1
|
Hurtado-Lorenzo A, Swantek JL. The landscape of new therapeutic opportunities for IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:1-83. [PMID: 39521596 DOI: 10.1016/bs.apha.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This chapter presents an overview of the emerging strategies to address the unmet needs in the management of inflammatory bowel diseases (IBD). IBD poses significant challenges, as over half of patients experience disease progression despite interventions, leading to irreversible complications, and a substantial proportion do not respond to existing therapies, such as biologics. To overcome these limitations, we describe a diverse array of novel therapeutic approaches. In the area of immune homeostasis restoration, the focus is on targeting cytokine networks, leukocyte trafficking, novel immune pathways, and cell therapies involving regulatory T cells and mesenchymal stem cells (MSC). Recognizing the critical role of impaired intestinal barrier integrity in IBD, we highlight therapies aimed at restoring barrier function and promoting mucosal healing, such as those targeting cell proliferation, tight junctions, and lipid mediators. Addressing the challenges posed by fibrosis and fistulas, we describe emerging targets for reversing fibrosis like kinase and cytokine inhibitors and nuclear receptor agonists, as well as the potential of MSC for fistulas. The restoration of a healthy gut microbiome, through strategies like fecal microbiota transplantation, rationally defined bacterial consortia, and targeted antimicrobials, is also highlighted. We also describe innovative approaches to gut-targeted drug delivery to enhance efficacy and minimize side effects. Reinforcing these advancements is the critical role of precision medicine, which emphasizes the use of multiomics analysis for the discovery of biomarkers to enable personalized IBD care. Overall, the emerging landscape of therapeutic opportunities for IBD holds great potential to surpass the therapeutic ceiling of current treatments.
Collapse
Affiliation(s)
- Andrés Hurtado-Lorenzo
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States.
| | - Jennifer L Swantek
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States
| |
Collapse
|
2
|
Asgari B, Burke JR, Quigley BL, Bradford G, Hatje E, Kuballa A, Katouli M. Identification of Virulence Genes Associated with Pathogenicity of Translocating Escherichia coli with Special Reference to the Type 6 Secretion System. Microorganisms 2024; 12:1851. [PMID: 39338525 PMCID: PMC11433802 DOI: 10.3390/microorganisms12091851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Recent genomic characterisation of translocating Escherichia coli HMLN-1 isolated from mesenteric lymph nodes (MLNs) and blood of a patient with a fatal case of pancreatitis revealed the presence of a type 6 secretion system (T6SS) that was not present in non-translocating E. coli strains. This strain was also genomically similar to adherent-invasive E. coli (AIEC) LF82 pathotype. We aimed to identify the role of T6SS-1 in the pathogenesis of this strain and other pathogenic E. coli. The HMLN-1 strain was initially tested for the presence of six virulence genes (VGs) associated with AIEC strains and an iron sequestering system. Additionally, HMLN-1's interaction with a co-culture of Caco-2:HT29-MTX cells and its intra-macrophagic survival was evaluated. We subsequently screened a collection of 319 pathogenic E. coli strains isolated from patients with urinary tract infection (UTI), diarrhoea, inflammatory bowel disease (IBD) and septicaemia for the presence of T6SS-1 and its expression related to adhesion, invasion and translocation via the above co-culture of the intestinal cell lines. The results showed that HMLN-1 harboured four of the AIEC-associated VGs (dsbA, htrA, ompC and afaC). Screening of the pathogenic E. coli collection detected the presence of the T6SS-1 genes in septicaemic and UTI E. coli strains at a significantly higher level than diarrhoea and IBD strains (p < 0.0001). The high expression of T6SS-1 in E. coli HMLN-1 upon adhesion and invasion, as well as its high prevalence among extra-intestinal E. coli strains, suggests a role for T6SS-1 in the pathogenesis of translocating E. coli.
Collapse
Affiliation(s)
- Behnoush Asgari
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
| | - Jarred R. Burke
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
- Servatus Biopharmaceuticals, Coolum Beach, QLD 4573, Australia
| | - Bonnie L. Quigley
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
- Thompson Institute, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Georgia Bradford
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
| | - Eva Hatje
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Anna Kuballa
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
- School of Health, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Mohammad Katouli
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
| |
Collapse
|
3
|
Molina D, Carrión–Olmedo JC, Jarrín–V P, Tenea GN. Genome characterization of a multi-drug resistant Escherichia coli strain, L1PEag1, isolated from commercial cape gooseberry fruits ( Physalis peruviana L.). Front Microbiol 2024; 15:1392333. [PMID: 39104589 PMCID: PMC11298459 DOI: 10.3389/fmicb.2024.1392333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Foodborne infections, which are frequently linked to bacterial contamination, are a serious concern to public health on a global scale. Whether agricultural farming practices help spread genes linked to antibiotic resistance in bacteria associated with humans or animals is a controversial question. Methods This study applied a long-read Oxford Nanopore MinION-based sequencing to obtain the complete genome sequence of a multi-drug resistant Escherichia coli strain (L1PEag1), isolated from commercial cape gooseberry fruits (Physalis peruviana L.) in Ecuador. Using different genome analysis tools, the serotype, Multi Locus Sequence Typing (MLST), virulence genes, and antimicrobial resistance (AMR) genes of the L1PEag1 isolate were determined. Additionally, in vitro assays were performed to demonstrate functional genes. Results The complete genome sequence of the L1PEag1 isolate was assembled into a circular chromosome of 4825.722 Kbp and one plasmid of 3.561 Kbp. The L1PEag1 isolate belongs to the B2 phylogroup, sequence type ST1170, and O1:H4 serotype based on in silico genome analysis. The genome contains 4,473 genes, 88 tRNA, 8 5S rRNA, 7 16S rRNA, and 7 23S rRNA. The average GC content is 50.58%. The specific annotation consisted of 4,439 and 3,723 genes annotated with KEEG and COG respectively, 3 intact prophage regions, 23 genomic islands (GIs), and 4 insertion sequences (ISs) of the ISAs1 and IS630 families. The L1PEag1 isolate carries 25 virulence genes, and 4 perfect and 51 strict antibiotic resistant gene (ARG) regions based on VirulenceFinder and RGI annotation. Besides, the in vitro antibiotic profile indicated resistance to kanamycin (K30), azithromycin (AZM15), clindamycin (DA2), novobiocin (NV30), amikacin (AMK30), and other antibiotics. The L1PEag1 isolate was predicted as a human pathogen, matching 464 protein families (0.934 likelihood). Conclusion Our work emphasizes the necessity of monitoring environmental antibiotic resistance, particularly in commercial settings to contribute to develop early mitigation techniques for dealing with resistance diffusion.
Collapse
Affiliation(s)
- Diana Molina
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Ibarra, Ecuador
| | - Julio C. Carrión–Olmedo
- Laboratorio de Secuenciamiento de Ácidos Nucleicos, Dirección de Innovación, Instituto Nacional de Biodiversidad (INABIO), Quito, Ecuador
| | - Pablo Jarrín–V
- Laboratorio de Secuenciamiento de Ácidos Nucleicos, Dirección de Innovación, Instituto Nacional de Biodiversidad (INABIO), Quito, Ecuador
| | - Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Ibarra, Ecuador
| |
Collapse
|
4
|
Eltabey SM, Ibrahim AH, Zaky MM, Ibrahim AE, Alrashdi YBA, El Deeb S, Saleh MM. The Promising Effect of Ascorbic Acid and Paracetamol as Anti-Biofilm and Anti-Virulence Agents against Resistant Escherichia coli. Curr Issues Mol Biol 2024; 46:6805-6819. [PMID: 39057048 PMCID: PMC11276426 DOI: 10.3390/cimb46070406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Escherichia coli is a major cause of serious infections, with antibiotic resistance rendering many treatments ineffective. Hence, novel strategies to combat this pathogen are needed. Anti-virulence therapy is a promising new approach for the subsequent era. Recent research has examined the impact of sub-inhibitory doses of ascorbic acid and paracetamol on Escherichia coli virulence factors. This study evaluated biofilm formation, protease production, motility behavior, serum resistance, expression of virulence-regulating genes (using RT-PCR), and survival rates in a mouse model. Ascorbic acid significantly reduced biofilm formation, protease production, motility, and serum resistance from 100% in untreated isolates to 22-89%, 10-89%, 2-57%, and 31-35% in treated isolates, respectively. Paracetamol also reduced these factors from 100% in untreated isolates to 16-76%, 1-43%, 16-38%, and 31-35%, respectively. Both drugs significantly down-regulated virulence-regulating genes papC, fimH, ompT_m, stcE, fliC, and kpsMTII. Mice treated with these drugs had a 100% survival rate compared with 60% in the positive control group control inoculated with untreated bacteria. This study highlights the potential of ascorbic acid and paracetamol as anti-virulence agents, suggesting their use as adjunct therapies alongside conventional antimicrobials or as alternative treatments for resistant Escherichia coli infections.
Collapse
Affiliation(s)
- Sara M. Eltabey
- Microbiology Program, Botany Department, Faculty of Science, Port Said University, Port Said 42521, Egypt;
| | - Ali H. Ibrahim
- Botany Department, Faculty of Science, Port Said University, Port Said 42521, Egypt; (A.H.I.); (M.M.Z.)
| | - Mahmoud M. Zaky
- Botany Department, Faculty of Science, Port Said University, Port Said 42521, Egypt; (A.H.I.); (M.M.Z.)
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman;
| | | | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, 38106 Braunschweig, Germany
| | - Moustafa M. Saleh
- Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Port Said 42521, Egypt;
| |
Collapse
|
5
|
He Y, Han C, Li C, Yin X, Wang J, Gu L, Yan R, Liu B, Zhou X, He W. Role of N-acetylkynurenine in mediating the effect of gut microbiota on urinary tract infection: a Mendelian randomization study. Front Microbiol 2024; 15:1384095. [PMID: 38711967 PMCID: PMC11070472 DOI: 10.3389/fmicb.2024.1384095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction This study explored the causal connections between gut microbiota (GM), urinary tract infection (UTI), and potential metabolite mediators using Mendelian randomization (MR). Methods We utilized summary statistics from the most comprehensive and extensive genome-wide association studies (GWAS) available to date, including 196 bacterial traits for GM, 1,091 blood metabolites, 309 metabolite ratios, alongside UTI data from ukb-b-8814 and ebi-a-GCST90013890. Bidirectional MR analyses were conducted to investigate the causal links between GM and UTI. Subsequently, two MR analyses were performed to identify the potential mediating metabolites, followed by a two-step MR analysis to quantify the mediation proportion. Results Our findings revealed that out of the total 15 bacterial traits, significant associations with UTI risk were observed across both datasets. Particularly, taxon g_Ruminococcaceae UCG010 displayed a causal link with a diminished UTI risk in both datasets (ukb-b-8814: odds ratio [OR] = 0.9964, 95% confidence interval [CI] = 0.9930-0.9997, P = 0.036; GCST90013890: OR = 0.8252, 95% CI = 0.7217-0.9436, P = 0.005). However, no substantial changes in g_Ruminococcaceae UCG010 due to UTI were noted (ukb-b-8814: β = 0.51, P = 0.87; ebi-a-GCST90013890: β = -0.02, P = 0.77). Additionally, variations in 56 specific metabolites were induced by g_Ruminococcaceae UCG010, with N-acetylkynurenine (NAK) exhibiting a causal correlation with UTI. A negative association was found between g_Ruminococcaceae UCG010 and NAK (OR: 0.8128, 95% CI: 0.6647-0.9941, P = 0.044), while NAK was positively associated with UTI risk (OR: 1.0009; 95% CI: 1.0002-1.0016; P = 0.0173). Mediation analysis revealed that the association between g_Ruminococcaceae UCG010 and UTI was mediated by NAK with a mediation proportion of 5.07%. Discussion This MR study provides compelling evidence supporting the existence of causal relationships between specific GM taxa and UTI, along with potential mediating metabolites.
Collapse
Affiliation(s)
- Yining He
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Chao Han
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Yancheng Dafeng Hospital of Chinese Medicine, Teaching Hospital of Nanjing University of Chinese Medicine, Yancheng, China
| | - Chengjuan Li
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiaofan Yin
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jiawen Wang
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Lina Gu
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Ruxue Yan
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Buhui Liu
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Xuan Zhou
- Department of Respiratory, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiming He
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
El Chaar M, Khoury Y, Douglas GM, El Kazzi S, Jisr T, Soussi S, Merhi G, Moghnieh RA, Shapiro BJ. Longitudinal genomic surveillance of multidrug-resistant Escherichia coli carriage in critical care patients. Microbiol Spectr 2024; 12:e0312823. [PMID: 38171007 PMCID: PMC10846182 DOI: 10.1128/spectrum.03128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Colonization with multidrug-resistant Escherichia coli strains causes a substantial health burden in hospitalized patients. We performed a longitudinal genomics study to investigate the colonization of resistant E. coli strains in critically ill patients and to identify evolutionary changes and strain replacement events within patients. Patients were admitted to the intensive care unit and hematology wards at a major hospital in Lebanon. Perianal swabs were collected from participants on admission and during hospitalization, which were screened for extended-spectrum beta-lactamases and carbapenem-resistant Enterobacterales. We performed whole-genome sequencing and analysis on E. coli strains isolated from patients at multiple time points. The E. coli isolates were genetically diverse, with 11 sequence types (STs) identified among 22 isolates sequenced. Five patients were colonized by E. coli sequence type 131 (ST131)-encoding CTX-M-27, an emerging clone not previously observed in clinical samples from Lebanon. Among the eight patients whose resident E. coli strains were tracked over time, five harbored the same E. coli strain with relatively few mutations over the 5 to 10 days of hospitalization. The other three patients were colonized by different E. coli strains over time. Our study provides evidence of strain diversity within patients during their hospitalization. While strains varied in their antimicrobial resistance profiles, the number of resistance genes did not increase over time. We also show that ST131-encoding CTX-M-27, which appears to be emerging as a globally important multidrug-resistant E. coli strain, is also prevalent among critical care patients and deserves further monitoring.IMPORTANCEUnderstanding the evolution of bacteria over time in hospitalized patients is of utmost significance in the field of infectious diseases. While numerous studies have surveyed genetic diversity and resistance mechanisms in nosocomial infections, time series of within-patient dynamics are rare, and high-income countries are over-represented, leaving low- and middle-income countries understudied. Our study aims to bridge these research gaps by conducting a longitudinal survey of critically ill patients in Lebanon. This allowed us to track Escherichia coli evolution and strain replacements within individual patients over extended periods. Through whole-genome sequencing, we found extensive strain diversity, including the first evidence of the emerging E. coli sequence type 131 clone encoding the CTX-M-27 beta-lactamase in a clinical sample from Lebanon, as well as likely strain replacement events during hospitalization.
Collapse
Affiliation(s)
- Mira El Chaar
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Yaralynn Khoury
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Gavin M. Douglas
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Samir El Kazzi
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Tamima Jisr
- Clinical Laboratory Department, Makassed General Hospital, Beirut, Lebanon
| | - Shatha Soussi
- Clinical Laboratory Department, Makassed General Hospital, Beirut, Lebanon
| | - Georgi Merhi
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Rima A. Moghnieh
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University Medical Center, Beirut, Lebanon
| | - B. Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
7
|
Zhang W, Xu L, Zhang X, Xu J, Jin JO. Escherichia coli adhesion portion FimH polarizes M2 macrophages to M1 macrophages in tumor microenvironment via toll-like receptor 4. Front Immunol 2023; 14:1213467. [PMID: 37720226 PMCID: PMC10502728 DOI: 10.3389/fimmu.2023.1213467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Background Macrophages are key effector cells of innate immunity and play a critical role in the immune balance of disease pathogenesis, especially in the tumor microenvironment. In previous studies, we showed that FimH, an Escherichia coli adhesion portion, promoted dendritic cell activation. However, the effect of FimH in macrophage polarization has yet to be fully examined. In this study, we investigated the potential effect of FimH on macrophages, as well as the polarization from M2 to M1 macrophages, contributing to the overall antitumor effect. Methods Mouse bone marrow derived macrophages and peritoneal macrophages were generated to test the effect of FimH in vitro. The expression of costimulatory molecules and production of cytokines were analyzed. The effect of FimH in the tumor-associated macrophages was examine in the B16F10-tumor bearing C57BL/6. Results FimH was found to promote M1 macrophage activation. In addition, FimH polarized M2 macrophages, which were induced by interleukin (IL)-4 and IL-13 into M1 macrophages were dependent on toll-like receptor 4 and myeloid differentiation factor 2. Moreover, FimH reprogramed the tumor-associated macrophage (TAM) into M1 macrophages in B16 melanoma tumor-bearing mice and promoted an inflammatory reaction in the tumor microenvironment (TME). Furthermore, FimH promoted M1 macrophage activation, as well as the reversion of M2 macrophages into M1 macrophages in humans. Finally, FimH treatment was found to enhance the anti-cancer immunity of anti-PD-L1 antibody by the induction of M1 polarization from TAM. Conclusion This study demonstrated the potential effect of FimH on the activation of macrophages, responsible for the repolarization of M2 macrophages into the M1 phenotype via the TLR4 signaling pathway. Moreover, FimH could also reprogram TAM polarization to the M1 status in the TME, as well as enhance the anti-tumor activity of immune checkpoint blockade.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Xu
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- The Laboratory for Immunotherapy, Clinical Center for BioTherapy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianqing Xu
- The Laboratory for Immunotherapy, Clinical Center for BioTherapy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
- Dpartment of Microbiology, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, Republic of Korea
| |
Collapse
|
8
|
Overstreet AMC, Anderson B, Burge M, Zhu X, Tao Y, Cham CM, Michaud B, Horam S, Sangwan N, Dwidar M, Liu X, Santos A, Finney C, Dai Z, Leone VA, Messer JS. HMGB1 acts as an agent of host defense at the gut mucosal barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542477. [PMID: 37398239 PMCID: PMC10312563 DOI: 10.1101/2023.05.30.542477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Mucosal barriers provide the first line of defense between internal body surfaces and microbial threats from the outside world. 1 In the colon, the barrier consists of two layers of mucus and a single layer of tightly interconnected epithelial cells supported by connective tissue and immune cells. 2 Microbes colonize the loose, outer layer of colonic mucus, but are essentially excluded from the tight, epithelial-associated layer by host defenses. 3 The amount and composition of the mucus is calibrated based on microbial signals and loss of even a single component of this mixture can destabilize microbial biogeography and increase the risk of disease. 4-7 However, the specific components of mucus, their molecular microbial targets, and how they work to contain the gut microbiota are still largely unknown. Here we show that high mobility group box 1 (HMGB1), the prototypical damage-associated molecular pattern molecule (DAMP), acts as an agent of host mucosal defense in the colon. HMGB1 in colonic mucus targets an evolutionarily conserved amino acid sequence found in bacterial adhesins, including the well-characterized Enterobacteriaceae adhesin FimH. HMGB1 aggregates bacteria and blocks adhesin-carbohydrate interactions, inhibiting invasion through colonic mucus and adhesion to host cells. Exposure to HMGB1 also suppresses bacterial expression of FimH. In ulcerative colitis, HMGB1 mucosal defense is compromised, leading to tissue-adherent bacteria expressing FimH. Our results demonstrate a new, physiologic role for extracellular HMGB1 that refines its functions as a DAMP to include direct, virulence limiting effects on bacteria. The amino acid sequence targeted by HMGB1 appears to be broadly utilized by bacterial adhesins, critical for virulence, and differentially expressed by bacteria in commensal versus pathogenic states. These characteristics suggest that this amino acid sequence is a novel microbial virulence determinant and could be used to develop new approaches to diagnosis and treatment of bacterial disease that precisely identify and target virulent microbes.
Collapse
|
9
|
Zha C, Peng Z, Huang K, Tang K, Wang Q, Zhu L, Che B, Li W, Xu S, Huang T, Yu Y, Zhang W. Potential role of gut microbiota in prostate cancer: immunity, metabolites, pathways of action? Front Oncol 2023; 13:1196217. [PMID: 37265797 PMCID: PMC10231684 DOI: 10.3389/fonc.2023.1196217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
The gut microbiota helps to reveal the relationship between diseases, but the role of gut microbiota in prostate cancer (PCa) is still unclear. Recent studies have found that the composition and abundance of specific gut microbiota are significantly different between PCa and non-PCa, and the gut microbiota may have common and unique characteristics between different diseases. Intestinal microorganisms are affected by various factors and interact with the host in a variety of ways. In the complex interaction model, the regulation of intestinal microbial metabolites and the host immune system is particularly important, and they play a key role in maintaining the ecological balance of intestinal microorganisms and metabolites. However, specific changes in the composition of intestinal microflora may promote intestinal mucosal immune imbalance, leading to the formation of tumors. Therefore, this review analyzes the immune regulation of intestinal flora and the production of metabolites, as well as their effects and mechanisms on tumors, and briefly summarizes that specific intestinal flora can play an indirect role in PCa through their metabolites, genes, immunity, and pharmacology, and directly participate in the occurrence, development, and treatment of tumors through bacterial and toxin translocation. We also discussed markers of high risk PCa for intestinal microbiota screening and the possibility of probiotic ingestion and fecal microbiota transplantation, in order to provide better treatment options for clinic patients. Finally, after summarizing a number of studies, we found that changes in immunity, metabolites.
Collapse
Affiliation(s)
- Cheng Zha
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zheng Peng
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kunyuan Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiang Wang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lihua Zhu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
10
|
Shang Y, Zhang S, Gan HQ, Yan KC, Xu F, Mai Y, Chen D, Hu XL, Zou L, James TD, He XP. Targeted photothermal release of antibiotics by a graphene nanoribbon-based supramolecular glycomaterial. Chem Commun (Camb) 2023; 59:1094-1097. [PMID: 36625183 DOI: 10.1039/d2cc05879k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Here, we report the simple construction of a supramolecular glycomaterial for the targeted delivery of antibiotics to P. aeruginosa in a photothermally-controlled manner. A galactose-pyrene conjugate (Gal-pyr) was developed to self-assemble with graphene nanoribbon-based nanowires via π-π stacking to produce a supramolecular glycomaterial, which exhibits a 1250-fold enhanced binding avidity toward a galactose-selective lectin when compared to Gal-pyr. The as-prepared glycomaterial when loaded with an antibiotic that acts as an inhibitor of the bacterial folic acid biosynthetic pathway eradicated P. aeruginosa-derived biofilms under near-infrared light irradiation due to the strong photothermal effect of the nanowires accelerating antibiotic release.
Collapse
Affiliation(s)
- Ying Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Sheng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai 200240, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai 200240, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Lei Zou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China. .,National Center for Liver Cancer, the International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| |
Collapse
|
11
|
Aditya V, Kotian A, Sanil A, Thaseena PMA, Karunasagar I, Deekshit VK. Survival and Virulence Potential of Drug-Resistant E. coli in Simulated Gut Conditions and Antibiotic Challenge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12805. [PMID: 36232102 PMCID: PMC9566084 DOI: 10.3390/ijerph191912805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The gut forms a vital niche for the survival and replication of drug-resistant E. coli; however, the role of gut conditions on drug-resistant and sensitive E. coli is not clearly understood. The study aims to understand the effect of in vitro gut conditions on the spread of antibiotic resistance among E. coli and their ability to adapt to gut conditions. In this study, a multidrug-resistant (J51) and a sensitive (J254) E. coli isolate were exposed to a series of in vitro gut conditions and their growth pattern, virulence gene expression and invasion ability were studied. Further, the effect of antibiotic under in vitro gut conditions was also studied. Bile significantly affected the growth of the isolates, and the addition of iron chelator extended the lag phase of the sensitive isolate. Each in vitro gut condition had a differential effect on the expression of virulence genes in both the isolates. Further, the resistant isolate could adhere to and invade Caco2 cell lines better than the sensitive isolate. Most of the downregulated genes showed increased expression upon ciprofloxacin shock under in vitro gut conditions. The transcriptomics study revealed that exposure to bile, led to the downregulation of genes involved in different metabolic pathways. Further downregulation of metabolic pathways on ciprofloxacin shock was also observed. The downregulation of metabolic pathways could be a part of the global response played by the bacteria to adapt to harsh conditions. Reverting these fluctuated pathways could prove to be a novel strategy in combating AMR threat. Overall, bile, in high and low temperature conditions, showed a significant effect on modulating virulence gene expression on the antibiotic challenge. Thus, it is essential to consider the impact of gut conditions on gut pathogens, such as E. coli, before prescribing antimicrobial therapy during infection.
Collapse
|
12
|
Sokurenko EV, Tchesnokova V, Interlandi G, Klevit R, Thomas WE. Neutralizing antibodies against allosteric proteins: insights from a bacterial adhesin. J Mol Biol 2022; 434:167717. [DOI: 10.1016/j.jmb.2022.167717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022]
|
13
|
Elhag DA, Kumar M, Saadaoui M, Akobeng AK, Al-Mudahka F, Elawad M, Al Khodor S. Inflammatory Bowel Disease Treatments and Predictive Biomarkers of Therapeutic Response. Int J Mol Sci 2022; 23:ijms23136966. [PMID: 35805965 PMCID: PMC9266456 DOI: 10.3390/ijms23136966] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated inflammation of the gastrointestinal tract with a highly heterogeneous presentation. It has a relapsing and remitting clinical course that necessitates lifelong monitoring and treatment. Although the availability of a variety of effective therapeutic options including immunomodulators and biologics (such as TNF, CAM inhibitors) has led to a paradigm shift in the treatment outcomes and clinical management of IBD patients, some patients still either fail to respond or lose their responsiveness to therapy over time. Therefore, according to the recent Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE-II) recommendations, continuous disease monitoring from symptomatic relief to endoscopic healing along with short- and long-term therapeutic responses are critical for providing IBD patients with a tailored therapy algorithm. Moreover, considering the high unmet need for novel therapeutic approaches for IBD patients, various new modulators of cytokine signaling events (for example, JAK/TYK inhibitors), inhibitors of cytokines (for example IL-12/IL-23, IL-22, IL-36, and IL-6 inhibitors), anti-adhesion and migration strategies (for example, β7 integrin, sphingosine 1-phosphate receptors, and stem cells), as well as microbial-based therapeutics to decolonize the bed buds (for example, fecal microbiota transplantation and bacterial inhibitors) are currently being evaluated in different phases of controlled clinical trials. This review aims to offer a comprehensive overview of available treatment options and emerging therapeutic approaches for IBD patients. Furthermore, predictive biomarkers for monitoring the therapeutic response to different IBD therapies are also discussed.
Collapse
Affiliation(s)
- Duaa Ahmed Elhag
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
| | - Manoj Kumar
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
| | - Marwa Saadaoui
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
| | - Anthony K. Akobeng
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha 26999, Qatar; (A.K.A.); (F.A.-M.); (M.E.)
| | - Fatma Al-Mudahka
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha 26999, Qatar; (A.K.A.); (F.A.-M.); (M.E.)
| | - Mamoun Elawad
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha 26999, Qatar; (A.K.A.); (F.A.-M.); (M.E.)
| | - Souhaila Al Khodor
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
- Correspondence:
| |
Collapse
|
14
|
Intestinal Permeability and Dysbiosis in Female Patients with Recurrent Cystitis: A Pilot Study. J Pers Med 2022; 12:jpm12061005. [PMID: 35743789 PMCID: PMC9225239 DOI: 10.3390/jpm12061005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022] Open
Abstract
Recurrent cystitis (RC) is a common disease, especially in females. Anatomical, behavioral and genetic predisposing factors are associated with the ascending retrograde route, which often causes bladder infections. RC seems to be mainly caused by agents derived from the intestinal microbiota, and most frequently by Escherichia coli. Intestinal contiguity contributes to the etiopathogenesis of RC and an alteration in intestinal permeability could have a major role in RC. The aim of this pilot study is to assess gut microbiome dysbiosis and intestinal permeability in female patients with RC. Patients with RC (n = 16) were enrolled and compared with healthy female subjects (n = 15) and patients with chronic gastrointestinal (GI) disorders (n = 238). We calculated the Acute Cystitis Symptom Score/Urinary Tract Infection Symptom Assessment (ACSS/UTISA) and Gastrointestinal Symptom Rating Scale (GSRS) scores and evaluated intestinal permeability and the fecal microbiome in the first two cohorts. Patients with RC showed an increased prevalence of gastrointestinal symptoms compared with healthy controls. Of the patients with RC, 88% showed an increased intestinal permeability with reduced biodiversity of gut microbiota compared to healthy controls, and 68% of the RC patients had a final diagnosis of gastrointestinal disease. Similarly, GI patients reported a higher incidence of urinary symptoms with a diagnosis of RC in 20%. Gut barrier impairment seems to play a major role in the pathogenesis of RC. Further studies are necessary to elucidate the role of microbiota and intestinal permeability in urinary tract infections.
Collapse
|
15
|
Stepanova N. How Advanced Is Our Understanding of the Role of Intestinal Barrier Dysfunction in the Pathogenesis of Recurrent Urinary Tract Infections. Front Pharmacol 2022; 13:780122. [PMID: 35359839 PMCID: PMC8960443 DOI: 10.3389/fphar.2022.780122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
A comprehensive understanding of urinary tract infections (UTIs), one of the most common human infections, is required as they are complex and poorly understood diseases. Periurethral and vaginal colonization by rectal flora, with the constant presence of pathogens in the urethra, is the initial step of the recurrent UTIs pathway. Current scientific data describe the genetic, etiological, biological, and behavioral risk factors for recurring UTIs, but they do not include the effect of intestinal barrier function on the disease. Although gut microbiota has been proposed as the main source for UTIs, the cross-talk between intestinal barrier dysfunction and the recurrence of UTIs has not yet been supported by scientific data. In this opinion review, based on published data and the results of our clinical studies, I aimed to outline the possible contribution of intestinal barrier dysfunction to the pathogenesis of recurrent UTIs. I believe that the unanswered questions raised by this review can guide further experimental and controlled studies to clarify the mechanisms underlying the role of intestinal barrier dysfunction in the pathogenesis of recurrent UTIs.
Collapse
|
16
|
Qin J, Wilson KA, Sarkar S, Heras B, O'Mara ML, Totsika M. Conserved FimH mutations in the global Escherichia coli ST131 multi-drug resistant lineage weaken interdomain interactions and alter adhesin function. Comput Struct Biotechnol J 2022; 20:4532-4541. [PMID: 36090810 PMCID: PMC9428848 DOI: 10.1016/j.csbj.2022.08.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022] Open
Abstract
The binding of the type 1 fimbrial adhesin FimH to mannosylated receptors is allosterically regulated to enhance the fitness of uropathogenic Escherichia coli (UPEC) during urinary tract infection (UTI). Mutations in the two FimH domains (pilin and lectin) located outside the mannose binding pocket have been shown to influence mannose binding affinity, yet the details of the allostery mechanism are not fully elucidated. Here we characterised different FimH conformational states (termed low-affinity tense and high-affinity relaxed conformations) of natural FimH variants using molecular dynamics (MD) simulation techniques and report key structural dynamics differences between them. The clinically dominant FimH30 variant from the pandemic multidrug resistant E. coli ST131 lineage contains an R166H mutation that weakens FimH interdomain interactions and allows enhanced mannose interactions with pre-existing high-affinity relaxed conformations. When expressed in an isogenic ST131 strain background, FimH30 mediated high human cell adhesion and invasion, and enhanced biofilm formation over other variants. Collectively, our computational and experimental findings support a model of FimH protein allostery that is mediated by shifts in the pre-existing conformational equilibrium of FimH, additional to the sequential step-wise process of structural perturbations transmitted from one site to another within the protein. Importantly, it is the first study to shed light into how natural mutations in a clinically dominant FimH variant influence the protein’s conformational landscape optimising its function for ST131 fitness at intestinal and extraintestinal niches.
Collapse
|
17
|
Che B, Zhang W, Xu S, Yin J, He J, Huang T, Li W, Yu Y, Tang K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front Oncol 2021; 11:805459. [PMID: 34956913 PMCID: PMC8702560 DOI: 10.3389/fonc.2021.805459] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although the incidence and mortality of prostate cancer have gradually begun to decline in the past few years, it is still one of the leading causes of death from malignant tumors in the world. The occurrence and development of prostate cancer are affected by race, family history, microenvironment, and other factors. In recent decades, more and more studies have confirmed that prostate microflora in the tumor microenvironment may play an important role in the occurrence, development, and prognosis of prostate cancer. Microorganisms or their metabolites may affect the occurrence and metastasis of cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor microenvironment bacteria in interventional targeting therapy of tumors also shows a unique advantage. In this review, we introduce the pathway of microbiota into prostate cancer, focusing on the mechanism of microorganisms in tumorigenesis and development, as well as the prospect and significance of microorganisms as tumor biomarkers and tumor prevention and treatment.
Collapse
Affiliation(s)
- Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingju Yin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
18
|
Honig G, Larkin PB, Heller C, Hurtado-Lorenzo A. Research-Based Product Innovation to Address Critical Unmet Needs of Patients with Inflammatory Bowel Diseases. Inflamm Bowel Dis 2021; 27:S1-S16. [PMID: 34791292 PMCID: PMC8922161 DOI: 10.1093/ibd/izab230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/09/2022]
Abstract
Despite progress in recent decades, patients with inflammatory bowel diseases face many critical unmet needs, demonstrating the limitations of available treatment options. Addressing these unmet needs will require interventions targeting multiple aspects of inflammatory bowel disease pathology, including disease drivers that are not targeted by available therapies. The vast majority of late-stage investigational therapies also focus primarily on a narrow range of fundamental mechanisms. Thus, there is a pressing need to advance to clinical stage differentiated investigational therapies directly targeting a broader range of key mechanistic drivers of inflammatory bowel diseases. In addition, innovations are critically needed to enable treatments to be tailored to the specific underlying abnormal biological pathways of patients; interventions with improved safety profiles; biomarkers to develop prognostic, predictive, and monitoring tests; novel devices for nonpharmacological approaches such as minimally invasive monitoring; and digital health technologies. To address these needs, the Crohn's & Colitis Foundation launched IBD Ventures, a venture philanthropy-funding mechanism, and IBD Innovate®, an innovative, product-focused scientific conference. This special IBD Innovate® supplement is a collection of articles reflecting the diverse and exciting research and development that is currently ongoing in the inflammatory bowel disease field to deliver innovative and differentiated products addressing critical unmet needs of patients. Here, we highlight the pipeline of new product opportunities currently advancing at the preclinical and early clinical development stages. We categorize and describe novel and differentiated potential product opportunities based on their potential to address the following critical unmet patient needs: (1) biomarkers for prognosis of disease course and prediction/monitoring of treatment response; (2) restoration of eubiosis; (3) restoration of barrier function and mucosal healing; (4) more effective and safer anti-inflammatories; (5) neuromodulatory and behavioral therapies; (6) management of disease complications; and (7) targeted drug delivery.
Collapse
|
19
|
Faggian M, Bernabè G, Valente M, Francescato S, Baratto G, Brun P, Castagliuolo I, Dall'Acqua S, Peron G. Characterization of PACs profile and bioactivity of a novel nutraceutical combining cranberry extracts with different PAC-A oligomers, D-mannose and ascorbic acid: An in vivo/ex vivo evaluation of dual mechanism of action on intestinal barrier and urinary epithelium. Food Res Int 2021; 149:110649. [PMID: 34600651 DOI: 10.1016/j.foodres.2021.110649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/04/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022]
Abstract
In this paper, an A-type procyanidin (PAC)-rich cranberry extract (CB-B) was obtained mixing different extracts and was formulated with D-mannose and ascorbic acid to obtain a novel nutraceutical (URO-F) aimed at preventing non-complicated bacterial urinary tract infections (UTIs). To assess the bioactivity of CB-B and URO-F, urine samples collected from six healthy volunteers undergoing a 2-days oral consumption of 0.41 g/day of CB-B or 10 g/day of URO-F (corresponding to 72 mg/day of PACs) were tested against uropathogenic E. coli (UPEC) incubated on urinary bladder epithelial cells (T24). Urinary markers of CB-B and URO-F consumption were assessed in the same urine output by UPLC-QTOF-based untargeted metabolomics approach. CB-B and URO-F were evaluated for their ability to promote the intestinal barrier function by restoring the trans-epithelial electrical resistance (TEER) and to inhibit the production of inflammatory cytokines in intestinal epithelial Caco2 cells. CB-B was characterized by a high PAC-A content (70% of total PACs) and a broad distribution of different PACs polymers (dimers-hexamers). Urine from subjects consuming CB-B and URO-F showed a significant effect in reducing the adhesion of UPEC to urothelium in vitro, supporting their efficacy as anti-adhesive agents after oral intake. CB-B inhibited the release of cytokine IL-8, and both products were effective in restoring the TEER. Overall, our results show that the beneficial effects of CB-B and URO-F on UTIs are not only due to the antiadhesive activity of cranberry on UPEC in the urothelium, but also to a multi-target activity involving anti-inflammatory and permeability-enhancing effects on intestinal epithelium.
Collapse
Affiliation(s)
- Marta Faggian
- Unired srl, Via Niccolò Tommaseo 69, 35131 Padova, Italy.
| | - Giulia Bernabè
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy.
| | - Marco Valente
- Unifarco spa, Via Cal Longa 62, 32035 Santa Giustina, Belluno, Italy.
| | | | - Gianni Baratto
- Unired srl, Via Niccolò Tommaseo 69, 35131 Padova, Italy; Unifarco spa, Via Cal Longa 62, 32035 Santa Giustina, Belluno, Italy.
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy.
| | - Ignazio Castagliuolo
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy.
| | - Stefano Dall'Acqua
- Unired srl, Via Niccolò Tommaseo 69, 35131 Padova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| |
Collapse
|
20
|
Savin M, Bierbaum G, Kreyenschmidt J, Schmithausen RM, Sib E, Schmoger S, Käsbohrer A, Hammerl JA. Clinically Relevant Escherichiacoli Isolates from Process Waters and Wastewater of Poultry and Pig Slaughterhouses in Germany. Microorganisms 2021; 9:microorganisms9040698. [PMID: 33800539 PMCID: PMC8066038 DOI: 10.3390/microorganisms9040698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli is frequently associated with multiple antimicrobial resistances and a major cause of bacterial extraintestinal infections in livestock and humans. However, data on the epidemiology of (i) multidrug-resistant (MDR) and (ii) extraintestinal pathogenic E. coli (ExPEC) in poultry and pig slaughterhouses in Germany is currently lacking. Selected E. coli isolates (n = 71) with phenotypic resistance to cephalosporins from two poultry and two pig slaughterhouses expressing high MDR rates (combined resistance to piperacillin, cefotaxime and/or ceftazidime, and ciprofloxacin) of 51.4% and 58.3%, respectively, were analyzed by whole-genome sequencing. They constituted a reservoir for 53 different antimicrobial resistance determinants and were assigned various sequence types, including high-risk clones involved in human infections worldwide. An ExPEC pathotype was detected in 17.1% and 5.6% of the isolates from poultry and pig slaughterhouses, respectively. Worryingly, they were recovered from scalding water and eviscerators, indicating an increased risk for cross-contaminations. Uropathogenic E. coli (UPEC) were detected in the effluent of an in-house wastewater treatment plant (WWTP) of a poultry slaughterhouse, facilitating their further dissemination into surface waters. Our study provides important information on the molecular characteristics of (i) MDR, as well as (ii) ExPEC and UPEC regarding their clonal structure, antimicrobial resistance and virulence factors. Based on their clinical importance and pathogenic potential, the risk of slaughterhouse employees’ exposure cannot be ruled out. Through cross-contamination, these MDR E. coli pathotypes may be introduced into the food chain. Moreover, inadequate wastewater treatment may contribute to the dissemination of UPEC into surface waters, as shown for other WWTPs.
Collapse
Affiliation(s)
- Mykhailo Savin
- Institute of Animal Sciences, University of Bonn, 53113 Bonn, Germany;
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, 53113 Bonn, Germany; (R.M.S.); (E.S.)
- Correspondence: (M.S.); (J.A.H.)
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, 53113 Bonn, Germany;
| | - Judith Kreyenschmidt
- Institute of Animal Sciences, University of Bonn, 53113 Bonn, Germany;
- Department of Fresh Produce Logistics, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Ricarda Maria Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, 53113 Bonn, Germany; (R.M.S.); (E.S.)
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, 53113 Bonn, Germany; (R.M.S.); (E.S.)
| | - Silvia Schmoger
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (S.S.); (A.K.)
| | - Annemarie Käsbohrer
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (S.S.); (A.K.)
- Department for Farm Animals and Veterinary Public Health and Epidemiology, Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Jens Andre Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (S.S.); (A.K.)
- Correspondence: (M.S.); (J.A.H.)
| |
Collapse
|
21
|
Scaglione F, Musazzi UM, Minghetti P. Considerations on D-mannose Mechanism of Action and Consequent Classification of Marketed Healthcare Products. Front Pharmacol 2021; 12:636377. [PMID: 33762956 PMCID: PMC7982833 DOI: 10.3389/fphar.2021.636377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 01/07/2023] Open
Abstract
Urinary tract infections (UTIs) are very common disorders that affect adult women. Indeed, 50% of all women suffer from UTIs at least one time in their lifetime; 20-40% of them experience recurrent episodes. The majority of UTIs seems to be due to uropathogenic Escherichia coli that invades urothelial cells and forms quiescent bacterial reservoirs. Recurrences of UTIs are often treated with non-prescribed antibiotics by the patients, with increased issues connected to antibiotics resistance. D-mannose, a monosaccharide that is absorbed but not metabolized by the human body, has been proposed as an alternative approach for managing UTIs since it can inhibit the bacterial adhesion to the urothelium. This manuscript discusses the mechanisms through which D-mannose acts to highlight the regulatory aspects relevant for determining the administrative category of healthcare products placed on the market. The existing literature permits to conclude that the anti-adhesive effect of D-mannose cannot be considered as a pharmacological effect and, therefore, D-mannose-based products should be classified as medical devices composed of substances.
Collapse
Affiliation(s)
- Francesco Scaglione
- Department of Oncology and Hemato-Oncology, Università Degli Studi Di Milano, Milan, Italy
- Clinical Pharmacology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Umberto M. Musazzi
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
22
|
Ranganathan S, Smith EM, Foulke-Abel JD, Barry EM. Research in a time of enteroids and organoids: how the human gut model has transformed the study of enteric bacterial pathogens. Gut Microbes 2020; 12:1795492. [PMID: 32795243 PMCID: PMC7524385 DOI: 10.1080/19490976.2020.1795389] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/03/2023] Open
Abstract
Enteric bacterial pathogens cause significant morbidity and mortality globally. Studies in tissue culture and animal models shaped our initial understanding of these host-pathogen interactions. However, intrinsic shortcomings in these models limit their application, especially in translational applications like drug screening and vaccine development. Human intestinal enteroid and organoid models overcome some limitations of existing models and advance the study of enteric pathogens. In this review, we detail the use of human enteroids and organoids to investigate the pathogenesis of invasive bacteria Shigella, Listeria, and Salmonella, and noninvasive bacteria pathogenic Escherichia coli, Clostridium difficile, and Vibrio cholerae. We highlight how these studies confirm previously identified mechanisms and, importantly, reveal novel ones. We also discuss the challenges for model advancement, including platform engineering to integrate environmental conditions, innate immune cells and the resident microbiome, and the potential for pre-clinical testing of recently developed antimicrobial drugs and vaccines.
Collapse
Affiliation(s)
- Sridevi Ranganathan
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M. Smith
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer D. Foulke-Abel
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eileen M. Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Yang H, Mirsepasi-Lauridsen HC, Struve C, Allaire JM, Sivignon A, Vogl W, Bosman ES, Ma C, Fotovati A, Reid GS, Li X, Petersen AM, Gouin SG, Barnich N, Jacobson K, Yu HB, Krogfelt KA, Vallance BA. Ulcerative Colitis-associated E. coli pathobionts potentiate colitis in susceptible hosts. Gut Microbes 2020; 12:1847976. [PMID: 33258388 PMCID: PMC7781664 DOI: 10.1080/19490976.2020.1847976] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory condition linked to intestinal microbial dysbiosis, including the expansion of E. coli strains related to extra-intestinal pathogenic E. coli. These "pathobionts" exhibit pathogenic properties, but their potential to promote UC is unclear due to the lack of relevant animal models. Here, we established a mouse model using a representative UC pathobiont strain (p19A), and mice lacking single immunoglobulin and toll-interleukin 1 receptor domain (SIGIRR), a deficiency increasing susceptibility to gut infections. Strain p19A was found to adhere to the cecal mucosa of Sigirr -/- mice, causing modest inflammation. Moreover, it dramatically worsened dextran sodium sulfate-induced colitis. This potentiation was attenuated using a p19A strain lacking α-hemolysin genes, or when we targeted pathobiont adherence using a p19A strain lacking the adhesin FimH, or following treatment with FimH antagonists. Thus, UC pathobionts adhere to the intestinal mucosa, and worsen the course of colitis in susceptible hosts.
Collapse
Affiliation(s)
- Hyungjun Yang
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada,CONTACT Hong Bing Yu Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada; Karen
| | - Hengameh Chloé Mirsepasi-Lauridsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Struve
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark
| | - Joannie M. Allaire
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Adeline Sivignon
- Université Clermont Auvergne, Laboratoire Microbes Intestin Inflammation Et Susceptibilité De l’Hôte (M2ish), Inserm U1071, M2iSH, F-63000, Clermont-Ferrand, France,INRA, Unité Sous Contrat 2018, Clermont-Ferrand, France
| | - Wayne Vogl
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Else S. Bosman
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Caixia Ma
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Abbas Fotovati
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gregor S. Reid
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Xiaoxia Li
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Andreas Munk Petersen
- Department of Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark,Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Sébastien G. Gouin
- Université De Nantes, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, UFR Des Sciences Et Des Techniques, Nantes, France
| | - Nicolas Barnich
- Université Clermont Auvergne, Laboratoire Microbes Intestin Inflammation Et Susceptibilité De l’Hôte (M2ish), Inserm U1071, M2iSH, F-63000, Clermont-Ferrand, France,INRA, Unité Sous Contrat 2018, Clermont-Ferrand, France
| | - Kevan Jacobson
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Hong Bing Yu
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada,CONTACT Hong Bing Yu Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada; Karen
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark,Angeliki Krogfelt
| | - Bruce A. Vallance
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada,Lead Contact,Bruce A. Vallance
| |
Collapse
|
24
|
Ugwu IC, Lee-Ching L, Ugwu CC, Okoye JOA, Chah KF. In vitro assessment of pathogenicity and virulence encoding gene profiles of avian pathogenic Escherichia coli strains associated with colibacillosis in chickens. IRANIAN JOURNAL OF VETERINARY RESEARCH 2020; 21:180-187. [PMID: 33178295 PMCID: PMC7608036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Avian pathogenic Escherichia coli (APEC) strains have been associated with various disease conditions in avian species due to virulence attributes associated with the organism. AIMS This study was carried out to determine the in vitro pathogenic characteristics and virulence encoding genes found in E. coli strains associated with colibacillosis in chickens. METHODS Fifty-two stock cultures of E. coli strains isolated from chickens diagnosed of colibacillosis were tested for their ability to produce haemolysis on blood agar and take up Congo red dye. Molecular characterization was carried out by polymerase chain reaction (PCR) amplification of virulence encoding genes associated with APEC. RESULTS Eleven (22%) and 41 (71%) were positive for haemolysis on 5% sheep red blood agar and Congo red agar, respectively. Nine virulence-associated genes were detected as follows: FimH (96%), csgA (52%), iss (48%), iut (33%), tsh (21%), cva (15%), kpsII (10%), pap (2%), and felA (2%). CONCLUSION The APEC strains exhibited virulence properties and harbored virulence encoding genes which could be a threat to the poultry population and public health. The putative virulence genes were diverse and different in almost all isolate implying that pathogenesis was multi-factorial and the infection was multi-faceted which could be a source of concern in the detection and control of APEC infections.
Collapse
Affiliation(s)
- I. C. Ugwu
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - L. Lee-Ching
- Department of Bioprocess Technology, School of Industrial Technology, University Sains Malaysia, Penang, Malaysia
| | - C. C. Ugwu
- Department of Animal Science and Technology, School of Agriculture and Agricultural Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - J. O. A. Okoye
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - K. F. Chah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
25
|
Sarkar S, Hutton ML, Vagenas D, Ruter R, Schüller S, Lyras D, Schembri MA, Totsika M. Intestinal Colonization Traits of Pandemic Multidrug-Resistant Escherichia coli ST131. J Infect Dis 2019; 218:979-990. [PMID: 29471349 PMCID: PMC6093498 DOI: 10.1093/infdis/jiy031] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Background Epidemiological studies point to the gut as a key reservoir of multidrug resistant Escherichia coli multilocus sequence type 131 (ST131), a globally dominant pathogenic clone causing urinary tract and bloodstream infections. Here we report a detailed investigation of its intestinal lifestyle. Methods Clinical ST131 isolates and type 1 fimbriae null mutants were assessed for colonization of human intestinal epithelia and in mouse intestinal colonization models. Mouse gut tissue underwent histologic analysis for pathology and ST131 localization. Key findings were corroborated in mucus-producing human cell lines and intestinal biopsy specimens. Results ST131 strains adhered to and invaded human intestinal epithelial cells more than probiotic and commensal strains. The reference ST131 strain EC958 established persistent intestinal colonization in mice, and expression of type 1 fimbriae mediated higher colonization levels. Bacterial loads were highest in the distal parts of the mouse intestine and did not cause any obvious pathology. Further analysis revealed that EC958 could bind to both mucus and underlying human intestinal epithelia. Conclusions ST131 strains can efficiently colonize the mammalian gut and persist long term. Type 1 fimbriae enhance ST131 intestinal colonization, suggesting that mannosides, currently developed as therapeutics for bladder infections and Crohn’s disease, could also be used to limit intestinal ST131 reservoirs.
Collapse
Affiliation(s)
- Sohinee Sarkar
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Melanie L Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia
- Department of Microbiology, Monash University, Clayton, Australia
| | - Dimitrios Vagenas
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Rinaldo Ruter
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Stephanie Schüller
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia
- Department of Microbiology, Monash University, Clayton, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
- Correspondence: M. Totsika, PhD, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, QLD 4059, Australia ()
| |
Collapse
|
26
|
Rose R, Häuser S, Stump-Guthier C, Weiss C, Rohde M, Kim KS, Ishikawa H, Schroten H, Schwerk C, Adam R. Virulence factor-dependent basolateral invasion of choroid plexus epithelial cells by pathogenic Escherichia coli in vitro. FEMS Microbiol Lett 2019; 365:5195518. [PMID: 30476042 DOI: 10.1093/femsle/fny274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli is the most common Gram-negative causative agent of neonatal meningitis and E. coli meningitis is associated with high morbidity and mortality. Previous research has been carried out with regard to the blood-brain barrier and thereby unveiled an assortment of virulence factors involved in E. coli meningitis. Little, however, is known about the role of the blood-cerebrospinal fluid (CSF) barrier (BCSFB), in spite of several studies suggesting that the choroid plexus (CP) is a possible entry point for E. coli into the CSF spaces. Here, we used a human CP papilloma (HIBCPP) cell line that was previously established as valid model for the study of the BCSFB. We show that E. coli invades HIBCPP cells in a polar fashion preferentially from the physiologically relevant basolateral side. Moreover, we demonstrate that deletion of outer membrane protein A, ibeA or neuDB genes results in decreased cell infection, while absence of fimH enhances invasion, although causing reduced adhesion to the apical side of HIBCPP cells. Our findings suggest that the BCSFB might constitute an entry point for E. coli into the central nervous system, and HIBCPP cells are a valuable tool for investigating E. coli entry of the BCSFB.
Collapse
Affiliation(s)
- Rebekah Rose
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Svenja Häuser
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Rüdiger Adam
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
27
|
Yang RC, Qu XY, Xiao SY, Li L, Xu BJ, Fu JY, Lv YJ, Amjad N, Tan C, Kim KS, Chen HC, Wang XR. Meningitic Escherichia coli-induced upregulation of PDGF-B and ICAM-1 aggravates blood-brain barrier disruption and neuroinflammatory response. J Neuroinflammation 2019; 16:101. [PMID: 31092253 PMCID: PMC6521501 DOI: 10.1186/s12974-019-1497-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/30/2019] [Indexed: 01/13/2023] Open
Abstract
Background Blood-brain barrier (BBB) disruption and neuroinflammation are considered key mechanisms of pathogenic Escherichia coli invasion of the brain. However, the specific molecules involved in meningitic E. coli-induced BBB breakdown and neuroinflammatory response remain unclear. Our previous RNA-sequencing data from human brain microvascular endothelial cells (hBMECs) revealed two important host factors: platelet-derived growth factor-B (PDGF-B) and intercellular adhesion molecule-1 (ICAM-1), which were significantly upregulated in hBMECs after meningitic E. coli infection. Whether and how PDGF-B and ICAM-1 contribute to the development of E. coli meningitis are still unclear. Methods The western blot, real-time PCR, enzyme-linked immunosorbent assay, immunohistochemistry, and immunofluorescence were applied to verify the significant induction of PDGF-B and ICAM-1 by meningitic E. coli in vivo and in vitro. Evan’s blue assay and electric cell-substrate impedance sensing assay were combined to identify the effects of PDGF-B on BBB permeability. The CRISPR/Cas9 technology, cell-cell adhesion assay, and electrochemiluminescence assay were used to investigate the role of ICAM-1 in neuroinflammation subversion. Results We verified the significant induction of PDGF-B and ICAM-1 by meningitic E. coli in mouse as well as monolayer hBMECs models. Functionally, we showed that the increase of PDGF-B may directly enhance the BBB permeability by decreasing the expression of tight junction proteins, and the upregulation of ICAM-1 contributed to neutrophils or monocytes recruitment as well as neuroinflammation subversion in response to meningitic E. coli infection. Conclusions Our findings demonstrated the roles of PDGF-B and ICAM-1 in mediating bacterial-induced BBB damage as well as neuroinflammation, providing new concepts and potential targets for future prevention and treatment of bacterial meningitis.
Collapse
Affiliation(s)
- Rui-Cheng Yang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xin-Yi Qu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Si-Yu Xiao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liang Li
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo-Jie Xu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ji-Yang Fu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yu-Jin Lv
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan, China
| | - Nouman Amjad
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chen Tan
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kwang Sik Kim
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Huan-Chun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Ru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
28
|
Koestler BJ, Ward CM, Fisher CR, Rajan A, Maresso AW, Payne SM. Human Intestinal Enteroids as a Model System of Shigella Pathogenesis. Infect Immun 2019; 87:e00733-18. [PMID: 30642906 PMCID: PMC6434139 DOI: 10.1128/iai.00733-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/06/2019] [Indexed: 01/01/2023] Open
Abstract
The enteric bacterium and intracellular human pathogen Shigella causes hundreds of millions of cases of the diarrheal disease shigellosis per year worldwide. Shigella is acquired by ingestion of contaminated food or water; upon reaching the colon, the bacteria invade colonic epithelial cells, replicate intracellularly, spread to adjacent cells, and provoke an intense inflammatory response. There is no animal model that faithfully recapitulates human disease; thus, cultured cells have been used to model Shigella pathogenesis. However, the use of transformed cells in culture does not provide the same environment to the bacteria as the normal human intestinal epithelium. Recent advances in tissue culture now enable the cultivation of human intestinal enteroids (HIEs), which are derived from human intestinal stem cells, grown ex vivo, and then differentiated into "mini-intestines." Here, we demonstrate that HIEs can be used to model Shigella pathogenesis. We show that Shigella flexneri invades polarized HIE monolayers preferentially via the basolateral surface. After S. flexneri invades HIE monolayers, S. flexneri replicates within HIE cells and forms actin tails. S. flexneri also increases the expression of HIE proinflammatory signals and the amino acid transporter SLC7A5. Finally, we demonstrate that disruption of HIE tight junctions enables S. flexneri invasion via the apical surface.
Collapse
Affiliation(s)
- Benjamin J Koestler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Cara M Ward
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - C R Fisher
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shelley M Payne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
29
|
Ma Z, Ginn A, Kang M, Galvão KN, Jeong KC. Genomic and Virulence Characterization of Intrauterine Pathogenic Escherichia coli With Multi-Drug Resistance Isolated From Cow Uteri With Metritis. Front Microbiol 2018; 9:3137. [PMID: 30619205 PMCID: PMC6304347 DOI: 10.3389/fmicb.2018.03137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 12/01/2022] Open
Abstract
Metritis is a major disease in dairy cows causing animal death, decrease of birth rate, milk production, and economic loss. Antibiotic treatment is generally used to treat such disease but has a high failure rate of 23–35%. The reason for the treatment failure remains unclear, although antibiotic resistance is postulated as one of factors. Our study investigated the prevalence of extended spectrum β-lactamase (ESBL) producing bacteria in uterine samples of cows with metritis and characterized the isolated intrauterine pathogenic Escherichia coli (IUPEC) strains using whole genome sequencing. We found that the cows with metritis we examined had a high percentage of ESBL producing IUPEC with multi-drug resistance including ceftiofur which is commonly used for metritis treatment. The ESBL producing IUPEC strains harbored versatile antibiotic resistance genes conferring resistance against 29 antibiotic classes, suggesting that transmission of these bacteria to other animals and humans may lead to antibiotic treatment failure. Furthermore, these strains had strong adhesion and invasion activity, along with critical virulence factors, indicating that they may cause infectious diseases in not only the uterus, but also in other organs and hosts.
Collapse
Affiliation(s)
- Zhengxin Ma
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Amber Ginn
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Minyoung Kang
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Klibs N Galvão
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.,D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, United States
| | - Kwangcheol Casey Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
30
|
Valadbeigi H, Esmaeeli E, Ghafourian S, Maleki A, Sadeghifard N. Molecular Analysis of Uropathogenic E.coli Isolates from Urinary Tract Infections. Infect Disord Drug Targets 2018; 19:322-326. [PMID: 30421685 DOI: 10.2174/1871526518666181113091322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/25/2018] [Accepted: 11/08/2018] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The aim of the current study was to investigate the prevalence of virulence genes in uropathogenic Escherichia coli (UPEC) isolates in Ilam. MATERIALS AND METHODS For this purpose, a total of 80 UPEC isolates were collected for patients with UTIs during a 6 months period. The multiplex polymerase chain reaction (multiplex PCR) was used to detect the papEF, fimH, iucD, hlyA, fyuA, and ompT genes. RESULTS The prevalence of fimH, papEF, iucD, fyuA, hlyA, hlyA, and ompT genes were 87.5%, 47.5%, 60%, 67.5%, 27.5%, 47.5% and 71.2%, respectively. Among all of the isolates, 27 profiles were obtained. CONCLUSION Our findings demonstrated that the most prevalence was found for fimH, and different distribution of virulence genes suggested different ability of pathogenicity.
Collapse
Affiliation(s)
- Hassan Valadbeigi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Elham Esmaeeli
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Sobhan Ghafourian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
31
|
Merino I, Hernández-García M, Turrientes MC, Pérez-Viso B, López-Fresneña N, Diaz-Agero C, Maechler F, Fankhauser-Rodriguez C, Kola A, Schrenzel J, Harbarth S, Bonten M, Gastmeier P, Canton R, Ruiz-Garbajosa P, Desilets M, Dul S, Scherrer-Muller F, Huttner B, Uçkay I, Prendki V, Renzi G. Emergence of ESBL-producing Escherichia coli ST131-C1-M27 clade colonizing patients in Europe. J Antimicrob Chemother 2018; 73:2973-2980. [DOI: 10.1093/jac/dky296] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/26/2018] [Indexed: 01/12/2023] Open
Affiliation(s)
- Irene Merino
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - María-Carmen Turrientes
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Blanca Pérez-Viso
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Nieves López-Fresneña
- Servicio de Medicina Preventiva, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Cristina Diaz-Agero
- Servicio de Medicina Preventiva, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Friederike Maechler
- Charité University Medicine, Institute of Hygiene and Environmental Medicine, Hindenburgdamm 27, Berlin, Germany
| | | | - Axel Kola
- Charité University Medicine, Institute of Hygiene and Environmental Medicine, Hindenburgdamm 27, Berlin, Germany
| | - Jacques Schrenzel
- Infection Control Program and Genomic Research Laboratory, University of Geneva Hospitals, Geneva, Switzerland
| | - Stephan Harbarth
- Infection Control Program and Genomic Research Laboratory, University of Geneva Hospitals, Geneva, Switzerland
| | - Marc Bonten
- Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Petra Gastmeier
- Charité University Medicine, Institute of Hygiene and Environmental Medicine, Hindenburgdamm 27, Berlin, Germany
| | - R Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - P Ruiz-Garbajosa
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Poole NM, Rajan A, Maresso AW. Human Intestinal Enteroids for the Study of Bacterial Adherence, Invasion, and Translocation. ACTA ACUST UNITED AC 2018; 50:e55. [PMID: 29927096 DOI: 10.1002/cpmc.55] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adherence, invasion, and translocation to and through the intestinal epithelium are important drivers of disease for many enteric bacteria. However, most work has been limited to transformed intestinal cell lines or murine models that often do not faithfully recapitulate key elements associated with human disease. The recent technological advances in organotypic tissue and cell culture are providing unparalleled access to systems with human physiology and complexity. Human intestinal enteroids (HIEs), derived from patient biopsy or surgical specimens of intestinal tissues, are organotypic cultures now being adapted to the study of enteric infections. HIEs are comprised of the dominant cell types of the human gastrointestinal epithelium, can be grown in two- or three-dimensional structures, form a crypt-villus axis with defined apical and basolateral compartments, and undergo physiologic responses to many different stimuli. Here, we describe a series of protocols that encompass the use of human enteroids for the measurement of the adherence, invasion, and translocation of E. coli to and through the intestinal epithelium. We also outline the steps needed to grow and prepare enteroids for this purpose and highlight some common problems to troubleshoot. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Nina M Poole
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
33
|
Russell CW, Fleming BA, Jost CA, Tran A, Stenquist AT, Wambaugh MA, Bronner MP, Mulvey MA. Context-Dependent Requirements for FimH and Other Canonical Virulence Factors in Gut Colonization by Extraintestinal Pathogenic Escherichia coli. Infect Immun 2018; 86:e00746-17. [PMID: 29311232 PMCID: PMC5820936 DOI: 10.1128/iai.00746-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) acts as a commensal within the mammalian gut but can induce pathology upon dissemination to other host environments such as the urinary tract and bloodstream. ExPEC genomes are likely shaped by evolutionary forces encountered within the gut, where the bacteria spend much of their time, provoking the question of how their extraintestinal virulence traits arose. The principle of coincidental evolution, in which a gene that evolved in one niche happens to be advantageous in another, has been used to argue that ExPEC virulence factors originated in response to selective pressures within the gut ecosystem. As a test of this hypothesis, the fitness of ExPEC mutants lacking canonical virulence factors was assessed within the intact murine gut in the absence of antibiotic treatment. We found that most of the tested factors, including cytotoxic necrotizing factor type 1 (CNF1), Usp, colibactin, flagella, and plasmid pUTI89, were dispensable for gut colonization. The deletion of genes encoding the adhesin PapG or the toxin HlyA had transient effects but did not interfere with longer-term persistence. In contrast, a mutant missing the type 1 pilus-associated adhesin FimH displayed somewhat reduced persistence within the gut. However, this phenotype varied dependent on the presence of specific competing strains and was partially attributable to aberrant flagellin expression in the absence of fimH These data indicate that FimH and other key ExPEC-associated factors are not strictly required for gut colonization, suggesting that the development of extraintestinal virulence traits is not driven solely by selective pressures within the gut.
Collapse
Affiliation(s)
- Colin W Russell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Brittany A Fleming
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Courtney A Jost
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Alexander Tran
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Alan T Stenquist
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Morgan A Wambaugh
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Mary P Bronner
- Department of Pathology, ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A Mulvey
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| |
Collapse
|