonine kinase PknF as one protein of Mtb involved in the NLRP3 inflammasome inhibition, since the pknF deletion mutant of Mtb induces increased production of IL-1β in bone marrow-derived macrophages (BMDMs). The increased production of IL-1β was dependent on NLRP3, the adaptor protein ASC and the protease caspase-1, as revealed by studies performed in gene-deficient BMDMs. Additionally, infection of BMDMs with the pknF deletion mutant resulted in increased pyroptosis, while the IL-6 production remained unchanged compared to Mtb-infected cells, suggesting that the mutant did not affect the priming step of inflammasome activation. In contrast, the activation step was affected since potassium efflux, chloride efflux and the generation of reactive oxygen species played a significant role in inflammasome activation and subsequent pyroptosis mediated by the Mtb pknF mutant strain. In conclusion, we reveal here that the serine/threonine kinase PknF of Mtb plays an important role in innate immune evasion through inhibition of the NLRP3 inflammasome. Mycobacterium tuberculosis (Mtb) infections are causing millions of deaths per year and the pathogen is highly adapted to its human host. Host cell phagocytes take up Mtb but the bacterium is capable of manipulating the host cell to enhance its own survival. In the current study we discover a novel pathway of host cell manipulation and innate immune evasion by Mtb. We show that the activation of a host cell defense complex, the inflammasome, is limited after Mtb infection. Most importantly, we identify a bacterial protein, PknF, that is involved in inflammasome inhibition.
Collapse
Affiliation(s)
- Shivangi Rastogi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Sarah Ellinwood
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jacques Augenstreich
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Soare AY, Freeman TL, Min AK, Malik HS, Osota EO, Swartz TH. P2RX7 at the Host-Pathogen Interface of Infectious Diseases. Microbiol Mol Biol Rev 2021; 85:e00055-20. [PMID: 33441488 PMCID: PMC7849353 DOI: 10.1128/mmbr.00055-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The P2X7 receptor (P2RX7) is an important molecule that functions as a danger sensor, detecting extracellular nucleotides from injured cells and thus signaling an inflammatory program to nearby cells. It is expressed in immune cells and plays important roles in pathogen surveillance and cell-mediated responses to infectious organisms. There is an abundance of literature on the role of P2RX7 in inflammatory diseases and the role of these receptors in host-pathogen interactions. Here, we describe the current knowledge of the role of P2RX7 in the host response to a variety of pathogens, including viruses, bacteria, fungi, protozoa, and helminths. We describe in vitro and in vivo evidence for the critical role these receptors play in mediating and modulating immune responses. Our observations indicate a role for P2X7 signaling in sensing damage-associated molecular patterns released by nearby infected cells to facilitate immunopathology or protection. In this review, we describe how P2RX7 signaling can play critical roles in numerous cells types in response to a diverse array of pathogens in mediating pathogenesis and immunity to infectious agents.
Collapse
Affiliation(s)
- Alexandra Y Soare
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracey L Freeman
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alice K Min
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hagerah S Malik
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Elizabeth O Osota
- University of California San Diego, Graduate School of Biomedical Sciences, San Diego, California, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
8
|
Zhang L, Jiang X, Pfau D, Ling Y, Nathan CF. Type I interferon signaling mediates Mycobacterium tuberculosis-induced macrophage death. J Exp Med 2021; 218:e20200887. [PMID: 33125053 PMCID: PMC7608065 DOI: 10.1084/jem.20200887] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages help defend the host against Mycobacterium tuberculosis (Mtb), the major cause of tuberculosis (TB). Once phagocytized, Mtb resists killing by macrophages, replicates inside them, and leads to their death, releasing Mtb that can infect other cells. We found that the death of Mtb-infected mouse macrophages in vitro does not appear to proceed by a currently known pathway. Through genome-wide CRISPR-Cas9 screening, we identified a critical role for autocrine or paracrine signaling by macrophage-derived type I IFNs in the death of Mtb-infected macrophages in vitro, and blockade of type I IFN signaling augmented the effect of rifampin, a first-line TB drug, in Mtb-infected mice. Further definition of the pathway of type I IFN-mediated macrophage death may allow for host-directed therapy of TB that is more selective than systemic blockade of type I IFN signaling.
Collapse
Affiliation(s)
| | | | | | | | - Carl F. Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
9
|
Yang Y, Xu P, He P, Shi F, Tang Y, Guan C, Zeng H, Zhou Y, Song Q, Zhou B, Jiang S, Shao C, Sun J, Yang Y, Wang X, Song H. Mycobacterial PPE13 activates inflammasome by interacting with the NATCH and LRR domains of NLRP3. FASEB J 2020; 34:12820-12833. [PMID: 32738179 DOI: 10.1096/fj.202000200rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022]
Abstract
Pathogenic mycobacteria, such as Mycobacterium tuberculosis, Mycobacterium bovis, and Mycobacterium marinum, can trigger NLRP3 inflammasome activation leading to maturation and secretion of interleukin 1β (IL-1β). However, the mycobacterial factors involved in the activation of NLRP3 inflammasome are not fully understood. Here, we identified that the PPE family protein PPE13 was responsible for the induction of IL-1β secretion in a NLRP3 inflammasome-dependent manner. We found that the recombinant Mycobacterium smegmatis expressing PPE13 activates NLRP3 inflammasome, thereby inducing caspase-1 cleavage and IL-1β secretion in J774A.1, BMDMs, and THP-1 macrophages. To examine whether this inflammasome activation was triggered by PPE13 rather than components of M. smegmatis, PPE13 was introduced into the aforementioned macrophages by lentivirus as a delivery vector. Similarly, this led to the activation of NLRP3 inflammasome, indicating that PPE13 is a direct activator of NLRP3 cascade. We further demonstrated that the NLRP3 complex activated the inflammasome cascade, and the assembly of this complex was facilitated by PPE13 through interacting with the LRR and NATCH domains of NLRP3. Finally, we found that all PPE13 proteins isolated from M. tuberculosis, M. bovis, and M. marinum can activate NLRP3 inflammasome through binding to NLRP3, which requires C-terminal repetitive MPTR domain of PPE13. Thus, we, for the first time, revealed that PPE13 triggers the inflammasome-response by interacting with the MPTR domain of PPE13 and the LRR and NATCH domains of NLRP3. These findings provide a novel perspective on the function of PPE proteins in the immune system during mycobacteria invasion.
Collapse
Affiliation(s)
- Yang Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Pianpian Xu
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Ping He
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yiran Tang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Chiyu Guan
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Huan Zeng
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Yingshan Zhou
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Quanjiang Song
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Bin Zhou
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Sheng Jiang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Chunyan Shao
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Jing Sun
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Yongchun Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Xiaodu Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Houhui Song
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
10
|
Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nat Commun 2020; 11:2270. [PMID: 32385301 PMCID: PMC7210277 DOI: 10.1038/s41467-020-16143-6] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is a global health problem in part as a result of extensive cytotoxicity caused by the infection. Here, we show how M. tuberculosis causes caspase-1/NLRP3/gasdermin D-mediated pyroptosis of human monocytes and macrophages. A type VII secretion system (ESX-1) mediated, contact-induced plasma membrane damage response occurs during phagocytosis of bacteria. Alternatively, this can occur from the cytosolic side of the plasma membrane after phagosomal rupture in infected macrophages. This damage causes K+ efflux and activation of NLRP3-dependent IL-1β release and pyroptosis, facilitating the spread of bacteria to neighbouring cells. A dynamic interplay of pyroptosis with ESCRT-mediated plasma membrane repair also occurs. This dual plasma membrane damage seems to be a common mechanism for NLRP3 activators that function through lysosomal damage. Inflammasome activation is a response to bacterial infection but can cause damage and spread infection. Here, the authors use live single-cell imaging to show two mechanisms by which M. tuberculosis causes damage to human macrophage cell plasma membranes, resulting in activation of the NLRP3 inflammasome, pyroptosis and release of infectious particles.
Collapse
|
11
|
Sun J, Champion PA, Bigi F. Editorial: Cellular and Molecular Mechanisms of Mycobacterium tuberculosis Virulence. Front Cell Infect Microbiol 2019; 9:331. [PMID: 31649893 PMCID: PMC6794420 DOI: 10.3389/fcimb.2019.00331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jianjun Sun
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Fabiana Bigi
- Institute of Biotechnology, National Institute of Agricultural Technology, Buenos Aires, Argentina
| |
Collapse
|
12
|
Modipane L, Reva O, Magazi BT, Antiabong JF, Osei Sekyere J, Mbelle NM. Phylogenomic and epidemiological insights into two clinical Mycobacterium bovis BCG strains circulating in South Africa. Int J Infect Dis 2019; 87:32-38. [PMID: 31442625 DOI: 10.1016/j.ijid.2019.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mycobacterium bovis BCG is a live, attenuated tuberculosis vaccine. While the vaccine protects infants from tuberculosis, complications including disseminated infections have been reported following vaccination. Genetically diverse BCG sub-strains now exist following continuous passaging of the original Pasteur strain for vaccine manufacture. This genetic diversity reportedly influences the severity of disseminated BCG infections and the efficacy of BCG immunization. METHODS M. bovis BCG was isolated from infants suspected of being infected with tuberculosis. The whole genome of the clinical isolates and BCG Moscow were sequenced using Illumina Miseq and the sequences were analysed using CLC Genomics Workbench 7.0, PhyResSE v1.0, and Parsnp. RESULTS AND CONCLUSIONS Genetic variations between the clinical strains and the reference BCG Copenhagen were identified. The clinical strains shared only one mutation in a secretion protein. Mutations were identified in various antibiotic resistance genes in the BCG isolates, which suggests their potential as multidrug-resistant (MDR) phenotypes. Phylogenetic analysis showed that the two isolates were distantly related, and the M1_S48 clinical isolate was closely related to M. bovis BCG Moscow. The phylogenomics results imply that two different BCG strains may be circulating in South Africa. However, it is difficult to associate the BCG vaccine strain administered and the BCG strain supplied with specific adverse events, as BCGiosis is under-reported. This study presents background genomic information for future surveillance and tracking of the distribution of BCGiosis-associated mycobacteria. It is also the first to report on the genomes of clinical BCG strains in Africa.
Collapse
Affiliation(s)
- Lesedi Modipane
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Oleg Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa.
| | - Beki Themba Magazi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - John Francis Antiabong
- Centre for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, TX, USA.
| | - John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; National Health Laboratory Services, Department of Medical Microbiology, Pretoria, South Africa.
| |
Collapse
|
13
|
Wu H, Bao Y, Wang L, Li X, Sun J. Mycobacterium marinum down-regulates miR-148a in macrophages in an EsxA-dependent manner. Int Immunopharmacol 2019; 73:41-48. [PMID: 31078924 DOI: 10.1016/j.intimp.2019.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/08/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
As a key virulence factor of Mycobacterium tuberculosis, EsxA is not only involved in phagosome rupture, but also functions in stimulation of immune responses in macrophages. Here, we report thatmiR-148a is down-regulated in the macrophages infected with Mycobacterium marinum (Mm). Using the knockout strain Mm∆EsxA/B, recombinant EsxA, EsxB and EsxA/B heterodimer proteins, we provide evidence that down-regulation of miR-148ais dependent on EsxA, and up-regulation of miR-148a reduces Mm intracellular survival. Moreover, up-regulation of miR-148a down-regulates the pro-inflammatory cytokines (e.g. TNF-α and IL-1β) and the TLR4-mediated NF-κB activation. Together, miR-148a may function as an anti-inflammation modulator in responses to mycobacterial infection. Regulation of miR-148a may provide a novel venue in development of therapies in tuberculosis.
Collapse
Affiliation(s)
- Haichong Wu
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; Current address: Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanqing Bao
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Lin Wang
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Xiujun Li
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Jianjun Sun
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
14
|
Pahari S, Kaur G, Negi S, Aqdas M, Das DK, Bashir H, Singh S, Nagare M, Khan J, Agrewala JN. Reinforcing the Functionality of Mononuclear Phagocyte System to Control Tuberculosis. Front Immunol 2018; 9:193. [PMID: 29479353 PMCID: PMC5811511 DOI: 10.3389/fimmu.2018.00193] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
The mononuclear phagocyte system (MPS) constitutes dendritic cells, monocytes, and macrophages. This system contributes to various functions that are essential for maintaining homeostasis, activation of innate immunity, and bridging it with the adaptive immunity. Consequently, MPS is highly important in bolstering immunity against the pathogens. However, MPS is the frontline cells in destroying Mycobacterium tuberculosis (Mtb), yet the bacterium prefers to reside in the hostile environment of macrophages. Therefore, it may be very interesting to study the struggle between Mtb and MPS to understand the outcome of the disease. In an event when MPS predominates Mtb, the host remains protected. By contrast, the situation becomes devastating when the pathogen tames and tunes the host MPS, which ultimately culminates into tuberculosis (TB). Hence, it becomes extremely crucial to reinvigorate MPS functionality to overwhelm Mtb and eliminate it. In this article, we discuss the strategies to bolster the function of MPS by exploiting the molecules associated with the innate immunity and highlight the mechanisms involved to overcome the Mtb-induced suppression of host immunity. In future, such approaches may provide an insight to develop immunotherapeutics to treat TB.
Collapse
Affiliation(s)
- Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gurpreet Kaur
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shikha Negi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Aqdas
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Deepjyoti K Das
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mukta Nagare
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Junaid Khan
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
15
|
Cordero MD, Alcocer-Gómez E. Inflammasome in the Pathogenesis of Pulmonary Diseases. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 108:111-151. [PMID: 30536170 PMCID: PMC7123416 DOI: 10.1007/978-3-319-89390-7_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lung diseases are common and significant causes of illness and death around the world. Inflammasomes have emerged as an important regulator of lung diseases. The important role of IL-1 beta and IL-18 in the inflammatory response of many lung diseases has been elucidated. The cleavage to turn IL-1 beta and IL-18 from their precursors into the active forms is tightly regulated by inflammasomes. In this chapter, we structurally review current evidence of inflammasome-related components in the pathogenesis of acute and chronic lung diseases, focusing on the "inflammasome-caspase-1-IL-1 beta/IL-18" axis.
Collapse
Affiliation(s)
- Mario D. Cordero
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center (CIBM), University of Granada, Armilla, Spain
| | - Elísabet Alcocer-Gómez
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
16
|
Jang AR, Choi JH, Shin SJ, Park JH. Mycobacterium tuberculosis ESAT6 induces IFN-β gene expression in Macrophages via TLRs-mediated signaling. Cytokine 2017; 104:104-109. [PMID: 29046251 DOI: 10.1016/j.cyto.2017.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis is a highly virulent bacterium that causes tuberculosis. It infects about one third of the world's population. Type I interferons (IFNs) play a detrimental role in host defense against M. tuberculosis infection. Proteins secreted by M. tuberculosis through ESX-1 secretion system contribute to type I IFNs production. However, the precise mechanism by which 6-kDa early secretory antigen target (ESAT6), one of ESX-1-mediated secretory proteins, induces type I IFNs production in host cells is currently unclear. Therefore, the objective of the present study was to determine the underlying molecular mechanism regulating ESAT6-mediated gene expression of IFN-β in macrophages. Recombinant ESAT6 produced from E. coli expression system induced IFN-β gene expression in various types of macrophages such as mouse bone marrow-derived macrophages (BMDMs), peritoneal macrophages, and MH-S cells (murine alveolar macrophage cell line). Deficiency of TLR4 and TRIF absolutely abrogated ESAT6-induced IFN-β gene expression. TLR2 and MyD88 were partially involved in IFN-β gene expression in response to low dose of ESAT6. Another recombinant ESAT6 produced from baculovirus system also upregulated IFN-β gene expression via TLR4-dependent pathway. Polymyxin B (PMB) treatment impaired LPS-induced IFN-β expression. However, IFN-β expression induced by ESAT6 was not influenced by PMB. This suggests that ESAT6-mediated IFN-β expression is not due to LPS contamination. Treatment with ESAT6 resulted in activation of TBK1 and IRF3 in macrophages. Such activation was abolished in TLR4- and TRIF-deficient cells. Moreover, inhibition of IRF3 and TBK1 suppressed IFN-β gene expression in response to ESAT6. Our results suggest that ESAT6 might contribute to virulence of M. tuberculosis by regulating type I IFNs production through TLR4-TRIF signaling pathway.
Collapse
Affiliation(s)
- Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joo-Hee Choi
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
17
|
Uchiyama R, Yonehara S, Taniguchi S, Ishido S, Ishii KJ, Tsutsui H. Inflammasome and Fas-Mediated IL-1β Contributes to Th17/Th1 Cell Induction in Pathogenic Bacterial Infection In Vivo. THE JOURNAL OF IMMUNOLOGY 2017; 199:1122-1130. [DOI: 10.4049/jimmunol.1601373] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 05/31/2017] [Indexed: 12/25/2022]
|
18
|
Elnaggar MM, Abdellrazeq GS, Elsisy A, Mahmoud AH, Shyboub A, Sester M, Khaliel SA, Singh M, Torky HA, Davis WC. Evaluation of antigen specific interleukin-1β as a biomarker to detect cattle infected with Mycobacterium bovis. Tuberculosis (Edinb) 2017; 105:53-59. [PMID: 28610788 DOI: 10.1016/j.tube.2017.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/04/2017] [Accepted: 04/21/2017] [Indexed: 01/01/2023]
Abstract
Bovine tuberculosis (bTB) is a major world-wide health problem that has been difficult to control, due to the lack of an effective vaccine and limited ability of the tuberculin skin test (TST) and the ancillary whole blood interferon-gamma (IFN-γ) release assay (IGRA) to detect all infected animals. A 6 h cytokine flow cytometric IFN-γ (CFC) assay was developed in effort to overcome these limitations and expand methods for studying the mechanisms of bTB immunopathogenesis. The present study was conducted to evaluate IL-1β as a biomarker to use in conjunction with the IFN-γ CFC assay to improve the diagnostic accuracy for bTB. Three animal groups with predefined Mbv infection status were used for analysis of IL-1β in plasma from whole blood cultures stimulated with ESAT-6/CFP-10 for 20-24 h. Parallel stimulations were performed for enumeration of IFN-γ producing T cells. Data analysis showed that Mbv infected animals have a higher frequency of IFN-γ producing CD4+ T cells and plasma IL-1β than animals exposed to non-tuberculous mycobacteria (NTM) or uninfected control animals, with a significant correlation between the two readouts, thus allowing differentiation between the three animal groups. IL-1β has the potential to serve as an additional biomarker for detecting cattle infected with Mbv.
Collapse
Affiliation(s)
- Mahmoud M Elnaggar
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt; Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Pullman, WA, USA.
| | - Gaber S Abdellrazeq
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt; Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Pullman, WA, USA
| | - Alaa Elsisy
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Asmaa H Mahmoud
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Abdelrazeq Shyboub
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Martina Sester
- Department of Transplant and Infection Immunology, Institutes for Infection Medicine, Saarland University, Homburg, Germany
| | - Samy A Khaliel
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Mahavir Singh
- Lionex Diagnostics & Therapeutics, Braunschweig, Germany
| | - Helmy A Torky
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - William C Davis
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Pullman, WA, USA
| |
Collapse
|
19
|
Deviant Behavior: Tick-Borne Pathogens and Inflammasome Signaling. Vet Sci 2016; 3:vetsci3040027. [PMID: 29056735 PMCID: PMC5606592 DOI: 10.3390/vetsci3040027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022] Open
Abstract
In the face of an assault, host cells mount an immediate response orchestrated by innate immunity. Two of the best described innate immune signaling networks are the Toll- and the Nod-like receptor pathways. Extensive work has been done characterizing both signaling cascades with several recent advances on the forefront of inflammasome biology. In this review, we will discuss how more commonly-studied pathogens differ from tick-transmitted microbes in the context of Nod-like receptor signaling and inflammasome formation. Because pathogens transmitted by ticks have unique characteristics, we offer the opinion that these microbes can be used to uncover novel principles of Nod-like receptor biology.
Collapse
|
20
|
Yang J, Liu Z, Xiao TS. Post-translational regulation of inflammasomes. Cell Mol Immunol 2016; 14:65-79. [PMID: 27345727 PMCID: PMC5214939 DOI: 10.1038/cmi.2016.29] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/16/2022] Open
Abstract
Inflammasomes play essential roles in immune protection against microbial infections. However, excessive inflammation is implicated in various human diseases, including autoinflammatory syndromes, diabetes, multiple sclerosis, cardiovascular disorders and neurodegenerative diseases. Therefore, precise regulation of inflammasome activities is critical for adequate immune protection while limiting collateral tissue damage. In this review, we focus on the emerging roles of post-translational modifications (PTMs) that regulate activation of the NLRP3, NLRP1, NLRC4, AIM2 and IFI16 inflammasomes. We anticipate that these types of PTMs will be identified in other types of and less well-characterized inflammasomes. Because these highly diverse and versatile PTMs shape distinct inflammatory responses in response to infections and tissue damage, targeting the enzymes involved in these PTMs will undoubtedly offer opportunities for precise modulation of inflammasome activities under various pathophysiological conditions.
Collapse
Affiliation(s)
- Jie Yang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106-7288, USA.,Graduate Program in Physiology and Biophysics, Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-7288, USA
| | - Zhonghua Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106-7288, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106-7288, USA
| |
Collapse
|
21
|
Ahsan F, Moura-Alves P, Guhlich-Bornhof U, Klemm M, Kaufmann SHE, Maertzdorf J. Role of Interleukin 36γ in Host Defense Against Tuberculosis. J Infect Dis 2016; 214:464-74. [DOI: 10.1093/infdis/jiw152] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/07/2016] [Indexed: 12/11/2022] Open
|
22
|
Khan N, Vidyarthi A, Javed S, Agrewala JN. Innate Immunity Holding the Flanks until Reinforced by Adaptive Immunity against Mycobacterium tuberculosis Infection. Front Microbiol 2016; 7:328. [PMID: 27014247 PMCID: PMC4789502 DOI: 10.3389/fmicb.2016.00328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/01/2016] [Indexed: 12/12/2022] Open
Abstract
T cells play a cardinal role in imparting protection against Mycobacterium tuberculosis (Mtb). However, ample time is required before T-cells are able to evoke efficient effector responses in the lung, where the mycobacterium inflicts disease. This delay in T cells priming, which is termed as lag phase, provides sufficient time for Mtb to replicate and establish itself within the host. In contrast, innate immunity efficiently curb the growth of Mtb during initial phase of infection through several mechanisms. Pathogen recognition by innate cells rapidly triggers a cascade of events, such as apoptosis, autophagy, inflammasome formation and nitric oxide production to kill intracellular pathogens. Furthermore, bactericidal mechanisms such as autophagy and apoptosis, augment the antigen processing and presentation, thereby contributing substantially to the induction of adaptive immunity. This manuscript highlights the role of innate immune mechanisms in restricting the survival of Mtb during lag phase. Finally, this article provides new insight for designing immuno-therapies by targeting innate immune mechanisms to achieve optimum immune response to cure TB.
Collapse
Affiliation(s)
- Nargis Khan
- Council of Scientific and Industrial Research - Institute of Microbial Technology Chandigarh, India
| | - Aurobind Vidyarthi
- Council of Scientific and Industrial Research - Institute of Microbial Technology Chandigarh, India
| | - Shifa Javed
- Department of Cytology and Gynecologic Pathology, Postgraduate Institute of Medical Education and Research Chandigarh, India
| | - Javed N Agrewala
- Council of Scientific and Industrial Research - Institute of Microbial Technology Chandigarh, India
| |
Collapse
|
23
|
Li W, Liu M, Xie J. Rv3369 Induces Cytokine Interleukin-1β Production and Enhances Mycobacterium smegmatis Intracellular Survival. J Interferon Cytokine Res 2015; 36:140-7. [PMID: 26588672 DOI: 10.1089/jir.2015.0090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pathogenesis of tuberculosis, caused by Mycobacterium tuberculosis, is largely because of the pathogen's successful entry and survival within macrophages. We predicted that rv3369, a gene encoding a conserved protein, might play a role in the interactions with host cells. To test this, rv3369 gene was heterologously expressed in a nonpathogenic fast-growing Mycobacterium smegmatis strain. The recombinant strain survives better than the control within macrophages, accompanied by more host cell death and a marked higher secretion of interleukin-1β (IL-1β). Furthermore, pharmacological inhibition experiments showed that the NF-κB and ERK pathways were involved in the Rv3369-triggered IL-1β changes. These results provided evidence for the engagement of Rv3369 in the interaction between mycobacteria and host.
Collapse
Affiliation(s)
- Wu Li
- 1 Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing, China .,2 College of Life Sciences, Neijiang Normal University , Neijiang, China
| | - Minqiang Liu
- 1 Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing, China
| | - Jianping Xie
- 1 Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing, China
| |
Collapse
|
24
|
A Duplicated ESAT-6 Region of ESX-5 Is Involved in Protein Export and Virulence of Mycobacteria. Infect Immun 2015; 83:4349-61. [PMID: 26303392 DOI: 10.1128/iai.00827-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/19/2015] [Indexed: 11/20/2022] Open
Abstract
The ESX-5 secretion system of Mycobacterium tuberculosis is important for bacterial virulence and for the secretion of the large PE/PPE protein family, whose genes constitute 10% of the M. tuberculosis genome. A four-gene region of the ESX-5 system is duplicated three times in the M. tuberculosis genome, but the functions of these duplicates are unknown. Here we investigated one of these duplicates: the region carrying the esxI, esxJ, ppe15, and pe8 genes (ESX-5a). An ESX-5a deletion mutant in the model system M. marinum background was deficient in the secretion of some members of the PE/PPE family of proteins. Surprisingly, we also identified other proteins that are not members of this family, thus expanding the range of ESX-5 secretion substrates. In addition, we demonstrated that ESX-5a is important for the virulence of M. marinum in the zebrafish model. Furthermore, we showed the role of the M. tuberculosis ESX-5a region in inflammasome activation but not host cell death induction, which is different from the case for the M. tuberculosis ESX-5 system. In conclusion, the ESX-5a region is nonredundant with its ESX-5 paralog and is necessary for secretion of a specific subset of proteins in M. tuberculosis and M. marinum that are important for bacterial virulence of M. marinum. Our findings point to a role for the three ESX-5 duplicate regions in the selection of substrates for secretion via ESX-5, and hence, they provide the basis for a refined model of the molecular mechanism of this type VII secretion system.
Collapse
|
25
|
Wassermann R, Gulen MF, Sala C, Perin SG, Lou Y, Rybniker J, Schmid-Burgk JL, Schmidt T, Hornung V, Cole ST, Ablasser A. Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1. Cell Host Microbe 2015; 17:799-810. [PMID: 26048138 DOI: 10.1016/j.chom.2015.05.003] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/02/2015] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Abstract
Cytosolic detection of microbial products is essential for the initiation of an innate immune response against intracellular pathogens such as Mycobacterium tuberculosis (Mtb). During Mtb infection of macrophages, activation of cytosolic surveillance pathways is dependent on the mycobacterial ESX-1 secretion system and leads to type I interferon (IFN) and interleukin-1β (IL-1β) production. Whereas the inflammasome regulates IL-1β secretion, the receptor(s) responsible for the activation of type I IFNs has remained elusive. We demonstrate that the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) is essential for initiating an IFN response to Mtb infection. cGAS associates with Mtb DNA in the cytosol to stimulate cyclic GAMP (cGAMP) synthesis. Notably, activation of cGAS-dependent cytosolic host responses can be uncoupled from inflammasome activation by modulating the secretion of ESX-1 substrates. Our findings identify cGAS as an innate sensor of Mtb and provide insight into how ESX-1 controls the activation of specific intracellular recognition pathways.
Collapse
Affiliation(s)
- Ruth Wassermann
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Muhammet F Gulen
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Claudia Sala
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sonia Garcia Perin
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ye Lou
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jan Rybniker
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; First Department of Internal Medicine, University of Cologne, 50937 Cologne, Germany
| | - Jonathan L Schmid-Burgk
- Institute for Molecular Medicine, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Tobias Schmidt
- Institute for Molecular Medicine, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Veit Hornung
- Institute for Molecular Medicine, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Andrea Ablasser
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
26
|
Bai X, Kinney WH, Su WL, Bai A, Ovrutsky AR, Honda JR, Netea MG, Henao-Tamayo M, Ordway DJ, Dinarello CA, Chan ED. Caspase-3-independent apoptotic pathways contribute to interleukin-32γ-mediated control of Mycobacterium tuberculosis infection in THP-1 cells. BMC Microbiol 2015; 15:39. [PMID: 25887904 PMCID: PMC4349755 DOI: 10.1186/s12866-015-0366-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/29/2015] [Indexed: 12/12/2022] Open
Abstract
Background Macrophages are the primary effector cells responsible for killing Mycobacterium tuberculosis (MTB) through various mechanisms, including apoptosis. However, MTB can evade host immunity to create a favorable environment for intracellular replication. MTB-infected human macrophages produce interleukin-32 (IL-32). IL-32 is a pro-inflammatory cytokine and has several isoforms. We previously found that IL-32γ reduced the burden of MTB in human macrophages, in part, through the induction of caspase-3-dependent apoptosis. However, based on our previous studies, we hypothesized that caspase-3-independent death pathways may also mediate IL-32 control of MTB infection. Herein, we assessed the potential roles of cathepsin-mediated apoptosis, caspase-1-mediated pyroptosis, and apoptosis-inducing factor (AIF) in mediating IL-32γ control of MTB infection in THP-1 cells. Results Differentiated human THP-1 macrophages were infected with MTB H37Rv alone or in the presence of specific inhibitors to caspase-1, cathepsin B/D, or cathepsin L for up to four days, after which TUNEL-positive cells were quantified; in addition, MTB was quantified by culture as well as by the percentage of THP-1 cells that were infected with green fluorescent protein (GFP)-labeled MTB as determined by microscopy. AIF expression was inhibited using siRNA technology. Inhibition of cathepsin B/D, cathepsin L, or caspase-1 activity significantly abrogated the IL-32γ-mediated reduction in the number of intracellular MTB and of the percentage of GFP-MTB-infected macrophages. Furthermore, inhibition of caspase-1, cathepsin B/D, or cathepsin L in the absence of exogenous IL-32γ resulted in a trend toward an increased proportion of MTB-infected THP-1 cells. Inhibition of AIF activity in the absence of exogenous IL-32γ also increased intracellular burden of MTB. However, since IL-32γ did not induce AIF and because the relative increases in MTB with inhibition of AIF were similar in the presence or absence of IL-32γ, our results indicate that AIF does not mediate the host-protective effect of IL-32γ against MTB. Conclusions The anti-MTB effects of IL-32γ are mediated through classical caspase-3-dependent apoptosis as well as caspase-3-independent apoptosis.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, USA. .,Departments of Medicine and Academic Affairs, National Jewish Health, D509, Neustadt Building, 1400 Jackson Street, Denver, CO, 80206, USA. .,Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| | - William H Kinney
- Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, USA. .,Departments of Medicine and Academic Affairs, National Jewish Health, D509, Neustadt Building, 1400 Jackson Street, Denver, CO, 80206, USA. .,Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei andTri-Service General Hospital; National Defense Medical Center, Taipei, Taiwan.
| | - An Bai
- Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, USA. .,Departments of Medicine and Academic Affairs, National Jewish Health, D509, Neustadt Building, 1400 Jackson Street, Denver, CO, 80206, USA.
| | - Alida R Ovrutsky
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Jennifer R Honda
- Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, USA. .,Departments of Medicine and Academic Affairs, National Jewish Health, D509, Neustadt Building, 1400 Jackson Street, Denver, CO, 80206, USA. .,Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | - Marcela Henao-Tamayo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| | - Diane J Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| | - Charles A Dinarello
- Division of Infectious Diseases, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.
| | - Edward D Chan
- Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, USA. .,Departments of Medicine and Academic Affairs, National Jewish Health, D509, Neustadt Building, 1400 Jackson Street, Denver, CO, 80206, USA. .,Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
27
|
Garg NK, Dwivedi P, Jain A, Tyagi S, Sahu T, Tyagi RK. Development of novel carrier(s) mediated tuberculosis vaccine: more than a tour de force. Eur J Pharm Sci 2014; 62:227-42. [PMID: 24909731 DOI: 10.1016/j.ejps.2014.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/05/2014] [Accepted: 05/28/2014] [Indexed: 02/07/2023]
Abstract
Despite worldwide availability of the vaccines against most of the infectious diseases, BCG and various programs such as Directly Observed Treatment Short course (DOTS) to prevent tuberculosis still remains one of the most deadly forms of the disease affecting millions of people globally. The evolution of multi drug resistant strains (MDR) has increased the complexity further. Although currently available marketed BCG vaccine has shown sufficient protection against childhood tuberculosis, it has failed to prevent the most common form of disease i.e., pulmonary tuberculosis in adults. However, various vaccine candidates have already entered phase I clinical trials and have shown promising outcomes. The most prominent amongst them is the heterologous prime-boost approach, which shows a great promise towards designing and development of a new efficacious tuberculosis vaccine. It has also been shown that the use of various viral and non-viral vectors as carriers for the potential vaccine candidates will further boost their effect on subsequent immunization. In this review, we briefly summarize the potential of a few novel nano-carriers for developing effective vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Neeraj K Garg
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, 160 014 Chandigarh, India; Department of Pharmaceutical Sciences, Dr. H.S. Gour University, Sagar 470 003, MP, India.
| | - Priya Dwivedi
- Department of Biotechnology, TRS College, Rewa 486001, MP, India
| | - Ashay Jain
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, 160 014 Chandigarh, India; Department of Pharmaceutical Sciences, Dr. H.S. Gour University, Sagar 470 003, MP, India
| | - Shikha Tyagi
- Department of Biotechnology, IMS Engineering College, Ghaziabad, UP Technical University, UP, India
| | - Tejram Sahu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, TW3/3W15, 12735 Twinbrook Pkwy, Rockville, MD, USA
| | - Rajeev K Tyagi
- Department of Periodontics, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
28
|
Srinivasan L, Ahlbrand S, Briken V. Interaction of Mycobacterium tuberculosis with host cell death pathways. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a022459. [PMID: 24968864 DOI: 10.1101/cshperspect.a022459] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mycobacterium tuberculosis (Mtb) has coevolved with humans for tens of thousands of years. It is thus highly adapted to its human host and has evolved multiple mechanisms to manipulate host immune responses to its advantage. One central host pathogen interaction modality is host cell death pathways. Host cell apoptosis is associated with a protective response to Mtb infection, whereas a necrotic response favors the pathogen. Consistently, Mtb inhibits host cell apoptosis signaling but promotes induction of programmed necrosis. The molecular mechanisms involved in Mtb-mediated host cell death manipulation, the consequences for host immunity, and the potential for therapeutic and preventive approaches will be discussed.
Collapse
Affiliation(s)
- Lalitha Srinivasan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Sarah Ahlbrand
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
29
|
Grayfer L, Hodgkinson JW, Belosevic M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:223-42. [PMID: 23954721 DOI: 10.1016/j.dci.2013.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 05/22/2023]
Abstract
During infection, macrophage lineage cells eliminate infiltrating pathogens through a battery of antimicrobial responses, where the efficacy of these innate immune responses is pivotal to immunological outcomes. Not surprisingly, many intracellular pathogens have evolved mechanisms to overcome macrophage defenses, using these immune cells as residences and dissemination strategies. With pathogenic infections causing increasing detriments to both aquacultural and wild fish populations, it is imperative to garner greater understanding of fish phagocyte antimicrobial responses and the mechanisms by which aquatic pathogens are able to overcome these teleost macrophage barriers. Insights into the regulation of macrophage immunity of bony fish species will lend to the development of more effective aquacultural prophylaxis as well as broadening our understanding of the evolution of these immune processes. Accordingly, this review focuses on recent advances in the understanding of teleost macrophage antimicrobial responses and the strategies by which intracellular fish pathogens are able to avoid being killed by phagocytes, with a focus on Mycobacterium marinum.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | | | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Canada; School of Public Health, University of Alberta, Edmonton, Canada.
| |
Collapse
|
30
|
Hagar JA, Miao EA. Detection of cytosolic bacteria by inflammatory caspases. Curr Opin Microbiol 2013; 17:61-6. [PMID: 24581694 DOI: 10.1016/j.mib.2013.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/15/2013] [Accepted: 11/20/2013] [Indexed: 01/14/2023]
Abstract
The sanctity of the cytosolic compartment is rigorously maintained by a number of innate immune mechanisms. Inflammasomes detect signatures of microbial infection and trigger caspase-1 or caspase-11 activation, culminating in cytokine secretion and obliteration of the replicative niche via pyroptosis. Recent studies have examined inflammatory caspase responses to cytosolic bacteria, including Burkholderia, Shigella, Listeria, Francisella, and Mycobacterium species. For example, caspase-11 responds to LPS introduced into the cytosol after Gram-negative bacteria escape the vacuole. Not surprisingly, bacteria antagonize these responses; for example, Shigella delivers OspC3 to inhibit caspase-4, a potential human homolog of murine caspase-11. These findings underscore bacterial coevolution with the innate immune system, which has resulted in few, but highly specialized cytosolic pathogens.
Collapse
Affiliation(s)
- Jon A Hagar
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Edward A Miao
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
31
|
Prokaryotic expression and functional analysis of the Mb1514 gene in Mycobacterium bovis. Mol Cell Biochem 2013; 385:43-52. [PMID: 24141863 DOI: 10.1007/s11010-013-1813-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 09/13/2013] [Indexed: 12/11/2022]
Abstract
The ability of mycobacteria to grow and invade target tissues is the key component in the process of Mycobacterium bovis infection. Therefore, analysis of the proteins responsible for cell invasion will assist clinicians in combating bovine tuberculosis. The Mb1514 gene of M. bovis encodes a hypothetical invasion protein (designated here as MbINV protein), whose function has not yet been directly identified. In this study, the Mb1514 gene from M. bovis was cloned, and expressed in E. coli. The recombinant MbINV protein (a single band of approximately 28 kDa) was purified for biological analysis. Our data demonstrated that recombinant MbINV protein significantly inhibited the viability of RAW264.7 macrophages in a dose-dependent manner (P < 0.05), and induced cell necrosis, indicating that the protein is toxic. MbINV protein infection significantly enhanced the mRNA expression levels of TNF-α, IL-1β, and NOS2 (P < 0.01), suggesting that MbINV protein may be one of the virulence factors which directly interact with macrophages and modulate the host immune response to M. bovis. An invasion inhibition assay showed that MbINV-inhibited M. bovis invasion of RAW264.7 cells in a concentration-dependant manner, demonstrating it is an invasion protein.
Collapse
|
32
|
Briken V, Ahlbrand SE, Shah S. Mycobacterium tuberculosis and the host cell inflammasome: a complex relationship. Front Cell Infect Microbiol 2013; 3:62. [PMID: 24130966 PMCID: PMC3793174 DOI: 10.3389/fcimb.2013.00062] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/23/2013] [Indexed: 12/31/2022] Open
Abstract
The production of IL-1β during the infection with Mycobacterium tuberculosis (Mtb) is important for successful host immune defense. In macrophages and dendritic cells the host cell inflammasome is crucial for generation of secreted IL-1β in response to Mtb infections. In these cell types Mtb infection only activates the NLRP3-inflammasome. New reports demonstrate that nitric oxide has an important function in the negative regulation of the NLRP3-inflammasome to reduce tissue damage during Mtb infections. The type I interferon, IFN-β, is induced after Mtb infections and can also suppress NLRP3-inflammasome activation. In contrast, IFN-β increases activity of the AIM2-inflammasome after infection with intracellular pathogens such as Francisella tularensis and Listeria monocytogenes. Recent results demonstrate that non-tuberculous mycobacteria but not virulent Mtb induce the AIM2-inflammasome in an IFN-β dependent matter. Indeed, Mtb inhibits AIM2-inflammasome activation via its ESX-1 secretion system. This novel immune evasion mechanism may help Mtb to allow the induction of low levels of IFN-β to suppress the NLRP3-inflammasome without activating the AIM2-inflammasome.
Collapse
Affiliation(s)
- Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | | | | |
Collapse
|
33
|
Pathways of IL-1β secretion by macrophages infected with clinical Mycobacterium tuberculosis strains. Tuberculosis (Edinb) 2013; 93:538-47. [PMID: 23849220 PMCID: PMC3759846 DOI: 10.1016/j.tube.2013.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/25/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022]
Abstract
The pro-inflammatory cytokine IL-1β is a key mediator of inflammation and plays an important role in the host resistance to Mycobacterium tuberculosis infections. To date, most studies have examined the mechanisms of IL-1β secretion using laboratory strains of M. tuberculosis and the findings may not be widely applicable to contemporary clinical strains. Here, we investigated the primary pathways of IL-1β secretion in macrophages infected with a panel of 17 clinical M. tuberculosis isolates, representing Euro-American, Indo-Oceanic and East-Asian/Beijing lineages. Our aim was to dissect the pathways involved in M. tuberculosis induced IL-1β secretion and to determine whether they are common to all clinical isolates. We found that the isolates were capable of eliciting variable concentrations of IL-1β from infected murine macrophages, but this phenomenon could not be attributed to differential IL-1β mRNA transcription or pro-IL-1β accumulation. We demonstrate that viable bacteria are required to induce IL-1β secretion from macrophages, but IL-1β secretion was only partially abrogated by caspase-1 inhibition. Almost complete IL-1β secretion inhibition was produced with combined caspase-1 and some serine protease inhibitors. Taken together, these findings demonstrate that clinical strains of M. tuberculosis employ a unique caspase-1 independent pathway to stimulate IL-1β secretion from macrophages.
Collapse
|
34
|
Shah S, Bohsali A, Ahlbrand SE, Srinivasan L, Rathinam VAK, Vogel SN, Fitzgerald KA, Sutterwala FS, Briken V. Cutting edge: Mycobacterium tuberculosis but not nonvirulent mycobacteria inhibits IFN-β and AIM2 inflammasome-dependent IL-1β production via its ESX-1 secretion system. THE JOURNAL OF IMMUNOLOGY 2013; 191:3514-8. [PMID: 23997220 DOI: 10.4049/jimmunol.1301331] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis extracellular DNA gains access to the host cell cytosol via the ESX-1 secretion system. It is puzzling that this extracellular DNA of M. tuberculosis does not induce activation of the AIM2 inflammasome because AIM2 recognizes cytosolic DNA. In this study, we show that nonvirulent mycobacteria such as Mycobacterium smegmatis induce AIM2 inflammasome activation, which is dependent on their strong induction of IFN-β production. In contrast, M. tuberculosis, but not an ESX-1-deficient mutant, inhibits the AIM2 inflammasome activation induced by either M. smegmatis or transfected dsDNA. The inhibition does not involve changes in host cell AIM2 mRNA or protein levels but led to decreased activation of caspase-1. We furthermore demonstrate that M. tuberculosis inhibits IFN-β production and signaling, which was partially responsible for the inhibition of AIM2 activation. In conclusion, we report a novel immune evasion mechanism of M. tuberculosis that involves the ESX-1-dependent, direct or indirect, suppression of the host cell AIM2 inflammasome activation during infection.
Collapse
Affiliation(s)
- Swati Shah
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang R, Xi C, Sita DR, Sakai S, Tsuchiya K, Hara H, Shen Y, Qu H, Fang R, Mitsuyama M, Kawamura I. The RD1 locus in the Mycobacterium tuberculosis genome contributes to the maturation and secretion of IL-1α from infected macrophages through the elevation of cytoplasmic calcium levels and calpain activation. Pathog Dis 2013; 70:51-60. [PMID: 23913588 DOI: 10.1111/2049-632x.12075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/30/2013] [Accepted: 07/23/2013] [Indexed: 11/30/2022] Open
Abstract
Region of difference 1 (RD1) is a genomic locus in the Mycobacterium tuberculosis genome that has been shown to participate in the virulence of the bacterium, induction of cell death, and cytokine secretion in infected macrophages. In this study, we investigated the role of RD1 in interleukin-1α (IL-1α) secretion. M. tuberculosis H37Rv strain, but not a mutant strain deficient for RD1 (∆RD1), significantly induced IL-1α secretion from infected macrophages. Although IL-1α secretion was only observed in H37Rv-infected macrophages, there was no difference in the level of IL-1α transcription and pro-IL1α synthesis after infection with H37Rv and ∆RD1. Interestingly, ∆RD1 infection did not increase intracellular Ca(2+) levels, and Ca(2+) chelators markedly inhibited IL-1α secretion in response to H37Rv infection. Moreover, the inability of ∆RD1 to induce IL-1α secretion was restored by treatment with the calcium ionophore A23187. A significant increase in calpain activity was detected in macrophages infected with H37Rv, but not with ∆RD1, and calpain inhibitors abrogated IL-1α secretion. Taken together, these results suggest that in M. tuberculosis-infected macrophages, RD1 contributed to maturation and secretion of IL-1α by enhancing the influx of Ca(2+) followed by calpain activation.
Collapse
Affiliation(s)
- Ruili Yang
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, China; Department of Microbiology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abdalla H, Srinivasan L, Shah S, Mayer-Barber KD, Sher A, Sutterwala FS, Briken V. Mycobacterium tuberculosis infection of dendritic cells leads to partially caspase-1/11-independent IL-1β and IL-18 secretion but not to pyroptosis. PLoS One 2012; 7:e40722. [PMID: 22911706 PMCID: PMC3404059 DOI: 10.1371/journal.pone.0040722] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/14/2012] [Indexed: 11/19/2022] Open
Abstract
Background Interleukin-1β (IL-1β) is important for host resistance against Mycobacterium tuberculosis (Mtb) infections. The response of the dendritic cell inflammasome during Mtb infections has not been investigated in detail. Methodology/Principal Findings Here we show that Mtb infection of bone marrow-derived dendritic cells (BMDCs) induces IL-1β secretion and that this induction is dependent upon the presence of functional ASC and NLRP3 but not NLRC4 or NOD2. The analysis of cell death induction in BMDCs derived from these knock-out mice revealed the important induction of host cell apoptosis but not necrosis, pyroptosis or pyronecrosis. Furthermore, NLRP3 inflammasome activation and apoptosis induction were both reduced in BMDCs infected with the esxA deletion mutant of Mtb demonstrating the importance of a functional ESX-1 secretion system. Surprisingly, caspase-1/11-deficient BMDCs still secreted residual levels of IL-1βand IL-18 upon Mtb infection which was abolished in cells infected with the esxA Mtb mutant. Conclusion Altogether we demonstrate the partially caspase-1/11-independent, but NLRP3- and ASC- dependent IL-1β secretion in Mtb-infected BMDCs. These findings point towards a potential role of DCs in the host innate immune response to mycobacterial infections via their capacity to induce IL-1β and IL-18 secretion.
Collapse
Affiliation(s)
- Hana Abdalla
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Lalitha Srinivasan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Swati Shah
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Katrin D. Mayer-Barber
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fayyaz S. Sutterwala
- Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Veterans Affairs Medical Center, Iowa City, Iowa, United States of America
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Chen CC, Tsai SH, Lu CC, Hu ST, Wu TS, Huang TT, Saïd-Sadier N, Ojcius DM, Lai HC. Activation of an NLRP3 inflammasome restricts Mycobacterium kansasii infection. PLoS One 2012; 7:e36292. [PMID: 22558425 PMCID: PMC3340363 DOI: 10.1371/journal.pone.0036292] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 03/29/2012] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium kansasii has emerged as an important nontuberculous mycobacterium pathogen, whose incidence and prevalence have been increasing in the last decade. M. kansasii can cause pulmonary tuberculosis clinically and radiographically indistinguishable from that caused by Mycobacterium tuberculosis infection. Unlike the widely-studied M. tuberculosis, little is known about the innate immune response against M. kansasii infection. Although inflammasome activation plays an important role in host defense against bacterial infection, its role against atypical mycobacteria remains poorly understood. In this report, the role of inflammasome activity in THP-1 macrophages against M. kansasii infection was studied. Results indicated that viable, but not heat-killed, M. kansasii induced caspase-1-dependent IL-1β secretion in macrophages. The underlying mechanism was found to be through activation of an inflammasome containing the NLR (Nod-like receptor) family member NLRP3 and the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD). Further, potassium efflux, lysosomal acidification, ROS production and cathepsin B release played a role in M. kansasii-induced inflammasome activation. Finally, the secreted IL-1β derived from caspase-1 activation was shown to restrict intracellular M. kansasii. These findings demonstrate a biological role for the NLRP3 inflammasome in host defense against M. kansasii.
Collapse
Affiliation(s)
- Chang-Chieh Chen
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, Taiwan, Republic of China
| | - Sheng-Hui Tsai
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, Taipei, Taiwan, Republic of China
| | - Shiau-Ting Hu
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Department of Microbiology and Immunology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ting-Shu Wu
- Department of Internal Medicine, Chang Gung Memorial Hospital and Graduate Institute of Clinical Medical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
| | - Tsung-Teng Huang
- Center for Molecular and Clinical Immunology, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Laboratory of Nanomaterials, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
| | - Najwane Saïd-Sadier
- Health Sciences Research Institute and School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Health Sciences Research Institute and School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Hsin-Chih Lai
- Center for Molecular and Clinical Immunology, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
38
|
Dorhoi A, Nouailles G, Jörg S, Hagens K, Heinemann E, Pradl L, Oberbeck-Müller D, Duque-Correa MA, Reece ST, Ruland J, Brosch R, Tschopp J, Gross O, Kaufmann SHE. Activation of the NLRP3 inflammasome byMycobacterium tuberculosisis uncoupled from susceptibility to active tuberculosis. Eur J Immunol 2011; 42:374-84. [DOI: 10.1002/eji.201141548] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 09/22/2011] [Accepted: 11/02/2011] [Indexed: 01/24/2023]
|
39
|
Samten B, Wang X, Barnes PF. Immune regulatory activities of early secreted antigenic target of 6-kD protein of Mycobacterium tuberculosis and implications for tuberculosis vaccine design. Tuberculosis (Edinb) 2011; 91 Suppl 1:S114-8. [PMID: 22169731 DOI: 10.1016/j.tube.2011.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although ESAT-6 was originally identified as a strong T cell immunogen in short-term culture filtrate of Mtb, and has therefore been a candidate vaccine antigen for many years, recent work has demonstrated that ESAT-6 is also a virulence factor that mediates pathogenicity of Mtb. The studies described in this review suggest that ESAT-6 secreted by Mtb subverts host immunity by manipulating intracellular signaling pathways in macrophages and T cells, which are critical in protection against Mtb. Furthermore, ESAT-6 elicits pro-inflammatory responses that can be detrimental to the host. Understanding the molecular mechanisms through which ESAT-6 inhibits immunity will permit design of ESAT-6-based vaccine constructs that elicit protective immune responses with minimal negative effects.
Collapse
Affiliation(s)
- Buka Samten
- Center for Pulmonary and Infectious Disease Control, The University of Texas Health Science Center, Tyler, TX 75708, USA.
| | | | | |
Collapse
|
40
|
Abdallah AM, Bestebroer J, Savage NDL, de Punder K, van Zon M, Wilson L, Korbee CJ, van der Sar AM, Ottenhoff THM, van der Wel NN, Bitter W, Peters PJ. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation. THE JOURNAL OF IMMUNOLOGY 2011; 187:4744-53. [PMID: 21957139 DOI: 10.4049/jimmunol.1101457] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5--two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators--during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1β activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread.
Collapse
Affiliation(s)
- Abdallah M Abdallah
- The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee HM, Yuk JM, Kim KH, Jang J, Kang G, Park JB, Son JW, Jo EK. Mycobacterium abscessus activates the NLRP3 inflammasome via Dectin-1-Syk and p62/SQSTM1. Immunol Cell Biol 2011; 90:601-10. [PMID: 21876553 PMCID: PMC3389799 DOI: 10.1038/icb.2011.72] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Numerous atypical mycobacteria, including Mycobacterium abscessus (Mabc), cause nontuberculous mycobacterial infections, which present a serious public health threat. Inflammasome activation is involved in host defense and the pathogenesis of autoimmune diseases. However, inflammasome activation has not been widely characterized in human macrophages infected with atypical mycobacteria. Here, we demonstrate that Mabc robustly activates the nucleotide binding and oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome via dectin-1/Syk-dependent signaling and the cytoplasmic scaffold protein p62/SQSTM1 (p62) in human macrophages. Both dectin-1 and Toll-like receptor 2 (TLR2) were required for Mabc-induced mRNA expression of pro-interleukin (IL)-1β, cathelicidin human cationic antimicrobial protein-18/LL-37 and β-defensin 4 (DEFB4). Dectin-1-dependent Syk signaling, but not that of MyD88, led to the activation of caspase-1 and secretion of IL-1β through the activation of an NLRP3/apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) inflammasome. Additionally, potassium efflux was required for Mabc-induced NLRP3/ASC inflammasome activation. Furthermore, Mabc-induced p62 expression was critically involved in NLRP3 inflammasome activation in human macrophages. Finally, NLRP3/ASC was critical for the inflammasome in antimicrobial responses to Mabc infection. Taken together, these data demonstrate the induction mechanism of the NLRP3/ASC inflammasome and its role in innate immunity to Mabc infection.
Collapse
Affiliation(s)
- Hye-Mi Lee
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Novikov A, Cardone M, Thompson R, Shenderov K, Kirschman KD, Mayer-Barber KD, Myers TG, Rabin RL, Trinchieri G, Sher A, Feng CG. Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1β production in human macrophages. THE JOURNAL OF IMMUNOLOGY 2011; 187:2540-7. [PMID: 21784976 DOI: 10.4049/jimmunol.1100926] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis is a virulent intracellular pathogen that survives in macrophages even in the presence of an intact adaptive immune response. Type I IFNs have been shown to exacerbate tuberculosis in mice and to be associated with disease progression in infected humans. Nevertheless, the mechanisms by which type I IFNs regulate the host response to M. tuberculosis infection are poorly understood. In this study, we show that M. tuberculosis induces an IFN-related gene expression signature in infected primary human macrophages, which is dependent on host type I IFN signaling as well as the mycobacterial virulence factor, region of difference-1. We further demonstrate that type I IFNs selectively limit the production of IL-1β, a critical mediator of immunity to M. tuberculosis. This regulation occurs at the level of IL1B mRNA expression, rather than caspase-1 activation or autocrine IL-1 amplification and appears to be preferentially used by virulent mycobacteria since avirulent M. bovis bacillus Calmette-Guérin (BCG) fails to trigger significant expression of type I IFNs or release of mature IL-1β protein. The latter property is associated with decreased caspase-1-dependent IL-1β maturation in the BCG-infected macrophages. Interestingly, human monocytes in contrast to macrophages produce comparable levels of IL-1β in response to either M. tuberculosis or BCG. Taken together, these findings demonstrate that virulent and avirulent mycobacteria employ distinct pathways for regulating IL-1β production in human macrophages and reveal that in the case of M. tuberculosis infection the induction of type I IFNs is a major mechanism used for this purpose.
Collapse
Affiliation(s)
- Aleksey Novikov
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Induction of necrotic death in macrophages is a primary virulence determinant of Mycobacterium tuberculosis. The ESX-1 secretion system and its substrate ESAT-6 are required for M. tuberculosis to induce necrosis, but host factors that mediate the ESAT-6-promoted necrosis remain unknown. Here we report that ESAT-6-promoted necrotic death in THP-1 human macrophages is dependent on the NLRP3 inflammasome, as shown by RNA interference and pharmacological inhibitions. Phagosomes containing ESAT-6-expressing M. tuberculosis recruit markers previously associated with damaged phagosomal membrane, such as galectin-3 and ubiquitinated protein aggregates. In addition, ESAT-6 promoted lysosomal permeabilization by M. tuberculosis. ESAT-6 mutants defective for ubiquitination were unable to trigger NLRP3 activation and necrotic death. Furthermore, Syk tyrosine kinase, recently implicated in NLRP3 activation during fungal and malarial infections, was necessary for mediating the ESAT-6-promoted necrosis and NLRP3 activation. Our results thus link phagosomal damage and Syk activity to NLRP3-mediated necrotic death triggered by M. tuberculosis ESAT-6 during infection.
Collapse
Affiliation(s)
- Ka-Wing Wong
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
44
|
Dorhoi A, Reece ST, Kaufmann SHE. For better or for worse: the immune response against Mycobacterium tuberculosis balances pathology and protection. Immunol Rev 2011; 240:235-51. [PMID: 21349097 DOI: 10.1111/j.1600-065x.2010.00994.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) is a complex disease, and the success of the bacterium as an intracellular pathogen is the outcome of its close and longstanding coevolution with the mammalian host. The dialogue between Mycobacterium tuberculosis and the host is becoming understandable at the molecular, cellular, and tissue level. This has led to the elucidation of the (i) interaction between pattern recognition receptors and pathogen-associated molecular patterns, (ii) cross-talk between immune cells, and (iii) mechanisms underlying granuloma development. Disease as an eventual but not a necessary consequence of infection results from a sensitive balance between protective immunity and destructive pathology. Early events, governed largely by conserved mechanisms of host recognition, impact not only on type and course of adaptive immunity but also on lung parenchymal function. New interpretations of how these responses shape the lung environment and direct granuloma development emphasize that the disease results from pathologic consequences of non-resolving inflammation. We review recent advances in TB research within the context of this ambitious view of TB.
Collapse
Affiliation(s)
- Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | |
Collapse
|
45
|
Welin A, Eklund D, Stendahl O, Lerm M. Human macrophages infected with a high burden of ESAT-6-expressing M. tuberculosis undergo caspase-1- and cathepsin B-independent necrosis. PLoS One 2011; 6:e20302. [PMID: 21637850 PMCID: PMC3102687 DOI: 10.1371/journal.pone.0020302] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 04/29/2011] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects lung macrophages, which instead of killing the pathogen can be manipulated by the bacilli, creating an environment suitable for intracellular replication and spread to adjacent cells. The role of host cell death during Mtb infection is debated because the bacilli have been shown to be both anti-apoptotic, keeping the host cell alive to avoid the antimicrobial effects of apoptosis, and pro-necrotic, killing the host macrophage to allow infection of neighboring cells. Since mycobacteria activate the NLRP3 inflammasome in macrophages, we investigated whether Mtb could induce one of the recently described inflammasome-linked cell death modes pyroptosis and pyronecrosis. These are mediated through caspase-1 and cathepsin-B, respectively. Human monocyte-derived macrophages were infected with virulent (H37Rv) Mtb at a multiplicity of infection (MOI) of 1 or 10. The higher MOI resulted in strongly enhanced release of IL-1β, while a low MOI gave no IL-1β response. The infected macrophages were collected and cell viability in terms of the integrity of DNA, mitochondria and the plasma membrane was determined. We found that infection with H37Rv at MOI 10, but not MOI 1, over two days led to extensive DNA fragmentation, loss of mitochondrial membrane potential, loss of plasma membrane integrity, and HMGB1 release. Although we observed plasma membrane permeabilization and IL-1β release from infected cells, the cell death induced by Mtb was not dependent on caspase-1 or cathepsin B. It was, however, dependent on mycobacterial expression of ESAT-6. We conclude that as virulent Mtb reaches a threshold number of bacilli inside the human macrophage, ESAT-6-dependent necrosis occurs, activating caspase-1 in the process.
Collapse
Affiliation(s)
- Amanda Welin
- Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
46
|
Skeldon A, Saleh M. The inflammasomes: molecular effectors of host resistance against bacterial, viral, parasitic, and fungal infections. Front Microbiol 2011; 2:15. [PMID: 21716947 PMCID: PMC3109312 DOI: 10.3389/fmicb.2011.00015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/20/2011] [Indexed: 01/01/2023] Open
Abstract
The inflammasomes are large multi-protein complexes scaffolded by cytosolic pattern recognition receptors (PRRs) that form an important part of the innate immune system. They are activated following the recognition of microbial-associated molecular patterns or host-derived danger signals (danger-associated molecular patterns) by PRRs. This recognition results in the recruitment and activation of the pro-inflammatory protease caspase-1, which cleaves its preferred substrates pro-interleukin-1β (IL-1β) and pro-IL-18 into their mature biologically active cytokine forms. Through processing of a number of other cellular substrates, caspase-1 is also required for the release of “alarmins” and the induction and execution of an inflammatory form of cell death termed pyroptosis. A growing spectrum of inflammasomes have been identified in the host defense against a variety of pathogens. Reciprocally, pathogens have evolved effector strategies to antagonize the inflammasome pathway. In this review we discuss recent developments in the understanding of inflammasome-mediated recognition of bacterial, viral, parasitic, and fungal infections and the beneficial or detrimental effects of inflammasome signaling in host resistance.
Collapse
|
47
|
Simultaneous measurement of antigen-stimulated interleukin-1 beta and gamma interferon production enhances test sensitivity for the detection of Mycobacterium bovis infection in cattle. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1946-51. [PMID: 20926697 DOI: 10.1128/cvi.00377-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to identify cytokines that may be useful as candidates for inclusion in diagnostic tests for Mycobacterium bovis infection in cattle, we compared the levels of gamma interferon (IFN-γ), interleukin 1β (IL-1β), IL-4, IL-10, IL-12, macrophage inflammatory protein 1β (MIP-1β), and tumor necrosis factor alpha (TNF-α) in whole-blood cultures from tuberculosis (TB) reactor animals or TB-free controls following stimulation with M. bovis-specific antigens (purified protein derivative from M. bovis [PPD-B] or ESAT-6/CFP-10). In addition to IFN-γ responses, the production of IL-1β and TNF-α was also statistically significantly elevated in TB reactor cattle over that in uninfected controls following stimulation with PPD-B or ESAT-6/CFP-10 peptides. Thus, we evaluated whether the use of these two additional readouts could disclose further animals not detected by measuring IFN-γ alone. To this end, receiver operating characteristic (ROC) analyses were performed to define diagnostic cutoffs for positivity for TNF-α and IL-1β. These results revealed that for ESAT-6/CFP-10-induced responses, the use of all three readouts (IFN-γ, TNF-α, and IL-1β) in parallel increased the sensitivity of detection of M. bovis-infected animals by 11% but also resulted in a specificity decrease of 14%. However, applying only IFN-γ and IL-1β in parallel resulted in a 5% increase in sensitivity without the corresponding loss of specificity. The results for PPD-B-induced responses were similar, although the loss of specificity was more pronounced, even when only IFN-γ and IL-1β were used as readout systems. In conclusion, we have demonstrated that the use of an additional readout system, such as IL-1β, can potentially complement IFN-γ by increasing overall test sensitivity for the detection of M. bovis infection in cattle.
Collapse
|
48
|
Mycobacterium tuberculosis synergizes with ATP to induce release of microvesicles and exosomes containing major histocompatibility complex class II molecules capable of antigen presentation. Infect Immun 2010; 78:5116-25. [PMID: 20837713 DOI: 10.1128/iai.01089-09] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Major histocompatibility complex class II (MHC-II) molecules are released by murine macrophages upon lipopolysaccharide (LPS) stimulation and ATP signaling through the P2X7 receptor. These studies show that infection of macrophages with Mycobacterium tuberculosis or M. bovis strain BCG enhances MHC-II release in synergy with ATP. Shed MHC-II was contained in two distinct organelles, exosomes and plasma membrane-derived microvesicles, which were both able to present exogenous antigenic peptide to T hybridoma cells. Furthermore, microvesicles from mycobacterium-infected macrophages were able to directly present M. tuberculosis antigen (Ag) 85B(241-256)-I-A(b) complexes that were generated by the processing of M. tuberculosis Ag 85B in infected cells to both M. tuberculosis-specific T hybridoma cells and naïve P25 M. tuberculosis T-cell receptor (TCR)-transgenic T cells. In the presence of prefixed macrophages, exosomes from mycobacterium-infected macrophages provided weak stimulation to M. tuberculosis-specific T hybridoma cells but not naïve P25 T cells. Thus, infection with M. tuberculosis primes macrophages for the increased release of exosomes and microvesicles bearing M. tuberculosis peptide-MHC-II complexes that may generate antimicrobial T-cell responses.
Collapse
|
49
|
Behar SM, Divangahi M, Remold HG. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 2010; 8:668-74. [PMID: 20676146 DOI: 10.1038/nrmicro2387] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Virulent Mycobacterium tuberculosis inhibits apoptosis and triggers necrosis of host macrophages to evade innate immunity and delay the initiation of adaptive immunity. By contrast, attenuated M. tuberculosis induces macrophage apoptosis, an innate defence mechanism that reduces bacterial viability. In this Opinion article, we describe how virulent M. tuberculosis blocks production of the eicosanoid lipid mediator prostaglandin E(2) (PGE(2)). PGE(2) production by infected macrophages prevents mitochondrial damage and initiates plasma membrane repair, two processes that are crucial for preventing necrosis and inducing apoptosis. Thus, M. tuberculosis-mediated modulation of eicosanoid production determines the death modality of the infected macrophage, which in turn has a substantial impact on the outcome of infection.
Collapse
Affiliation(s)
- Samuel M Behar
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Womens Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
50
|
Carlsson F, Kim J, Dumitru C, Barck KH, Carano RAD, Sun M, Diehl L, Brown EJ. Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS Pathog 2010; 6:e1000895. [PMID: 20463815 PMCID: PMC2865529 DOI: 10.1371/journal.ppat.1000895] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/05/2010] [Indexed: 11/19/2022] Open
Abstract
The Esx-1 (type VII) secretion system is a major virulence determinant of pathogenic mycobacteria, including Mycobacterium marinum. However, the molecular events and host-pathogen interactions underlying Esx-1-mediated virulence in vivo remain unclear. Here we address this problem in a non-lethal mouse model of M. marinum infection that allows detailed quantitative analysis of disease progression. M. marinum established local infection in mouse tails, with Esx-1-dependent formation of caseating granulomas similar to those formed in human tuberculosis, and bone deterioration reminiscent of skeletal tuberculosis. Analysis of tails infected with wild type or Esx-1-deficient bacteria showed that Esx-1 enhanced generation of proinflammatory cytokines, including the secreted form of IL-1β, suggesting that Esx-1 promotes inflammasome activation in vivo. In vitro experiments indicated that Esx-1-dependent inflammasome activation required the host NLRP3 and ASC proteins. Infection of wild type and ASC-deficient mice demonstrated that Esx-1-dependent inflammasome activation exacerbated disease without restricting bacterial growth, indicating a host-detrimental role of this inflammatory pathway in mycobacterial infection. These findings define an immunoregulatory role for Esx-1 in a specific host-pathogen interaction in vivo, and indicate that the Esx-1 secretion system promotes disease and inflammation through its ability to activate the inflammasome. With ∼2 million people dying from tuberculosis every year, Mycobacterium tuberculosis represents the single most important bacterial pathogen globally. We use the closely related Mycobacterium marinum to study fundamental aspects of mycobacterial pathogenesis, likely to extend to human tuberculosis. The Esx-1 (type VII) secretion system is a major virulence determinant of pathogenic mycobacteria, including M. tuberculosis and M. marinum. However, a molecular explanation for Esx-1-mediated virulence in vivo has been lacking. Here we address this problem in a non-lethal mouse model of M. marinum infection that allows quantitative analysis of disease progression. M. marinum established local infection with important features of human tuberculosis, including formation of granulomas with caseating centers. Using a combination of bacterial and host mutants, we show that Esx-1-mediated activation of the host inflammasome increases inflammation without restricting bacterial growth, suggesting that activation of the inflammasome during mycobacterial infection is a manifestation of bacterial virulence rather than a manifestation of host response. These findings define a biological role for Esx-1 in a specific host-pathogen interaction in vivo, and imply that the Esx-1 secretion system has evolved specifically to promote host pathology.
Collapse
Affiliation(s)
- Fredric Carlsson
- Department of Microbial Pathogenesis, Genentech Inc., South San Francisco, California, United States of America
- * E-mail: (FC); (EJB)
| | - Janice Kim
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, United States of America
| | - Calin Dumitru
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, United States of America
| | - Kai H. Barck
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California, United States of America
| | - Richard A. D. Carano
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California, United States of America
| | - Mei Sun
- Department of Pathology, Genentech Inc., South San Francisco, California, United States of America
| | - Lauri Diehl
- Department of Pathology, Genentech Inc., South San Francisco, California, United States of America
| | - Eric J. Brown
- Department of Microbial Pathogenesis, Genentech Inc., South San Francisco, California, United States of America
- * E-mail: (FC); (EJB)
| |
Collapse
|