1
|
Xu Y, Wang J, Qin X, Liu J. Advances in the pathogenesis and treatment of pneumococcal meningitis. Virulence 2024; 15:2387180. [PMID: 39192572 PMCID: PMC11364070 DOI: 10.1080/21505594.2024.2387180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Streptococcus pneumoniae is a common pathogen associated with community-acquired bacterial meningitis, characterized by high morbidity and mortality rates. While vaccination reduces the incidence of meningitis, many survivors experience severe brain damage and corresponding sequelae. The pathogenesis of pneumococcal meningitis has not been fully elucidated. Currently, meningitis requires bacterial disruption of the blood - brain barrier, a process that involves the interaction of bacterial surface components with host cells and various inflammatory responses. This review delineates the global prevalence, pathogenesis, and treatment strategies of pneumococcal meningitis. The objective is to enhance the thorough comprehension of the clinical manifestations and biological mechanisms of the disease, thereby enabling more efficient prevention, diagnosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Yiyun Xu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Ji Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
2
|
Kochis EJ, Shaik-Dasthagirisaheb YB, Munarriz N, Kretzmann I, Nahm M, Pelton SI, Lapidot R. Serotype 15C Streptococcus pneumoniae resistant to classical complement deposition and agglutination by polyclonal rabbit anti-capsular 15B sera. Vaccine 2024; 42:126419. [PMID: 39368131 DOI: 10.1016/j.vaccine.2024.126419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND S. pneumoniae (SP) serotypes 15B and 15C are frequent causative agents of invasive pneumococcal disease (IPD), otitis media, and nasopharyngeal colonization in the post PCV13 era. The principal difference between serotypes 15B and 15C is the presence of an O-acetyl group on the pentasaccharide repeating unit of 15B polysaccharide. It remains unclear if antibodies against SP15B polysaccharide demonstrate functional cross reaction with SP15C strains. We compared functional activity of polyclonal rabbit anti-capsular 15B sera against SP15B and SP15C isolates. METHODS Using flow cytometry we measured complement factors C3c and C4d deposition on SP15B and 15C in the presence of polyclonal rabbit anti capsular 15B sera. We measured the binding of C3c, common to all complement pathways, and C4d, specific to classical pathway, on SP serotypes 15B and 15C when co-incubated with polyclonal rabbit anti capsular 15B sera and antibody depleted complement. Both the proportion of bacteria with complement deposition and the fluorescence intensity were measured. We also measured agglutination as the increase in forward and side scatter. RESULTS Polyclonal rabbit anti-capsular 15B sera activated classical pathway resulting in deposition of C4d and C3c at high intensity on all SP15B cells but only achieved limited deposition and intensity of C4 with SP15C. Similarly, polyclonal rabbit anti-capsular 15B sera induced agglutination of SP15B strains in a dose dependent manner and limited agglutination of SP15C. CONCLUSIONS Anti-capsular 15B sera induce limited C4d and C3c deposition, and minimal agglutination with SP15C strains, reflecting lower classical pathway activation in contrast to high C4d and C3c deposition and agglutination of SP15B. These observations support limited functional cross reactivity of anti-15B to SP15C strains and are consistent with the reduction in opsonophagocytic killing of SP15C reported following immunization with vaccines containing 15B polysaccharide.
Collapse
Affiliation(s)
- E J Kochis
- Boston University Masters in Medical Sciences, Boston, MA, USA
| | | | - N Munarriz
- Boston University Masters in Medical Sciences, Boston, MA, USA
| | | | - M Nahm
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S I Pelton
- Boston Medical Center, Boston, MA, USA; BU Chobanian and Avidesian School of Medicine, Boston, MA, USA.
| | - R Lapidot
- Boston Medical Center, Boston, MA, USA; BU Chobanian and Avidesian School of Medicine, Boston, MA, USA; Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Li H, Cao J, Han Q, Li Z, Zhuang J, Wang C, Wang H, Luo Z, Wang B, Li A. Protease SfpB plays an important role in cell membrane stability and immune system evasion in Streptococcus agalactiae. Microb Pathog 2024; 192:106683. [PMID: 38735447 DOI: 10.1016/j.micpath.2024.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Bacteria possess the ability to develop diverse and ingenious strategies to outwit the host immune system, and proteases are one of the many weapons employed by bacteria. This study sought to identify S. agalactiae additional serine protease and determine its role in virulence. The S. agalactiae THN0901 genome features one S8 family serine peptidase B (SfpB), acting as a secreted and externally exposed entity. A S8 family serine peptidase mutant strain (ΔsfpB) and complement strain (CΔsfpB) were generated through homologous recombination. Compared to the wild-type strain THN0901, the absorption of EtBr dyes was significantly reduced (P < 0.01) in ΔsfpB, implying an altered cell membrane permeability. In addition, the ΔsfpB strain had a significantly lower survival rate in macrophages (P < 0.01) and a 61.85 % lower adhesion ability to the EPC cells (P < 0.01) compared to THN0901. In the in vivo colonization experiment using tilapia as a model, 210 fish were selected and injected with different bacterial strains at a concentration of 3 × 106 CFU/tail. At 6, 12, 24, 48, 72 and 96 h post-injection, three fish were randomly selected from each group and their brain, liver, spleen, and kidney tissues were isolated. Subsequently, it was demonstrated that the ΔsfpB strain exhibited a markedly diminished capacity for colonization in tilapia. Additionally, the cumulative mortality of ΔsfpB in fish after intraperitoneal injection was reduced by 19.92-23.85 %. In conclusion, the findings in this study have demonstrated that the SfpB plays a significant role in S. agalactiae cell membrane stability and immune evasion. The immune evasion is fundamental for the development and transmission of invasive diseases, the serine protease SfpB may be a promising candidate for the development of antimicrobial agents to reduce the transmission of S. agalactiae.
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jizhen Cao
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Qing Han
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zhicheng Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jingyu Zhuang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Chenxi Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Hebing Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zhi Luo
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Baotun Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
4
|
Zhu H, Müller U, Baums CG, Öhlmann S. Comparative analysis of the interactions of different Streptococcus suis strains with monocytes, granulocytes and the complement system in porcine blood. Vet Res 2024; 55:14. [PMID: 38317258 PMCID: PMC10845567 DOI: 10.1186/s13567-024-01268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Streptococcus suis (S. suis) is an important porcine pathogen causing meningitis, arthritis, and septicemia. Serotypes 2 and 14 are the most common zoonotic ones worldwide, whereas serotypes 2, 9, and 7 are very important in pigs in Europe. To cause invasive infections S. suis needs to enter the bloodstream. Consequently, the immune response in blood represents an important line of defense and bacteremia plays a key role in the pathogenesis of invasive S. suis infections. We investigated the working hypothesis that S. suis strains of the same serotype but different clonal complex (CC) might exhibit substantial differences in the interaction with components of the immune system in porcine blood. The experimental design of this study includes comparative analysis of 8 virulent strains belonging to 4 serotypes with strains of the same serotype being genetically not closely related. Significant differences between two strains of the same serotype but different clonal complex were recorded in the flow cytometric analysis of association with different leukocytes for serotype 9 and 14. Our results demonstrate that the serotype 9 strain of CC94 shows significantly increased association with monocytes and survival in porcine blood of conventional piglets as well as a tendency towards decreased composition of C3 in plasma of these piglets in comparison to the serotype 9 strain of CC16. Correlation analysis of C3 deposition on the bacterial surface and survival in respective blood samples of 8-week-old piglets demonstrated a negative correlation indicating that C3 deposition is a crucial step to limit bacterial survival and proliferation of different S. suis pathotypes in the blood of these piglets. In summary, our results indicate that the capsule composition of a S. suis strain is not alone sufficient to determine association with leukocytes, activation of complement, induction of proinflammatory cytokines, oxidative burst, and bacterial survival in porcine blood. In this study, substantial differences in these host-pathogen interactions were observed between strains of the same serotype. Therefore, a more comprehensive characterization of the field isolates, including at least MLST analysis to determine the sequence type/clonal complex, is recommended.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Uwe Müller
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | - Sophie Öhlmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Bee GCW, Lokken-Toyli KL, Yeung ST, Rodriguez L, Zangari T, Anderson EE, Ghosh S, Rothlin CV, Brodin P, Khanna KM, Weiser JN. Age-dependent differences in efferocytosis determine the outcome of opsonophagocytic protection from invasive pathogens. Immunity 2023; 56:1255-1268.e5. [PMID: 37059107 PMCID: PMC10330046 DOI: 10.1016/j.immuni.2023.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/16/2023]
Abstract
In early life, susceptibility to invasive infection skews toward a small subset of microbes, whereas other pathogens associated with diseases later in life, including Streptococcus pneumoniae (Spn), are uncommon among neonates. To delineate mechanisms behind age-dependent susceptibility, we compared age-specific mouse models of invasive Spn infection. We show enhanced CD11b-dependent opsonophagocytosis by neonatal neutrophils improved protection against Spn during early life. The augmented function of neonatal neutrophils was mediated by higher CD11b surface expression at the population level due to dampened efferocytosis, which also resulted in more CD11bhi "aged" neutrophils in peripheral blood. Dampened efferocytosis during early life could be attributed to the lack of CD169+ macrophages in neonates and reduced systemic expressions of multiple efferocytic mediators, including MerTK. On experimentally impairing efferocytosis later in life, CD11bhi neutrophils increased and protection against Spn improved. Our findings reveal how age-dependent differences in efferocytosis determine infection outcome through the modulation of CD11b-driven opsonophagocytosis and immunity.
Collapse
Affiliation(s)
- Gavyn Chern Wei Bee
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA.
| | - Kristen L Lokken-Toyli
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Stephen T Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Lucie Rodriguez
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tonia Zangari
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Exene E Anderson
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Sourav Ghosh
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Carla V Rothlin
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Immunology & Inflammation, Imperial College London, London, UK
| | - Kamal M Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA; Laura & Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Jeffrey N Weiser
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA.
| |
Collapse
|
6
|
Aguinagalde Salazar L, den Boer MA, Castenmiller SM, Zwarthoff SA, de Haas C, Aerts PC, Beurskens FJ, Schuurman J, Heck AJR, van Kessel K, Rooijakkers SHM. Promoting Fc-Fc interactions between anti-capsular antibodies provides strong immune protection against Streptococcus pneumoniae. eLife 2023; 12:e80669. [PMID: 36947116 PMCID: PMC10032657 DOI: 10.7554/elife.80669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and an important cause of childhood mortality. Despite the introduction of successful vaccines, the global spread of both non-vaccine serotypes and antibiotic-resistant strains reinforces the development of alternative therapies against this pathogen. One possible route is the development of monoclonal antibodies (mAbs) that induce killing of bacteria via the immune system. Here, we investigate whether mAbs can be used to induce killing of pneumococcal serotypes for which the current vaccines show unsuccessful protection. Our study demonstrates that when human mAbs against pneumococcal capsule polysaccharides (CPS) have a poor capacity to induce complement activation, a critical process for immune protection against pneumococci, their activity can be strongly improved by hexamerization-enhancing mutations. Our data indicate that anti-capsular antibodies may have a low capacity to form higher-order oligomers (IgG hexamers) that are needed to recruit complement component C1. Indeed, specific point mutations in the IgG-Fc domain that strengthen hexamerization strongly enhance C1 recruitment and downstream complement activation on encapsulated pneumococci. Specifically, hexamerization-enhancing mutations E430G or E345K in CPS6-IgG strongly potentiate complement activation on S. pneumoniae strains that express capsular serotype 6 (CPS6), and the highly invasive serotype 19A strain. Furthermore, these mutations improve complement activation via mAbs recognizing CPS3 and CPS8 strains. Importantly, hexamer-enhancing mutations enable mAbs to induce strong opsonophagocytic killing by human neutrophils. Finally, passive immunization with CPS6-IgG1-E345K protected mice from developing severe pneumonia. Altogether, this work provides an important proof of concept for future optimization of antibody therapies against encapsulated bacteria.
Collapse
Affiliation(s)
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrechtNetherlands
- Netherlands Proteomics CenterUtrechtNetherlands
| | - Suzanne M Castenmiller
- Medical Microbiology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Seline A Zwarthoff
- Medical Microbiology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Carla de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | | | | | - Albert JR Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrechtNetherlands
- Netherlands Proteomics CenterUtrechtNetherlands
| | - Kok van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Suzan HM Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| |
Collapse
|
7
|
Periselneris J, Turner CT, Ercoli G, Szylar G, Weight CM, Thurston T, Whelan M, Tomlinson G, Noursadeghi M, Brown J. Pneumolysin suppresses the initial macrophage pro-inflammatory response to Streptococcus pneumoniae. Immunology 2022; 167:413-427. [PMID: 35835695 PMCID: PMC10497322 DOI: 10.1111/imm.13546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/04/2022] [Indexed: 12/01/2022] Open
Abstract
Published data for the Streptococcus pneumoniae virulence factor Pneumolysin (Ply) show contradictory effects on the host inflammatory response to infection. Ply has been shown to activate the inflammasome, but also can bind to MRC-1 resulting in suppression of dendritic cell inflammatory responses. We have used an in vitro infection model of human monocyte-derived macrophages (MDM), and a mouse model of pneumonia to clarify whether pro- or anti-inflammatory effects dominate the effects of Ply on the initial macrophage inflammatory response to S. pneumoniae, and the consequences during early lung infection. We found that infection with S. pneumoniae expressing Ply suppressed tumour necrosis factor (TNF) and interleukin-6 production by MDMs compared to cells infected with ply-deficient S. pneumoniae. This effect was independent of bacterial effects on cell death. Transcriptional analysis demonstrated S. pneumoniae expressing Ply caused a qualitatively similar but quantitatively lower MDM transcriptional response to S. pneumoniae compared to ply-deficient S. pneumoniae, with reduced expression of TNF and type I IFN inducible genes. Reduction of the MDM inflammatory response was prevented by inhibition of SOCS1. In the early lung infection mouse model, the TNF response to ply-deficient S. pneumoniae was enhanced and bacterial clearance increased compared to infection with wild-type S. pneumoniae. Overall, these data show Ply inhibits the initial macrophage inflammatory response to S. pneumoniae, probably mediated through SOCS1, and this was associated with improved immune evasion during early lung infection.
Collapse
Affiliation(s)
- Jimstan Periselneris
- Centre for Inflammation and Tissue Repair, Division of MedicineUniversity College Medical SchoolLondonUK
| | | | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, Division of MedicineUniversity College Medical SchoolLondonUK
| | - Gabriella Szylar
- Centre for Inflammation and Tissue Repair, Division of MedicineUniversity College Medical SchoolLondonUK
| | | | - Teresa Thurston
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUK
| | - Matthew Whelan
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | | | | | - Jeremy Brown
- Centre for Inflammation and Tissue Repair, Division of MedicineUniversity College Medical SchoolLondonUK
| |
Collapse
|
8
|
Single-dose HPV vaccine immunity: is there a role for non-neutralizing antibodies? Trends Immunol 2022; 43:815-825. [PMID: 35995705 DOI: 10.1016/j.it.2022.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022]
Abstract
A single dose of human papillomavirus (HPV) vaccine against HPV infection (prerequisite for cervical cancer) appears to be as efficacious as two or three doses, despite inducing lower antibody titers. Neutralizing antibodies are thought to be the primary mediator of protection, but the threshold for protection is unknown. Antibody functions beyond neutralization have not been explored for HPV vaccines. Here, we discuss the immune mechanisms of HPV vaccines, with a focus on non-neutralizing antibody effector functions. In the context of single-dose HPV vaccination where antibody is limiting, we propose that non-neutralizing antibody functions may contribute to preventing HPV infection. Understanding the immunological basis of protection for single-dose HPV vaccination will provide a rationale for implementing single-dose HPV vaccine regimens.
Collapse
|
9
|
Gil E, Noursadeghi M, Brown JS. Streptococcus pneumoniae interactions with the complement system. Front Cell Infect Microbiol 2022; 12:929483. [PMID: 35967850 PMCID: PMC9366601 DOI: 10.3389/fcimb.2022.929483] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Host innate and adaptive immunity to infection with Streptococcus pneumoniae is critically dependent on the complement system, demonstrated by the high incidence of invasive S. pneumoniae infection in people with inherited deficiency of complement components. The complement system is activated by S. pneumoniae through multiple mechanisms. The classical complement pathway is activated by recognition of S. pneumoniae by C-reactive protein, serum amyloid P, C1q, SIGN-R1, or natural or acquired antibody. Some S. pneumoniae strains are also recognised by ficolins to activate the mannose binding lectin (MBL) activation pathway. Complement activation is then amplified by the alternative complement pathway, which can also be activated by S. pneumoniae directly. Complement activation results in covalent linkage of the opsonic complement factors C3b and iC3b to the S. pneumoniae surface which promote phagocytic clearance, along with complement-mediated immune adherence to erythrocytes, thereby protecting against septicaemia. The role of complement for mucosal immunity to S. pneumoniae is less clear. Given the major role of complement in controlling infection with S. pneumoniae, it is perhaps unsurprising that S. pneumoniae has evolved multiple mechanisms of complement evasion, including the capsule, multiple surface proteins, and the toxin pneumolysin. There is considerable variation between S. pneumoniae capsular serotypes and genotypes with regards to sensitivity to complement which correlates with ability to cause invasive infections. However, at present we only have a limited understanding of the main mechanisms causing variations in complement sensitivity between S. pneumoniae strains and to non-pathogenic streptococci.
Collapse
Affiliation(s)
- Eliza Gil
- Division of Infection and Immunity, University College London, London, United Kingdom
- *Correspondence: Eliza Gil,
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jeremy S. Brown
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
10
|
Nakashima M, Kinoshita M, Nakashima H, Kato A, Mori K, Koiwai K, Shinomiya N, Seki S. Mouse Liver B Cells Phagocytose Streptococcus pneumoniae and Initiate Immune Responses against Their Antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:26-37. [PMID: 35705250 DOI: 10.4049/jimmunol.2100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have revealed that mammalian B cells ingest particulate Ags, such as bacteria, although little is known about the effect of this function on acquired immunity. We investigated the role of bacterium-phagocytosing B cells in acquired host immune responses. Cultured mouse liver B cells substantially phagocytosed serum-opsonized Streptococcus pneumoniae and produced IgM. On adoptive transfer of liver B cells that phagocytose S. pneumoniae labeled with pHrodo Red succinimidyl ester, recipient mice showed elevated plasma levels of IgG specific for bacterial Ags. In particular, the levels of IgG2a and IgG2b specific for pneumococcal surface protein A, as well as IgG3 for pneumococcal polysaccharide, were markedly increased compared with total IgG specific for each Ag. When phagocytic liver B cells were cultured with spleen CD4+ T cells obtained from mice primed with heat-killed S. pneumoniae 7 d before, they induced IL-2 production and proliferation of the CD4+ T cells, along with Th1 cytokine production. However, they induced neither the CD4+ T cell production of IL-21, a suggested marker promoting B cell proliferation and differentiation, nor the expression of genes important for somatic hypermutation or isotype switching; such responses were particularly evident when splenic B cells merely capturing S. pneumoniae without processing them were cultured with spleen CD4+ T cells. These findings suggest that phagocytic liver B cells may be involved in acquired immune responses by presenting derivative peptides to CD4+ T cells without their own somatic hypermutation or isotype switching.
Collapse
Affiliation(s)
- Masahiro Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan; and
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan; and
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan; and
| | - Azusa Kato
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan; and
| | - Kazuma Mori
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan; and
| | - Kazuki Koiwai
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan; and
| | - Nariyoshi Shinomiya
- Office of the President, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan; and
| |
Collapse
|
11
|
Chan WY, Entwisle C, Ercoli G, Ramos-Sevillano E, McIlgorm A, Cecchini P, Bailey C, Lam O, Whiting G, Green N, Goldblatt D, Wheeler JX, Brown JS. Corrected and Republished from: "A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal Streptococcus pneumoniae Challenge". Infect Immun 2022; 90:e0084618a. [PMID: 35076289 PMCID: PMC9199499 DOI: 10.1128/iai.00846-18a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022] Open
Abstract
Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.
Collapse
Affiliation(s)
- Win-Yan Chan
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | | | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | - Elise Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | - Ann McIlgorm
- ImmunoBiology Ltd., Babraham, Cambridge, United Kingdom
| | | | | | - Oliver Lam
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Gail Whiting
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Nicola Green
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Goldblatt
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jun X. Wheeler
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| |
Collapse
|
12
|
Kamuyu G, Ercoli G, Ramos-Sevillano E, Willcocks S, Kewcharoenwong C, Kiratisin P, Taylor PW, Wren BW, Lertmemongkolchai G, Stabler RA, Brown JS. Strain Specific Variations in Acinetobacter baumannii Complement Sensitivity. Front Immunol 2022; 13:853690. [PMID: 35812377 PMCID: PMC9258041 DOI: 10.3389/fimmu.2022.853690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
The complement system is required for innate immunity against Acinetobacter baumannii, an important cause of antibiotic resistant systemic infections. A. baumannii strains differ in their susceptibility to the membrane attack complex (MAC) formed from terminal complement pathway proteins, but the reasons for this variation remain poorly understood. We have characterized in detail the complement sensitivity phenotypes of nine A. baumannii clinical strains and some of the factors that might influence differences between strains. Using A. baumannii laboratory strains and flow cytometry assays, we first reconfirmed that both opsonization with the complement proteins C3b/iC3b and MAC formation were inhibited by the capsule. There were marked differences in C3b/iC3b and MAC binding between the nine clinical A. baumannii strains, but this variation was partially independent of capsule composition or size. Opsonization with C3b/iC3b improved neutrophil phagocytosis of most strains. Importantly, although C3b/iC3b binding and MAC formation on the bacterial surface correlated closely, MAC formation did not correlate with variations between A. baumannii strains in their levels of serum resistance. Genomic analysis identified only limited differences between strains in the distribution of genes required for serum resistance, but RNAseq data identified three complement-resistance genes that were differentially regulated between a MAC resistant and two MAC intermediate resistant strains when cultured in serum. These data demonstrate that clinical A. baumannii strains vary in their sensitivity to different aspects of the complement system, and that the serum resistance phenotype was influenced by factors in addition to the amount of MAC forming on the bacterial surface.
Collapse
Affiliation(s)
- Gathoni Kamuyu
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| | - Elisa Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| | - Sam Willcocks
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chidchamai Kewcharoenwong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cellular and Molecular Immunology Unit, Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peter W. Taylor
- School of Pharmacy, University College London, London, United Kingdom
| | - Brendan W. Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ganjana Lertmemongkolchai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cellular and Molecular Immunology Unit, Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Richard A. Stabler
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
- *Correspondence: Jeremy S. Brown,
| |
Collapse
|
13
|
Marshall H, José RJ, Kilian M, Petersen FC, Brown JS. Effects of Expression of Streptococcus pneumoniae PspC on the Ability of Streptococcus mitis to Evade Complement-Mediated Immunity. Front Microbiol 2021; 12:773877. [PMID: 34880844 PMCID: PMC8646030 DOI: 10.3389/fmicb.2021.773877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae and Streptococcus mitis are genetically closely related and both frequently colonise the naso-oropharynx, yet S. pneumoniae is a common cause of invasive infections whereas S. mitis is only weakly pathogenic. We hypothesise that sensitivity to innate immunity may underlie these differences in virulence phenotype. We compared the sensitivity of S. pneumoniae and S. mitis strains to complement-mediated immunity, demonstrating S. mitis strains were susceptible to complement-mediated opsonophagocytosis. S. pneumoniae resistance to complement is partially dependent on binding of the complement regulator Factor H by the surface protein PspC. However, S. mitis was unable to bind factor H. The S. pneumoniae TIGR4 strain pspC was expressed in the S. mitis SK142 strain to create a S. mitis pspC+ strain. Immunoblots demonstrated the S. mitis pspC+ strain expressed PspC, and flow cytometry confirmed this resulted in Factor H binding to S. mitis, reduced susceptibility to complement and improved survival in whole human blood compared to the wild-type S. mitis strain. However, in mouse models the S. mitis pspC+ strain remained unable to establish persistent infection. Unlike S. pneumoniae strains, culture in serum or blood did not support increased CFU of the S. mitis strains. These results suggest S. mitis is highly sensitive to opsonisation with complement partially due to an inability to bind Factor H, but even when complement sensitivity was reduced by expression of pspC, poor growth in physiological fluid limited the virulence of S. mitis in mice.
Collapse
Affiliation(s)
- Helina Marshall
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Department of Medicine, Royal Free and University College Medical School, University College London, London, United Kingdom.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Ricardo J José
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Department of Medicine, Royal Free and University College Medical School, University College London, London, United Kingdom
| | - Mogens Kilian
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Fernanda C Petersen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Department of Medicine, Royal Free and University College Medical School, University College London, London, United Kingdom
| |
Collapse
|
14
|
McKenna S, Huse KK, Giblin S, Pearson M, Majid Al Shibar MS, Sriskandan S, Matthews S, Pease JE. The Role of Streptococcal Cell-Envelope Proteases in Bacterial Evasion of the Innate Immune System. J Innate Immun 2021; 14:69-88. [PMID: 34649250 PMCID: PMC9082167 DOI: 10.1159/000516956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
Bacteria possess the ability to evolve varied and ingenious strategies to outwit the host immune system, instigating an evolutionary arms race. Proteases are amongst the many weapons employed by bacteria, which specifically cleave and neutralize key signalling molecules required for a coordinated immune response. In this article, we focus on a family of S8 subtilisin-like serine proteases expressed as cell-envelope proteases (CEPs) by group A and group B streptococci. Two of these proteases known as Streptococcus pyogenes CEP (SpyCEP) and C5a peptidase cleave the chemokine CXCL8 and the complement fragment C5a, respectively. Both CXCL8 and C5a are potent neutrophil-recruiting chemokines, and by neutralizing their activity, streptococci evade a key defence mechanism of innate immunity. We review the mechanisms by which CXCL8 and C5a recruit neutrophils and the characterization of SpyCEP and C5a peptidase, including both in vitro and in vivo studies. Recently described structural insights into the function of this CEP family are also discussed. We conclude by examining the progress of prototypic vaccines incorporating SpyCEP and C5a peptidase in their preparation. Since streptococci-producing SpyCEP and C5a peptidase are responsible for a considerable global disease burden, targeting these proteases by vaccination strategies or by small-molecule antagonists should provide protection from and promote the resolution of streptococcal infections.
Collapse
Affiliation(s)
- Sophie McKenna
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kristin Krohn Huse
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Sean Giblin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Max Pearson
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - James Edward Pease
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
André GO, Borges MT, Assoni L, Ferraz LFC, Sakshi P, Adamson P, Gordon DL, Ogunniyi AD, Venter H, Converso TR, Darrieux M. Protective role of PhtD and its amino and carboxyl fragments against pneumococcal sepsis. Vaccine 2021; 39:3626-3632. [PMID: 34045100 DOI: 10.1016/j.vaccine.2021.04.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/28/2022]
Abstract
The implementation of polysaccharide-based vaccines has massively reduced the incidence of invasive pneumococcal diseases. However, there is great concern regarding serotype replacement and the increase in antibiotic resistant strains expressing non-vaccine capsular types. In addition, conjugate vaccines have high production costs, a limiting factor for their implementation in mass immunization programs in developing countries. These limitations have prompted the development of novel vaccine strategies for prevention of Streptococcus pneumoniae infections. The use of conserved pneumococcal antigens such as recombinant proteins or protein fragments presents an interesting serotype-independent alternative. Pht is a family of surface-exposed proteins which have been evaluated as potential vaccine candidates with encouraging results. The present work investigated the immune responses elicited by subcutaneous immunization of mice with the polyhistidine triad protein D (PhtD) and its amino and carboxyl terminal fragments. The proteins were immunogenic and protective against pneumococcal sepsis in mice. Antibodies raised against PhtD increased complement C3b deposition on the pneumococcal surface, mainly mediated by the alternative pathway. Sera from mice immunized with PhtD and PhtD_Cter promoted an increase in bacterial uptake by mouse phagocytes. The interaction of PhtD with the complement system regulator factor H was investigated in silico and in vitro by ELISA and western blot, confirming PhtD as a factor-H binding protein. Our results support the inclusion of PhtD and more specifically, its C-terminal fragment in a multicomponent serotype independent vaccine and suggests a role for the complement system in PhtD-mediated protection.
Collapse
Affiliation(s)
- Greiciely O André
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, Brazil
| | - Mayara T Borges
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucas Assoni
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucio F C Ferraz
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, Brazil
| | - Piplani Sakshi
- College of Medicine and Public Health. Flinders University, Adelaide, South Australia, Australia
| | - Penelope Adamson
- Department of Microbiology and Infectious Diseases, Flinders University, Adelaide, South Australia, Australia
| | - David L Gordon
- Department of Microbiology and Infectious Diseases, Flinders University, Adelaide, South Australia, Australia
| | - Abiodun D Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Thiago R Converso
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, Brazil.
| |
Collapse
|
16
|
Coagulation factor XII contributes to hemostasis when activated by soil in wounds. Blood Adv 2021; 4:1737-1745. [PMID: 32339233 DOI: 10.1182/bloodadvances.2019000425] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 03/24/2020] [Indexed: 01/14/2023] Open
Abstract
Bleeding is a common contributor to death and morbidity in animals and provides strong selective pressure for the coagulation system to optimize hemostasis for diverse environments. Although coagulation factor XII (FXII) is activated by nonbiologic surfaces, such as silicates, which leads to blood clotting in vitro, it is unclear whether FXII contributes to hemostasis in vivo. Humans and mice lacking FXII do not appear to bleed more from clean wounds than their counterparts with normal FXII levels. We tested the hypothesis that soil, a silicate-rich material abundant in the environment and wounds of terrestrial mammals, is a normal and potent activator of FXII and coagulation. Blood loss was compared between wild-type (WT) and FXII-knocked out (FXII-/-) mice after soil or exogenous tissue factor was applied to transected tails. The activation of FXII and other components of the coagulation and contact system was assessed with in vitro coagulation and enzyme assays. Soils were analyzed by time-of-flight secondary ionization mass spectrometry and dynamic light scattering. Soil reduced blood loss in WT mice, but not FXII-/- mice. Soil accelerated clotting of blood plasma from humans and mice in a FXII-dependent manner, but not plasma from a cetacean or a bird, which lack FXII. The procoagulant activity of 13 soils strongly correlated with the surface concentration of silicon, but only moderately correlated with the ζ potential. FXII augments coagulation in soil-contaminated wounds of terrestrial mammals, perhaps explaining why this protein has a seemingly minor role in hemostasis in clean wounds.
Collapse
|
17
|
Synthesis and delivery of Streptococcus pneumoniae capsular polysaccharides by recombinant attenuated Salmonella vaccines. Proc Natl Acad Sci U S A 2021; 118:2013350118. [PMID: 33380455 PMCID: PMC7812815 DOI: 10.1073/pnas.2013350118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pneumococcal infection-caused diseases are responsible for substantial morbidity and mortality worldwide. Traditional pneumococcal vaccines are developed based on purified capsular polysaccharides (CPS) or CPS conjugated to a protein carrier. Production processes of the traditional vaccines are laborious, and thereby increase the vaccine cost and limit their use in developing nations. A cost-effective pneumococcal vaccine using the recombinant attenuated Salmonella vaccine (RASV) was developed in this study. We cloned and expressed genes for seven serotypes of CPSs in the RASV strain. The RASV-delivered CPSs induced robust humoral and cell-mediated responses and mediated efficient protection of mice against pneumococcal infection. Our work provides an innovative strategy for mass producing low-cost bioconjugated polysaccharide vaccines for needle-free mucosal delivery against pneumococcal infections. Streptococcus pneumoniae capsular polysaccharides (CPSs) are major determinants of bacterial pathogenicity. CPSs of different serotypes form the main components of the pneumococcal vaccines Pneumovax, Prevnar7, and Prevnar13, which substantially reduced the S. pneumoniae disease burden in developed countries. However, the laborious production processes of traditional polysaccharide-based vaccines have raised the cost of the vaccines and limited their impact in developing countries. The aim of this study is to develop a kind of low-cost live vaccine based on using the recombinant attenuated Salmonella vaccine (RASV) system to protect against pneumococcal infections. We cloned genes for seven different serotypes of CPSs to be expressed by the RASV strain. Oral immunization of mice with the RASV-CPS strains elicited robust Th1 biased adaptive immune responses. All the CPS-specific antisera mediated opsonophagocytic killing of the corresponding serotype of S. pneumoniae in vitro. The RASV-CPS2 and RASV-CPS3 strains provided efficient protection of mice against challenge infections with either S. pneumoniae strain D39 or WU2. Synthesis and delivery of S. pneumoniae CPSs using the RASV strains provide an innovative strategy for low-cost pneumococcal vaccine development, production, and use.
Collapse
|
18
|
Vaccination with LytA, LytC, or Pce of Streptococcus pneumoniae Protects against Sepsis by Inducing IgGs That Activate the Complement System. Vaccines (Basel) 2021; 9:vaccines9020186. [PMID: 33672306 PMCID: PMC7926378 DOI: 10.3390/vaccines9020186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of non-vaccine serotypes of Streptococcus pneumoniae after the use of vaccines based in capsular polysaccharides demonstrates the need of a broader protection vaccine based in protein antigens and widely conserved. In this study, we characterized three important virulence factors of S. pneumoniae namely LytA, LytC, and Pce as vaccine candidates. These proteins are choline-binding proteins that belong to the cell wall hydrolases’ family. Immunization of mice with LytA, LytC, or Pce induced high titers of immunoglobulins G (IgGs) of different subclasses, with IgG1, IgG2a, and IgG2b as the predominant immunoglobulins raised. These antibodies activated the classical pathway of the complement system by increasing the recognition of C1q on the surface of pneumococcal strains of different serotypes. Consequently, the key complement component C3 recognized more efficiently these strains in the presence of specific antibodies elicited by these proteins, activating, therefore, the phagocytosis. Finally, a mouse sepsis model of infection was established, confirming that vaccination with these proteins controlled bacterial replication in the bloodstream, increasing the survival rate. Overall, these results demonstrate that LytA, LytC, and Pce can be protein antigens to be contained in a future universal vaccine against S. pneumoniae.
Collapse
|
19
|
Pneumococcal Choline-Binding Proteins Involved in Virulence as Vaccine Candidates. Vaccines (Basel) 2021; 9:vaccines9020181. [PMID: 33672701 PMCID: PMC7924319 DOI: 10.3390/vaccines9020181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen responsible for millions of deaths worldwide. Currently, the available vaccines for the prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV-23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes (up to 100 different serotypes have been identified) and are unable to protect against non-vaccine serotypes and non-encapsulated pneumococci. The emergence of antibiotic-resistant non-vaccine serotypes after these vaccines is an increasing threat. Therefore, there is an urgent need to develop new pneumococcal vaccines which could cover a wide range of serotypes. One of the vaccines most characterized as a prophylactic alternative to current PPV-23 or PCVs is a vaccine based on pneumococcal protein antigens. The choline-binding proteins (CBP) are found in all pneumococcal strains, giving them the characteristic to be potential vaccine candidates as they may protect against different serotypes. In this review, we have focused the attention on different CBPs as vaccine candidates because they are involved in the pathogenesis process, confirming their immunogenicity and protection against pneumococcal infection. The review summarizes the major contribution of these proteins to virulence and reinforces the fact that antibodies elicited against many of them may block or interfere with their role in the infection process.
Collapse
|
20
|
Ercoli G, Ramos-Sevillano E, Nakajima R, de Assis RR, Jasinskas A, Goldblatt D, Felgner P, Weckbecker G, Brown J. The Influence of B Cell Depletion Therapy on Naturally Acquired Immunity to Streptococcus pneumoniae. Front Immunol 2021; 11:611661. [PMID: 33584691 PMCID: PMC7876223 DOI: 10.3389/fimmu.2020.611661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023] Open
Abstract
The anti-CD20 antibody Rituximab to deplete CD20+ B cells is an effective treatment for rheumatoid arthritis and B cell malignancies, but is associated with an increased incidence of respiratory infections. Using mouse models we have investigated the consequences of B cell depletion on natural and acquired humoral immunity to Streptococcus pneumoniae. B cell depletion of naïve C57Bl/6 mice reduced natural IgM recognition of S. pneumoniae, but did not increase susceptibility to S. pneumoniae pneumonia. ELISA and flow cytometry assays demonstrated significantly reduced IgG and IgM recognition of S. pneumoniae in sera from mice treated with B cell depletion prior to S. pneumoniae nasopharyngeal colonization compared to untreated mice. Colonization induced antibody responses to protein rather than capsular antigen, and when measured using a protein array B cell depletion prior to colonization reduced serum levels of IgG to several protein antigens. However, B cell depleted S. pneumoniae colonized mice were still partially protected against both lung infection and septicemia when challenged with S. pneumoniae after reconstitution of their B cells. These data indicate that although B cell depletion markedly impairs antibody recognition of S. pneumoniae in colonized mice, some protective immunity is maintained, perhaps mediated by cellular immunity.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Disease Models, Animal
- Female
- Host-Pathogen Interactions
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Innate
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Immunologic Factors/pharmacology
- Lymphocyte Depletion
- Mice, Inbred C57BL
- Pneumonia, Pneumococcal/blood
- Pneumonia, Pneumococcal/immunology
- Pneumonia, Pneumococcal/microbiology
- Pneumonia, Pneumococcal/prevention & control
- Rituximab/pharmacology
- Streptococcus pneumoniae/immunology
- Streptococcus pneumoniae/pathogenicity
- Mice
Collapse
Affiliation(s)
- Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Elisa Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Rafael Ramiro de Assis
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Algis Jasinskas
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - David Goldblatt
- Department of Immunobiology, UCL Great Ormond Street Institute of Child Health, NIHR Biomedical Research Centre, London, United Kingdom
| | - Philip Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Gisbert Weckbecker
- Novartis Institute for BioMedical Research, Novartis, Basel, Switzerland
| | - Jeremy Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| |
Collapse
|
21
|
Koelman DLH, Brouwer MC, van de Beek D. Targeting the complement system in bacterial meningitis. Brain 2020; 142:3325-3337. [PMID: 31373605 PMCID: PMC6821383 DOI: 10.1093/brain/awz222] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Bacterial meningitis is most commonly caused by Streptococcus pneumoniae and Neisseria meningitidis and continues to pose a major public health threat. Morbidity and mortality of meningitis are driven by an uncontrolled host inflammatory response. This comprehensive update evaluates the role of the complement system in upregulating and maintaining the inflammatory response in bacterial meningitis. Genetic variation studies, complement level measurements in blood and CSF, and experimental work have together led to the identification of anaphylatoxin C5a as a promising treatment target in bacterial meningitis. In animals and patients with pneumococcal meningitis, the accumulation of neutrophils in the CSF was mainly driven by C5-derived chemotactic activity and correlated positively with disease severity and outcome. In murine pneumococcal meningitis, adjunctive treatment with C5 antibodies prevented brain damage and death. Several recently developed therapeutics target C5 conversion, C5a, or its receptor C5aR. Caution is warranted because treatment with C5 antibodies such as eculizumab also inhibits the formation of the membrane attack complex, which may result in decreased meningococcal killing and increased meningococcal disease susceptibility. The use of C5a or C5aR antagonists to specifically target the harmful anaphylatoxins-induced effects, therefore, are most promising and present opportunities for a phase 2 clinical trial.
Collapse
Affiliation(s)
- Diederik L H Koelman
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, AZ, Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, AZ, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, AZ, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Sharma S, Bhatnagar R, Gaur D. Bacillus anthracis Poly-γ-D-Glutamate Capsule Inhibits Opsonic Phagocytosis by Impeding Complement Activation. Front Immunol 2020; 11:462. [PMID: 32296419 PMCID: PMC7138205 DOI: 10.3389/fimmu.2020.00462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/28/2020] [Indexed: 01/18/2023] Open
Abstract
Bacillus anthracis poly-γ-D-glutamic acid (PGA) capsule is an essential virulent factor that helps the bacterial pathogen to escape host immunity. Like other encapsulated bacterial species, the B. anthracis capsule may also inhibit complement-mediated clearance and ensure bacterial survival in the host. Previous reports suggest that B. anthracis spore proteins inhibit complement activation. However, the mechanism through which the B. anthracis capsule imparts a survival advantage to the active bacteria has not been demonstrated till date. Thus, to evaluate the role of the PGA capsule in evading host immunity, we have undertaken the present head-to-head comparative study of the phagocytosis and complement activation of non-encapsulated and encapsulated B. anthracis strains. The encapsulated virulent strain exhibited resistance toward complement-dependent and complement-independent bacterial phagocytosis by human macrophages. The non-encapsulated Sterne strain was highly susceptible to phagocytosis by THP-1 macrophages, after incubation with normal human serum (NHS), heat-inactivated serum, and serum-free media, thus indicating that the capsule inhibited both complement-dependent and complement-independent opsonic phagocytosis. An increased binding of C3b and its subsequent activation to C3c and C3dg, which functionally act as potent opsonins, were observed with the non-encapsulated Sterne strain compared with the encapsulated strain. Other known mediators of complement fixation, IgG, C-reactive protein (CRP), and serum amyloid P component (SAP), also bound more prominently with the non-encapsulated Sterne strain. Studies with complement pathway-specific, component-deficient serum demonstrated that the classical pathway was primarily involved in mediating C3b binding on the non-encapsulated bacteria. Both strains equally bound the complement regulatory proteins C4BP and factor H. Importantly, we demonstrated that the negative charge of the PGA capsule was responsible for the differential binding of the complement proteins between the non-encapsulated and encapsulated strains. At lower pH closer to the isoelectric point of PGA, the neutralization of the negative charge was associated with an increased binding of C3b and IgG with the encapsulated B. anthracis strain. Overall, our data have demonstrated that the B. anthracis capsule inhibits complement fixation and opsonization resulting in reduced phagocytosis by macrophages, thus allowing the bacterial pathogen to evade host immunity.
Collapse
Affiliation(s)
- Shikhar Sharma
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
23
|
Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. Vaccines (Basel) 2020; 8:vaccines8010132. [PMID: 32192117 PMCID: PMC7157650 DOI: 10.3390/vaccines8010132] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is a major pathogen causing pneumonia with over 2 million deaths annually, especially in young children and the elderly. To date, at least 98 different pneumococcal capsular serotypes have been identified. Currently, the vaccines for prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes and are unable to protect against non-vaccine serotypes and unencapsulated S. pneumoniae. This has led to a rapid increase in antibiotic-resistant non-vaccine serotypes. Hence, there is an urgent need to develop new, effective, and affordable pneumococcal vaccines, which could cover a wide range of serotypes. This review discusses the new approaches to develop effective vaccines with broad serotype coverage as well as recent development of promising pneumococcal vaccines in clinical trials. New vaccine candidates are the inactivated whole-cell vaccine strain (Δpep27ΔcomD mutant) constructed by mutations of specific genes and several protein-based S. pneumoniae vaccines using conserved pneumococcal antigens, such as lipoprotein and surface-exposed protein (PspA). Among the vaccines in Phase 3 clinical trials are the pneumococcal conjugate vaccines, PCV-15 (V114) and 20vPnC. The inactivated whole-cell and several protein-based vaccines are either in Phase 1 or 2 trials. Furthermore, the recent progress of nanoparticles that play important roles as delivery systems and adjuvants to improve the performance, as well as the immunogenicity of the nanovaccines, are reviewed.
Collapse
|
24
|
Abstract
Phagocytosis is a pivotal immunological process, and its discovery by Elia Metchnikoff in 1882 was a step toward the establishment of the innate immune system as a separate branch of immunology. Elia Metchnikoff received the Nobel Prize in physiology and medicine for this discovery in 1908. Since its discovery almost 140 years before, phagocytosis remains the hot topic of research in immunology. The phagocytosis research has seen a great advancement since its first discovery. Functionally, phagocytosis is a simple immunological process required to engulf and remove pathogens, dead cells and tumor cells to maintain the immune homeostasis. However, mechanistically, it is a very complex process involving different mechanisms, induced and regulated by several pattern recognition receptors, soluble pattern recognition molecules, scavenger receptors (SRs) and opsonins. These mechanisms involve the formation of phagosomes, their maturation into phagolysosomes causing pathogen destruction or antigen synthesis to present them to major histocompatibility complex molecules for activating an adaptive immune response. Any defect in this mechanism may predispose the host to certain infections and inflammatory diseases (autoinflammatory and autoimmune diseases) along with immunodeficiency. The article is designed to discuss its mechanistic complexity at each level, varying from phagocytosis induction to phagolysosome resolution.
Collapse
Affiliation(s)
- Vijay Kumar
- Faculty of Medicine, Children's Health Queensland Clinical Unit, School of Clinical Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland, Australia.,Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Sikorski PM, Commodaro AG, Grigg ME. Toxoplasma gondii Recruits Factor H and C4b-Binding Protein to Mediate Resistance to Serum Killing and Promote Parasite Persistence in vivo. Front Immunol 2020; 10:3105. [PMID: 32010145 PMCID: PMC6979546 DOI: 10.3389/fimmu.2019.03105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/19/2019] [Indexed: 01/14/2023] Open
Abstract
Regulating complement is an important step in the establishment of infection by microbial pathogens. Toxoplasma gondii actively resists complement-mediated killing in non-immune human serum (NHS) by inactivating C3b, however the precise molecular basis is unknown. Here, a flow cytometry-based C3b binding assay demonstrated that Type II strains had significantly higher levels of surface-bound C3b than Type I strains. However, both strains efficiently inactivated C3b and were equally resistant to serum killing, suggesting that resistance is not strain-dependent. Toxoplasma activated both the lectin (LP) and alternative (AP) pathways, and the deposition of C3b was both strain and lectin-dependent. A flow cytometry-based lectin binding assay identified strain-specific differences in the level and heterogeneity of surface glycans detected. Specifically, increased lectin-binding by Type II strains correlated with higher levels of the LP recognition receptor mannose binding lectin (MBL). Western blot analyses demonstrated that Toxoplasma recruits both classical pathway (CP) and LP regulator C4b-binding proteins (C4BP) and AP regulator Factor H (FH) to the parasite surface to inactivate bound C3b-iC3b and C3dg and limit formation of the C5b-9 attack complex. Blocking FH and C4BP contributed to increased C5b-9 formation in vitro. However, parasite susceptibility in vitro was only impacted when FH was blocked, indicating that down regulation of the alternative pathway by FH may be more critical for parasite resistance. Infection of C3 deficient mice led to uncontrolled parasite growth, acute mortality, and reduced antibody production, indicating that both the presence of C3, and the ability of the parasite to inactivate C3, was protective. Taken together, our results establish that Toxoplasma regulation of the complement system renders mice resistant to acute infection by limiting parasite proliferation in vivo, but susceptible to chronic infection, with all mice developing transmissible cysts to maintain its life cycle.
Collapse
Affiliation(s)
- Patricia M Sikorski
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Microbiology and Immunology, Georgetown University Medical Centre, Georgetown University, Washington, DC, United States
| | - Alessandra G Commodaro
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Jiang H, Wei L, Wang D, Wang J, Zhu S, She R, Liu T, Tian J, Quan R, Hou L, Li Z, Chu J, Zhou J, Guo Y, Xi Y, Song H, Yuan F, Liu J. ITRAQ-based quantitative proteomics reveals the first proteome profiles of piglets infected with porcine circovirus type 3. J Proteomics 2019; 212:103598. [PMID: 31785380 DOI: 10.1016/j.jprot.2019.103598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/24/2023]
Abstract
Porcine circovirus type 3 (PCV3) infection induces porcine dermatitis and nephropathy syndrome, reproductive failure, and multisystemic inflammatory lesions in piglets and sows. To better understand the host responses to PCV3 infection, isobaric tags for relative and absolute quantification (iTRAQ) labeling combined with LC-MS/MS analysis was used for quantitative determination of differentially regulated cellular proteins in the lungs of specific-pathogen-free piglets after 4 weeks of PCV3 infection. Totally, 3429 proteins were detected in three independent mass spectrometry analyses, of which 242 differential cellular proteins were significantly regulated, consisting of 100 upregulated proteins and 142 downregulated proteins in PCV3-infected group relative to control group. Bioinformatics analysis revealed that these higher or lower abundant proteins involved primarily metabolic processes, innate immune response, MHC-I and MHC-II components, and phagosome pathways. Ten genes encoding differentially regulated proteins were selected for investigation via real-time RT-PCR. The expression levels of six representative proteins, OAS1, Mx1, ISG15, IFIT3, SOD2, and HSP60, were further confirmed by Western blotting and immunohistochemistry. This study attempted for the first time to investigate the protein profile of PCV3-infected piglets using iTRAQ technology; our findings provide valuable information to better understand the mechanisms underlying the host responses to PCV3 infection in piglets. SIGNIFICANCE: Our study identified differentially abundant proteins related to a variety of potential signaling pathways in the lungs of PCV3-infected piglets. These findings provide valuable information to better understand the mechanisms of host responses to PCV3 infection.
Collapse
Affiliation(s)
- Haijun Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Ruiping She
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Tianlong Liu
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Jijing Tian
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jun Chu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yuxin Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Yanyang Xi
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Huiqi Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Feng Yuan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China.
| |
Collapse
|
27
|
Periselneris J, Ercoli G, Pollard T, Chimalapati S, Camberlein E, Szylar G, Hyams C, Tomlinson G, Petersen FC, Floto RA, Noursadeghi M, Brown JS. Relative Contributions of Extracellular and Internalized Bacteria to Early Macrophage Proinflammatory Responses to Streptococcus pneumoniae. mBio 2019; 10:e02144-19. [PMID: 31551336 PMCID: PMC6759765 DOI: 10.1128/mbio.02144-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Both intracellular immune sensing and extracellular innate immune sensing have been implicated in initiating macrophage proinflammatory cytokine responses to Streptococcus pneumoniae The S. pneumoniae capsule, a major virulence determinant, prevents phagocytosis, and we hypothesized that this would reduce activation of host innate inflammatory responses by preventing activation of intracellular proinflammatory signaling pathways. We investigated this hypothesis in human monocyte-derived macrophages stimulated with encapsulated or isogenic unencapsulated mutant S. pneumoniae Unexpectedly, despite strongly inhibiting bacterial internalization, the capsule resulted in enhanced inflammatory cytokine production by macrophages infected with S. pneumoniae Experiments using purified capsule material and a Streptococcus mitis mutant expressing an S. pneumoniae serotype 4 capsule indicated these differences required whole bacteria and were not due to proinflammatory effects of the capsule itself. Transcriptional profiling demonstrated relatively few differences in macrophage gene expression profiles between infections with encapsulated S. pneumoniae and those with unencapsulated S. pneumoniae, largely limited to reduced expression of proinflammatory genes in response to unencapsulated bacteria, predicted to be due to reduced activation of the NF-κB family of transcription factors. Blocking S. pneumoniae internalization using cytochalasin D had minimal effects on the inflammatory response to S. pneumoniae Experiments using murine macrophages indicated that the affected genes were dependent on Toll-like receptor 2 (TLR2) activation, although not through direct stimulation of TLR2 by capsule polysaccharide. Our data demonstrate that the early macrophage proinflammatory response to S. pneumoniae is mainly dependent on extracellular bacteria and reveal an unexpected proinflammatory effect of encapsulated S. pneumoniae that could contribute to disease pathogenesis.IMPORTANCE Multiple extra- and intracellular innate immune receptors have been identified that recognize Streptococcus pneumoniae, but the relative contributions of intra- versus extracellular bacteria to the inflammatory response were unknown. We have shown that intracellular S. pneumoniae contributes surprisingly little to the inflammatory responses, with production of important proinflammatory cytokines largely dependent on extracellular bacteria. Furthermore, although we expected the S. pneumoniae polysaccharide capsule to block activation of the host immune system by reducing bacterial internalization and therefore activation of intracellular innate immune receptors, there was an increased inflammatory response to encapsulated compared to unencapsulated bacteria, which is likely to contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Jimstan Periselneris
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Tracey Pollard
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Suneeta Chimalapati
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Emilie Camberlein
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Gabriella Szylar
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Catherine Hyams
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Gillian Tomlinson
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Fernanda C Petersen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| |
Collapse
|
28
|
Dominant role of splenic marginal zone lipid rafts in the classical complement pathway against S. pneumoniae. Cell Death Discov 2019; 5:133. [PMID: 31531231 PMCID: PMC6733876 DOI: 10.1038/s41420-019-0213-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/11/2019] [Accepted: 08/18/2019] [Indexed: 12/28/2022] Open
Abstract
Lipid rafts (LRs) play crucial roles in complex physiological processes, modulating innate and acquired immune responses to pathogens. The transmembrane C-type lectins human dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and its mouse homolog SIGN-R1 are distributed in LRs and expressed on splenic marginal zone (MZ) macrophages. The DC-SIGN-C1q or SIGN-R1-C1q complex could mediate the immunoglobulin (Ig)-independent classical complement pathway against Streptococcus pneumoniae. Precise roles of LRs during this complement pathway are unknown. Here we show that LRs are indispensable for accelerating the DC-SIGN- or SIGN-R1-mediated classical complement pathway against S. pneumoniae, thus facilitating rapid clearance of the pathogen. The trimolecular complex of SIGN-R1-C1q-C4 was exclusively enriched in LRs of splenic MZ macrophages and their localization was essential for activating C3 catabolism and enhancing pneumococcal clearance, which were abolished in SIGN-R1-knockout mice. However, DC-SIGN replacement on splenic MZ macrophage’s LRs of SIGN-R1-depleted mice reversed these defects. Disruption of LRs dramatically reduced pneumococcal uptake and decomposition. Additionally, DC- SIGN, C1q, C4, and C3 were obviously distributed in splenic LRs of cadavers. Therefore, LRs on splenic SIGN-R1+ or DC-SIGN+ macrophages could provide spatially confined and optimal bidirectional platforms, not only for usual intracellular events, for example recognition and phagocytosis of pathogens, but also an unusual extracellular event such as the complement system. These findings improve our understanding of the orchestrated roles of the spleen, unraveling a new innate immune system initiated from splenic MZ LRs, and yielding answers to several long-standing problems, including the need to understand the profound role of LRs in innate immunity, the need to identify how such a small portion of splenic SIGN-R1+ macrophages (<0.05% of splenic macrophages) effectively resist S. pneumoniae, and the need to understand how LRs can promote the protective function of DC-SIGN against S. pneumoniae in the human spleen.
Collapse
|
29
|
Ramos-Sevillano E, Ercoli G, Brown JS. Mechanisms of Naturally Acquired Immunity to Streptococcus pneumoniae. Front Immunol 2019; 10:358. [PMID: 30881363 PMCID: PMC6405633 DOI: 10.3389/fimmu.2019.00358] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
In this review we give an update on the mechanisms of naturally acquired immunity against Streptococcus pneumoniae, one of the major human bacterial pathogens that is a common cause of pneumonia, septicaemia, and meningitis. A clear understanding of the natural mechanisms of immunity to S. pneumoniae is necessary to help define why the very young and elderly are at high risk of disease, and for devising new prevention strategies. Recent data has shown that nasopharynx colonization by S. pneumoniae induces antibody responses to protein and capsular antigens in both mice and humans, and also induces Th17 CD4+ cellular immune responses in mice and increases pre-existing responses in humans. These responses are protective, demonstrating that colonization is an immunizing event. We discuss the data from animal models and humans on the relative importance of naturally acquired antibody and Th17 cells on immunity to S. pneumoniae at three different anatomical sites of infection, the nasopharynx (the site of natural asymptomatic carriage), the lung (site of pneumonia), and the blood (site of sepsis). Mouse data suggest that CD4+ Th17 cells prevent both primary and secondary nasopharyngeal carriage with no role for antibody induced by previous colonization. In contrast, antibody is necessary for prevention of sepsis but CD4+ cellular responses are not. Protection against pneumonia requires a combination of both antibody and Th17 cells, in both cases targeting protein rather than capsular antigen. Proof of which immune component prevents human infection is less easily available, but two recent papers demonstrate that human IgG targeting S. pneumoniae protein antigens is highly protective against septicaemia. The role of CD4+ responses to prior nasopharyngeal colonization for protective immunity in humans is unclear. The evidence that there is significant naturally-acquired immunity to S. pneumoniae independent of anti-capsular polysaccharide has clinical implications for the detection of subjects at risk of S. pneumoniae infections, and the data showing the importance of protein antigens as targets for antibody and Th17 mediated immunity should aid the development of new vaccine strategies.
Collapse
Affiliation(s)
| | | | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, London, United Kingdom
| |
Collapse
|
30
|
A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal Streptococcus pneumoniae Challenge. Infect Immun 2019; 87:IAI.00846-18. [PMID: 30530620 PMCID: PMC6386546 DOI: 10.1128/iai.00846-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/07/2023] Open
Abstract
Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.
Collapse
|
31
|
PepN is a non-essential, cell wall-localized protein that contributes to neutrophil elastase-mediated killing of Streptococcus pneumoniae. PLoS One 2019; 14:e0211632. [PMID: 30707714 PMCID: PMC6358159 DOI: 10.1371/journal.pone.0211632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/17/2019] [Indexed: 12/23/2022] Open
Abstract
Streptococcus pneumoniae (Spn) is an asymptomatic colonizer of the human nasopharynx but can also cause disease in the inner ear, meninges, lung and blood. Although various mechanisms contribute to the effective clearance of Spn, opsonophagocytosis by neutrophils is perhaps most critical. Upon phagocytosis, Spn is exposed to various degradative molecules, including a family of neutrophil serine proteases (NSPs) that are stored within intracellular granules. Despite the critical importance of NSPs in killing Spn, the bacterial proteins that are degraded by NSPs leading to Spn death are still unknown. In this report, we identify a 90kDa protein in a purified cell wall (CW) preparation, aminopeptidase N (PepN) that is degraded by the NSP neutrophil elastase (NE). Since PepN lacked a canonical signal sequence or LPxTG motif, we created a mutant expressing a FLAG tagged version of the protein and confirmed its localization to the CW compartment. We determined that not only is PepN a CW-localized protein, but also is a substrate of NE in the context of intact Spn cells. Furthermore, in comparison to wild-type TIGR4 Spn, a mutant strain lacking PepN demonstrated a significant hyper-resistance phenotype in vitro in the presence of purified NE as well as in opsonophagocytic assays with purified human neutrophils ex vivo. Taken together, this is the first study to demonstrate that PepN is a CW-localized protein and a substrate of NE that contributes to the effective killing of Spn by NSPs and human neutrophils.
Collapse
|
32
|
Domenech M, Sempere J, de Miguel S, Yuste J. Combination of Antibodies and Antibiotics as a Promising Strategy Against Multidrug-Resistant Pathogens of the Respiratory Tract. Front Immunol 2018; 9:2700. [PMID: 30515172 PMCID: PMC6256034 DOI: 10.3389/fimmu.2018.02700] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
The emergence of clinical isolates associated to multidrug resistance is a serious threat worldwide in terms of public health since complicates the success of the antibiotic treatment and the resolution of the infectious process. This is of great concern in pathogens affecting the lower respiratory tract as these infections are one of the major causes of mortality in children and adults. In most cases where the respiratory pathogen is associated to multidrug-resistance, antimicrobial concentrations both in serum and at the site of infection may be insufficient and the resolution of the infection depends on the interaction of the invading pathogen with the host immune response. The outcome of these infections largely depends on the susceptibility of the pathogen to the antibiotic treatment, although the humoral and cellular immune responses also play an important role in this process. Hence, prophylactic measures or even immunotherapy are alternatives against these multi-resistant pathogens. In this sense, specific antibodies and antibiotics may act concomitantly against the respiratory pathogen. Alteration of cell surface structures by antimicrobial drugs even at sub-inhibitory concentrations might result in greater exposure of microbial ligands that are normally hidden or hardly exposed. This alteration of the bacterial envelope may stimulate opsonization by natural and/or specific antibodies or even by host defense components, increasing the recognition of the microbial pathogen by circulating phagocytes. In this review we will explain the most relevant studies, where vaccination or the use of monoclonal antibodies in combination with antimicrobial treatment has demonstrated to be an alternative strategy to overcome the impact of multidrug resistance in respiratory pathogens.
Collapse
Affiliation(s)
- Mirian Domenech
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Julio Sempere
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Sara de Miguel
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Jose Yuste
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
33
|
Sadarangani M. Protection Against Invasive Infections in Children Caused by Encapsulated Bacteria. Front Immunol 2018; 9:2674. [PMID: 30515161 PMCID: PMC6255856 DOI: 10.3389/fimmu.2018.02674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
The encapsulated bacteria Streptococcus pneumoniae, Neisseria meningitis, Haemophilus influenzae, and Streptococcus agalactiae (Group B Streptococcus) have been responsible for the majority of severe infections in children for decades, specifically bacteremia and meningitis. Isolates which cause invasive disease are usually surrounded by a polysaccharide capsule, which is a major virulence factor and the key antigen in protective protein-polysaccharide conjugate vaccines. Protection against these bacteria is largely mediated via polysaccharide-specific antibody and complement, although the contribution of these and other components, and the precise mechanisms, vary between species and include opsonophagocytosis and complement-dependent bacteriolysis. Further studies are required to more precisely elucidate mechanisms of protection against non-type b H. influenzae and Group B Streptococcus.
Collapse
Affiliation(s)
- Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
The Role of Pneumococcal Virulence Factors in Ocular Infectious Diseases. Interdiscip Perspect Infect Dis 2018; 2018:2525173. [PMID: 30538741 PMCID: PMC6257906 DOI: 10.1155/2018/2525173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pneumoniae is a gram-positive, facultatively anaerobic pathogen that can cause severe infections such as pneumonia, meningitis, septicemia, and middle ear infections. It is also one of the top pathogens contributing to bacterial keratitis and conjunctivitis. Though two pneumococcal vaccines exist for the prevention of nonocular diseases, they do little to fully prevent ocular infections. This pathogen has several virulence factors that wreak havoc on the conjunctiva, cornea, and intraocular system. Polysaccharide capsule aids in the evasion of host complement system. Pneumolysin (PLY) is a cholesterol-dependent cytolysin that acts as pore-forming toxin. Neuraminidases assist in adherence and colonization by exposing cell surface receptors to the pneumococcus. Zinc metalloproteinases contribute to evasion of the immune system and disease severity. The main purpose of this review is to consolidate the multiple studies that have been conducted on several pneumococcal virulence factors and the role each plays in conjunctivitis, keratitis, and endophthalmitis.
Collapse
|
35
|
Deng S, Xu T, Fang Q, Yu L, Zhu J, Chen L, Liu J, Zhou R. The Surface-Exposed Protein SntA Contributes to Complement Evasion in Zoonotic Streptococcus suis. Front Immunol 2018; 9:1063. [PMID: 29868022 PMCID: PMC5964162 DOI: 10.3389/fimmu.2018.01063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen causing streptococcal toxic shock like syndrome (STSLS), meningitis, septicemia, and even sudden death in human and pigs. Serious septicemia indicates this bacterium can evade the host complement surveillance. In our previous study, a functionally unknown protein SntA of S. suis has been identified as a heme-binding protein, and contributes to virulence in pigs. SntA can interact with the host antioxidant protein AOP2 and consequently inhibit its antioxidant activity. In the present study, SntA is identified as a cell wall anchored protein that functions as an important player in S. suis complement evasion. The C3 deposition and membrane attack complex (MAC) formation on the surface of sntA-deleted mutant strain ΔsntA are demonstrated to be significantly higher than the parental strain SC-19 and the complementary strain CΔsntA. The abilities of anti-phagocytosis, survival in blood, and in vivo colonization of ΔsntA are obviously reduced. SntA can interact with C1q and inhibit hemolytic activity via the classical pathway. Complement activation assays reveal that SntA can also directly activate classical and lectin pathways, resulting in complement consumption. These two complement evasion strategies may be crucial for the pathogenesis of this zoonotic pathogen. Concerning that SntA is a bifunctional 2′,3′-cyclic nucleotide 2′-phosphodiesterase/3′-nucleotidase in many species of Gram-positive bacteria, these complement evasion strategies may have common biological significance.
Collapse
Affiliation(s)
- Simin Deng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tong Xu
- College of Life Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Qiong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Long Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiahui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China.,International Research Center for Animal Diseases (MOST), Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| |
Collapse
|
36
|
Alves LA, Harth-Chu EN, Palma TH, Stipp RN, Mariano FS, Höfling JF, Abranches J, Mattos-Graner RO. The two-component system VicRK regulates functions associated with Streptococcus mutans resistance to complement immunity. Mol Oral Microbiol 2017; 32:419-431. [PMID: 28382721 DOI: 10.1111/omi.12183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/07/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
Streptococcus mutans, a dental caries pathogen, can promote systemic infections upon reaching the bloodstream. The two-component system (TCS) VicRKSm of S. mutans regulates the synthesis of and interaction with sucrose-derived exopolysaccharides (EPS), processes associated with oral and systemic virulence. In this study, we investigated the mechanisms by which VicRKSm affects S. mutans susceptibility to blood-mediated immunity. Compared with parent strain UA159, the vicKSm isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of complement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/IgG-mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-independent way (P<.05). Reverse transcriptase quantitative polymerase chain reaction analysis comparing gene expression in UA159 and UAvic revealed that genes encoding putative peptidases of the complement (pepO and smu.399) were upregulated in UAvic in the presence of serum, although genes encoding murein hydrolases (SmaA and Smu.2146c) or metabolic/surface proteins involved in bacterial interactions with host components (enolase, GAPDH) were mostly affected in a serum-independent way. Among vicKSm -downstream genes (smaA, smu.2146c, lysM, atlA, pepO, smu.399), only pepO and smu.399 were associated with UAvic phenotypes; deletion of both genes in UA159 significantly enhanced levels of C3b deposition and opsonophagocytosis (P<.05). Moreover, consistent with the fibronectin-binding function of PepO orthologues, UAvic showed increased binding to fibronectin. Reduced susceptibility to opsonophagocytosis was insufficient to enhance ex vivo persistence of UAvic in blood, which was associated with growth defects of this mutant under limited nutrient conditions. Our findings revealed that S. mutans employs mechanisms of complement evasion through peptidases, which are controlled by VicRKSm.
Collapse
Affiliation(s)
- Livia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Thais H Palma
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Rafael N Stipp
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Flávia S Mariano
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - José F Höfling
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry - University of Florida, Gainesville, FL, USA
| | - Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
37
|
Andre GO, Converso TR, Politano WR, Ferraz LFC, Ribeiro ML, Leite LCC, Darrieux M. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity. Front Microbiol 2017; 8:224. [PMID: 28265264 PMCID: PMC5316553 DOI: 10.3389/fmicb.2017.00224] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/31/2017] [Indexed: 12/14/2022] Open
Abstract
The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement.
Collapse
Affiliation(s)
- Greiciely O Andre
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Thiago R Converso
- Centro de Biotecnologia, Instituto ButantanSão Paulo, Brazil; Programa de Pós-graduação Interunidades em Biotecnologia, Universidade de São PauloSão Paulo, Brazil
| | - Walter R Politano
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Lucio F C Ferraz
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Marcelo L Ribeiro
- Laboratório de Farmacologia, Universidade São Francisco Bragança Paulista, Brazil
| | | | - Michelle Darrieux
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| |
Collapse
|
38
|
Wilson R, Cohen JM, Reglinski M, Jose RJ, Chan WY, Marshall H, de Vogel C, Gordon S, Goldblatt D, Petersen FC, Baxendale H, Brown JS. Naturally Acquired Human Immunity to Pneumococcus Is Dependent on Antibody to Protein Antigens. PLoS Pathog 2017; 13:e1006137. [PMID: 28135322 PMCID: PMC5279798 DOI: 10.1371/journal.ppat.1006137] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/17/2016] [Indexed: 12/31/2022] Open
Abstract
Naturally acquired immunity against invasive pneumococcal disease (IPD) is thought to be dependent on anti-capsular antibody. However nasopharyngeal colonisation by Streptococcus pneumoniae also induces antibody to protein antigens that could be protective. We have used human intravenous immunoglobulin preparation (IVIG), representing natural IgG responses to S. pneumoniae, to identify the classes of antigens that are functionally relevant for immunity to IPD. IgG in IVIG recognised capsular antigen and multiple S. pneumoniae protein antigens, with highly conserved patterns between different geographical sources of pooled human IgG. Incubation of S. pneumoniae in IVIG resulted in IgG binding to the bacteria, formation of bacterial aggregates, and enhanced phagocytosis even for unencapsulated S. pneumoniae strains, demonstrating the capsule was unlikely to be the dominant protective antigen. IgG binding to S. pneumoniae incubated in IVIG was reduced after partial chemical or genetic removal of bacterial surface proteins, and increased against a Streptococcus mitis strain expressing the S. pneumoniae protein PspC. In contrast, depletion of type-specific capsular antibody from IVIG did not affect IgG binding, opsonophagocytosis, or protection by passive vaccination against IPD in murine models. These results demonstrate that naturally acquired protection against IPD largely depends on antibody to protein antigens rather than the capsule.
Collapse
Affiliation(s)
- Robert Wilson
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Jonathan M. Cohen
- Infectious Diseases & Microbiology Unit, UCL Institute of Child Health, London, United Kingdom
| | - Mark Reglinski
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Ricardo J. Jose
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Win Yan Chan
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Helina Marshall
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Corné de Vogel
- Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Stephen Gordon
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David Goldblatt
- Institute of Child Health, University College London, London, United Kingdom
| | | | - Helen Baxendale
- Clinical Immunology Department, Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| |
Collapse
|
39
|
Corsini B, Aguinagalde L, Ruiz S, Domenech M, Antequera ML, Fenoll A, García P, García E, Yuste J. Immunization with LytB protein of Streptococcus pneumoniae activates complement-mediated phagocytosis and induces protection against pneumonia and sepsis. Vaccine 2016; 34:6148-6157. [PMID: 27840016 DOI: 10.1016/j.vaccine.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/06/2016] [Accepted: 11/02/2016] [Indexed: 01/12/2023]
Abstract
The cell wall glucosaminidase LytB of Streptococcus pneumoniae is a surface exposed protein involved in daughter cell separation, biofilm formation and contributes to different aspects of the pathogenesis process. In this study we have characterized the antibody responses after immunization of mice with LytB in the presence of alhydrogel as an adjuvant. Enzyme-linked immunosorbent assays measuring different subclasses of immunoglobulin G, demonstrated that the antibody responses to LytB were predominantly IgG1 and IgG2b, followed by IgG3 and IgG2a subclasses. Complement-mediated immunity against two different pneumococcal serotypes was investigated using sera from immunized mice. Immunization with LytB increased the recognition of S. pneumoniae by complement components C1q and C3b demonstrating that anti-LytB antibodies trigger activation of the classical pathway. Phagocytosis assays showed that serum containing antibodies to LytB stimulates neutrophil-mediated phagocytosis against S. pneumoniae. Animal models of infection including invasive pneumonia and sepsis were performed with two different clinical isolates. Vaccination with LytB increased bacterial clearance and induced protection demonstrating that LytB might be a good candidate to be considered in a future protein-based vaccine against S. pneumoniae.
Collapse
Affiliation(s)
- Bruno Corsini
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Leire Aguinagalde
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Susana Ruiz
- Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Mirian Domenech
- Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - María Luisa Antequera
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Asunción Fenoll
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Pedro García
- Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Ernesto García
- Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jose Yuste
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| |
Collapse
|
40
|
CovR Regulates Streptococcus mutans Susceptibility To Complement Immunity and Survival in Blood. Infect Immun 2016; 84:3206-3219. [PMID: 27572331 DOI: 10.1128/iai.00406-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/20/2016] [Indexed: 02/05/2023] Open
Abstract
Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization.
Collapse
|
41
|
Abstract
Streptococcus pneumoniae is an opportunistic pathogen globally associated with significant morbidity and mortality. It is capable of causing a wide range of diseases including sinusitis, conjunctivitis, otitis media, pneumonia, bacteraemia, sepsis, and meningitis. While its capsular polysaccharide is indispensible for invasive disease, and opsonising antibodies against the capsule are the basis for the current vaccines, a long history of biomedical research indicates that other components of this Gram-positive bacterium are also critical for virulence. Herein we review the contribution of pneumococcal virulence determinants to survival and persistence in the context of distinct anatomical sites. We discuss how these determinants allow the pneumococcus to evade mucociliary clearance during colonisation, establish lower respiratory tract infection, resist complement deposition and opsonophagocytosis in the bloodstream, and invade secondary tissues such as the central nervous system leading to meningitis. We do so in a manner that highlights both the critical role of the capsular polysaccharide and the accompanying and necessary protein determinants. Understanding the complex interplay between host and pathogen is necessary to find new ways to prevent pneumococcal infection. This review is an attempt to do so with consideration for the latest research findings.
Collapse
|
42
|
Kristian SA, Ota T, Bubeck SS, Cho R, Groff BC, Kubota T, Destito G, Laudenslager J, Koriazova L, Tahara T, Kanda Y. Generation and Improvement of Effector Function of a Novel Broadly Reactive and Protective Monoclonal Antibody against Pneumococcal Surface Protein A of Streptococcus pneumoniae. PLoS One 2016; 11:e0154616. [PMID: 27171010 PMCID: PMC4865217 DOI: 10.1371/journal.pone.0154616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/17/2016] [Indexed: 01/21/2023] Open
Abstract
A proof-of-concept study evaluating the potential of Streptococcus pneumoniae Pneumococcal Surface Protein A (PspA) as a passive immunization target was conducted. We describe the generation and isolation of several broadly reactive mouse anti-PspA monoclonal antibodies (mAbs). MAb 140H1 displayed (i) 98% strain coverage, (ii) activity in complement deposition and opsonophagocytic killing (OPK) assays, which are thought to predict the in vivo efficacy of anti-pneumococcal mAbs, (iii) efficacy in mouse sepsis models both alone and in combination with standard-of-care antibiotics, and (iv) therapeutic activity in a mouse pneumonia model. Moreover, we demonstrate that antibody engineering can significantly enhance anti-PspA mAb effector function. We believe that PspA has promising potential as a target for the therapy of invasive pneumococcal disease by mAbs, which could be used alone or in conjunction with standard-of-care antibiotics.
Collapse
Affiliation(s)
- Sascha A. Kristian
- Kyowa Kirin Pharmaceutical Research, Inc., 9420 Athena Circle, La Jolla, CA 92037, United States of America
| | - Takayuki Ota
- Kyowa Hakko Kirin Co., Ltd., R&D Division, 1-6-1, Ōtemachi, Chiyoda-ku, Tokyo 100–8185, Japan
| | - Sarah S. Bubeck
- Kyowa Kirin Pharmaceutical Research, Inc., 9420 Athena Circle, La Jolla, CA 92037, United States of America
- * E-mail:
| | - Rebecca Cho
- Kyowa Kirin Pharmaceutical Research, Inc., 9420 Athena Circle, La Jolla, CA 92037, United States of America
| | - Brian C. Groff
- Kyowa Kirin Pharmaceutical Research, Inc., 9420 Athena Circle, La Jolla, CA 92037, United States of America
| | - Tsuguo Kubota
- Kyowa Hakko Kirin Co., Ltd., R&D Division, 1-6-1, Ōtemachi, Chiyoda-ku, Tokyo 100–8185, Japan
| | - Giuseppe Destito
- Kyowa Kirin Pharmaceutical Research, Inc., 9420 Athena Circle, La Jolla, CA 92037, United States of America
| | - John Laudenslager
- Kyowa Kirin Pharmaceutical Research, Inc., 9420 Athena Circle, La Jolla, CA 92037, United States of America
| | - Lilia Koriazova
- Kyowa Kirin Pharmaceutical Research, Inc., 9420 Athena Circle, La Jolla, CA 92037, United States of America
| | - Tomoyuki Tahara
- Kyowa Hakko Kirin Co., Ltd., R&D Division, 1-6-1, Ōtemachi, Chiyoda-ku, Tokyo 100–8185, Japan
| | - Yutaka Kanda
- Kyowa Hakko Kirin Co., Ltd., R&D Division, 1-6-1, Ōtemachi, Chiyoda-ku, Tokyo 100–8185, Japan
| |
Collapse
|
43
|
Zhu Q, Zhang M, Shi M, Liu Y, Zhao Q, Wang W, Zhang G, Yang L, Zhi J, Zhang L, Hu G, Chen P, Yang Y, Dai W, Liu T, He Y, Feng G, Zhao G. Human B cells have an active phagocytic capability and undergo immune activation upon phagocytosis of Mycobacterium tuberculosis. Immunobiology 2016; 221:558-67. [DOI: 10.1016/j.imbio.2015.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 12/06/2015] [Accepted: 12/06/2015] [Indexed: 02/06/2023]
|
44
|
PSGL-1 on Leukocytes is a Critical Component of the Host Immune Response against Invasive Pneumococcal Disease. PLoS Pathog 2016; 12:e1005500. [PMID: 26975045 PMCID: PMC4790886 DOI: 10.1371/journal.ppat.1005500] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/19/2016] [Indexed: 12/21/2022] Open
Abstract
Bacterial uptake by phagocytic cells is a vital event in the clearance of invading pathogens such as Streptococcus pneumoniae. A major role of the P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes against invasive pneumococcal disease is described in this study. Phagocytosis experiments using different serotypes demonstrated that PSGL-1 is involved in the recognition, uptake and killing of S. pneumoniae. Co-localization of several clinical isolates of S. pneumoniae with PSGL-1 was demonstrated, observing a rapid and active phagocytosis in the presence of PSGL-1. Furthermore, the pneumococcal capsular polysaccharide and the main autolysin of the bacterium ―the amidase LytA― were identified as bacterial ligands for PSGL-1. Experimental models of pneumococcal disease including invasive pneumonia and systemic infection showed that bacterial levels were markedly increased in the blood of PSGL-1−/− mice. During pneumonia, PSGL-1 controls the severity of pneumococcal dissemination from the lung to the bloodstream. In systemic infection, a major role of PSGL-1 in host defense is to clear the bacteria in the systemic circulation controlling bacterial replication. These results confirmed the importance of this receptor in the recognition and clearance of S. pneumoniae during invasive pneumococcal disease. Histological and cellular analysis demonstrated that PSGL-1−/− mice have increased levels of T cells migrating to the lung than the corresponding wild-type mice. In contrast, during systemic infection, PSGL-1−/− mice had increased numbers of neutrophils and macrophages in blood, but were less effective controlling the infection process due to the lack of this functional receptor. Overall, this study demonstrates that PSGL-1 is a novel receptor for S. pneumoniae that contributes to protection against invasive pneumococcal disease. S. pneumoniae is one of the most important and devastating human pathogens worldwide, mainly affecting young children, elderly people and immunocompromised patients. In terms of host immune defense against invasive pneumococcal isolates, professional phagocytes require receptor-mediated recognition of certain ligands on the bacterial surface for the uptake and clearance of the microorganism. In this study, we demonstrate that the P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes is involved in the phagocytosis process of S. pneumoniae by targeting the capsule and the surface protein LytA as pathogen-associated molecular patterns. To explore this process in more detail, we have used wild-type mice and mice deficient in PSGL-1 demonstrating that lack of PSGL-1 is detrimental for the host by increasing the susceptibility to the infection and the severity of the pneumococcal invasive disease. Overall, these data show the importance of PSGL-1 on leukocytes in host defense against S. pneumoniae and confirm that PSGL-1 plays a critical protective role against invasive bacterial disease.
Collapse
|
45
|
Immune ageing and susceptibility to Streptococcus pneumoniae. Biogerontology 2015; 17:449-65. [DOI: 10.1007/s10522-015-9614-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022]
|
46
|
Aguinagalde L, Corsini B, Domenech A, Domenech M, Cámara J, Ardanuy C, García E, Liñares J, Fenoll A, Yuste J. Emergence of Amoxicillin-Resistant Variants of Spain9V-ST156 Pneumococci Expressing Serotype 11A Correlates with Their Ability to Evade the Host Immune Response. PLoS One 2015; 10:e0137565. [PMID: 26368279 PMCID: PMC4569277 DOI: 10.1371/journal.pone.0137565] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/18/2015] [Indexed: 01/08/2023] Open
Abstract
Capsular switching allows pre-existing clones of Streptococcus pneumoniae expressing vaccine serotypes to escape the vaccine-induced immunity by acquisition of capsular genes from pneumococci of a non-vaccine serotype. Here, we have analysed the clonal composition of 492 clinical isolates of serotype 11A causing invasive disease in Spain (2000–2012), and their ability to evade the host immune response. Antibiograms, serotyping and molecular typing were performed. The restriction profiles of pbp2x, pbp1a and pbp2b genes were also analysed. Interaction with the complement components C1q, C3b, C4BP, and factor H was explored whereas opsonophagocytosis assays were performed using a human cell line differentiated to neutrophils. Biofilm formation and the polymorphisms of the major autolysin LytA were evaluated. The main genotypes of the 11A pneumococci were: ST62 (447 isolates, 90.6%), followed by ST6521 (35 isolates, 7.3%) and ST838 (10 isolates, 2.1%). Beta lactam resistant serotype 11A variants of genotypes ST838 and ST6521 closely related to the Spain9V-ST156 clone were first detected in 2005. A different pattern of evasion of complement immunity and phagocytosis was observed between genotypes. The emergence of one vaccine escape variant of Spain9V-ST156 (ST652111A), showing a high potential to avoid the host immune response, was observed. In addition, isolates of ST652111A showed higher ability to produce biofilms than ST83811A or ST6211A, which may have contributed to the emergence of this PEN-resistant ST652111A genotype in the last few years. The emergence of penicillin-resistant 11A invasive variants of the highly successful ST156 clonal complex merits close monitoring.
Collapse
Affiliation(s)
- Leire Aguinagalde
- Spanish Pneumococcal Reference Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Bruno Corsini
- Spanish Pneumococcal Reference Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Arnau Domenech
- Microbiology Department, Hospital Universitari de Bellvitge-IDIBELL-Barcelona University, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Mirian Domenech
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Jordi Cámara
- Microbiology Department, Hospital Universitari de Bellvitge-IDIBELL-Barcelona University, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge-IDIBELL-Barcelona University, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ernesto García
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Josefina Liñares
- Microbiology Department, Hospital Universitari de Bellvitge-IDIBELL-Barcelona University, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Asunción Fenoll
- Spanish Pneumococcal Reference Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Yuste
- Spanish Pneumococcal Reference Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- * E-mail:
| |
Collapse
|
47
|
Spectrum and management of complement immunodeficiencies (excluding hereditary angioedema) across Europe. J Clin Immunol 2015; 35:199-205. [PMID: 25663093 DOI: 10.1007/s10875-015-0137-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/28/2015] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Complement immunodeficiencies (excluding hereditary angioedema and mannose binding lectin deficiency) are rare. Published literature consists largely of case reports and small series. We collated data from 18 cities across Europe to provide an overview of primarily homozygous, rather than partial genotypes and their impact and management. METHODS Patients were recruited through the ESID registry. Clinical and laboratory information was collected onto standardized forms and analyzed using SPSS software. RESULTS Seventy-seven patients aged 1 to 68 years were identified. 44 % presented in their first decade of life. 29 % had C2 deficiency, defects in 11 other complement factors were found. 50 (65 %) had serious invasive infections. 61 % of Neisseria meningitidis infections occurred in patients with terminal pathway defects, while 74 % of Streptococcus pneumoniae infections occurred in patients with classical pathway defects (p < 0.001). Physicians in the UK were more likely to prescribe antibiotic prophylaxis than colleagues on the Continent for patients with classical pathway defects. After diagnosis, 16 % of patients suffered serious bacterial infections. Age of the patient and use of prophylactic antibiotics were not associated with subsequent infection risk. Inflammatory/autoimmune diseases were not seen in patients with terminal pathway, but in one third of patients classical and alternative pathway defects. CONCLUSION The clinical phenotypes of specific complement immunodeficiencies vary considerably both in terms of the predominant bacterial pathogen, and the risk and type of auto-inflammatory disease. Appreciation of these phenotypic differences should help both immunologists and other specialists in their diagnosis and management of these rare and complex patients.
Collapse
|
48
|
Importance of bacterial replication and alveolar macrophage-independent clearance mechanisms during early lung infection with Streptococcus pneumoniae. Infect Immun 2015; 83:1181-9. [PMID: 25583525 DOI: 10.1128/iai.02788-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the importance of alveolar macrophages for host immunity during early Streptococcus pneumoniae lung infection is well established, the contribution and relative importance of other innate immunity mechanisms and of bacterial factors are less clear. We have used a murine model of S. pneumoniae early lung infection with wild-type, unencapsulated, and para-amino benzoic acid auxotroph mutant TIGR4 strains to assess the effects of inoculum size, bacterial replication, capsule, and alveolar macrophage-dependent and -independent clearance mechanisms on bacterial persistence within the lungs. Alveolar macrophage-dependent and -independent (calculated indirectly) clearance half-lives and bacterial replication doubling times were estimated using a mathematical model. In this model, after infection with a high-dose inoculum of encapsulated S. pneumoniae, alveolar macrophage-independent clearance mechanisms were dominant, with a clearance half-life of 24 min compared to 135 min for alveolar macrophage-dependent clearance. In addition, after a high-dose inoculum, successful lung infection required rapid bacterial replication, with an estimated S. pneumoniae doubling time of 16 min. The capsule had wide effects on early lung clearance mechanisms, with reduced half-lives of 14 min for alveolar macrophage-independent and 31 min for alveolar macrophage-dependent clearance of unencapsulated bacteria. In contrast, with a lower-dose inoculum, the bacterial doubling time increased to 56 min and the S. pneumoniae alveolar macrophage-dependent clearance half-life improved to 42 min and was largely unaffected by the capsule. These data demonstrate the large effects of bacterial factors (inoculum size, the capsule, and rapid replication) and alveolar macrophage-independent clearance mechanisms during early lung infection with S. pneumoniae.
Collapse
|
49
|
Pleiotropic effects of cell wall amidase LytA on Streptococcus pneumoniae sensitivity to the host immune response. Infect Immun 2014; 83:591-603. [PMID: 25404032 DOI: 10.1128/iai.02811-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The complement system is a key component of the host immune response for the recognition and clearance of Streptococcus pneumoniae. In this study, we demonstrate that the amidase LytA, the main pneumococcal autolysin, inhibits complement-mediated immunity independently of effects on pneumolysin by a complex process of impaired complement activation, increased binding of complement regulators, and direct degradation of complement C3. The use of human sera depleted of either C1q or factor B confirmed that LytA prevented activation of both the classical and alternative pathways, whereas pneumolysin inhibited only the classical pathway. LytA prevented binding of C1q and the acute-phase protein C-reactive protein to S. pneumoniae, thereby reducing activation of the classical pathway on the bacterial surface. In addition, LytA increased recruitment of the complement downregulators C4BP and factor H to the pneumococcal cell wall and directly cleaved C3b and iC3b to generate degradation products. As a consequence, C3b deposition and phagocytosis increased in the absence of LytA and were markedly enhanced for the lytA ply double mutant, confirming that a combination of LytA and Ply is essential for the establishment of pneumococcal pneumonia and sepsis in a murine model of infection. These data demonstrate that LytA has pleiotropic effects on complement activation, a finding which, in combination with the effects of pneumolysin on complement to assist with pneumococcal complement evasion, confirms a major role of both proteins for the full virulence of the microorganism during septicemia.
Collapse
|
50
|
Agarwal V, Ahl J, Riesbeck K, Blom AM. An alternative role of C1q in bacterial infections: facilitating Streptococcus pneumoniae adherence and invasion of host cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:4235-45. [PMID: 24038089 DOI: 10.4049/jimmunol.1300279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is a major human pathogen, which evolved numerous successful strategies to colonize the host. In this study, we report a novel mechanism of pneumococcal-host interaction, whereby pneumococci use a host complement protein C1q, primarily involved in the host-defense mechanism, for colonization and subsequent dissemination. Using cell-culture infection assays and confocal microscopy, we observed that pneumococcal surface-bound C1q significantly enhanced pneumococcal adherence to and invasion of host epithelial and endothelial cells. Flow cytometry demonstrated a direct, Ab-independent binding of purified C1q to various clinical isolates of pneumococci. This interaction was seemingly capsule serotype independent and mediated by the bacterial surface-exposed proteins, as pretreatment of pneumococci with pronase E but not sodium periodate significantly reduced C1q binding. Moreover, similar binding was observed using C1 complex as the source of C1q. Furthermore, our data show that C1q bound to the pneumococcal surface through the globular heads and with the host cell-surface receptor(s)/glycosaminoglycans via its N-terminal collagen-like stalk, as the presence of C1q N-terminal fragment and low m.w. heparin but not the C-terminal globular heads blocked C1q-mediated pneumococcal adherence to host cells. Taken together, we demonstrate for the first time, to our knowledge, a unique function of complement protein C1q, as a molecular bridge between pneumococci and the host, which promotes bacterial cellular adherence and invasion. Nevertheless, in some conditions, this mechanism could be also beneficial for the host as it may result in uptake and clearance of the bacteria.
Collapse
Affiliation(s)
- Vaibhav Agarwal
- Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, SE-205 02 Malmö, Sweden
| | | | | | | |
Collapse
|