1
|
Liu A, Garrett S, Hong W, Zhang J. Staphylococcus aureus Infections and Human Intestinal Microbiota. Pathogens 2024; 13:276. [PMID: 38668232 PMCID: PMC11053856 DOI: 10.3390/pathogens13040276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that can cause many human diseases, such as skin infection, food poisoning, endocarditis, and sepsis. These diseases can be minor infections or life-threatening, requiring complex medical management resulting in substantial healthcare costs. Meanwhile, as the critically ignored "organ," the intestinal microbiome greatly impacts physiological health, not only in gastrointestinal diseases but also in disorders beyond the gut. However, the correlation between S. aureus infection and intestinal microbial homeostasis is largely unknown. Here, we summarized the recent progress in understanding S. aureus infections and their interactions with the microbiome in the intestine. These summarizations will help us understand the mechanisms behind these infections and crosstalk and the challenges we are facing now, which could contribute to preventing S. aureus infections, effective treatment investigation, and vaccine development.
Collapse
Affiliation(s)
- Aotong Liu
- Department of Pharmacology & Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Shari Garrett
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Wanqing Hong
- Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- School of Chemistry & Chemical Engineering and Materials Sciences, Shandong Normal University, Jinan 250061, China
| | - Jilei Zhang
- Department of Pharmacology & Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
2
|
Noli Truant S, Redolfi DM, Sarratea MB, Malchiodi EL, Fernández MM. Superantigens, a Paradox of the Immune Response. Toxins (Basel) 2022; 14:toxins14110800. [PMID: 36422975 PMCID: PMC9692936 DOI: 10.3390/toxins14110800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcal enterotoxins are a wide family of bacterial exotoxins with the capacity to activate as much as 20% of the host T cells, which is why they were called superantigens. Superantigens (SAgs) can cause multiple diseases in humans and cattle, ranging from mild to life-threatening infections. Almost all S. aureus isolates encode at least one of these toxins, though there is no complete knowledge about how their production is triggered. One of the main problems with the available evidence for these toxins is that most studies have been conducted with a few superantigens; however, the resulting characteristics are attributed to the whole group. Although these toxins share homology and a two-domain structure organization, the similarity ratio varies from 20 to 89% among different SAgs, implying wide heterogeneity. Furthermore, every attempt to structurally classify these proteins has failed to answer differential biological functionalities. Taking these concerns into account, it might not be appropriate to extrapolate all the information that is currently available to every staphylococcal SAg. Here, we aimed to gather the available information about all staphylococcal SAgs, considering their functions and pathogenicity, their ability to interact with the immune system as well as their capacity to be used as immunotherapeutic agents, resembling the two faces of Dr. Jekyll and Mr. Hyde.
Collapse
|
3
|
Sultan M, Wilson K, Abdulla OA, Busbee PB, Hall A, Carter T, Singh N, Chatterjee S, Nagarkatti P, Nagarkatti M. Endocannabinoid Anandamide Attenuates Acute Respiratory Distress Syndrome through Modulation of Microbiome in the Gut-Lung Axis. Cells 2021; 10:3305. [PMID: 34943813 PMCID: PMC8699344 DOI: 10.3390/cells10123305] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a serious lung condition characterized by severe hypoxemia leading to limitations of oxygen needed for lung function. In this study, we investigated the effect of anandamide (AEA), an endogenous cannabinoid, on Staphylococcal enterotoxin B (SEB)-mediated ARDS in female mice. Single-cell RNA sequencing data showed that the lung epithelial cells from AEA-treated mice showed increased levels of antimicrobial peptides (AMPs) and tight junction proteins. MiSeq sequencing data on 16S RNA and LEfSe analysis demonstrated that SEB caused significant alterations in the microbiota, with increases in pathogenic bacteria in both the lungs and the gut, while treatment with AEA reversed this effect and induced beneficial bacteria. AEA treatment suppressed inflammation both in the lungs as well as gut-associated mesenteric lymph nodes (MLNs). AEA triggered several bacterial species that produced increased levels of short-chain fatty acids (SCFAs), including butyrate. Furthermore, administration of butyrate alone could attenuate SEB-mediated ARDS. Taken together, our data indicate that AEA treatment attenuates SEB-mediated ARDS by suppressing inflammation and preventing dysbiosis, both in the lungs and the gut, through the induction of AMPs, tight junction proteins, and SCFAs that stabilize the gut-lung microbial axis driving immune homeostasis.
Collapse
Affiliation(s)
- Muthanna Sultan
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Kiesha Wilson
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Osama A. Abdulla
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Philip Brandon Busbee
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Alina Hall
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Taylor Carter
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Narendra Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| |
Collapse
|
4
|
Duan L, Zhang J, Chen Z, Gou Q, Xiong Q, Yuan Y, Jing H, Zhu J, Ni L, Zheng Y, Liu Z, Zhang X, Zeng H, Zou Q, Zhao Z. Antibiotic Combined with Epitope-Specific Monoclonal Antibody Cocktail Protects Mice Against Bacteremia and Acute Pneumonia from Methicillin-Resistant Staphylococcus aureus Infection. J Inflamm Res 2021; 14:4267-4282. [PMID: 34511967 PMCID: PMC8415768 DOI: 10.2147/jir.s325286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose We previously reported that monoclonal antibody (mAb) cocktail improves survival in Staphylococcus aureus infection. In this study, we used acute pneumonia model and lethal sepsis model to investigate the efficacy of antibiotic combined with epitope-specific mAb cocktail in treating MRSA252 infection. Methods MRSA252 was challenged by tail vein injection or tracheal intubation to establish sepsis model or pneumonia model. One hour after infection, the mice received a single intravenous injection of normal saline, vancomycin, and vancomycin combined monoclonal antibody, linezolid alone or linezolid combined monoclonal antibody. Daily record survival rate (total 7 days), bacterial load, histology, cytokine analysis of serum and alveolar lavage fluid, and in vitro determination of the neutralizing ability of antibodies to SEB toxin and Hla toxin explained the mechanism of antibody action. Results The mAb cocktail combined with low doses of vancomycin or linezolid improved survival rates in acute pneumonia model (70%, 80%) and lethal sepsis model (80%, 80%). Epitope-specific monoclonal antibodies reduced bacterial colonization in the kidneys and lungs of mice and inhibited the biological functions of the toxins Hla and SEB in vitro. Compared to the antibiotic alone or PBS groups, the combination group had higher levels of IL-1α, IL-1β and IFN-γ and lower levels of IL-6, IL-10, TNF-α. Further, the combination of antibiotic and mAb cocktail improved infection survival against the clinical MRSA isolates in a lethal sepsis model. Conclusion This study demonstrates a novel method to treat people with low immunity against drug-resistant S. aureus infections.
Collapse
Affiliation(s)
- LianLi Duan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhifu Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Qingshan Xiong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yue Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jiang Zhu
- Department of Pathology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Li Ni
- Obstetrics and Gynecology, The First People's Hospital of Jiulongpo District, Chongqing, 400050, People's Republic of China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Zhiyong Liu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaokai Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| |
Collapse
|
5
|
Alghetaa H, Mohammed A, Zhou J, Singh N, Nagarkatti M, Nagarkatti P. Resveratrol-mediated attenuation of superantigen-driven acute respiratory distress syndrome is mediated by microbiota in the lungs and gut. Pharmacol Res 2021; 167:105548. [PMID: 33722710 PMCID: PMC10116750 DOI: 10.1016/j.phrs.2021.105548] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is triggered by a variety of agents, including Staphylococcal Enterotoxin B (SEB). Interestingly, a significant proportion of patients with COVID-19, also develop ARDS. In the absence of effective treatments, ARDS results in almost 40% mortality. Previous studies from our laboratory demonstrated that resveratrol (RES), a stilbenoid, with potent anti-inflammatory properties can attenuate SEB-induced ARDS. In the current study, we investigated the role of RES-induced alterations in the gut and lung microbiota in the regulation of ARDS. Our studies revealed that SEB administration induced inflammatory cytokines, ARDS, and 100% mortality in C3H/HeJ mice. Additionally, SEB caused a significant increase in pathogenic Proteobacteria phylum and Propionibacterium acnes species in the lungs. In contrast, RES treatment attenuated SEB-mediated ARDS and mortality in mice, and significantly increased probiotic Actinobacteria phylum, Tenericutes phylum, and Lactobacillus reuteri species in both the colon and lungs. Colonic Microbiota Transplantation (CMT) from SEB-injected mice that were treated with RES as well as the transfer of L. reuteri into recipient mice inhibited the production of SEB-mediated induction of pro-inflammatory cytokines such as IFN-γ and IL-17 but increased that of anti-inflammatory IL-10. Additionally, such CMT and L. reuteri recipient mice exposed to SEB, showed a decrease in lung-infiltrating mononuclear cells, cytotoxic CD8+ T cells, NKT cells, Th1 cells, and Th17 cells, but an increase in the population of regulatory T cells (Tregs) and Th3 cells, and increase in the survival of mice from SEB-mediated ARDS. Together, the current study demonstrates that ARDS induced by SEB triggers dysbiosis in the lungs and gut and that attenuation of ARDS by RES may be mediated, at least in part, by alterations in microbiota in the lungs and the gut, especially through the induction of beneficial bacteria such as L. reuteri.
Collapse
Affiliation(s)
- Hasan Alghetaa
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Amira Mohammed
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Juhua Zhou
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Narendra Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| |
Collapse
|
6
|
Sultan M, Alghetaa H, Mohammed A, Abdulla OA, Wisniewski PJ, Singh N, Nagarkatti P, Nagarkatti M. The Endocannabinoid Anandamide Attenuates Acute Respiratory Distress Syndrome by Downregulating miRNA that Target Inflammatory Pathways. Front Pharmacol 2021; 12:644281. [PMID: 33995054 PMCID: PMC8113864 DOI: 10.3389/fphar.2021.644281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is defined as a type of respiratory failure that is caused by a variety of insults such as pneumonia, sepsis, trauma and certain viral infections. In this study, we investigated the effect of an endocannabinoid, anandamide (AEA), on ARDS induced in the mouse by Staphylococcus Enterotoxin B (SEB). Administration of a single intranasal dose of SEB in mice and treated with exogenous AEA at a dose of 40 mg/kg body weight led to the amelioration of ARDS in mice. Clinically, plethysmography results indicated that there was an improvement in lung function after AEA treatment accompanied by a decrease of inflammatory cell infiltrate. There was also a significant decrease in pro-inflammatory cytokines IL-2, TNF-α, and IFN-γ, and immune cells including CD4+ T cells, CD8+ T cells, Vβ8+ T cells, and NK+ T cells in the lungs. Concurrently, an increase in anti-inflammatory phenotypes such as CD11b + Gr1+ Myeloid-derived Suppressor Cells (MDSCs), CD4 + FOXP3 + Tregs, and CD4+IL10 + cells was observed in the lungs. Microarray data showed that AEA treatment in ARDS mice significantly altered numerous miRNA including downregulation of miRNA-23a-3p, which caused an upregulation of arginase (ARG1), which encodes for arginase, a marker for MDSCs, as well as TGF-β2, which induces Tregs. AEA also caused down-regulation of miRNA-34a-5p which led to induction of FoxP3, a master regulator of Tregs. Transfection of T cells using miRNA-23a-3p or miRNA-34a-5p mimics and inhibitors confirmed that these miRNAs targeted ARG1, TGFβ2 and FoxP3. In conclusion, the data obtained from this study suggests that endocannabinoids such as AEA can attenuate ARDS induced by SEB by suppressing inflammation through down-regulation of key miRNA that regulate immunosuppressive pathways involving the induction of MDSCs and Tregs.
Collapse
Affiliation(s)
- Muthanna Sultan
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| | - Hasan Alghetaa
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| | - Amirah Mohammed
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| | - Osama A Abdulla
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| | - Paul J Wisniewski
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| | - Narendra Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| |
Collapse
|
7
|
Genardi S, Visvabharathy L, Cao L, Morgun E, Cui Y, Qi C, Chen YH, Gapin L, Berdyshev E, Wang CR. Type II Natural Killer T Cells Contribute to Protection Against Systemic Methicillin-Resistant Staphylococcus aureus Infection. Front Immunol 2020; 11:610010. [PMID: 33312179 PMCID: PMC7708336 DOI: 10.3389/fimmu.2020.610010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (SA) bacteremia is responsible for over 10,000 deaths in the hospital setting each year. Both conventional CD4+ T cells and γδ T cells play protective roles in SA infection through secretion of IFN-γ and IL-17. However, the role of other unconventional T cells in SA infection is largely unknown. Natural killer T (NKT) cells, a subset of innate-like T cells, are activated rapidly in response to a wide range of self and microbial lipid antigens presented by MHC I-like molecule CD1d. NKT cells are divided into two groups, invariant NKT (iNKT) and type II NKT cells, based on TCR usage. Using mice lacking either iNKT cells or both types of NKT cells, we show that both NKT cell subsets are activated after systemic SA infection and produce IFN-γ in response to SA antigen, however type II NKT cells are sufficient to control bacterial burden and inflammatory infiltrate in infected organs. This protective capacity was specific for NKT cells, as mice lacking mucosal associated invariant T (MAIT) cells, another innate-like T cell subset, had no increased susceptibility to SA systemic infection. We identify polar lipid species from SA that induce IFN-γ production from type II NKT cells, which requires both CD1d-TCR engagement and IL-12 production by antigen presenting cells. We also demonstrate that a population of T cells enriched for type II NKT cells are increased in PBMC of SA bacteremic patients compared to healthy controls. Therefore, type II NKT cells perform effector functions that enhance control of SA infection prior to conventional T cell activation and recognize SA-derived lipid antigens. As CD1d is highly conserved in humans, these CD1d-restricted SA lipid antigens could be used in the design of next generation SA vaccines targeting cell-mediated immunity.
Collapse
Affiliation(s)
- Samantha Genardi
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lavanya Visvabharathy
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Liang Cao
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Eva Morgun
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yongyong Cui
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Chao Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
8
|
Pinheiro-Torres AS, Ferreira-Duarte AP, Takeshita WM, Gushiken VO, Roncalho-Buck IA, Anhê GF, Antunes E, DeSouza IA. Airways exposure of bacterial superantigen SEB enhances bone marrow eosinophil population and facilitates its egress to blood and lung tissue. Life Sci 2020; 264:118685. [PMID: 33137369 DOI: 10.1016/j.lfs.2020.118685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Differentiation of bone marrow eosinophils (BM-EO) and its trafficking to peripheral blood and respiratory mucosa are a hallmark of inflammatory diseases. Staphylococcal enterotoxin B (SEB) has been shown to aggravate airways eosinophilic inflammation. This study aimed to investigate the effects of mouse airways SEB exposure on BM-EO population, as well as its adhesive properties and release of cytokines/chemokines that orchestrate BM-EO trafficking to lungs. METHODS Male BALB/c mice were intranasally exposed to SEB (1 μg), and at 4, 16, 24 and 48 h thereafter, bone marrow (BM), circulating blood and bronchoalveolar lavage (BAL) fluid were collected. Levels of cytokines/chemokines and expressions of VLA-4 and CCR3 in BM were evaluated. Adhesion of BM to ICAM-1 and VCAM-1 were also evaluated. RESULTS SEB exposure promoted a marked eosinophil influx to BAL at 16 and 24 h after exposure, which was accompanied by significant increases in counts of immature (16 h) and mature (4 to 48 h) forms of eosinophil in BM, along with blood eosinophilia (16 h). In BM, higher levels of eotaxin, IL-5, IL-4, IL-3 and IL-7 were detected at 16 to 48 h. SEB also significantly increased CCR3 expression and calcium levels in BM-EO, and enhanced the cell adhesion to ICAM-1 (24 h) and ICAM-1 (48 h). CONCLUSION Airways SEB exposure increases the number of eosinophils in BM by mechanisms involving a network of cytokine and chemokine release, facilitating the BM-EO adhesion to ICAM-1 and VCAM-1 to gain access to the peripheral blood and lung tissues.
Collapse
Affiliation(s)
- A S Pinheiro-Torres
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai, São Paulo, Brazil
| | - A P Ferreira-Duarte
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai, São Paulo, Brazil
| | - W M Takeshita
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai, São Paulo, Brazil
| | - V O Gushiken
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai, São Paulo, Brazil
| | - I A Roncalho-Buck
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai, São Paulo, Brazil
| | - G F Anhê
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - E Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - I A DeSouza
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai, São Paulo, Brazil.
| |
Collapse
|
9
|
Zhang P, Yu J, Gui Y, Sun C, Han W. Inhibition of miRNA-222-3p Relieves Staphylococcal Enterotoxin B-Induced Liver Inflammatory Injury by Upregulating Suppressors of Cytokine Signaling 1. Yonsei Med J 2019; 60:1093-1102. [PMID: 31637892 PMCID: PMC6813146 DOI: 10.3349/ymj.2019.60.11.1093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Staphylococcal enterotoxin B (SEB) has been well-documented to induce liver injury. miRNA-222-3p (miR-222-3p) was implicated in SEB-induced lung injury and several liver injuries. This study aimed to explore the role of miR-222-3p in SEB-induced liver injury. MATERIALS AND METHODS Expression of miR-222-3p and suppressors of cytokine signaling 1 (SOCS1) was detected using real-time quantitative PCR and western blot. Liver injury was determined by levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and inflammatory cytokines, numbers of infiltrating mononuclear cells using AST/ALT assay kit, enzyme-linked immunosorbent assay (ELISA), and hematoxylin-eosin staining, respectively. Target binding between miR-222-3p and SOCS1 was predicted on targetScan software, and confirmed by luciferase reporter assay. RESULTS SEB induced liver injury in D-galactosamine (D-gal)-sensitized mice, as demonstrated by increased serum levels of AST and ALT, elevated release of interferon-gamma (INF-γ), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-2, and promoted infiltrating immune cells into liver. Expression of miR-222-3p was dramatically upregulated, and SOCS1 was downregulated in SEB-induced liver injury both in mice and splenocytes. Moreover, miR-222-3p knockout (KO) mice exhibited alleviated liver injury accompanied with SOCS1 upregulation. Besides, splenocytes under SEB challenge released less INF-γ, TNF-α, IL-6, and IL-2 during miR-222-3p knockdown. Mechanically, SOCS1 was targeted and downregulated by miR-222-3p. Upregulation of SOCS1 attenuated INF-γ, TNF-α, IL-6, and IL-2 release in SEB-induced splenocytes; downregulation of SOCS1 could block the suppressive role of miR-222-3p knockdown in SEB-induced splenocytes. CONCLUSION Inhibition of miR-222-3p relieves SEB-induced liver inflammatory injury by upregulating SOCS1, thereby providing the first evidence of miR-222-3p in SEB-induced liver injury.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Clinical Laboratory, the Third People's Hospital of Dalian, Dalian, China
| | - Jingda Yu
- Department of Clinical Laboratory, the Baotou Medical College of Inner Mongolia University of Science and Technology, Inner Mongolia, China
| | - Yifang Gui
- Department of Clinical Laboratory, the Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Cui Sun
- Department of Clinical Laboratory, the Third People's Hospital of Dalian, Dalian, China
| | - Weiping Han
- Department of Clinical Laboratory, the Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
10
|
TBA 225, a fusion toxoid vaccine for protection and broad neutralization of staphylococcal superantigens. Sci Rep 2019; 9:3279. [PMID: 30824769 PMCID: PMC6397225 DOI: 10.1038/s41598-019-39890-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/04/2018] [Indexed: 02/01/2023] Open
Abstract
Superantigens (SAgs) play a major role in the pathogenesis of Staphylococcus aureus and are associated with several diseases, including food poisoning, bacterial arthritis, and toxic shock syndrome. Monoclonal antibodies to these SAgs, primarily TSST-1, SEB and SEA have been shown to provide protection in animal studies and to reduce clinical severity in bacteremic patients. Here we quantify the pre-existing antibodies against SAgs in many human plasma and IVIG samples and demonstrate that in a major portion of the population these antibody titers are suboptimal and IVIG therapy only incrementally elevates the anti-SAg titers. Our in vitro neutralization studies show that a combination of antibodies against SEA, SEB,and TSST-1 can provide broad neutralization of staphylococcal SAgs. We report a single fusion protein (TBA225) consisting of the toxoid versions of TSST-1, SEB and SEA and demonstrate its immunogenicity and protective efficacy in a mouse model of toxic shock. Antibodies raised against this fusion vaccine provide broad neutralization of purified SAgs and culture supernatants of multiple clinically relevant S. aureus strains. Our data strongly supports the use of this fusion protein as a component of an anti-virulence based multivalent toxoid vaccine against S. aureus disease.
Collapse
|
11
|
Paget C, Trottein F. Mechanisms of Bacterial Superinfection Post-influenza: A Role for Unconventional T Cells. Front Immunol 2019; 10:336. [PMID: 30881357 PMCID: PMC6405625 DOI: 10.3389/fimmu.2019.00336] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Despite the widespread application of vaccination programs and antiviral drug treatments, influenza viruses are still among the most harmful human pathogens. Indeed, influenza results in significant seasonal and pandemic morbidity and mortality. Furthermore, severe bacterial infections can occur in the aftermath of influenza virus infection, and contribute substantially to the excess morbidity and mortality associated with influenza. Here, we review the main features of influenza viruses and current knowledge about the mechanical and immune mechanisms that underlie post-influenza secondary bacterial infections. We present the emerging literature describing the role of "innate-like" unconventional T cells in post-influenza bacterial superinfection. Unconventional T cell populations span the border between the innate and adaptive arms of the immune system, and are prevalent in mucosal tissues (including the airways). They mainly comprise Natural Killer T cells, mucosal-associated invariant T cells and γδ T cells. We provide an overview of the principal functions that these cells play in pulmonary barrier functions and immunity, highlighting their unique ability to sense environmental factors and promote protection against respiratory bacterial infections. We focus on two major opportunistic pathogens involved in superinfections, namely Streptococcus pneumoniae and Staphylococcus aureus. We discuss mechanisms through which influenza viruses alter the antibacterial activity of unconventional T cells. Lastly, we discuss recent fundamental advances and possible therapeutic approaches in which unconventional T cells would be targeted to prevent post-influenza bacterial superinfections.
Collapse
Affiliation(s)
- Christophe Paget
- Centre d'Etude des Pathologies Respiratoires, Institut National de la Santé et de la Recherche Médicale U1100, Tours, France.,Faculty of Medicine, Université de Tours, Tours, France
| | - François Trottein
- U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, Université de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Centre Hospitalier, Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
12
|
Paik W, Alonzo F, Knight KL. Probiotic Exopolysaccharide Protects against Systemic Staphylococcus aureus Infection, Inducing Dual-Functioning Macrophages That Restrict Bacterial Growth and Limit Inflammation. Infect Immun 2019; 87:e00791-18. [PMID: 30396894 PMCID: PMC6300633 DOI: 10.1128/iai.00791-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus causes severe systemic infection with high mortality rates. We previously identified exopolysaccharide (EPS) from a probiotic, Bacillus subtilis, that induces anti-inflammatory macrophages with an M2 phenotype and protects mice from Citrobacter rodentium-induced colitis. We tested if EPS could protect from systemic infection induced by S. aureus and found that EPS-treated mice had enhanced survival as well as reduced weight loss, systemic inflammation, and bacterial burden. While macrophages from EPS-treated mice display an M2 phenotype, they also restrict growth of internalized S. aureus through reactive oxygen species (ROS), reminiscent of proinflammatory phagocytes. These EPS-induced macrophages also limit T cell activation by S. aureus superantigens, and EPS abrogates systemic induction of gamma interferon after infection. We conclude that B. subtilis EPS is an immunomodulatory agent that induces hybrid macrophages that bolster antibacterial immunity and simultaneously limit inflammation, reducing disease burden and promoting host survival.
Collapse
Affiliation(s)
- Wonbeom Paik
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Katherine L Knight
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
13
|
Kadhim S, Singh NP, Zumbrun EE, Cui T, Chatterjee S, Hofseth L, Abood A, Nagarkatti P, Nagarkatti M. Resveratrol-Mediated Attenuation of Staphylococcus aureus Enterotoxin B-Induced Acute Liver Injury Is Associated With Regulation of microRNA and Induction of Myeloid-Derived Suppressor Cells. Front Microbiol 2018; 9:2910. [PMID: 30619104 PMCID: PMC6304356 DOI: 10.3389/fmicb.2018.02910] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Resveratrol (RES) is a polyphenolic compound found abundantly in plant products including red grapes, peanuts, and mulberries. Because of potent anti-inflammatory properties of RES, we investigated whether RES can protect from Staphylococcal enterotoxin B (SEB)-induced acute liver injury in mice. SEB is a potent super antigen that induces robust inflammation and releases inflammatory cytokines that can be fatal. We observed that SEB caused acute liver injury in mice with increases in enzyme aspartate transaminase (AST) levels, and massive infiltration of immune cells into the liver. Treatment with RES (100 mg/kg body weight) attenuated SEB-induced acute liver injury, as indicated by decreased AST levels and cellular infiltration in the liver. Interestingly, RES treatment increased the number of myeloid derived suppressor cells (MDSCs) in the liver. RES treatment led to alterations in the microRNA (miR) profile in liver mononuclear cells (MNCs) of mice exposed to SEB, and pathway analysis indicated these miRs targeted many inflammatory pathways. Of these, we identified miR-185, which was down-regulated by RES, to specifically target Colony Stimulating Factor (CSF1) using transfection studies. Moreover, the levels of CSF1 were significantly increased in RES-treated SEB mice. Because CSF1 is critical in MDSC induction, our studies suggest that RES may induce MDSCs by down-regulating miR-185 leading to increase the expression of CSF1. The data presented demonstrate for the first time that RES can effectively attenuates SEB-induced acute liver injury and that this may result from its action on miRs and induction of MDSCs.
Collapse
Affiliation(s)
- Sabah Kadhim
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Narendra P. Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Elizabeth E. Zumbrun
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Lorne Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Abduladheem Abood
- College of Dental Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
14
|
Fisher EL, Otto M, Cheung GYC. Basis of Virulence in Enterotoxin-Mediated Staphylococcal Food Poisoning. Front Microbiol 2018; 9:436. [PMID: 29662470 PMCID: PMC5890119 DOI: 10.3389/fmicb.2018.00436] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
The Staphylococcus aureus enterotoxins are a superfamily of secreted virulence factors that share structural and functional similarities and possess potent superantigenic activity causing disruptions in adaptive immunity. The enterotoxins can be separated into two groups; the classical (SEA-SEE) and the newer (SEG-SElY and counting) enterotoxin groups. Many members from both these groups contribute to the pathogenesis of several serious human diseases, including toxic shock syndrome, pneumonia, and sepsis-related infections. Additionally, many members demonstrate emetic activity and are frequently responsible for food poisoning outbreaks. Due to their robust tolerance to denaturing, the enterotoxins retain activity in food contaminated previously with S. aureus. The genes encoding the enterotoxins are found mostly on a variety of different mobile genetic elements. Therefore, the presence of enterotoxins can vary widely among different S. aureus isolates. Additionally, the enterotoxins are regulated by multiple, and often overlapping, regulatory pathways, which are influenced by environmental factors. In this review, we also will focus on the newer enterotoxins (SEG-SElY), which matter for the role of S. aureus as an enteropathogen, and summarize our current knowledge on their prevalence in recent food poisoning outbreaks. Finally, we will review the current literature regarding the key elements that govern the complex regulation of enterotoxins, the molecular mechanisms underlying their enterotoxigenic, superantigenic, and immunomodulatory functions, and discuss how these activities may collectively contribute to the overall manifestation of staphylococcal food poisoning.
Collapse
Affiliation(s)
- Emilie L Fisher
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Sharma AK, LaPar DJ, Stone ML, Zhao Y, Mehta CK, Kron IL, Laubach VE. NOX2 Activation of Natural Killer T Cells Is Blocked by the Adenosine A2A Receptor to Inhibit Lung Ischemia-Reperfusion Injury. Am J Respir Crit Care Med 2017; 193:988-99. [PMID: 26757359 DOI: 10.1164/rccm.201506-1253oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RATIONALE Ischemia-reperfusion (IR) injury after lung transplantation, which affects both short- and long-term allograft survival, involves activation of NADPH oxidase 2 (NOX2) and activation of invariant natural killer T (iNKT) cells to produce IL-17. Adenosine A2A receptor (A2AR) agonists are known to potently attenuate lung IR injury and IL-17 production. However, mechanisms for iNKT cell activation after IR and A2AR agonist-mediated protection remain unclear. OBJECTIVES We tested the hypothesis that NOX2 mediates IL-17 production by iNKT cells after IR and that A2AR agonism prevents IR injury by blocking NOX2 activation in iNKT cells. METHODS An in vivo murine hilar ligation model of IR injury was used, in which left lungs underwent 1 hour of ischemia and 2 hours of reperfusion. MEASUREMENTS AND MAIN RESULTS Adoptive transfer of iNKT cells from p47(phox-/-) or NOX2(-/-) mice to Jα18(-/-) (iNKT cell-deficient) mice significantly attenuated lung IR injury and IL-17 production. Treatment with an A2AR agonist attenuated IR injury and IL-17 production in wild-type (WT) mice and in Jα18(-/-) mice reconstituted with WT, but not A2AR(-/-), iNKT cells. Furthermore, the A2AR agonist prevented IL-17 production by murine and human iNKT cells after acute hypoxia-reoxygenation by blocking p47(phox) phosphorylation, a critical step for NOX2 activation. CONCLUSIONS NOX2 plays a key role in inducing iNKT cell-mediated IL-17 production and subsequent lung injury after IR. A primary mechanism for A2AR agonist-mediated protection entails inhibition of NOX2 in iNKT cells. Therefore, agonism of A2ARs on iNKT cells may be a novel therapeutic strategy to prevent primary graft dysfunction after lung transplantation.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Damien J LaPar
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Matthew L Stone
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Yunge Zhao
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | | | - Irving L Kron
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Victor E Laubach
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
16
|
Shaler CR, Choi J, Rudak PT, Memarnejadian A, Szabo PA, Tun-Abraham ME, Rossjohn J, Corbett AJ, McCluskey J, McCormick JK, Lantz O, Hernandez-Alejandro R, Haeryfar SM. MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression. PLoS Biol 2017. [PMID: 28632753 PMCID: PMC5478099 DOI: 10.1371/journal.pbio.2001930] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or γδ T cells, and is characterized by production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) Vβ-specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/metabolism
- Antigens, Bacterial/toxicity
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cell Line
- Cells, Cultured
- Clonal Anergy/drug effects
- Crosses, Genetic
- Enterotoxins/metabolism
- Enterotoxins/toxicity
- Female
- Humans
- Hybridomas
- Immunity, Innate
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mice, Transgenic
- Models, Immunological
- Mucosal-Associated Invariant T Cells/cytology
- Mucosal-Associated Invariant T Cells/drug effects
- Mucosal-Associated Invariant T Cells/immunology
- Mucosal-Associated Invariant T Cells/metabolism
- Specific Pathogen-Free Organisms
- Staphylococcus aureus/immunology
- Staphylococcus aureus/metabolism
- Streptococcus pyogenes/immunology
- Streptococcus pyogenes/metabolism
- Superantigens/metabolism
- Superantigens/toxicity
- Transplantation Chimera/blood
- Transplantation Chimera/immunology
- Transplantation Chimera/metabolism
Collapse
Affiliation(s)
- Christopher R. Shaler
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Joshua Choi
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Patrick T. Rudak
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Arash Memarnejadian
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Peter A. Szabo
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Mauro E. Tun-Abraham
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - John K. McCormick
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Olivier Lantz
- Laboratoire d'Immunologie and INSERM U932, Institut Curie, Paris, France
| | - Roberto Hernandez-Alejandro
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Division of Transplantation, Department of Surgery, University of Rochester Medical Center, Rochester, New York, United States of America
| | - S.M. Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Yang X, Bam M, Nagarkatti PS, Nagarkatti M. RNA-seq Analysis of δ9-Tetrahydrocannabinol-treated T Cells Reveals Altered Gene Expression Profiles That Regulate Immune Response and Cell Proliferation. J Biol Chem 2016; 291:15460-72. [PMID: 27268054 DOI: 10.1074/jbc.m116.719179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 01/07/2023] Open
Abstract
Marijuana has drawn significant public attention and concern both for its medicinal and recreational use. Δ9-Tetrahydrocannabinol (THC), which is the main bioactive component in marijuana, has also been shown to possess potent anti-inflammatory properties by virtue of its ability to activate cannabinoid receptor-2 (CB-2) expressed on immune cells. In this study, we used RNA-seq to quantify the transcriptomes and transcript variants that are differentially regulated by THC in super antigen-activated lymph node cells and CD4(+) T cells. We found that the expressions of many transcripts were altered by THC in both total lymph node cells and CD4(+) T cells. Furthermore, the abundance of many miRNA precursors and long non-coding RNAs was dramatically altered in THC-treated mice. For example, the expression of miR-17/92 cluster and miR-374b/421 cluster was down-regulated by THC. On the other hand miR-146a, which has been shown to induce apoptosis, was up-regulated by THC. Long non-coding RNAs that are expressed from the opposite strand of CD27 and Appbp2 were induced by THC. In addition, THC treatment also caused alternative promoter usage and splicing. The functions of those altered transcripts were mainly related to immune response and cell proliferation.
Collapse
Affiliation(s)
- Xiaoming Yang
- From the Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Marpe Bam
- From the Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Prakash S Nagarkatti
- From the Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Mitzi Nagarkatti
- From the Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| |
Collapse
|
18
|
Haeryfar SMM, Mallevaey T. Editorial: CD1- and MR1-Restricted T Cells in Antimicrobial Immunity. Front Immunol 2015; 6:611. [PMID: 26697007 PMCID: PMC4666986 DOI: 10.3389/fimmu.2015.00611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Affiliation(s)
- S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Division of Clinical Immunology and Allergy, Department of Medicine, Western University , London, ON , Canada ; Centre for Human Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
19
|
NK and NKT Cell Depletion Alters the Outcome of Experimental Pneumococcal Pneumonia: Relationship with Regulation of Interferon-γ Production. J Immunol Res 2015; 2015:532717. [PMID: 26114123 PMCID: PMC4465773 DOI: 10.1155/2015/532717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/29/2015] [Accepted: 05/03/2015] [Indexed: 12/31/2022] Open
Abstract
Background. Natural killer (NK) and natural killer T (NKT) cells contribute to the innate host defense but their role in bacterial sepsis remains controversial. Methods. C57BL/6 mice were infected intratracheally with 5 × 10(5) cfu of Streptococcus pneumoniae. Animals were divided into sham group (Sham); pretreated with isotype control antibody (CON) group; pretreated with anti-asialo GM1 antibody (NKd) group; and pretreated with anti-CD1d monoclonal antibody (NKTd) group before bacterial challenge. Serum and tissue samples were analyzed for bacterial load, cytokine levels, splenocyte apoptosis rates, and cell characteristics by flow cytometry. Splenocyte miRNA expression was also analyzed and survival was assessed. Results. NK cell depletion prolonged survival. Upon inhibition of NKT cell activation, spleen NK (CD3-/NK1.1+) cells increased compared to all other groups. Inhibition of NKT cell activation led to higher bacterial loads and increased levels of serum and splenocyte IFN-γ. Splenocyte miRNA analysis showed that miR-200c and miR-29a were downregulated, while miR-125a-5p was upregulated, in anti-CD1d treated animals. These changes were moderate after NK cell depletion. Conclusions. NK cells appear to contribute to mortality in pneumococcal pneumonia. Inhibition of NKT cell activation resulted in an increase in spleen NK (CD3-/NK1.1+) cells and a higher IFN-γ production, while altering splenocyte miRNA expression.
Collapse
|
20
|
Van Kaer L, Parekh VV, Wu L. The Response of CD1d-Restricted Invariant NKT Cells to Microbial Pathogens and Their Products. Front Immunol 2015; 6:226. [PMID: 26029211 PMCID: PMC4429631 DOI: 10.3389/fimmu.2015.00226] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells become activated during a wide variety of infections. This includes organisms lacking cognate CD1d-binding glycolipid antigens recognized by the semi-invariant T cell receptor of iNKT cells. Additional studies have shown that iNKT cells also become activated in vivo in response to microbial products such as bacterial lipopolysaccharide, a potent inducer of cytokine production in antigen-presenting cells (APCs). Other studies have shown that iNKT cells are highly responsive to stimulation by cytokines such as interleukin-12. These findings have led to the concept that microbial pathogens can activate iNKT cells either directly via glycolipids or indirectly by inducing cytokine production in APCs. iNKT cells activated in this manner produce multiple cytokines that can influence the outcome of infection, usually in favor of the host, although potent iNKT cell activation may contribute to an uncontrolled cytokine storm and sepsis. One aspect of the response of iNKT cells to microbial pathogens is that it is short-lived and followed by an extended time period of unresponsiveness to reactivation. This refractory period may represent a means to avoid chronic activation and cytokine production by iNKT cells, thus protecting the host against some of the negative effects of iNKT cell activation, but potentially putting the host at risk for secondary infections. These effects of microbial pathogens and their products on iNKT cells are not only important for understanding the role of these cells in immune responses against infections but also for the development of iNKT cell-based therapies.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Vrajesh V Parekh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| |
Collapse
|
21
|
Superantigenic Yersinia pseudotuberculosis induces the expression of granzymes and perforin by CD4+ T cells. Infect Immun 2015; 83:2053-64. [PMID: 25754199 DOI: 10.1128/iai.02339-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/10/2015] [Indexed: 11/20/2022] Open
Abstract
Bacterial superantigens (SAgs) are immunostimulatory toxins that induce acute diseases mainly through the massive release of inflammatory cytokines. Yersinia pseudotuberculosis is the only Gram-negative bacterium known to produce a SAg (Y. pseudotuberculosis-derived mitogen [YPM]). This SAg binds major histocompatibility complex class II molecules on antigen-presenting cells and T cell receptors (TcR) bearing the variable region Vβ3, Vβ9, Vβ13.1, or Vβ13.2 (in humans) and Vβ7 or Vβ8 (in mice). We have previously shown that YPM exacerbates the virulence of Y. pseudotuberculosis in mice. With a view to understanding the mechanism of YPM's toxicity, we compared the immune response in BALB/c mice infected with a YPM-producing Y. pseudotuberculosis or the corresponding isogenic, SAg-deficient mutant. Five days after infection, we observed strong CD4(+) Vβ7(+) T cell expansion and marked interleukin-4 (IL-4) production in mice inoculated with SAg-producing Y. pseudotuberculosis. These phenomena were correlated with the activation of ypm gene transcription in liver and spleen. A transcriptomic analysis revealed that the presence of YPM also increased expression of granzyme and perforin genes in the host's liver and spleen. This expression was attributed to a CD4(+) T cell subset, rather than to natural killer T (NKT) cells that display a TcR with a Vβ region that is potentially recognized by YPM. Increased production of cytotoxic molecules was correlated with hepatotoxicity, as demonstrated by an increase in plasma alanine aminotransferase activity. Our results demonstrate that YPM activates a potentially hepatotoxic CD4(+) T cell population.
Collapse
|
22
|
Busbee PB, Nagarkatti M, Nagarkatti PS. Natural indoles, indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM), attenuate staphylococcal enterotoxin B-mediated liver injury by downregulating miR-31 expression and promoting caspase-2-mediated apoptosis. PLoS One 2015; 10:e0118506. [PMID: 25706292 PMCID: PMC4338211 DOI: 10.1371/journal.pone.0118506] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) is a potent superantigen capable of inducing inflammation characterized by robust immune cell activation and proinflammatory cytokine release. Exposure to SEB can result in food poisoning as well as fatal conditions such as toxic shock syndrome. In the current study, we investigated the effect of natural indoles including indole-3-carbinol (I3C) and 3,3’-diindolylmethane (DIM) on SEB-mediated liver injury. Injection of SEB into D-galactosamine-sensitized female C57BL/6 mice resulted in liver injury as indicated by an increase in enzyme aspartate transaminase (AST) levels, induction of inflammatory cytokines, and massive infiltration of immune cells into the liver. Administration of I3C and DIM (40mg/kg), by intraperitonal injection, attenuated SEB-induced acute liver injury, as evidenced by decrease in AST levels, inflammatory cytokines and cellular infiltration in the liver. I3C and DIM triggered apoptosis in SEB-activated T cells primarily through activation of the intrinsic mitochondrial pathway. In addition, inhibitor studies involving caspases revealed that I3C and DIM-mediated apoptosis in these activated cells was dependent on caspase-2 but independent of caspase-8, 9 and 3. In addition, I3C and DIM caused a decrease in Bcl-2 expression. Both compounds also down-regulated miR-31, which directly targets caspase-2 and influences apoptosis in SEB-activated cells. Our data demonstrate for the first time that indoles can effectively suppress acute hepatic inflammation caused by SEB and that this may be mediated by decreased expression of miR-31 and consequent caspase-2-dependent apoptosis in T cells.
Collapse
Affiliation(s)
- Philip B. Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
- WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina, United States of America
| | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
Rao R, Nagarkatti PS, Nagarkatti M. Δ(9) Tetrahydrocannabinol attenuates Staphylococcal enterotoxin B-induced inflammatory lung injury and prevents mortality in mice by modulation of miR-17-92 cluster and induction of T-regulatory cells. Br J Pharmacol 2015; 172:1792-806. [PMID: 25425209 DOI: 10.1111/bph.13026] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/27/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Staphylococcal enterotoxin B (SEB) is a potent activator of Vβ8+T-cells resulting in the clonal expansion of ∼30% of the T-cell pool. Consequently, this leads to the release of inflammatory cytokines, toxic shock, and eventually death. In the current study, we investigated if Δ(9) tetrahydrocannabinol (THC), a cannabinoid known for its anti-inflammatory properties, could prevent SEB-induced mortality and alleviate symptoms of toxic shock. EXPERIMENTAL APPROACH We investigated the efficacy of THC against the dual administration (intranasal and i.p.) of SEB into C3H/HeJ mice based on the measurement of SEB-mediated clinical parameters, including cytokine production, cellular infiltration, vascular leak, and airway resistance. In addition, the molecular mechanism of action was elucidated in vitro by the activation of splenocytes with SEB. KEY RESULTS Exposure to SEB resulted in acute mortality, while THC treatment led to 100% survival of mice. SEB induced the miRNA-17-92 cluster, specifically miRNA-18a, which targeted Pten (phosphatase and tensin homologue), an inhibitor of the PI3K/Akt signalling pathway, thereby suppressing T-regulatory cells. In contrast, THC treatment inhibited the individual miRNAs in the cluster, reversing the effects of SEB. CONCLUSIONS AND IMPLICATIONS We report, for the first time a role for the miRNA 17-92 cluster in SEB-mediated inflammation. Furthermore, our results suggest that THC is a potent anti-inflammatory compound that may serve as a novel therapeutic to suppress SEB-induced pulmonary inflammation by modulating critical miRNA involved in SEB-induced toxicity and death.
Collapse
Affiliation(s)
- R Rao
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | |
Collapse
|
24
|
Hammamieh R, Chakraborty N, Lin Y, Shupp JW, Miller SA, Morris S, Jett M. Characterization of the interaction of staphylococcal enterotoxin B with CD1d expressed in human renal proximal tubule epithelial cells. BMC Microbiol 2015; 15:12. [PMID: 25649790 PMCID: PMC4327782 DOI: 10.1186/s12866-015-0344-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
Abstract
Background Participation of renal cells in the pathogenesis of staphylococcal enterotoxin B (SEB) is critical for late cleansing and sequestration of the antigens facilitated by CD1d mediated antigen sensing and recognition. This is a noted deviation from the typical antigen recognition process that recruits the major histocompatibility complex class II (MHC II) molecules. The immunological importance of CD1d is underscored by its influences on the performances of natural killer T-cells and thereby mediates the innate and adaptive immune systems. Results Using diffraction-based dotReady™ immunoassays, the present study showed that SEB directly and specifically conjugated to CD1d. The specificity of the conjugation between SEB and CD1d expressed on human renal proximal tubule epithelial cells (RPTEC) was further established by selective inhibition of CD1d prior to its exposure to SEB. We found that SEB induced the expression of CD1d on the cell surface prompting a rapid conjugation between them. The mRNA transcripts encoding CD1d remained elevated potentially after completing the antigen cleansing process. Conclusion Molecular targets associated with the delayed pathogenic response have essential therapeutic values. Particularly in the event of bioterrorism, the caregivers are typically able to intervene much later than the toxic exposures. Given circumstances mandate a paradigm shift from the conventional therapeutic strategy that counts on targeting the host markers responding to the early assault of pathogens. We demonstrated the role of CD1d in the late stage of pathogen recognition and cleansing, and thereby underscored its clinical potential in treating bioweaponizable antigens, such as Staphylococcal enterotoxin B (SEB). Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0344-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rasha Hammamieh
- Integrative Systems Biology, US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD, 21702-5010, USA.
| | - Nabarun Chakraborty
- Integrative Systems Biology, US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD, 21702-5010, USA.
| | - Yixin Lin
- Axela, Inc., 50 Ronason Drive, Suite 105, Toronto, ON, M9W 1B3, Canada.
| | - Jeffrey W Shupp
- The Burn Center, Department of Surgery, Washington Hospital Center, Washington, DC, 20010, USA.
| | - Stacy-Ann Miller
- Integrative Systems Biology, US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD, 21702-5010, USA.
| | - Sam Morris
- Axela, Inc., 50 Ronason Drive, Suite 105, Toronto, ON, M9W 1B3, Canada.
| | - Marti Jett
- Integrative Systems Biology, US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD, 21702-5010, USA.
| |
Collapse
|
25
|
Staphylococcal enterotoxin B-induced microRNA-155 targets SOCS1 to promote acute inflammatory lung injury. Infect Immun 2014; 82:2971-9. [PMID: 24778118 DOI: 10.1128/iai.01666-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) causes food poisoning in humans. It is considered a biological weapon, and inhalation can trigger lung injury and sometimes respiratory failure. Being a superantigen, SEB initiates an exaggerated inflammatory response. While the role of microRNAs (miRNAs) in immune cell activation is getting increasing recognition, their role in the regulation of inflammatory disease induced by SEB has not been studied. In this investigation, we demonstrate that exposure to SEB by inhalation results in acute inflammatory lung injury accompanied by an altered miRNA expression profile in lung-infiltrating cells. Among the miRNAs that were significantly elevated, miR-155 was the most overexpressed. Interestingly, miR-155(-/-) mice were protected from SEB-mediated inflammation and lung injury. Further studies revealed a functional link between SEB-induced miR-155 and proinflammatory cytokine gamma interferon (IFN-γ). Through the use of bioinformatics tools, suppressor of cytokine signaling 1 (SOCS1), a negative regulator of IFN-γ, was identified as a potential target of miR-155. While miR-155(-/-) mice displayed increased expression of Socs1, the overexpression of miR-155 led to its suppression, thereby enhancing IFN-γ levels. Additionally, the inhibition of miR-155 resulted in restored Socs1expression. Together, our data demonstrate an important role for miR-155 in promoting SEB-mediated inflammation in the lungs through Socs1 suppression and suggest that miR-155 may be an important target in preventing SEB-mediated inflammation and tissue injury.
Collapse
|
26
|
Busbee PB, Nagarkatti M, Nagarkatti PS. Natural indoles, indole-3-carbinol and 3,3'-diindolymethane, inhibit T cell activation by staphylococcal enterotoxin B through epigenetic regulation involving HDAC expression. Toxicol Appl Pharmacol 2014; 274:7-16. [PMID: 24200994 PMCID: PMC3874587 DOI: 10.1016/j.taap.2013.10.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 12/13/2022]
Abstract
Staphylococcal enterotoxin B (SEB) is a potent exotoxin produced by the Staphylococcus aureus. This toxin is classified as a superantigen because of its ability to directly bind with MHC-II class molecules followed by activation of a large proportion of T cells bearing specific Vβ-T cell receptors. Commonly associated with classic food poisoning, SEB has also been shown to induce toxic shock syndrome, and is also considered to be a potential biological warfare agent because it is easily aerosolized. In the present study, we assessed the ability of indole-3-carbinol (I3C) and one of its byproducts, 3,3'-diindolylmethane (DIM), found in cruciferous vegetables, to counteract the effects of SEB-induced activation of T cells in mice. Both I3C and DIM were found to decrease the activation, proliferation, and cytokine production by SEB-activated Vβ8(+) T cells in vitro and in vivo. Interestingly, inhibitors of histone deacetylase class I (HDAC-I), but not class II (HDAC-II), showed significant decrease in SEB-induced T cell activation and cytokine production, thereby suggesting that epigenetic modulation plays a critical role in the regulation of SEB-induced inflammation. In addition, I3C and DIM caused a decrease in HDAC-I but not HDAC-II in SEB-activated T cells, thereby suggesting that I3C and DIM may inhibit SEB-mediated T cell activation by acting as HDAC-I inhibitors. These studies not only suggest for the first time that plant-derived indoles are potent suppressors of SEB-induced T cell activation and cytokine storm but also that they may mediate these effects by acting as HDAC inhibitors.
Collapse
Affiliation(s)
- Philip B Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| |
Collapse
|
27
|
Paget C, Trottein F. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol 2013; 6:1054-67. [PMID: 24104457 DOI: 10.1038/mi.2013.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/18/2013] [Indexed: 02/04/2023]
Abstract
Mucosal sites are populated by a multitude of innate lymphoid cells and "innate-like" T lymphocytes expressing semiconserved T-cell receptors. Among the latter group, interest in type I natural killer T (NKT) cells has gained considerable momentum over the last decade. Exposure to NKT cell antigens is likely to occur continuously at mucosal sites. For this reason, and as they rapidly respond to stress-induced environmental cytokines, NKT cells are important contributors to immune and inflammatory responses. Here, we review the dual role of mucosal NKT cells during immune responses and pathologies with a particular focus on the lungs. Their role during pulmonary acute and chronic inflammation and respiratory infections is outlined. Whether NKT cells might provide a future attractive therapeutic target for treating human respiratory diseases is discussed.
Collapse
Affiliation(s)
- C Paget
- 1] Cancer Immunology Program, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France [4] Institut National de la Santé et de la Recherche Médicale, Lille, France [5] Centre National de la Recherche Scientifique, UMR 8204, Lille, France [6] Université Lille Nord de France, Lille, France [7] Institut Fédératif de Recherche 142, Lille, France
| | | |
Collapse
|
28
|
Van Kaer L, Parekh VV, Wu L. Invariant natural killer T cells as sensors and managers of inflammation. Trends Immunol 2012; 34:50-8. [PMID: 23017731 DOI: 10.1016/j.it.2012.08.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 02/08/2023]
Abstract
Invariant natural killer T (iNKT) cells are a subset of innate-like lymphocytes that recognize glycolipid antigens bound by the major histocompatibility complex (MHC)-class-I-related protein CD1d. iNKT cells are activated early during a variety of infections and inflammatory diseases and contribute to the subsequent development of adaptive immune responses. Consequently, iNKT cells play a critical role in the development and resolution of inflammatory diseases and represent attractive targets for the development of immunotherapies. Recent studies have provided important insight into the mechanisms by which iNKT cells become activated in response to diverse inflammatory stimuli. These new findings should be instrumental to promote the immunomodulatory properties of iNKT cells for treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
29
|
Eddens T, Kolls JK. Host defenses against bacterial lower respiratory tract infection. Curr Opin Immunol 2012; 24:424-30. [PMID: 22841348 DOI: 10.1016/j.coi.2012.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/06/2012] [Accepted: 07/12/2012] [Indexed: 02/08/2023]
Abstract
Bacterial pneumonia continues to be a significant cause of morbidity and mortality worldwide. Recent studies have shown that lung epithelia signal through pattern recognition receptors to initiate the innate immune response. Other mediators of innate immunity against bacterial pneumonia include transepithelial dendritic cells, alveolar macrophages, and innate produces of IL-17. CD4+ T cells and B cells play a key role in eliminating and preventing the development of bacterial pneumonias. B cell development and maturation can be modulated by the lung epithelia through BAFF and APRIL, furthering our current understanding of the role of epithelial cells in the immune response.
Collapse
Affiliation(s)
- Taylor Eddens
- Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
30
|
Ménoret A, Kumar S, Vella AT. Cytochrome b5 and cytokeratin 17 are biomarkers in bronchoalveolar fluid signifying onset of acute lung injury. PLoS One 2012; 7:e40184. [PMID: 22792238 PMCID: PMC3391234 DOI: 10.1371/journal.pone.0040184] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/01/2012] [Indexed: 11/26/2022] Open
Abstract
Acute lung injury (ALI) is characterized by pulmonary edema and acute inflammation leading to pulmonary dysfunction and potentially death. Early medical intervention may ameliorate the severity of ALI, but unfortunately, there are no reliable biomarkers for early diagnosis. We screened for biomarkers in a mouse model of ALI. In this model, inhalation of S. aureus enterotoxin A causes increased capillary permeability, cell damage, and increase protein and cytokine concentration in the lungs. We set out to find predictive biomarkers of ALI in bronchoalveolar lavage (BAL) fluid before the onset of clinical manifestations. A cutting edge proteomic approach was used to compare BAL fluid harvested 16 h post S. aureus enterotoxin A inhalation versus BAL fluid from vehicle alone treated mice. The proteomic PF 2D platform permitted comparative analysis of proteomic maps and mass spectrometry identified cytochrome b5 and cytokeratin 17 in BAL fluid of mice challenged with S. aureus enterotoxin A. Validation of cytochrome b5 showed tropic expression in epithelial cells of the bronchioles. Importantly, S. aureus enterotoxin A inhalation significantly decreased cytochrome b5 during the onset of lung injury. Validation of cytokeratin 17 showed ubiquitous expression in lung tissue and increased presence in BAL fluid after S. aureus enterotoxin A inhalation. Therefore, these new biomarkers may be predictive of ALI onset in patients and could provide insight regarding the basis of lung injury and inflammation.
Collapse
Affiliation(s)
- Antoine Ménoret
- University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Sanjeev Kumar
- University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Anthony T. Vella
- University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
31
|
Saeed AI, Rieder SA, Price RL, Barker J, Nagarkatti P, Nagarkatti M. Acute lung injury induced by Staphylococcal enterotoxin B: disruption of terminal vessels as a mechanism of induction of vascular leak. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:445-452. [PMID: 22571856 PMCID: PMC4138970 DOI: 10.1017/s1431927612000190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The current hypothesis of alveolar capillary membrane dysfunction fails to completely explain the severe and persistent leak of protein-rich fluid into the pulmonary interstitium, seen in the exudative phase of acute lung injury (ALI). The presence of intact red blood cells in the pulmonary interstitium may suggest mechanical failure of pulmonary arterioles and venules. These studies involved the pathological and ultrastructural evaluation of the pulmonary vasculature in Staphylococcal enterotoxin B (SEB)-induced ALI. Administration of SEB resulted in a significant increase in the protein concentration of bronchoalveolar lavage fluid and vascular leak in SEB-exposed mice compared to vehicle-treated mice. In vivo imaging of mice demonstrated the pulmonary edema and leakage in the lungs of SEB-administered mice. The histopathological studies showed intense clustering of inflammatory cells around the alveolar capillaries with subtle changes in architecture. Electron microscopy studies further confirmed the diffuse damage and disruption in the muscularis layer of the terminal vessels. Cell death in the endothelial cells of the terminal vessels was confirmed with TUNEL staining. In this study, we demonstrated that in addition to failure of the alveolar capillary membrane, disruption of the pulmonary arterioles and venules may explain the persistent and severe interstitial and alveolar edema.
Collapse
Affiliation(s)
- Ali Imran Saeed
- Division of Pulmonology, Department of Internal Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Sadiye Amcaoglu Rieder
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Robert L. Price
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - James Barker
- Division of Pulmonology, Department of Internal Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
32
|
Shrestha D, Szöllosi J, Jenei A. Bare lymphocyte syndrome: an opportunity to discover our immune system. Immunol Lett 2011; 141:147-57. [PMID: 22027563 DOI: 10.1016/j.imlet.2011.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/30/2011] [Accepted: 10/11/2011] [Indexed: 11/27/2022]
Abstract
Bare lymphocyte syndrome (BLS) is a rare immunodeficiency disorder manifested by the partial or complete disappearance of major histocompatibility complex (MHC) proteins from the surface of the cells. Based on this specific feature, it is categorized into three different types depending on which type of MHC protein is affected. These proteins are mainly involved in generating the effective immune responses by differentiating 'self' from 'non-self' antigens through a process referred to as antigen presentation. Investigations on BLS have immensely contributed to our understanding of the transcriptional regulation of these molecules and have led to the discovery of several important proteins of the antigen presentation pathway. Reviews on this subject consistently project type II BLS, MHC II deficiency as BLS syndrome, although literatures' document cases of other types of BLS too. Therefore, in this article, we have assembled information on the BLS syndrome to produce a systematic narration while emphasizing the importance of BLS system in studying various aspects of immune biology.
Collapse
Affiliation(s)
- Dilip Shrestha
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Nagyerdei krt 98, Debrecen 4032, Hungary
| | | | | |
Collapse
|