1
|
Kawano S, Noda C, Itoh S, Urabe A, Fujii C, Ogawa I, Suzuki R, Hida S. Staphylococcal superantigen-like protein 3 triggers murine mast cell adhesion by binding to CD43 and augments mast cell activation. Genes Cells 2024; 29:397-416. [PMID: 38454012 DOI: 10.1111/gtc.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Staphylococcus aureus is a noteworthy pathogen in allergic diseases, as four staphylococcal exotoxins activate mast cells, a significant contributor to inflammation, in an IgE-independent manner. Although the adhesion of mast cells is an essential process for their immune responses, only a small number of exotoxins have been reported to affect the process. Here, we demonstrated that staphylococcal superantigen-like (SSL) 3, previously identified as a toll-like receptor 2 agonist, induced the adhesion of murine bone marrow-derived mast cells to culture substratum. SSL3-induced adhesion was mediated by fibronectin in an Arg-Gly-Asp (RGD) sequence-dependent manner, suggesting the integrins were involved in the process. Additionally, SSL3 was found to bind to an anti-adhesive surface protein CD43. SSL3 induced the adhesion of HEK293 cells expressing exogenous CD43, suggesting that CD43 is the target molecule for adhesion induced by SSL3. Evaluation of SSL3-derived mutants showed that the C-terminal region (253-326), specifically T285 and H307, are necessary to induce adhesion. SSL3 augmented the IL-13 production of mast cells in response to immunocomplex and SSL12. These findings reveal a novel function of SSL3, triggering cell adhesion and enhancing mast cell activation. This study would clarify the correlation between S. aureus and allergic diseases such as atopic dermatitis.
Collapse
Affiliation(s)
- Sae Kawano
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Chisaki Noda
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Ayaka Urabe
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Chifumi Fujii
- Department of Biotechnology, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Nagano Prefecture, Japan
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Nagano Prefecture, Japan
- Center for Medical Education and Clinical Training, Shinshu University School of Medicine, Matsumoto, Nagano Prefecture, Japan
| | - Isamu Ogawa
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Ryo Suzuki
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa Prefecture, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| |
Collapse
|
2
|
Alanko I, Sandberg R, Brockmann E, de Haas CJC, van Strijp JAG, Lamminmäki U, Salo‐Ahen OMH. Isolation and functional analysis of phage-displayed antibody fragments targeting the staphylococcal superantigen-like proteins. Microbiologyopen 2023; 12:e1371. [PMID: 37642487 PMCID: PMC10350561 DOI: 10.1002/mbo3.1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023] Open
Abstract
Staphylococcus aureus produces numerous virulence factors that manipulate the immune system, helping the bacteria avoid phagocytosis. In this study, we are investigating three immune evasion molecules called the staphylococcal superantigen-like proteins 1, 5, and 10 (SSL1, SSL5, and SSL10). All three SSLs inhibit vital host immune processes and contribute to S. aureus immune evasion. This study aimed to identify single-chain variable fragment (scFvs) antibodies from synthetic antibody phage libraries, which can recognize either of the three SSLs and could block the interaction between the SSLs and their respective human targets. The antibodies were isolated after three rounds of panning against SSL1, SSL5, and SSL10, and their ability to bind to the SSLs was studied using a time-resolved fluorescence-based immunoassay. We successfully obtained altogether 44 unique clones displaying binding activity to either SSL1, SSL5, or SSL10. The capability of the SSL-recognizing scFvs to inhibit the SSLs' function was tested in an MMP9 enzymatic activity assay, a P-selectin glycoprotein ligand 1 competitive binding assay, and an IgG1-mediated phagocytosis assay. We could show that one scFv was able to inhibit SSL1 and maintain MMP9 activity in a concentration-dependent manner. Finally, the structure of this inhibiting scFv was modeled and used to create putative scFv-SSL1-complex models by protein-protein docking. The complex models were subjected to a 100-ns molecular dynamics simulation to assess the possible binding mode of the antibody.
Collapse
Affiliation(s)
- Ida Alanko
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| | - Rebecca Sandberg
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| | | | - Carla J. C. de Haas
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Urpo Lamminmäki
- Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Outi M. H. Salo‐Ahen
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
3
|
Kim G, Itoh S, Ito Y, Ohya S, Hida S. Identification of responsible amino acid residues in Staphylococcal superantigen-like 12 for the activation of mast cells. Genes Cells 2022; 27:559-567. [PMID: 35801715 DOI: 10.1111/gtc.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Staphylococcal superantigen-like 12 (SSL12) is reported to evoke the degranulation in murine mast cells. The allelic variant of SSL12 in the genome of reference strain NCTC8325 induced the degranulation of murine mast cells, that of MRSA252 strain did not, nevertheless relatively high sequence similarity (82%). To identify responsible amino acid residues of SSL12 for mast cell activation, we created a series of domain swap mutants and amino acid substitution mutants between the active and inactive variants. The mutants that harbored oligonucleotide/oligosaccharide binding (OB)-fold domain of the active variant activated mast cells. The replacement at position 56 (L56F) in the OB-fold domain diminished the mast cell stimulatory activity, and the combinatorial substitutions L56F/K92E, L56F/D95S, and L56F/S100V abolished the stimulatory activities of the mutant that harbored OB-fold domain of the active variant and the intact active variant. These indicate that the responsive elements of SSL12 for mast cell activation are in the OB-fold of SSL12, and L56 would be an essential amino acid residue for the activation of mast cells. The findings would contribute to the understanding of the molecular mechanism of SSL12 for mast cell activation and the development of toxoids preventing allergic inflammations associated with S. aureus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gwangdong Kim
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.,Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuma Ito
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
4
|
Yang C, Barbieri JT, Dahms NM, Chen C. Multiple Domains of Staphylococcal Superantigen-like Protein 11 (SSL11) Contribute to Neutrophil Inhibition. Biochemistry 2022; 61:616-624. [PMID: 35285627 DOI: 10.1021/acs.biochem.2c00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Staphylococcus aureus is an opportunistic pathogen producing many immune evasion molecules targeting various components of the host immune defense, including the Staphylococcal superantigen-like protein (SSL 1-14) family. Despite sharing similar structures with the powerful superantigens (SAgs), which cause massive T cell activation, SSLs interfere with a wide range of innate immune defenses. SSLs are divided into two subgroups, SSLs that contain a conserved carbohydrate Sialyl Lewis X [Neu5Acα2-3Galβ1-4(Fucα1-3) GlcNAcβ, SLeX] binding site and SSLs that lack the SLeX binding site. SSL2-6 and SSL11 possess the SLeX binding site. Our previous studies showed that SSL11 arrests cell motility by inducing cell adhesion in differentiated HL60 (dHL60) cells, while SSL7 did not bind dHL60 cells. SSL7-based chimeras were engineered by exchanging the SSL7 sequence with the corresponding SSL11 sequence and assaying for a gain of SSL11 function, namely, the induction of cell spreading and motility arrest. In addition to the SLeX-binding site, we observed that three beta-strands β6, β7, and β9 and the N-terminal residues, Y16 and Y17, transitioned SSL7 to gain SSL11 activities. These studies define the structure-function properties of SSL11 that may allow SSL11 to inhibit S. aureus clearance by the host innate immune system, allowing S. aureus to maintain a carrier state in humans, an understudied aspect of S. aureus pathogenesis.
Collapse
Affiliation(s)
- Chen Yang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Joseph T Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Chen Chen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
5
|
A mouse air pouch model for evaluating the anti-bacterial efficacy of phage MR-5 in resolving skin and soft tissue infection induced by methicillin-resistant Staphylococcus aureus. Folia Microbiol (Praha) 2021; 66:959-972. [PMID: 34255282 DOI: 10.1007/s12223-021-00895-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022]
Abstract
With the alarming rise in antimicrobial resistance, phage therapy represents a new paradigm for combating antibiotic-resistant infectious diseases that is worth exploring for its clinical success. With this scenario, the present study aimed at evaluating the in vivo potential of phage MR-5 (broad host range Staphylococcus aureus phage) against soft tissue infections induced by methicillin-resistant S. aureus (MRSA). Also, the usefulness of relatively simple murine air pouch as a dual-purpose model (to study both anti-bacterial and anti-inflammatory parameters) in the field of phage therapeutics has been put to test. Murine air pouch model was established with experimental skin infection induced by S. aureus ATCC 43,300 followed by subcutaneous administration of phage alone as well as along with linezolid. Phage MR-5 alone and in combination with linezolid (showing synergy) brought significant reduction in the bacterial load (both extracellular as well as intracellular) that led to faster resolution of pouch infection. The main conclusions surfaced from the present study include the following: (a) murine air pouch model represents a simple useful model (mimicking subcutaneous skin infection) for studying anti-bacterial potencies of drug candidates. Therefore, its use and further adaptations especially in field of phage therapeutics is highly advocated and (b) phage MR-5 proved to be a potential therapeutic candidate against treatment of MRSA-induced skin and soft tissue infections and use of combination therapy is strongly recommended.
Collapse
|
6
|
Tsuji T. [Modulation of Host Immune System by Staphylococcal Superantigen-like (SSL) Proteins]. YAKUGAKU ZASSHI 2021; 141:579-589. [PMID: 33790123 DOI: 10.1248/yakushi.20-00236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a common pathogen causing a wide range of infectious diseases in humans and animals. This bacterium secretes a variety of exoproteins, including toxins known as superantigens, such as toxic shock syndrome toxin-1 (TSST-1) and enterotoxins. Staphylococcal superantigen-like (SSL) proteins are a family of exoproteins showing structural similarities with superantigens but no superantigenic activity. This family is composed of 14 members (SSL1-SSL14), and recent studies have revealed that these members exhibit various immunomodulatory activities: e.g., inhibition of antibody and complement functions, impairment of leukocyte trafficking, modulation of receptor functions, inappropriate activation of immunocytes, and inhibition of blood coagulation. These activities have been proposed to contribute to immune evasion of the bacteria. The interactions between SSL proteins and their target molecules in the host immune system and the pathophysiological roles of SSL proteins in the bacterial infections are reviewed in this article.
Collapse
Affiliation(s)
- Tsutomu Tsuji
- Hoshi University School of Pharmacy and Pharmaceutical Sciences.,Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
7
|
Musikant D, Higa R, Rodríguez CE, Edreira MM, Campetella O, Jawerbaum A, Leguizamón MS. Sialic acid removal by trans-sialidase modulates MMP-2 activity during Trypanosoma cruzi infection. Biochimie 2021; 186:82-93. [PMID: 33891967 PMCID: PMC8187320 DOI: 10.1016/j.biochi.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 04/14/2021] [Indexed: 01/05/2023]
Abstract
Matrix metalloproteinases (MMPs) not only play a relevant role in homeostatic processes but are also involved in several pathological mechanisms associated with infectious diseases. As their clinical relevance in Chagas disease has recently been highlighted, we studied the modulation of circulating MMPs by Trypanosoma cruzi infection. We found that virulent parasites from Discrete Typing Units (DTU) VI induced higher proMMP-2 and MMP-2 activity in blood, whereas both low (DTU I) and high virulence parasites induced a significant decrease in proMMP-9 plasma activity. Moreover, trans-sialidase, a relevant T. cruzi virulence factor, is involved in MMP-2 activity modulation both in vivo and in vitro. It removes α2,3-linked sialyl residues from cell surface glycoconjugates, which then triggers the PKC/MEK/ERK signaling pathway. Additionally, bacterial sialidases specific for this sialyl residue linkage displayed similar MMP modulation profiles and triggered the same signaling pathways. This novel pathogenic mechanism, dependent on sialic acid removal by the neuraminidase activity of trans-sialidase, can be exploited by different pathogens expressing sialidases with similar specificity. Thus, here we present a new pathogen strategy through the regulation of the MMP network.
Collapse
Affiliation(s)
- Daniel Musikant
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Ciudad de Buenos Aires, Argentina
| | - Romina Higa
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Laboratorio de Reproducción y Metabolismo, CEFYBO-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 C1121ABG, Ciudad de Buenos Aires, Argentina
| | - Cristina E Rodríguez
- Departamento de Microbiología, IMPAM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 C1121ABG, Ciudad de Buenos Aires, Argentina
| | - Martin M Edreira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Ciudad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN-CONICET, Universidad de Buenos Aires, Intendente Güiraldes 2160 C1428EGA, Ciudad de Buenos Aires, Argentina
| | - Oscar Campetella
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas IIBio, Universidad Nacional de San Martín, 25 de Mayo y Francia B1650HMP, San Martín, San Martin, Argentina
| | - Alicia Jawerbaum
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Laboratorio de Reproducción y Metabolismo, CEFYBO-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 C1121ABG, Ciudad de Buenos Aires, Argentina
| | - María S Leguizamón
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas IIBio, Universidad Nacional de San Martín, 25 de Mayo y Francia B1650HMP, San Martín, San Martin, Argentina.
| |
Collapse
|
8
|
Manukumar H, Yashwanth B, Umesha S, Venkateswara Rao J. Biocidal mechanism of green synthesized thyme loaded silver nanoparticles (GTAgNPs) against immune evading tricky methicillin-resistant Staphylococcus aureus 090 (MRSA090) at a homeostatic environment. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
9
|
Tsuiji M, Shiohara K, Takei Y, Shinohara Y, Nemoto S, Yamaguchi S, Kanto M, Itoh S, Oku T, Miyashita M, Seyama Y, Kurihara M, Tsuji T. Selective Cytotoxicity of Staphylococcal α-Hemolysin (α-Toxin) against Human Leukocyte Populations. Biol Pharm Bull 2019; 42:982-988. [PMID: 31155595 DOI: 10.1248/bpb.b18-01024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus produces a variety of exoproteins that interfere with host immune systems. We attempted to purify cytotoxins against human leukocytic cells from the culture supernatant of S. aureus by a combination of ammonium sulfate precipitation, ion-exchange chromatography on a CM-cellulose column and HPLC on a Mono S 5/50 column. A major protein possessing cytotoxicity to HL60 human promyelocytic leukemia cells was purified, and the protein was identified as α-hemolysin (Hla, α-toxin) based on its molecular weight (34 kDa) and N-terminal amino acid sequence. Flow cytometric analysis suggested differential cytotoxicity of Hla against different human peripheral blood leukocyte populations. After cell fractionation with density-gradient centrifugation, we found that peripheral blood mononuclear cells (PBMCs) were more susceptible to Hla than polymorphonuclear leukocytes. Moreover, cell surface marker analysis suggested that Hla exhibited slightly higher cytotoxicity against CD14-positive PBMCs (mainly monocytes) than CD3- or CD19-positive cells (T or B lymphocytes). From these results, we conclude that human leukocytes have different susceptibility to Hla depending on their cell lineages, and thereby the toxin may modulate the host immune response.
Collapse
Affiliation(s)
- Makoto Tsuiji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Kazuyuki Shiohara
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Yoshinori Takei
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Yoshinori Shinohara
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Shigeyoshi Nemoto
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Satoshi Yamaguchi
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Masanori Kanto
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Saotomo Itoh
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Masahiro Miyashita
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Yoshiyuki Seyama
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | | | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
10
|
Lee G, Hasan M, Kwon OS, Jung BH. Identification of Altered Metabolic Pathways during Disease Progression in EAE Mice via Metabolomics and Lipidomics. Neuroscience 2019; 416:74-87. [DOI: 10.1016/j.neuroscience.2019.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
|
11
|
Dutta D, Mukherjee D, Mukherjee IA, Maiti TK, Basak A, Das AK. Staphylococcal superantigen-like proteins interact with human MAP kinase signaling protein ERK2. FEBS Lett 2019; 594:266-277. [PMID: 31468523 DOI: 10.1002/1873-3468.13590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023]
Abstract
This study aimed to identify the intracellular binding partner of a unique class of staphylococcal secreted exotoxins called superantigen-like proteins (SSL) from human macrophage and keratinocyte cell lysates. Here, we report that SSL1 specifically binds to human extracellular signal-regulated kinase 2 (hERK2), an important stress-activated kinase in mitogen-activated protein kinase signaling pathways. Western blot and in vitro binding studies with recombinant hERK2 confirmed the binding interaction of SSL1, SSL7, and SSL10 with hERK2. Moreover, the SSLs-hERK2 interaction was validated biochemically by ELISA. Our finding shows that SSLs play a novel role by binding with host cell MAP kinase signaling pathway protein. Understanding the SSL-hERK2 interaction will also provide a basis for designing SSL-based peptide inhibitors of hERK2 in cancer therapy.
Collapse
Affiliation(s)
- Debabrata Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, India
| | - Devdeep Mukherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | | | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
12
|
de Jong NWM, van Kessel KPM, van Strijp JAG. Immune Evasion by Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0061-2019. [PMID: 30927347 PMCID: PMC11590434 DOI: 10.1128/microbiolspec.gpp3-0061-2019] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus has become a serious threat to human health. In addition to having increased antibiotic resistance, the bacterium is a master at adapting to its host by evading almost every facet of the immune system, the so-called immune evasion proteins. Many of these immune evasion proteins target neutrophils, the most important immune cells in clearing S. aureus infections. The neutrophil attacks pathogens via a plethora of strategies. Therefore, it is no surprise that S. aureus has evolved numerous immune evasion strategies at almost every level imaginable. In this review we discuss step by step the aspects of neutrophil-mediated killing of S. aureus, such as neutrophil activation, migration to the site of infection, bacterial opsonization, phagocytosis, and subsequent neutrophil-mediated killing. After each section we discuss how S. aureus evasion molecules are able to resist the neutrophil attack of these different steps. To date, around 40 immune evasion molecules of S. aureus are known, but its repertoire is still expanding due to the discovery of new evasion proteins and the addition of new functions to already identified evasion proteins. Interestingly, because the different parts of neutrophil attack are redundant, the evasion molecules display redundant functions as well. Knowing how and with which proteins S. aureus is evading the immune system is important in understanding the pathophysiology of this pathogen. This knowledge is crucial for the development of therapeutic approaches that aim to clear staphylococcal infections.
Collapse
Affiliation(s)
- Nienke W M de Jong
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Kobayashi M, Kitano T, Nishiyama S, Sanjo H, Onozaki K, Taki S, Itoh S, Hida S. Staphylococcal superantigen-like 12 activates murine bone marrow derived mast cells. Biochem Biophys Res Commun 2019; 511:350-355. [PMID: 30795864 DOI: 10.1016/j.bbrc.2019.02.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/01/2022]
Abstract
Staphylococcal superantigen-like (SSL) protein is a family of exotoxins that consists of 14 SSLs, and the roles of several SSLs in immune evasion of the cocci have been revealed. However little is known whether they act as immune activators and are involved in inflammatory disorders such as atopic dermatitis. In this study we examined whether SSLs activate mast cells, the key player of local inflammation. SSL12 evoked the release of a granule enzyme β-hexosaminidase from bone marrow derived mast cells (BMMCs) in the absence of IgE. The release of the granule enzyme caused by SSL12 was not accompanied with the leakage of a cytosolic enzyme lactate dehydrogenase (LDH), unlike staphylococcal δ-toxin that was reported to induce both the release of β-hexosaminidase and the leakage of LDH from the cells, suggesting that SSL12 evokes the degranulation of mast cells without cell membrane damage. Furthermore SSL12 induced IL-6 and IL-13 in both mRNA and protein levels indicating that SSL12 induces de novo synthesis of the cytokines. Evans blue extravasation was elevated by the intradermal injection of SSL12, suggesting that SSL12 is also able to evoke local inflammation in vivo. These findings indicate the novel mast cell activating activity of SSLs, and SSL12 is likely an important factor in both initiation phase and effector phase of allergic and immune responses.
Collapse
Affiliation(s)
- Masato Kobayashi
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takuma Kitano
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Saishi Nishiyama
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hideki Sanjo
- Department of Molecular and Cellular Immunology, School of Medicine Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Kikuo Onozaki
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Shinsuke Taki
- Department of Molecular and Cellular Immunology, School of Medicine Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
14
|
Oku T, Kurisaka C, Ando Y, Tsuji T. Identification of human plasma C1 inhibitor as a target protein for staphylococcal superantigen-like protein 5 (SSL5). Biochem Biophys Res Commun 2019; 508:1162-1167. [DOI: 10.1016/j.bbrc.2018.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022]
|
15
|
Hayashi K, Itoh S, Morikawa A, Onozaki K, Taki S, Tsuji T, Hida S. Staphylococcal α-hemolysin does not induce cell damage in murine mast cells but it augments the degranulation induced by FcεRI cross-linking and ionomycin. Biochem Biophys Res Commun 2019; 508:263-269. [DOI: 10.1016/j.bbrc.2018.11.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
|
16
|
Oku T, Shimada K, Kenmotsu H, Ando Y, Kurisaka C, Sano R, Tsuiji M, Hasegawa S, Fukui T, Tsuji T. Stimulation of Peritoneal Mesothelial Cells to Secrete Matrix Metalloproteinase-9 (MMP-9) by TNF-α: A Role in the Invasion of Gastric Carcinoma Cells. Int J Mol Sci 2018; 19:ijms19123961. [PMID: 30544870 PMCID: PMC6321609 DOI: 10.3390/ijms19123961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
It has recently been recognized that inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), upregulate the secretion of matrix metalloproteinase-9 (MMP-9) from cancer cells and thereby promote peritoneal dissemination. In this study, we found that TNF-α also stimulated peritoneal mesothelial cells to secrete MMP-9 as assessed by zymography. MMP-9 gene expression in mesothelial cells induced by TNF-α was confirmed by quantitative RT-PCR analysis. We then utilized the reconstituted artificial mesothelium, which was composed of a monolayer of mesothelial cells cultured on a Matrigel layer in a Boyden chamber system, to examine the effects of TNF-α on carcinoma cell invasion. The transmigration of MKN1 human gastric carcinoma cells through the reconstituted mesothelium was promoted by TNF-α in a dose-dependent manner. The increased MKN1 cell migration was partially inhibited by the anti-α3 integrin antibody, indicating that the invasion process involves an integrin-dependent mechanism. Finally, we observed that the invasion of MMP-9-knockdown MKN1 cells into Matrigel membranes was potentiated by the exogenous addition of purified proMMP-9. These results suggest that TNF-α-induced MMP-9 secretion from mesothelial cells plays an important role in the metastatic dissemination of gastric cancer.
Collapse
Affiliation(s)
- Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Kentaro Shimada
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Hiroki Kenmotsu
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Yusuke Ando
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Chisato Kurisaka
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Rikio Sano
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Makoto Tsuiji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Shinya Hasegawa
- Department of Health Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Tetsuya Fukui
- Department of Health Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| |
Collapse
|
17
|
Koymans KJ, Feitsma LJ, Bisschop A, Huizinga EG, van Strijp JAG, de Haas CJC, McCarthy AJ. Molecular basis determining species specificity for TLR2 inhibition by staphylococcal superantigen-like protein 3 (SSL3). Vet Res 2018; 49:115. [PMID: 30486901 PMCID: PMC6263051 DOI: 10.1186/s13567-018-0609-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/30/2018] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus is a versatile opportunistic pathogen, causing disease in human and animal species. Its pathogenicity is linked to the ability of S. aureus to secrete immunomodulatory molecules. These evasion proteins bind to host receptors or their ligands, resulting in inhibitory effects through high affinity protein–protein interactions. Staphylococcal evasion molecules are often species-specific due to differences in host target proteins between species. We recently solved the crystal structure of murine TLR2 in complex with immunomodulatory molecule staphylococcal superantigen-like protein 3 (SSL3), which revealed the essential residues within SSL3 for TLR2 inhibition. In this study we aimed to investigate the molecular basis of the interaction on the TLR2 side. The SSL3 binding region on murine TLR2 was compared to that of other species through sequence alignment and homology modeling, which identified interspecies differences. To examine whether this resulted in altered SSL3 activity on the corresponding TLR2s, bovine, equine, human, and murine TLR2 were stably expressed in HEK293T cells and the ability of SSL3 to inhibit TLR2 was assessed. We found that SSL3 was unable to inhibit bovine TLR2. Subsequent loss and gain of function mutagenesis showed that the lack of inhibition is explained by the absence of two tyrosine residues in bovine TLR2 that play a prominent role in the SSL3–TLR2 interface. We found no evidence for the existence of allelic SSL3 variants that have adapted to the bovine host. Thus, within this paper we reveal the molecular determinants of the TLR2–SSL3 interaction which adds to our understanding of staphylococcal host specificity.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Louris J Feitsma
- Crystal and Structural Chemistry, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Adinda Bisschop
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric G Huizinga
- Crystal and Structural Chemistry, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alex J McCarthy
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Oku T, Soma H, Kurisaka C, Tsuji T. Generation of a Monoclonal Antibody Against Staphylococcal Superantigen-Like Protein 5 (SSL5) That Discriminates SSL5 from Other SSL Proteins. Monoclon Antib Immunodiagn Immunother 2018; 37:212-217. [PMID: 30362929 DOI: 10.1089/mab.2018.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus secretes a family of exoproteins structurally homologous to bacterial superantigens, such as toxic shock syndrome toxin-1 (TSST-1), and those exoproteins are thus called staphylococcal superantigen-like proteins (SSLs). Recent studies have revealed that SSLs play roles in evasion of the host defense by disturbing host immune responses. We previously reported that staphylococcal superantigen-like protein 5 (SSL5; a member of the SSL family) inhibited matrix metalloproteinase-9 (MMP-9), which is crucial for leukocyte recruitment to sites of infection. In this study, we established a mouse hybridoma clone (30G5C) producing a monoclonal antibody specific for SSL5. In immunoblotting analysis using recombinant His-tagged SSL1 to SSL14 (His-SSLs), the antibody was found to specifically recognize SSL5 without crossreactivity with other His-SSLs. The antibody bound to the C-terminal region of SSL5 (β-grasp domain), but did not interfere with the binding of SSL5 to MMP-9, suggesting that this antibody is useful for identification of SSL5-producing S. aureus and screening for inhibitors of the SSL5/MMP-9 complex formation.
Collapse
Affiliation(s)
- Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences , Tokyo, Japan
| | - Hikari Soma
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences , Tokyo, Japan
| | - Chisato Kurisaka
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences , Tokyo, Japan
| | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences , Tokyo, Japan
| |
Collapse
|
19
|
Askarian F, Wagner T, Johannessen M, Nizet V. Staphylococcus aureus modulation of innate immune responses through Toll-like (TLR), (NOD)-like (NLR) and C-type lectin (CLR) receptors. FEMS Microbiol Rev 2018; 42:656-671. [PMID: 29893825 PMCID: PMC6098222 DOI: 10.1093/femsre/fuy025] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Early recognition of pathogens by the innate immune system is crucial for bacterial clearance. Many pattern recognition receptors (PRRs) such as Toll-like (TLRs) and (NOD)-like (NLRs) receptors have been implicated in initial sensing of bacterial components. The intracellular signaling cascades triggered by these receptors result in transcriptional upregulation of inflammatory pathways. Although this step is crucial for bacterial elimination, it is also associated with the potential for substantial immunopathology, which underscores the need for tight control of inflammatory responses. The leading human bacterial pathogen Staphylococcus aureus expresses over 100 virulence factors that exert numerous effects upon host cells. In this manner, the pathogen seeks to avoid host recognition or perturb PRR-induced innate immune responses to allow optimal survival in the host. These immune system interactions may result in enhanced bacterial proliferation but also provoke systemic cytokine responses associated with sepsis. This review summarizes recent findings on the various mechanisms applied by S. aureus to modulate or interfere with inflammatory responses through PRRs. Detailed understanding of these complex interactions can provide new insights toward future immune-stimulatory therapeutics against infection or immunomodulatory therapeutics to suppress or correct dysregulated inflammation.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Theresa Wagner
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Kohno K, Itoh S, Hanai A, Takii T, Fujiwara T, Onozaki K, Tsuji T, Hida S. Identification of matrix metalloproteinase 9-interacting sequences in staphylococcal superantigen-like protein 5. Biochem Biophys Res Commun 2018; 497:713-718. [PMID: 29462623 DOI: 10.1016/j.bbrc.2018.02.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 11/17/2022]
Abstract
Staphylococcal superantigen like 5 (SSL5) is an exotoxin produced by S. aureus and has a strong inhibitory effect on MMP-9 enzymatic activity. However, the mechanism of inhibition remains unclear. We sought to identify the responsible regions of SSL5 for the interaction with MMP-9 by comparing a series of domain swap and deletion mutants of SSL5. Binding analyses revealed that SSL5 had two regions for binding to MMP-9 catalytic domain, β1-3 region (25SKELKNVTGY RYSKGGKHYL IFDKNRKFTR VQIFGK60) in N-terminal half and α4β9 region (138KELDFKLRQY LIQNFDLYKK FPKDSKIKVI MKD170) in C-terminal half. The collagen binding domain and zinc-chelating histidine residues of MMP-9 were not essential for the specific binding to SSL5. The domain swap mutants of SSL5 that conserved β1-3 but not α4β9 region inhibited the gelatinolysis by MMP-9, and the mutant of SSL7 that substituted β1-3 region to that of SSL5 acquired the binding and inhibitory activity. Furthermore, the polypeptide that harbored β1-3 region of SSL5 inhibited gelatinolysis by MMP-9. Taken together, SSL5 inhibits the MMP9 activity through binding to the catalytic domain, and the β1-3 region is responsible for the inhibition of proteolytic activity of MMP-9.
Collapse
Affiliation(s)
- Katsuhiro Kohno
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Akari Hanai
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takemasa Takii
- Bacteriology Division, Mycobacterium Reference Centre, Research Institute of Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Graduate School of Pharmaceutical Sciences, Kindai University, 3-4-1. Kowakae, Higashi-osaka 577-8502, Japan
| | - Kikuo Onozaki
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
21
|
Kurisaka C, Oku T, Itoh S, Tsuji T. Role of sialic acid-containing glycans of matrix metalloproteinase-9 (MMP-9) in the interaction between MMP-9 and staphylococcal superantigen-like protein 5. Microbiol Immunol 2018; 62:168-175. [PMID: 29328525 DOI: 10.1111/1348-0421.12573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/16/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022]
Abstract
Staphylococcal superantigen-like proteins (SSL) show no superantigenic activity but have recently been considered to act as immune suppressors. It was previously reported that SSL5 bound to P-selectin glycoprotein ligand-1 (PSGL-1) and matrix metalloproteinase (MMP)-9, leading to inhibition of leukocyte adhesion and invasion. These interactions were suggested to depend on sialic acid-containing glycans of MMP-9, but the roles of sialic acids in the interaction between SSL5 and MMP-9 are still controversial. In the present study, we prepared recombinant glutathione S-transferase-tagged SSL5 (GST-SSL5) and analyzed its binding capacity to MMP-9 by pull-down assay after various modifications of its carbohydrate moieties. We observed that GST-SSL5 specifically bound to MMP-9 from a human monocytic leukemia cell line (THP-1 cells) and inhibited its enzymatic activity in a concentration-dependent manner. After MMP-9 was treated with neuraminidase, its binding activity towards GST-SSL5 was markedly decreased. Furthermore, recombinant MMP-9 produced by sialic acid-deficient Lec2 mutant cells showed much lower affinity for SSL5 than that produced by wild-type CHO-K1 cells. Treatment of MMP-9 with PNGase F to remove N-glycan resulted in no significant change in the GST-SSL5/MMP-9 interaction. In contrast, the binding of GST-SSL5 to MMP-9 secreted from THP-1 cells cultured in the presence of an inhibitor for the biosynthesis of O-glycan (benzyl-GalNAc) was weaker than the binding of GST-SSL5 to MMP-9 secreted from untreated cells. These results strongly suggest the importance of the sialic acid-containing O-glycans of MMP-9 for the interaction of MMP-9 with GST-SSL5.
Collapse
Affiliation(s)
- Chisato Kurisaka
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Saotomo Itoh
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
22
|
Ferreira-Duarte AP, Pinheiro-Torres AS, Anhê GF, Condino-Neto A, Antunes E, DeSouza IA. MHC Class II Activation and Interferon-γ Mediate the Inhibition of Neutrophils and Eosinophils by Staphylococcal Enterotoxin Type A (SEA). Front Cell Infect Microbiol 2017; 7:518. [PMID: 29322036 PMCID: PMC5733477 DOI: 10.3389/fcimb.2017.00518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/04/2017] [Indexed: 12/30/2022] Open
Abstract
Staphylococcal enterotoxins are classified as superantigens that act by linking T-cell receptor with MHC class II molecules, which are expressed on classical antigen-presenting cells (APC). Evidence shows that MHC class II is also expressed in neutrophils and eosinophils. This study aimed to investigate the role of MHC class II and IFN-γ on chemotactic and adhesion properties of neutrophils and eosinophils after incubation with SEA. Bone marrow (BM) cells obtained from BALB/c mice were resuspended in culture medium, and incubated with SEA (3–30 ng/ml; 1–4 h), after which chemotaxis and adhesion were evaluated. Incubation with SEA significantly reduced the chemotactic and adhesive responses in BM neutrophils activated with IL-8 (200 ng/ml). Likewise, SEA significantly reduced the chemotactic and adhesive responses of BM eosinophils activated with eotaxin (300 ng/ml). The inhibitory effects of SEA on cell chemotaxis and adhesion were fully prevented by prior incubation with an anti-MHC class II blocking antibody (2 μg/ml). SEA also significantly reduced the intracellular Ca2+ levels in IL-8- and eotaxin-activated BM cells. No alterations of MAC-1, VLA4, and LFA-1α expressions were observed after SEA incubation. In addition, SEA elevated by 3.5-fold (P < 0.05) the INF-γ levels in BM cells. Incubation of BM leukocytes with IFN-γ (10 ng/ml, 2 h) reduced both neutrophil and eosinophil chemotaxis and adhesion, which were prevented by prior incubation with anti-MHC class II antibody (2 μg/ml). In conclusion, SEA inhibits neutrophil and eosinophil by MHC class II-dependent mechanism, which may be modulated by concomitant release of IFN-γ.
Collapse
Affiliation(s)
- Ana P Ferreira-Duarte
- Department of Biology and Physiology, Faculty of Medicine of Jundiai, Jundiai, Brazil
| | | | - Gabriel F Anhê
- Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - Antônio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - Ivani A DeSouza
- Department of Biology and Physiology, Faculty of Medicine of Jundiai, Jundiai, Brazil
| |
Collapse
|
23
|
Langley RJ, Ting YT, Clow F, Young PG, Radcliff FJ, Choi JM, Sequeira RP, Holtfreter S, Baker H, Fraser JD. Staphylococcal enterotoxin-like X (SElX) is a unique superantigen with functional features of two major families of staphylococcal virulence factors. PLoS Pathog 2017; 13:e1006549. [PMID: 28880913 PMCID: PMC5589262 DOI: 10.1371/journal.ppat.1006549] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/24/2017] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that produces many virulence factors. Two major families of which are the staphylococcal superantigens (SAgs) and the Staphylococcal Superantigen-Like (SSL) exoproteins. The former are immunomodulatory toxins that induce a Vβ-specific activation of T cells, while the latter are immune evasion molecules that interfere with a wide range of innate immune defences. The superantigenic properties of Staphylococcal enterotoxin-like X (SElX) have recently been established. We now reveal that SElX also possesses functional characteristics of the SSLs. A region of SElX displays high homology to the sialyl-lactosamine (sLacNac)-specific binding site present in a sub-family of SSLs. By analysing the interaction of SElX with sLacNac-containing glycans we show that SElX has an equivalent specificity and host cell binding range to the SSLs. Mutation of key amino acids in this conserved region affects the ability of SElX to bind to cells of myeloid origin and significantly reduces its ability to protect S. aureus from destruction in a whole blood killing (WBK) assay. Like the SSLs, SElX is up-regulated early during infection and is under the control of the S. aureus exotoxin expression (Sae) two component gene regulatory system. Additionally, the structure of SElX in complex with the sLacNac-containing tetrasaccharide sialyl Lewis X (sLeX) reveals that SElX is a unique single-domain SAg. In summary, SElX is an ‘SSL-like’ SAg. The ability of Staphylococcus aureus to cause disease can be attributed to the wide range of toxins and immune evasion molecules it produces. The 25-member superantigen (SAg) family of toxins disrupts adaptive immunity by activating large proportions of T cells. In contrast, the structurally-related 14-member Staphylococcal Superantigen-Like (SSL) family inhibits a wide range of innate immune functions. We have discovered that the SAg staphylococcal enterotoxin-like X (SElX) has the sialylated-glycan-dependent active site found in a sub-family of SSLs. Through this site it possesses the ability to affect host innate immunity defences. By solving the X-ray crystal structure of SElX we have also discovered that SElX is a unique single-domain SAg. While it retains a typical β-grasp domain, it lacks the OB-fold domain that is present in all other staphylococcal SAgs.
Collapse
Affiliation(s)
- Ries J. Langley
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
- * E-mail:
| | - Yi Tian Ting
- School of Biological Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Fiona Clow
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Paul G. Young
- School of Biological Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Fiona J. Radcliff
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Jeong Min Choi
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Richard P. Sequeira
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Silva Holtfreter
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Heather Baker
- School of Biological Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - John D. Fraser
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Tuffs SW, James DBA, Bestebroer J, Richards AC, Goncheva MI, O’Shea M, Wee BA, Seo KS, Schlievert PM, Lengeling A, van Strijp JA, Torres VJ, Fitzgerald JR. The Staphylococcus aureus superantigen SElX is a bifunctional toxin that inhibits neutrophil function. PLoS Pathog 2017; 13:e1006461. [PMID: 28880920 PMCID: PMC5589267 DOI: 10.1371/journal.ppat.1006461] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/09/2017] [Indexed: 12/29/2022] Open
Abstract
Bacterial superantigens (SAgs) cause Vβ-dependent T-cell proliferation leading to immune dysregulation associated with the pathogenesis of life-threatening infections such as toxic shock syndrome, and necrotizing pneumonia. Previously, we demonstrated that staphylococcal enterotoxin-like toxin X (SElX) from Staphylococcus aureus is a classical superantigen that exhibits T-cell activation in a Vβ-specific manner, and contributes to the pathogenesis of necrotizing pneumonia. Here, we discovered that SElX can also bind to neutrophils from human and other mammalian species and disrupt IgG-mediated phagocytosis. Site-directed mutagenesis of the conserved sialic acid-binding motif of SElX abolished neutrophil binding and phagocytic killing, and revealed multiple glycosylated neutrophil receptors for SElX binding. Furthermore, the neutrophil binding-deficient mutant of SElX retained its capacity for T-cell activation demonstrating that SElX exhibits mechanistically independent activities on distinct cell populations associated with acquired and innate immunity, respectively. Finally, we demonstrated that the neutrophil-binding activity rather than superantigenicity is responsible for the SElX-dependent virulence observed in a necrotizing pneumonia rabbit model of infection. Taken together, we report the first example of a SAg, that can manipulate both the innate and adaptive arms of the human immune system during S. aureus pathogenesis. Staphylococcus aureus is a bacterial pathogen responsible for an array of disease types in healthcare and community settings. One of the keys to the success of this pathogen is its ability to subvert the immune system of the host. Here we demonstrate that the superantigen (SAg) staphylococcal enterotoxin-like toxin X (SElX) contributes to immune evasion by inducing unregulated T-cell proliferation, and by inhibition of phagocytosis by neutrophils. We observed that the capacity to bind neutrophils appears to be central to the SElX-dependent toxicity observed in a necrotising pneumonia infection model in rabbits. We report the first example of a staphylococcal SAg with two independent immunomodulatory functions acting on distinct immune cell types.
Collapse
Affiliation(s)
- Stephen W. Tuffs
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - David B. A. James
- Department of Microbiology, New York University School of Medicine, New York, NY, United Kingdom
| | - Jovanka Bestebroer
- Department Medical Microbiology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Amy C. Richards
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Mariya I. Goncheva
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Marie O’Shea
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Bryan A. Wee
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Keun Seok Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Andreas Lengeling
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Jos A. van Strijp
- Department Medical Microbiology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Victor J. Torres
- Department of Microbiology, New York University School of Medicine, New York, NY, United Kingdom
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Itoh S, Takii T, Onozaki K, Tsuji T, Hida S. Identification of the blood coagulation factor interacting sequences in staphylococcal superantigen-like protein 10. Biochem Biophys Res Commun 2017; 485:201-208. [DOI: 10.1016/j.bbrc.2017.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/09/2017] [Indexed: 02/03/2023]
|
26
|
Ghasemzadeh-Moghaddam H, van Wamel W, van Belkum A, Hamat RA, Neela VK. Differences in humoral immune response between patients with or without nasal carriage of Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 2016; 36:451-458. [PMID: 27815779 DOI: 10.1007/s10096-016-2817-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/16/2016] [Indexed: 12/21/2022]
Abstract
The humoral immune response against 43 staphylococcal antigens was compared among hospitalized patients where none of them had any staphylococcal infection on the day of admission with or without nasal Staphylococcus aureus carriage. Fifty-nine carriers and 59 matched non-carriers were studied. The carriers harbored S. aureus of 35 different spa types, including three t037/ST239 methicillin-resistant S. aureus (MRSA) (5.1%). Among the 118 patients, 31 acquired S. aureus during hospitalization. In colonized and non-colonized patients, unique patterns of S. aureus-specific immune responses were observed. The mean fluorescence indices (MFIs) of antibodies against 36/43 (83.7%) antigens were seen to be elevated among carriers. The MFI among carriers with acquisition was significantly higher for staphylococcal superantigen-like protein 5 (SSL5, p = 0.028) when compared to carriers without acquisition. High antibody levels against staphylococcal enterotoxin A (SEA) among carriers illustrate its role as a superantigen in both infection and colonization. We also report a dynamic immune response in S. aureus-carrying patients against the recently reported formyl peptide receptor-like inhibitory (FLIPr)-like protein. In the current study, the dynamics of antibodies against staphylococcal antigens among carrier patients seem quite similar to non-carrier patients. To better understand the dynamic immunogenicity during S. aureus infection and colonization, artificial colonization studies and investigation of the changes in the levels of antibodies against other staphylococcal antigens are recommended.
Collapse
Affiliation(s)
- H Ghasemzadeh-Moghaddam
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Education Development Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - W van Wamel
- Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - A van Belkum
- Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands.,Scientific Office, bioMérieux, La Balme-les-Grottes, France
| | - R A Hamat
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - V K Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
27
|
Koymans KJ, Bisschop A, Vughs MM, van Kessel KPM, de Haas CJC, van Strijp JAG. Staphylococcal Superantigen-Like Protein 1 and 5 (SSL1 & SSL5) Limit Neutrophil Chemotaxis and Migration through MMP-Inhibition. Int J Mol Sci 2016; 17:E1072. [PMID: 27399672 PMCID: PMC4964448 DOI: 10.3390/ijms17071072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/28/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases that degrade components of the extracellular matrix, but also modulate inflammation. During bacterial infections, MMPs are important in the recruitment and migration of inflammatory cells. Besides facilitating cell migration by degrading extracellular matrix components, they potentiate the action of several inflammatory molecules, including cytokines, chemokines, and antimicrobial peptides. Staphylococcus aureus secretes an arsenal of immune evasion molecules that interfere with immune cell functioning and hamper proper immune responses. An earlier study identified staphylococcal superantigen-like protein 5 (SSL5) as an MMP9 inhibitor. Since multiple MMPs are involved in neutrophil recruitment, we set up an in-depth search for additional MMP inhibitors by testing a panel of over 70 secreted staphylococcal proteins on the inhibition of the two main neutrophil MMPs: MMP8 (neutrophil collagenase) and MMP9 (neutrophil gelatinase B). We identified SSL1 and SSL5 as potent inhibitors of both neutrophil MMPs and show that they are actually broad range MMP inhibitors. SSL1 and SSL5 prevent MMP-induced cleavage and potentiation of IL-8 and inhibit the migration of neutrophils through collagen. Thus, through MMP-inhibition, SSL1 and SSL5 interfere with neutrophil activation, chemotaxis, and migration, all vital neutrophil functions in bacterial clearance. Studies on MMP-SSL interactions can have therapeutic potential and SSL based derivatives might prove useful in treatment of cancer and destructive inflammatory diseases.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Adinda Bisschop
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Mignon M Vughs
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
28
|
Thomer L, Schneewind O, Missiakas D. Pathogenesis of Staphylococcus aureus Bloodstream Infections. ANNUAL REVIEW OF PATHOLOGY 2016; 11:343-64. [PMID: 26925499 PMCID: PMC5068359 DOI: 10.1146/annurev-pathol-012615-044351] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus, a Gram-positive bacterium colonizing nares, skin, and the gastrointestinal tract, frequently invades the skin, soft tissues, and bloodstreams of humans. Even with surgical and antibiotic therapy, bloodstream infections are associated with significant mortality. The secretion of coagulases, proteins that associate with and activate the host hemostatic factor prothrombin, and the bacterial surface display of agglutinins, proteins that bind polymerized fibrin, are key virulence strategies for the pathogenesis of S. aureus bloodstream infections, which culminate in the establishment of abscess lesions. Pathogen-controlled processes, involving a wide spectrum of secreted factors, are responsible for the recruitment and destruction of immune cells, transforming abscess lesions into purulent exudate, with which staphylococci disseminate to produce new infectious lesions or to infect new hosts. Research on S. aureus bloodstream infections is a frontier for the characterization of protective vaccine antigens and the development of immune therapeutics aiming to prevent disease or improve outcomes.
Collapse
Affiliation(s)
- Lena Thomer
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | | |
Collapse
|
29
|
A leading role for NADPH oxidase in an in-vitro study of experimental autoimmune encephalomyelitis. Mol Immunol 2016; 72:19-27. [DOI: 10.1016/j.molimm.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/09/2016] [Accepted: 02/12/2016] [Indexed: 01/24/2023]
|
30
|
do Vale A, Cabanes D, Sousa S. Bacterial Toxins as Pathogen Weapons Against Phagocytes. Front Microbiol 2016; 7:42. [PMID: 26870008 PMCID: PMC4734073 DOI: 10.3389/fmicb.2016.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favor microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signaling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.
Collapse
Affiliation(s)
- Ana do Vale
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Didier Cabanes
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Sandra Sousa
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| |
Collapse
|
31
|
Hasan M, Seo JE, Rahaman KA, Kang MJ, Jung BH, Kwon OS. Increased levels of brain serotonin correlated with MMP-9 activity and IL-4 levels resulted in severe experimental autoimmune encephalomyelitis (EAE) in obese mice. Neuroscience 2016; 319:168-82. [PMID: 26820599 DOI: 10.1016/j.neuroscience.2016.01.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/27/2022]
Abstract
The aim of this study was to investigate the role of monoamine neurotransmitters on the severity of experimental autoimmune encephalomyelitis (EAE) in obese mice. EAE was induced in mice with normal diets (ND-EAE) and obese mice with high-fat diets (HFD-EAE) through the immune response to myelin oligodendrocyte glycoprotein (MOG) (35-55). The levels of dopamine (DA), serotonin (5-HT) and their metabolites in different anatomical brain regions were measured by high-performance liquid chromatography. The plasma and tissue NADPH oxidase and matrix metalloproteinases (MMP)-9 activities were analyzed by fluorescence spectrophotometry. The cumulative disease index and disease peaks were significantly higher in HFD-EAE compared with those in ND-EAE. Significantly higher 5-HT levels and lower 5-HT turnovers 5-hydroxyindole acetic acid ((5-HIAA)/5-HT) were found in the brains of HFD-EAE mice compared with those found in the HFD-CON and ND-EAE mice brains. Moreover, increased DA levels were observed in the caudate nucleus of the HFD-EAE mice compared with the control and ND-EAE mice. The NADPH oxidase and MMP-9 activities in the plasma and tissues were significantly higher in both the ND-EAE and HFD-EAE groups than in their respective controls. The cytokine levels in the plasma, tissues, and cultured splenocytes were found to be significantly altered in EAE mice compared with control mice. Moreover, HFD-EAE mice exhibited significantly higher MMP-9 activity and lower IL-4 levels than ND-EAE mice and were significantly correlated with brain 5-HT levels. In conclusion, the increased 5-HT levels in the brain significantly correlated with MMP-9 activity and IL-4 levels play an important role in the exacerbation of disease severity in HFD-EAE mice.
Collapse
Affiliation(s)
- M Hasan
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - J-E Seo
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - K A Rahaman
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - M-J Kang
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - B-H Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - O-S Kwon
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
32
|
Genome-Wide Association Study of Staphylococcus aureus Carriage in a Community-Based Sample of Mexican-Americans in Starr County, Texas. PLoS One 2015; 10:e0142130. [PMID: 26569114 PMCID: PMC4646511 DOI: 10.1371/journal.pone.0142130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/16/2015] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is the number one cause of hospital-acquired infections. Understanding host pathogen interactions is paramount to the development of more effective treatment and prevention strategies. Therefore, whole exome sequence and chip-based genotype data were used to conduct rare variant and genome-wide association analyses in a Mexican-American cohort from Starr County, Texas to identify genes and variants associated with S. aureus nasal carriage. Unlike most studies of S. aureus that are based on hospitalized populations, this study used a representative community sample. Two nasal swabs were collected from participants (n = 858) 11–17 days apart between October 2009 and December 2013, screened for the presence of S. aureus, and then classified as either persistent, intermittent, or non-carriers. The chip-based and exome sequence-based single variant association analyses identified 1 genome-wide significant region (KAT2B) for intermittent and 11 regions suggestively associated with persistent or intermittent S. aureus carriage. We also report top findings from gene-based burden analyses of rare functional variation. Notably, we observed marked differences between signals associated with persistent and intermittent carriage. In single variant analyses of persistent carriage, 7 of 9 genes in suggestively associated regions and all 5 top gene-based findings are associated with cell growth or tight junction integrity or are structural constituents of the cytoskeleton, suggesting that variation in genes associated with persistent carriage impact cellular integrity and morphology.
Collapse
|
33
|
Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 2015; 13:529-43. [PMID: 26272408 DOI: 10.1038/nrmicro3521] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium's ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S. aureus virulence factors inhibit complement activation, block and destroy phagocytic cells and modify host B cell and T cell responses, and we discuss how these insights might be useful for the development of novel therapies against infections with antibiotic resistant strains such as methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Vilasack Thammavongsa
- 1] Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA. [2] Regeneron Pharmaceuticals, 755 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Hwan Keun Kim
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
34
|
Seo JE, Hasan M, Han JS, Kim NK, Lee JE, Lee KM, Park JH, Kim HJ, Son J, Lee J, Kwon OS. Dependency of Experimental Autoimmune Encephalomyelitis Induction on MOG35-55 Properties Modulating Matrix Metalloproteinase-9 and Interleukin-6. Neurochem Res 2015; 41:666-76. [PMID: 26464215 DOI: 10.1007/s11064-015-1732-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/15/2015] [Accepted: 09/26/2015] [Indexed: 11/27/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is commonly induced with myelin oligodendrocyte glycoprotein (MOG)35-55; occasionally, EAE is not well induced despite MOG35-55 immunization. To confirm that EAE induction varies with difference in MOG35-55 properties, we compared three MOG35-55 from different commercial sources, which are MOG-A, MOG-B, and MOG-C. The peptides induced EAE disease with 100, 40, and 20 % incidence, respectively. Compared with others, MOG-A showed higher peptide purity (99.2 %) and content (92.2 %) and presented a sheet shape with additional sodium and chloride chemical elements. In MOG-A-treated group, MMP-9 activity and IL-6 levels were considerably higher than the other groups in CNS tissues, and significantly increased VCAM-1, IFN-γ, and decreased IL-4 were also shown compared to MOG-B- and/or MOG-C-treated group. In conclusion, the immunological and toxicological changes by the difference in MOG35-55 properties modulate EAE induction, and MOG35-55 which affects MMP-9 activity and IL-6 levels may be the most effective EAE-inducing antigen. This study can be potentially applied by researchers using MOG35-55 peptide and manufacturers for MOG35-55 synthesis.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Korea
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
- Department of Biological Chemistry, Korea University of Science and Technology, Daejeon, 34113, Korea
| | - Mahbub Hasan
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Korea
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
- Department of Biological Chemistry, Korea University of Science and Technology, Daejeon, 34113, Korea
| | - Joon-Seung Han
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Korea
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Kang Mi Lee
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Ju-Hyung Park
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Ho Jun Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Jaeick Lee
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Oh-Seung Kwon
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Korea.
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea.
- Department of Biological Chemistry, Korea University of Science and Technology, Daejeon, 34113, Korea.
| |
Collapse
|
35
|
Seo JE, Hasan M, Han JS, Kang MJ, Jung BH, Kwok SK, Kim HY, Kwon OS. Experimental autoimmune encephalomyelitis and age-related correlations of NADPH oxidase, MMP-9, and cell adhesion molecules: The increased disease severity and blood–brain barrier permeability in middle-aged mice. J Neuroimmunol 2015; 287:43-53. [DOI: 10.1016/j.jneuroim.2015.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022]
|
36
|
Activation of matrix metalloproteinase-9 (MMP-9) by neurotensin promotes cell invasion and migration through ERK pathway in gastric cancer. Tumour Biol 2015; 36:6053-62. [PMID: 25724188 DOI: 10.1007/s13277-015-3282-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/18/2015] [Indexed: 02/07/2023] Open
Abstract
Neurotensin (NT) is distributed throughout the brain and gastrointestinal tract. Although the relationship between NT and matrix metalloproteinase-9 (MMP-9) activity in gastric cancer has not been reported, the elevation of MMP-9 and NT is reported in the breast, lung, prostate, and gastric cancer. The aim of our study is to investigate the relationship between NT and MMP-9 activity and the underlying signaling mechanism in gastric cancer cell lines. Commercial ELISA kits were used for estimation of NT and MMP-9 expression, and fluorescence resonance energy transfer (FRET) assay was used for measurement of MMP-9 activity. Cell migration and invasion were determined by wound healing and transwell assay. The expression of signaling proteins was measured by Western blotting. Our study reveals a positive correlation between increased plasma NT and MMP-9 activity in both of patient's serum and gastric cancer cell lines. A dose-dependent elevation of MMP-9 activity was observed by NT treatment in gastric cancer cells (MKN-1 and MKN-45) compared to untreated gastric cancer and normal epithelial cell (HFE-145). Moreover, NT-mediated migration and invasion were observed in gastric cancer cells unlike in normal cell. The signaling mechanism of NT in gastric cancer cells was confirmed in protein kinase C (PKC), extracellular-signal regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K) pathway. In addition, pretreatment of gastric cancer cells with NTR1 inhibitor SR48692 was shown to significantly inhibit the NT-mediated MMP-9 activity, cell invasion, and migration. Our finding illustrated NTR1 could be a possible therapeutic target for gastric cancer.
Collapse
|
37
|
Koymans KJ, Vrieling M, Gorham RD, van Strijp JAG. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation. Curr Top Microbiol Immunol 2015; 409:441-489. [PMID: 26919864 DOI: 10.1007/82_2015_5017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Manouk Vrieling
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ronald D Gorham
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
38
|
Kamoshida G, Kikuchi-Ueda T, Tansho-Nagakawa S, Nakano R, Nakano A, Kikuchi H, Ubagai T, Ono Y. Acinetobacter baumannii escape from neutrophil extracellular traps (NETs). J Infect Chemother 2014; 21:43-9. [PMID: 25287154 DOI: 10.1016/j.jiac.2014.08.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 01/09/2023]
Abstract
Acinetobacter baumannii and Pseudomonas aeruginosa are the same aerobic gram-negative bacillus and are usually harmless but cause infectious diseases in compromised hosts. Neutrophils play a critical role in infective protection against the extracellular growth of bacteria. Recently, a new biological defense mechanism called neutrophil extracellular traps (NETs) has been attracting attention. In present study, we investigated the responsiveness of neutrophils to A. baumannii and P. aeruginosa, focusing on NET formation. Neutrophils were co-cultured with A. baumannii or P. aeruginosa, and then DNA, histone and neutrophil elastase were stained, and the formation of NETs was evaluated. Neutrophils stimulated with A. baumannii had spread, but their shapes was maintained, and the nucleus was observed as clearly as that in non-stimulated neutrophils. However, neutrophils stimulated with P. aeruginosa did not maintain their cellular morphology, and the nucleus was disrupted with DNA, histones, and neutrophil elastase released into the extracellular space. These results suggest that A. baumannii does not induce NET formation, in contrast to P. aeruginosa. In addition, we measured expression of myeloperoxidase (MPO), reactive oxygen species (ROS) and superoxide in neutrophils, and we found that these expression in P. aeruginosa-stimulated neutrophils was stronger than that in A. baumannii-stimulated neutrophils. Furthermore, A. baumannii was not killed by neutrophils, in contrast to P. aeruginosa. In this study, we show that the reactivity of neutrophils and their biological defense mechanism are different between A. baumannii and P. aeruginosa, which is important for understanding the pathogenicity of these bacteria.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Takane Kikuchi-Ueda
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Shigeru Tansho-Nagakawa
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Akiyo Nakano
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hirotoshi Kikuchi
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tsuneyuki Ubagai
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
39
|
Kamoshida G, Ogawa T, Oyanagi J, Sato H, Komiya E, Higashi S, Miyazaki K, Tsuji T. Modulation of matrix metalloproteinase-9 secretion from tumor-associated macrophage-like cells by proteolytically processed laminin-332 (laminin-5). Clin Exp Metastasis 2014; 31:285-91. [PMID: 24292405 DOI: 10.1007/s10585-013-9627-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/15/2013] [Indexed: 01/07/2023]
Abstract
Macrophages infiltrating tumor tissues (tumor-associated macrophages, TAM) affect the malignant behaviors of tumor cells. We previously reported that monocytes were differentiated into TAM-like cells secreting matrix metalloproteinase (MMP)-9 by co-culture with tumor cells, and that cell adhesion to extracellular matrix (ECM) proteins played a critical role in the differentiation. In this study, we found that the monocyte differentiation was promoted by laminin-332 (laminin-5), a major epithelial ECM component. We also demonstrated that the proteolytic processing of the γ2 chain of laminin-332 was essential for its activity but that the N-terminal short arm of the γ2 chain inhibited MMP-9 secretion. These results indicate that the activity of laminin-332 for monocyte differentiation is dynamically regulated by the proteolytic processing of the γ2 chain.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Microbiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lu DR, Tan YC, Kongpachith S, Cai X, Stein EA, Lindstrom TM, Sokolove J, Robinson WH. Identifying functional anti-Staphylococcus aureus antibodies by sequencing antibody repertoires of patient plasmablasts. Clin Immunol 2014; 152:77-89. [PMID: 24589749 DOI: 10.1016/j.clim.2014.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/15/2014] [Accepted: 02/15/2014] [Indexed: 01/16/2023]
Abstract
Infection by Staphylococcus aureus is on the rise, and there is a need for a better understanding of host immune responses that combat S. aureus. Here we use DNA barcoding to enable deep sequencing of the paired heavy- and light-chain immunoglobulin genes expressed by individual plasmablasts derived from S. aureus-infected humans. Bioinformatic analysis of the antibody repertoires revealed clonal families of heavy-chain sequences and enabled rational selection of antibodies for recombinant expression. Of the ten recombinant antibodies produced, seven bound to S. aureus, of which four promoted opsonophagocytosis of S. aureus. Five of the antibodies bound to known S. aureus cell-surface antigens, including fibronectin-binding protein A. Fibronectin-binding protein A-specific antibodies were isolated from two independent S. aureus-infected patients and mediated neutrophil killing of S. aureus in in vitro assays. Thus, our DNA barcoding approach enabled efficient identification of antibodies involved in protective host antibody responses against S. aureus.
Collapse
Affiliation(s)
- Daniel R Lu
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yann-Chong Tan
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah Kongpachith
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiaoyong Cai
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Emily A Stein
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Tamsin M Lindstrom
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA
| | - Jeremy Sokolove
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
41
|
Bandiera A, Markulin A, Corich L, Vita F, Borelli V. Stimuli-Induced Release of Compounds from Elastin Biomimetic Matrix. Biomacromolecules 2013; 15:416-22. [DOI: 10.1021/bm401677n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Antonella Bandiera
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Ana Markulin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Lucia Corich
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Francesca Vita
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Violetta Borelli
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
42
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
43
|
Itoh S, Yokoyama R, Kamoshida G, Fujiwara T, Okada H, Takii T, Tsuji T, Fujii S, Hashizume H, Onozaki K. Staphylococcal superantigen-like protein 10 (SSL10) inhibits blood coagulation by binding to prothrombin and factor Xa via their γ-carboxyglutamic acid (Gla) domain. J Biol Chem 2013; 288:21569-80. [PMID: 23754290 DOI: 10.1074/jbc.m113.451419] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The staphylococcal superantigen-like protein (SSL) family is composed of 14 exoproteins sharing structural similarity with superantigens but no superantigenic activity. Target proteins of four SSLs have been identified to be involved in host immune responses. However, the counterparts of other SSLs have been functionally uncharacterized. In this study, we have identified porcine plasma prothrombin as SSL10-binding protein by affinity purification using SSL10-conjugated Sepharose. The resin recovered the prodomain of prothrombin (fragment 1 + 2) as well as factor Xa in pull-down analysis. The equilibrium dissociation constant between SSL10 and prothrombin was 1.36 × 10(-7) M in surface plasmon resonance analysis. On the other hand, the resin failed to recover γ-carboxyglutamic acid (Gla) domain-less coagulation factors and prothrombin from warfarin-treated mice, suggesting that the Gla domain of the coagulation factors is essential for the interaction. SSL10 prolonged plasma clotting induced by the addition of Ca(2+) and factor Xa. SSL10 did not affect the protease activity of thrombin but inhibited the generation of thrombin activity in recalcified plasma. S. aureus produces coagulase that non-enzymatically activates prothrombin. SSL10 attenuated clotting induced by coagulase, but the inhibitory effect was weaker than that on physiological clotting, and SSL10 did not inhibit protease activity of staphylothrombin, the complex of prothrombin with coagulase. These results indicate that SSL10 inhibits blood coagulation by interfering with activation of coagulation cascade via binding to the Gla domain of coagulation factor but not by directly inhibiting thrombin activity. This is the first finding that the bacterial protein inhibits blood coagulation via targeting the Gla domain of coagulation factors.
Collapse
Affiliation(s)
- Saotomo Itoh
- Department of Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-Dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Genetic nature and virulence of community-associated methicillin-resistant Staphylococcus aureus. Biomedicine (Taipei) 2013. [DOI: 10.1016/j.biomed.2012.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
45
|
Staphylococcal superantigen-like protein 8 (SSL8) binds to tenascin C and inhibits tenascin C-fibronectin interaction and cell motility of keratinocytes. Biochem Biophys Res Commun 2013; 433:127-32. [PMID: 23485472 DOI: 10.1016/j.bbrc.2013.02.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 01/25/2023]
Abstract
Staphylococcal superantigen-like protein (SSL), a family of exotoxins composed of 14 SSLs, exhibits no superantigenic activity despite of its structural similarity with superantigens. Several SSLs have been revealed to bind to host immune molecules such as IgA, IgG, complement and cell surface molecules expressed on immune cells, but the physiological function of SSL family has not been fully identified. In this study we attempted to isolate host target proteins of SSLs from human breast milk using SSLs-conjugated Sepharose. SSL8-conjugated Sepharose specifically recovered tenascin C (TNC), a multimodular and multifunctional extracellular matrix protein. Pull down analysis using SSL8-conjugated Sepharose and recombinant truncated fragments of TNC revealed that SSL8 interacts with fibronectin (FN) type III repeats 1-5 of TNC. The interaction of TNC with immobilized FN was attenuated, the scratch wound closure by HaCaT human keratinocytes was delayed and the inhibition of cell spreading on FN by TNC was recovered in the presence of SSL8. These findings suggest that SSL8 binds to TNC, thereby inhibits the TNC-FN interaction and motility of keratinocytes. The present study added a novel role of SSL family protein as an interrupting molecule against the function of extracellular matrix.
Collapse
|
46
|
Itoh S, Yokoyama R, Murase C, Takii T, Tsuji T, Onozaki K. Staphylococcal superantigen-like protein 10 binds to phosphatidylserine and apoptotic cells. Microbiol Immunol 2012; 56:363-71. [PMID: 22486378 DOI: 10.1111/j.1348-0421.2012.00452.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Staphylococcal superantigen-like proteins (SSLs) are a family of exoproteins that have structural similarities to staphylococcal superantigens. Although SSLs do not have superantigenic activity, some of them have been reported to bind to host immune related molecules and they have been implicated in immune evasion by S. aureus. In this study, we showed that SSL10 is capable of binding to phospholipids. SSL10 bound to phosphatidylserine (PS) containing liposome, but not to phosphatidylcholine liposome. SSL10, but not SSL7, bound to PS containing liposome, suggesting that SSL10 specifically binds to PS. Analysis of PS binding ability among recombinant truncated SSL10 fragments revealed that the β-barrel in the N-terminal oligonucleotide/oligosaccharide-binding (OB)-fold domain contributes to PS binding capacity. Fluorescein isothiocyanate labeled OB-fold of SSL10 stained hydrogen peroxide treated Jurkat cells. Annexin V is widely utilized for detection of apoptosis. Unlike annexin V, the OB-fold domain of SSL10 also bound to apoptotic cells in the presence of EDTA, suggesting that the OB-fold of SSL10 recognizes PS and apoptotic cells in a Ca(2+) independent manner. These findings suggest SSL10 and its derived peptides may be a novel detection tool for apoptotic cells.
Collapse
Affiliation(s)
- Saotomo Itoh
- Department of Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-Dori, Mizuho-ku, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Kamoshida G, Matsuda A, Miura R, Takashima Y, Katsura A, Tsuji T. Potentiation of tumor cell invasion by co-culture with monocytes accompanying enhanced production of matrix metalloproteinase and fibronectin. Clin Exp Metastasis 2012; 30:289-97. [DOI: 10.1007/s10585-012-9536-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/14/2012] [Indexed: 11/29/2022]
|
48
|
Bardoel BW, Vos R, Bouman T, Aerts PC, Bestebroer J, Huizinga EG, Brondijk THC, van Strijp JAG, de Haas CJC. Evasion of Toll-like receptor 2 activation by staphylococcal superantigen-like protein 3. J Mol Med (Berl) 2012; 90:1109-20. [PMID: 22714643 DOI: 10.1007/s00109-012-0926-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/02/2012] [Accepted: 05/31/2012] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) are crucial for our host defense against microbial infections. TLR2 is especially important to fight bacterial infections, as it specifically recognizes bacterial lipoproteins of both Gram-positive and Gram-negative origin. Present on a variety of immune cells, TLR2 is critical for host protection against several bacterial infections, including those caused by Staphylococcus aureus. This major human pathogen causes increasing health care problems due to its increased resistance to antibiotics. S. aureus secretes a wide variety of proteins that inhibit innate immune responses. Recently, several staphylococcal superantigen-like proteins (SSLs) have been described to mediate immune evasive properties. Here, we describe that SSL3 specifically binds and inhibits TLR2 activation on human and murine neutrophils and monocytes. Through binding of the extracellular TLR2 domain, SSL3 inhibits IL-8 production by HEK cells expressing TLR1/2 and TLR2/6 dimers, stimulated with their specific ligands. The SSL3-TLR2 interaction is partially glycan dependent as binding of SSL3 to TLR2 is affected upon removal of sialic acid residues. Moreover, the SSL3(R308A) mutant lacking glycan-binding properties shows lower TLR2 inhibition. An SSL3 mutant, lacking the N-terminal 126 amino acids, still retains full TLR2 inhibiting activity. Of other SSLs tested, only SSL4, which shares the highest homology with SSL3, blocks TLR2 activation. SSL3 is the first-described bacterial protein that blocks TLR2 activation through direct extracellular interaction with the receptor. This unique function of SSL3 adds to the arsenal of immune evasive molecules that S. aureus can employ to subvert both innate and adaptive immunity.
Collapse
Affiliation(s)
- B W Bardoel
- Medical Microbiology, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Staphylococcal superantigen-like protein 3 binds to the Toll-like receptor 2 extracellular domain and inhibits cytokine production induced by Staphylococcus aureus, cell wall component, or lipopeptides in murine macrophages. Infect Immun 2012; 80:2816-25. [PMID: 22665377 DOI: 10.1128/iai.00399-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcal superantigen-like proteins (SSLs) are a family of exoproteins sharing structural similarity with superantigens, but no superantigenic activity. Corresponding host target proteins or receptors against a portion of SSLs in the family have been identified. In this study, we show that SSL3 specifically binds to Toll-like receptor 2 (TLR2) and inhibits the stimulation of macrophages by TLR2 ligands. An approximately 100-kDa protein was recovered by using recombinant His-tagged SSL3-conjugated Sepharose from the lysate of porcine spleen, and the protein was identified as porcine TLR2 by peptide mass fingerprinting analysis. The SSL3-conjugated Sepharose recovered human and mouse TLR2 but not TLR4 from human neutrophils and mouse macrophage RAW 264.7 cells, as well as a recombinant TLR2 extracellular domain chimera protein. The production levels of interleukin 12 (IL-12) from mouse macrophages treated with heat-killed Staphylococcus aureus and of tumor necrosis factor alpha (TNF-α) from RAW 264.7 cells induced by peptidoglycan or lipopeptide TLR2 ligands were strongly suppressed in the presence of SSL3. The mutation of consensus sialic acid-containing glycan-binding residues in SSL3 did not abrogate the binding ability to TLR2 or inhibitory activity on TLR2, indicating that the interaction of SSL3 with TLR2 was independent of the sialic acid-containing glycan-binding residues. These findings demonstrate that SSL3 is able to bind the extracellular domain of TLR2 and interfere with TLR2 function. The present study provides a novel mechanism of SSL3 in immune evasion of S. aureus via interfering with its recognition by innate immune cells.
Collapse
|
50
|
Kamoshida G, Matsuda A, Sekine W, Mizuno H, Oku T, Itoh S, Irimura T, Tsuji T. Monocyte differentiation induced by co-culture with tumor cells involves RGD-dependent cell adhesion to extracellular matrix. Cancer Lett 2012; 315:145-52. [DOI: 10.1016/j.canlet.2011.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 10/15/2022]
|