1
|
Villagómez-Olea G, Uribe-Querol E, Marichi-Rodríguez FJ, Meléndez-Zajgla J, Alvaréz-Pérez MA, Rosales C. Periodontal ligament tissues support neutrophil differentiation and maturation processes. Front Immunol 2024; 15:1446541. [PMID: 39588378 PMCID: PMC11586715 DOI: 10.3389/fimmu.2024.1446541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Periodontal ligament is the soft connective tissue joining the roots of teeth with alveolar bone. The periodontal ligament presents significant cellular heterogeneity, including fibroblasts, endothelial cells, cementoblasts, osteoblasts, osteoclasts, and immune cells such as macrophages and neutrophils. These cells have crucial roles for periodontium homeostasis and function. However, certain cell types, such as neutrophils, remain poorly characterized in this tissue, despite their natural abundance and relevance in processes and diseases affecting the periodontal ligament. Methods In order to characterize neutrophils present in periodontal ligament, and get some insight into their functions, single-cell RNA sequencing data from published reports was analyzed to integrate and create a comprehensive map of neutrophil heterogeneity within the murine periodontal ligament under steady-state conditions. Results Four distinct neutrophil populations were identified based on their unique transcriptional signatures. Comparison and trajectory analysis revealed that these populations represent discrete stages of neutrophils undergoing maturation. These neutrophil populations were also classified, based on their granule content-associated signatures, as azurophil, specific, a transitional stage between specific and gelatinase (specific/gelatinase), and gelatinase. This reflects the sequential order of granule formation during neutrophil development (granulopoiesis) in the bone marrow. Discussion Together, our findings indicate that the periodontal ligament may serve as a microenvironment where the ordered and sequential maturation of neutrophils takes place. This suggests that similarly to other niches, the murine periodontal ligament can support, to some extent, hematopoietic processes such as granulopoiesis.
Collapse
Affiliation(s)
- Guillermo Villagómez-Olea
- Laboratorio de Bioingeniería de Tejidos, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francisco Javier Marichi-Rodríguez
- Departamento de Ortodoncia, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Meléndez-Zajgla
- Laboratorio de Genómica Funcional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marco Antonio Alvaréz-Pérez
- Laboratorio de Bioingeniería de Tejidos, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Yan C, Chen J, Wang B, Wang J, Luo M, Tong J, Xu X, Zhang Q, Wang X. PD-L1 Expression Is Increased in LPS-Induced Acute Respiratory Distress Syndrome by PI3K-AKT-Egr-1/C/EBPδ Signaling Pathway. Inflammation 2024; 47:1459-1478. [PMID: 38376609 DOI: 10.1007/s10753-024-01988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
The role of programmed death ligand 1 (PD-L1) has been extensively investigated in adaptive immune system. However, increasing data show that innate immune responses are also affected by the immune checkpoint molecule. It has been demonstrated that regulation of PD-L1 signaling in macrophages may be a potential therapeutic method for acute respiratory distress syndrome (ARDS). However, the PD-L1 expression pattern in local macrophages and whole lung tissues remains mysterious, hindering optimization of the potential treatment program. Therefore, we aim to determine the PD-L1 expression pattern during ARDS. Our findings show that PD-L1 levels are markedly increased in lipopolysaccharide (LPS)-stimulated lung tissues, which might be attributable to an increase in the gene expression by immune cells, including macrophages and neutrophils. In vitro experiments are performed to explore the mechanism involved in LPS-induced PD-L1 production. We find that PD-L1 generation is controlled by transcription factors early growth response 1 (Egr-1) and CCAAT/enhancer binding protein delta (C/EBPδ). Strikingly, PD-L1 production is enhanced by phosphoinositide-3 kinase (PI3K)-protein kinase B (AKT) signaling pathway via up-regulation of Egr-1 and C/EBPδ expressions. Additionally, we observe that expressions of Egr-1 and C/EBPδ mutually reinforce each other. Moreover, we observe that PD-L1 is protective for ARDS due to its regulatory role in macrophage-associated inflammatory response. In summary, during LPS-induced ARDS, PD-L1 expression, which is beneficial for the disease, is increased via the PI3K-AKT1-Egr-1/C/EBPδ signaling pathway, providing theoretical basis for application of methods controlling PD-L1 signaling in macrophages for ARDS treatment in clinic.
Collapse
Affiliation(s)
- Chunguang Yan
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital of Southeast University, Nanjing, 210009, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China.
| | - Jing Chen
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China
| | - Botao Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China
| | - Jingya Wang
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China
| | - Ming Luo
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China
| | - Jingru Tong
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China
| | - Xuanli Xu
- Department of Respiratory, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China.
| | - Ximo Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China.
| |
Collapse
|
3
|
Zhou L, Shan Y, Li J, Li M, Meng Z, Guo N. Early growth response 1 regulates dual‑specificity protein phosphatase 1 and inhibits cell migration and invasion of tongue squamous cell carcinoma. Oncol Lett 2024; 27:240. [PMID: 38623570 PMCID: PMC11017821 DOI: 10.3892/ol.2024.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/20/2024] [Indexed: 04/17/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors in the head and neck, and among the OSCCs, tongue squamous cell carcinoma (TSCC) is one of the most common types. Although therapy strategies have recently advanced, the prognosis of TSCC has not substantially improved. Metastasis is one of the main causes of patient mortality in TSCC; therefore, it is necessary to elucidate the mechanism by which TSCC metastasis is regulated. In the present study, the early growth response 1 (Egr-1) expression in TSCC was analyzed based on GEO datasets and the effect of Egr-1 in TSCC tumor cell migration and invasion was measured using Transwell assay. By overexpressing dual-specificity protein phosphatase 1 (DUSP1) in cells with Egr-1 knockdown using lentivirus infection, the role of DUSP1 in Egr-1-regulated TSCC cell migration and invasion was determined. By using luciferase and ChIP assays, the mechanism behind how DUSP1 is regulated by Egr-1 was detected. In the present study, it was demonstrated that Egr-1 was downregulated in TSCC and the knockdown of Egr-1 increased TSCC cell migration and invasion. The expression of Egr-1 was also correlated with DUSP1. The overexpression of DUSP1 in Egr-1 knockdown cells, reduced the level of cell migration and invasion. Furthermore, it was demonstrated that knockdown of Egr-1 inhibited the promoter activity of DUSP1 and the site through which Egr-1 regulates DUSP1 transcription was identified. In conclusion, the present study demonstrated that Egr-1 regulates TSCC cell migration and invasion through modulating DUSP1, suggesting the potential of Egr-1 and DUSP1 as therapy targets for TSCC.
Collapse
Affiliation(s)
- Longxun Zhou
- Department of Stomatology, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Yuqun Shan
- Clinical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Jun Li
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Min Li
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Zhen Meng
- Biomedical Laboratory, Medical School of Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Na Guo
- Department of Stomatology, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
4
|
Jia X, Gu M, Dai J, Wang J, Zhang Y, Pang Z. Quercetin attenuates Pseudomonas aeruginosa-induced acute lung inflammation by inhibiting PI3K/AKT/NF-κB signaling pathway. Inflammopharmacology 2024; 32:1059-1076. [PMID: 38310155 DOI: 10.1007/s10787-023-01416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 02/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that commonly causes infections in immunocompromised individuals with significant morbidity and mortality. Quercetin is a natural flavonoid abundantly present in fruits and vegetables, exerting potent anti-inflammatory effects in treatment of various diseases. However, the molecular mechanisms of quercetin in treatment of P. aeruginosa-induced acute lung inflammation are unclear. In this study, we exploited network pharmacology- and molecular docking-based approach to explore the potential mechanisms of quercetin against P. aeruginosa pneumonia, which was further validated via in vivo and in vitro experiments. The in vivo experiments demonstrated that quercetin alleviated the P. aeruginosa-induced lung injury by diminishing neutrophil infiltration and production of proinflammatory cytokines (IL-1β, IL-6, and TNF), which was associated with decreased mortality. Moreover, the quercetin-treated mice displayed decreased phosphorylation levels of PI3K, AKT, IκBα, and NF-κB p65 in lung tissues compared to non-drug-treated mice. Similarly, the in vitro study showed that the phosphorylation of these regulatory proteins and production of the proinflammatory cytokines were impaired in the quercetin-pretreated macrophages upon P. aeruginosa infection. Altogether, this study suggested that quercetin reduced the P. aeruginosa-induced acute lung inflammation by suppressing PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaolei Jia
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
| | - Mengdi Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
| | - Jiangqin Dai
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
| | - Jue Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
| | - Yingying Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China.
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China.
| |
Collapse
|
5
|
Zou K, Wang C, Zhou C, Yang Y, Zeng Z. Early growth response 1/Krüppel-like factor 5 pathway inhibitor alleviates lipopolysaccharide-induced lung injury by promoting autophagy. Eur J Pharmacol 2024; 964:176294. [PMID: 38158112 DOI: 10.1016/j.ejphar.2023.176294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Early transcription factors play critical roles in the development of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Early growth response 1 (EGR1) is a transcription factor essential for various biological processes, including regulation of metabolism, differentiation, and inflammation. However, its role in ALI has been poorly reported. In this study, we aimed to determine the effect of EGR1 on ALI to gain insights into the theoretical basis for further treatment of ALI. By employing concerted molecular biology techniques, we showed that EGR1 protein was upregulated in mice. EGR1 protein was upregulated in mice and human lung epithelial cells in response to lipopolysaccharide (LPS) stimulation. EGR1 knockdown promoted autophagy and reduced LPS-induced pro-inflammatory mediator production. EGR1 was preferentially bound to the GCGTGGGCG motif region and EGR1-binding peak-related genes were mainly enriched in autophagy and injury stress-related pathways. Additionally, EGR1 promoted Krüppel-like factor 5 (KLF5) transcription by binding to the KLF5 promoter region, and KLF5 knockdown significantly decreased inflammatory damage, suggesting that EGR1 promotes ALI progression by regulating KLF5 expression. Furthermore, ML264, an inhibitor of the EGR1/KLF5 pathway axis, displayed a protective role in ALI to reduce inflammation. In conclusion, our findings demonstrate the potential of EGR1 knockdown to inhibit KLF5 and promote autophagy, further reducing the inflammatory response to mitigate ALI/ARDS. The EGR1/KLF5 pathway axis may be a valuable therapeutic target for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Kang Zou
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, China; Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, China; Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Cheng Wang
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, China; Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, China
| | - Chaoqi Zhou
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, China
| | - Yuting Yang
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, China
| | - Zhenguo Zeng
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, China.
| |
Collapse
|
6
|
Yang R, Wang X, Liu H, Chen J, Tan C, Chen H, Wang X. Egr-1 is a key regulator of the blood-brain barrier damage induced by meningitic Escherichia coli. Cell Commun Signal 2024; 22:44. [PMID: 38233877 PMCID: PMC10795328 DOI: 10.1186/s12964-024-01488-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Bacterial meningitis remains a leading cause of infection-related mortality worldwide. Although Escherichia coli (E. coli) is the most common etiology of neonatal meningitis, the underlying mechanisms governing bacterial blood-brain barrier (BBB) disruption during infection remain elusive. We observed that infection of human brain microvascular endothelial cells with meningitic E. coli triggers the activation of early growth response 1 (Egr-1), a host transcriptional activator. Through integrated chromatin immunoprecipitation sequencing and transcriptome analysis, we identified Egr-1 as a crucial regulator for maintaining BBB integrity. Mechanistically, Egr-1 induced cytoskeletal changes and downregulated tight junction protein expression by directly targeting VEGFA, PDGFB, and ANGPTL4, resulting in increased BBB permeability. Meanwhile, Egr-1 also served as a master regulator in the initiation of neuroinflammatory response during meningitic E. coli infection. Our findings support an Egr-1-dependent mechanism of BBB disruption by meningitic E. coli, highlighting a promising therapeutic target for bacterial meningitis.
Collapse
Affiliation(s)
- Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyi Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Hulin Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiaqi Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China.
| |
Collapse
|
7
|
Gu M, Su W, Dai J, Wang J, Jia X, Yao J, Zhang G, Zhu Q, Pang Z. Jingfang granule alleviates Pseudomonas aeruginosa-induced acute lung inflammation through suppression of STAT3/IL-17/NF-κB pathway based on network pharmacology analysis and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116899. [PMID: 37454750 DOI: 10.1016/j.jep.2023.116899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the second leading cause of hospital-acquired pneumonia. Jingfang granule (JFG) is an herbal formula of Traditional Chinese medicine (TCM) widely used in treatment of acute respiratory tract infections in China. However, the molecular mechanisms of JFG in treatment of P. aeruginosa-induced acute pneumonia are not clear. AIM OF STUDY This study aimed to investigate the mechanisms underlying the effects of JFG on P. aeruginosa-induced acute inflammation using a mouse model of bacterial acute pneumonia. MATERIALS AND METHODS The chemical components and targets of JFG were retrieved from Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and the P. aeruginosa pneumonia-related targets were obtained from the disease databases, including Online Mendelian Inheritance in Man (OMIM), GeneCards and DisGeNet. The protein-protein interaction (PPI) network was constructed using STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Molecular docking was performed using AutoDockTools 1.5.6. Further in vivo experiments employed a mouse model of P. aeruginosa acute pneumonia to verify the target proteins and signaling pathways affected by JFG, which were predicted by the network pharmacology analysis. RESULTS A total of 218 active components and 257 targets of JFG were retrieved from TCMSP database. Moreover, 99 intersectant targets were obtained between the 257 JFG targets and 694 disease targets. Among the intersectant targets, STAT3, IL-6, AKT1, TNF, MAPK1, MAPK3 and EGFR were identified to be the key therapeutic targets through PPI network analysis, and STAT3 was in the center of the network, which is a key regulator of IL-17 expression. KEGG pathway enrichment analysis suggested that IL-17 signaling pathway was one of the crucial inflammatory pathways affected by JFG in treatment of P. aeruginosa pneumonia. Furthermore, the in vivo experiments demonstrated that the JFG-treated mice displayed reduced proinflammatory cytokine production (IL-17, IL-1β, IL-6 and TNF), diminished neutrophil infiltration and decreased mortality, compared with the non-drug-treated mice during P. aeruginosa lung infection. Moreover, the expression or phosphorylation levels of the key regulators in STAT3/IL-17/NF-κB axis including STAT3, ERK1/2 (MAPK3/1), AKT, NF-κB p65 and RORγt were significantly reduced in the lung tissues of the JFG-treated mice. CONCLUSION JFG was effective in treatment of P. aeruginosa acute lung infection, which reduced inflammatory responses through suppressing STAT3/IL-17/NF-κB pathway.
Collapse
Affiliation(s)
- Mengdi Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Wen Su
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jiangqin Dai
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jue Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xiaolei Jia
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
8
|
Zou K, Zeng Z. Role of early growth response 1 in inflammation-associated lung diseases. Am J Physiol Lung Cell Mol Physiol 2023; 325:L143-L154. [PMID: 37401387 PMCID: PMC10511164 DOI: 10.1152/ajplung.00413.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Early growth response 1 (EGR1), which is involved in cell proliferation, differentiation, apoptosis, adhesion, migration, and immune and inflammatory responses, is a zinc finger transcription factor. EGR1 is a member of the EGR family of early response genes and can be activated by external stimuli such as neurotransmitters, cytokines, hormones, endotoxins, hypoxia, and oxidative stress. EGR1 expression is upregulated during several common respiratory diseases, such as acute lung injury/acute respiratory distress syndrome, chronic obstructive pulmonary disease, asthma, pneumonia, and novel coronavirus disease 2019. Inflammatory response is the common pathophysiological basis of these common respiratory diseases. EGR1 is highly expressed early in the disease, amplifying pathological signals from the extracellular environment and driving disease progression. Thus, EGR1 may be a target for early and effective intervention in these inflammation-associated lung diseases.
Collapse
Affiliation(s)
- Kang Zou
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical College, Ganzhou, People's Republic of China
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhenguo Zeng
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
9
|
Banerji R, Joshi R, Saroj SD. Acyl Homoserine Lactone Sensitised Streptococcus Pyogenes Differentially Regulates the Transcriptional Expression of Early Growth Response 1 (EGR1) in Epithelial and Macrophage Cells. Curr Microbiol 2023; 80:268. [PMID: 37402084 DOI: 10.1007/s00284-023-03375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
The host transcriptional activator Early growth response 1 (EGR1) plays a vital role in cell cycle and differentiation, cell proliferation, and regulation of cytokines and several growth factors. It is an immediate-early gene that is expressed as an initial response to various environmental stimuli. Bacterial infection is one such factor that can trigger the expression of EGR1 in host. Therefore, it is imperative to understand expression of EGR1 during early stages of host-pathogen interaction. Streptococcus pyogenes is an opportunistic bacteria causing skin and respiratory tract infections in humans. The quorum-sensing molecule, N-(3-oxododecanoyl)-l-homoserine lactone (Oxo-C12), not synthesised by S. pyogenes, can be sensed by S. pyogenes leading to molecular changes in the pathogen. In this study, we investigated the role of Oxo-C12 on EGR1 regulation in lung epithelial and murine macrophage cell line upon S. pyogenes infection. We report that Oxo-C12 sensitised S. pyogenes upregulates the transcriptional expression of EGR1 through ERK1/2 pathway. It was observed that EGR1 was not involved in the intial attachment of S. pyogenes to A549 cells. However, inhibition of EGR1 in macrophage cell line, J774A.1, through the ERK1/2 pathway resulted in decreased adhesion of S. pyogenes. The EGR1 upregulation by Oxo-C12 sensitised S. pyogenes plays a vital role in enhancing the survival of S. pyogenes in murine macrophages, leading to persistent infection. Thus, understanding the molecular modulation in the host during bacterial infection will further help develop therapeutics to target specific sites.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Maharashtra, 412115, Pune, India
| | - Riya Joshi
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Maharashtra, 412115, Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Maharashtra, 412115, Pune, India.
| |
Collapse
|
10
|
Kim D, Ban KY, Lee GH, Jun HS. Lysophosphatidic Acid Induces Podocyte Pyroptosis in Diabetic Nephropathy by an Increase of Egr1 Expression via Downregulation of EzH2. Int J Mol Sci 2023; 24:9968. [PMID: 37373116 DOI: 10.3390/ijms24129968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Podocyte damage and renal inflammation are the main features and pathogenesis of diabetic nephropathy (DN). Inhibition of lysophosphatidic acid (LPA) receptor 1 (LPAR1) suppresses glomerular inflammation and improves DN. Herein, we investigated LPA-induced podocyte damage and its underlying mechanisms in DN. We investigated the effects of AM095, a specific LPAR1 inhibitor, on podocytes from streptozotocin (STZ)-induced diabetic mice. E11 cells were treated with LPA in the presence or absence of AM095, and the expression of NLRP3 inflammasome factors and pyroptosis were measured. A chromatin immunoprecipitation assay and Western blotting were performed to elucidate underlying molecular mechanisms. Gene knockdown by transfecting small interfering RNA was used to determine the role of the transcription factor Egr1 (early growth response protein 1) and histone methyltransferase EzH2 (Enhancer of Zeste Homolog 2) in LPA-induced podocyte injury. AM095 administration inhibited podocyte loss, NLRP3 inflammasome factor expression, and cell death in STZ-induced diabetic mice. In E11 cells, LPA increased NLRP3 inflammasome activation and pyroptosis via LPAR1. Egr1 mediated NLRP3 inflammasome activation and pyroptosis in LPA-treated E11 cells. LPA decreased H3K27me3 enrichment at the Egr1 promoter in E11 cells by downregulating EzH2 expression. EzH2 knockdown further increased LPA-induced Egr1 expression. In podocytes from STZ-induced diabetic mice, AM095 suppressed Egr1 expression increase and EzH2/H3K27me3 expression reduction. Collectively, these results demonstrate that LPA induces NLRP3 inflammasome activation by downregulating EzH2/H3K27me3 and upregulating Egr1 expression, resulting in podocyte damage and pyroptosis, which may be a potential mechanism of DN progression.
Collapse
Affiliation(s)
- Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Ka-Yun Ban
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Geon-Ho Lee
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Republic of Korea
| |
Collapse
|
11
|
Mice with double knockout of Egr-1 and RCAN1 exhibit reduced inflammation during Pseudomonas aeruginosa lung infection. Immunobiology 2023; 228:152377. [PMID: 36933529 DOI: 10.1016/j.imbio.2023.152377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Pseudomonas aeruginosa represents one of the major opportunistic pathogens, which causes nosocomial infections in immunocompromised individuals. The molecular mechanisms controlling the host immune response to P. aeruginosa infections are not completely understood. In our previous study, early growth response 1 (Egr-1) and regulator of calcineurin 1 (RCAN1) were found to positively and negatively regulate the inflammatory responses, respectively, during P. aeruginosa pulmonary infection, and both of them had an impact on activating NF-κB pathway. Herein, we examined the inflammatory responses of Egr-1/RCAN1 double knockout mice using a mouse model of P. aeruginosa acute pneumonia. As a result, the Egr-1/RCAN1 double knockout mice showed reduced production of proinflammatory cytokines (IL-1β, IL-6, TNF and MIP-2), diminished inflammatory cell infiltration and decreased mortality, which were similar to those of Egr-1-deficienct mice but different from those of RCAN1-deficient mice. In vitro studies demonstrated that Egr-1 mRNA transcription preceded RCAN1 isoform 4 (RCAN1.4) mRNA transcription in macrophages, and the macrophages with Egr-1 deficiency exhibited decreased RCAN1.4 mRNA levels upon P. aeruginosa LPS stimulation. Moreover, Egr-1/RCAN1 double-deficient macrophages had reduced NF-κB activation compared to RCAN1-deficient macrophages. Taken together, Egr-1 predominates over RCAN1 in regulating inflammation during P. aeruginosa acute lung infection, which influences RCAN1.4 gene expression.
Collapse
|
12
|
Woodson CM, Kehn-Hall K. Examining the role of EGR1 during viral infections. Front Microbiol 2022; 13:1020220. [PMID: 36338037 PMCID: PMC9634628 DOI: 10.3389/fmicb.2022.1020220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 09/06/2023] Open
Abstract
Early growth response 1 (EGR1) is a multifunctional mammalian transcription factor capable of both enhancing and/or inhibiting gene expression. EGR1 can be activated by a wide array of stimuli such as exposure to growth factors, cytokines, apoptosis, and various cellular stress states including viral infections by both DNA and RNA viruses. Following induction, EGR1 functions as a convergence point for numerous specialized signaling cascades and couples short-term extracellular signals to influence transcriptional regulation of genes required to initiate the appropriate biological response. The role of EGR1 has been extensively studied in both physiological and pathological conditions of the adult nervous system where it is readily expressed in various regions of the brain and is critical for neuronal plasticity and the formation of memories. In addition to its involvement in neuropsychiatric disorders, EGR1 has also been widely examined in the field of cancer where it plays paradoxical roles as a tumor suppressor gene or oncogene. EGR1 is also associated with multiple viral infections such as Venezuelan equine encephalitis virus (VEEV), Kaposi's sarcoma-associated herpesvirus (KSHV), herpes simplex virus 1 (HSV-1), human polyomavirus JC virus (JCV), human immunodeficiency virus (HIV), and Epstein-Barr virus (EBV). In this review, we examine EGR1 and its role(s) during viral infections. First, we provide an overview of EGR1 in terms of its structure, other family members, and a brief overview of its roles in non-viral disease states. We also review upstream regulators of EGR1 and downstream factors impacted by EGR1. Then, we extensively examine EGR1 and its roles, both direct and indirect, in regulating replication of DNA and RNA viruses.
Collapse
Affiliation(s)
- Caitlin M. Woodson
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
13
|
Sen-Kilic E, Huckaby AB, Damron FH, Barbier M. P. aeruginosa type III and type VI secretion systems modulate early response gene expression in type II pneumocytes in vitro. BMC Genomics 2022; 23:345. [PMID: 35508983 PMCID: PMC9068226 DOI: 10.1186/s12864-022-08554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung airway epithelial cells are part of innate immunity and the frontline of defense against bacterial infections. During infection, airway epithelial cells secrete proinflammatory mediators that participate in the recruitment of immune cells. Virulence factors expressed by bacterial pathogens can alter epithelial cell gene expression and modulate this response. Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, expresses numerous virulence factors to facilitate establishment of infection and evade the host immune response. This study focused on identifying the role of two major P. aeruginosa virulence factors, type III (T3SS) and type VI (T6SS) secretion systems, on the early transcriptome response of airway epithelial cells in vitro. RESULTS We performed RNA-seq analysis of the transcriptome response of type II pneumocytes during infection with P. aeruginosa in vitro. We observed that P. aeruginosa differentially upregulates immediate-early response genes and transcription factors that induce proinflammatory responses in type II pneumocytes. P. aeruginosa infection of type II pneumocytes was characterized by up-regulation of proinflammatory networks, including MAPK, TNF, and IL-17 signaling pathways. We also identified early response genes and proinflammatory signaling pathways whose expression change in response to infection with P. aeruginosa T3SS and T6SS mutants in type II pneumocytes. We determined that T3SS and T6SS modulate the expression of EGR1, FOS, and numerous genes that are involved in proinflammatory responses in epithelial cells during infection. T3SS and T6SS were associated with two distinct transcriptomic signatures related to the activation of transcription factors such as AP1, STAT1, and SP1, and the secretion of pro-inflammatory cytokines such as IL-6 and IL-8. CONCLUSIONS Taken together, transcriptomic analysis of epithelial cells indicates that the expression of immediate-early response genes quickly changes upon infection with P. aeruginosa and this response varies depending on bacterial viability and injectosomes. These data shed light on how P. aeruginosa modulates host epithelial transcriptome response during infection using T3SS and T6SS.
Collapse
Affiliation(s)
- Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Annalisa B Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA. .,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA.
| |
Collapse
|
14
|
Pang Z, Xu Y, Zhu Q. Early Growth Response 1 Suppresses Macrophage Phagocytosis by Inhibiting NRF2 Activation Through Upregulation of Autophagy During Pseudomonas aeruginosa Infection. Front Cell Infect Microbiol 2022; 11:773665. [PMID: 35096638 PMCID: PMC8790152 DOI: 10.3389/fcimb.2021.773665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes life-threatening infections in cystic fibrosis patients and immunocompromised individuals. A tightly regulated immune response possessed by healthy individuals can effectively control P. aeruginosa infections, whereas the patients with dysregulated immune response are susceptible to this bacterial pathogen. Early growth response 1 (Egr-1) is a zinc-finger transcription factor involved in regulation of various cellular functions, including immune responses. We previously identified that Egr-1 was deleterious to host in a mouse model of acute P. aeruginosa pneumonia by promoting systemic inflammation and impairing bacterial clearance in lung, which associated with reduced phagocytosis and bactericidal ability of leucocytes, including macrophages and neutrophils. However, the molecular mechanisms underlying the Egr-1-suppressed phagocytosis of P. aeruginosa are incompletely understood. Herein, we investigated whether the Egr-1-regulated autophagy play a role in macrophage phagocytosis during P. aeruginosa infection by overexpression or knockdown of Egr-1. We found that overexpression of Egr-1 inhibited the phagocytic activity of macrophages, and the autophagy activator rapamycin and inhibitor chloroquine could reverse the effects of Egr-1 knockdown and Egr-1 overexpression on phagocytosis of P. aeruginosa, respectively. Furthermore, the Egr-1-overexpressing macrophages displayed upregulated expression of autophagy-related proteins LC3A, LC3B and Atg5, and decreased levels of p62 in macrophages. Further studies revealed that the macrophages with Egr-1 knockdown displayed enhanced activation of transcription factor NRF2 and expression of scavenger receptors MACRO and MSR1. Altogether, these findings suggest that Egr-1 suppresses the phagocytosis of P. aeruginosa by macrophages through upregulation of autophagy and inhibition of NRF2 signaling.
Collapse
Affiliation(s)
- Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
15
|
Waldrip ZJ, Burdine L, Harrison DK, Azevedo-Pouly AC, Storey AJ, Moffett OG, Mackintosh SG, Burdine MS. DNA-PKcs kinase activity stabilizes the transcription factor Egr1 in activated immune cells. J Biol Chem 2021; 297:101209. [PMID: 34562454 PMCID: PMC8551498 DOI: 10.1016/j.jbc.2021.101209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is known primarily for its function in DNA double-stranded break repair and nonhomologous end joining (NHEJ). However, DNA-PKcs also has a critical yet undefined role in immunity impacting both myeloid and lymphoid cell lineages spurring interest in targeting DNA-PKcs for therapeutic strategies in immune-related diseases. To gain insight into the function of DNA-PKcs within immune cells, we performed a quantitative phosphoproteomic screen in T cells to identify phosphorylation targets of DNA-PKcs. Our results indicate that DNA-PKcs phosphorylates the transcription factor Egr1 (early growth response protein 1) at serine 301. Expression of Egr1 is induced early upon T cell activation and dictates T cell response by modulating expression of cytokines and key costimulatory molecules such as IL (interleukin) 2, IL6, IFNγ, and NFκB. Inhibition of DNA-PKcs by treatment with a DNA-PKcs specific inhibitor NU7441 or shRNA knockdown increased proteasomal degradation of Egr1. Mutation of serine 301 to alanine via CRISPR-Cas9 reduced EGR1 protein expression and decreased Egr1-dependent transcription of IL2 in activated T cells. Our findings identify DNA-PKcs as a critical intermediary link between T cell activation and T cell fate and a novel phosphosite involved in regulating Egr1 activity.
Collapse
Affiliation(s)
- Zachary J Waldrip
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Center for Translational Pediatric Research, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Lyle Burdine
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Transplant Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - David K Harrison
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Center for Translational Pediatric Research, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Ana Clara Azevedo-Pouly
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Center for Translational Pediatric Research, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Olivia G Moffett
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Marie Schluterman Burdine
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Center for Translational Pediatric Research, Arkansas Children's Research Institute, Little Rock, Arkansas, USA.
| |
Collapse
|
16
|
Schuurman AR, Reijnders TDY, Saris A, Ramirez Moral I, Schinkel M, de Brabander J, van Linge C, Vermeulen L, Scicluna BP, Wiersinga WJ, Vieira Braga FA, van der Poll T. Integrated single-cell analysis unveils diverging immune features of COVID-19, influenza, and other community-acquired pneumonia. eLife 2021; 10:e69661. [PMID: 34424199 PMCID: PMC8382293 DOI: 10.7554/elife.69661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/13/2021] [Indexed: 12/23/2022] Open
Abstract
The exact immunopathophysiology of community-acquired pneumonia (CAP) caused by SARS-CoV-2 (COVID-19) remains clouded by a general lack of relevant disease controls. The scarcity of single-cell investigations in the broader population of patients with CAP renders it difficult to distinguish immune features unique to COVID-19 from the common characteristics of a dysregulated host response to pneumonia. We performed integrated single-cell transcriptomic and proteomic analyses in peripheral blood mononuclear cells from a matched cohort of eight patients with COVID-19, eight patients with CAP caused by Influenza A or other pathogens, and four non-infectious control subjects. Using this balanced, multi-omics approach, we describe shared and diverging transcriptional and phenotypic patterns-including increased levels of type I interferon-stimulated natural killer cells in COVID-19, cytotoxic CD8 T EMRA cells in both COVID-19 and influenza, and distinctive monocyte compositions between all groups-and thereby expand our understanding of the peripheral immune response in different etiologies of pneumonia.
Collapse
Affiliation(s)
- Alex R Schuurman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Tom DY Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Ivan Ramirez Moral
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Michiel Schinkel
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Justin de Brabander
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Christine van Linge
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Division of Infectious Diseases, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Felipe A Vieira Braga
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
17
|
Evaluation of probiotics for inhibiting hyperproliferation and inflammation relevant to psoriasis in vitro. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
18
|
Banerji R, Saroj SD. Early growth response 1 (EGR1) activation in initial stages of host-pathogen interactions. Mol Biol Rep 2021; 48:2935-2943. [PMID: 33783681 DOI: 10.1007/s11033-021-06305-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
The factors that determine the outcomes of host-pathogen interactions, such as host specificity, tissue specificity, and transition from asymptomatic to symptomatic behavior of a pathogen, are yet to be deciphered. The initial interaction of a pathogen with host and host-associated factors play a crucial role in deciding such outcomes. One of the several host-factors that contribute to bacterial adhesion and the outcome of an infection is the activation of early growth response 1 (EGR1). EGR1 is an initial response transcriptional regulator that plays a vital role in regulating cell growth, differentiation, and survival. EGR1 expression is seen in most of the mammalian tissues. Multiple post-translational modifications occur, which modulate the EGR1 transcriptional activity. Upon activation, EGR1 can transactivate several genes with diverse cellular functions, including transcriptional regulatory proteins and cell proliferation. EGR1 has also been identified as a potential mediator of inflammatory gene expression. Recent studies have highlighted the role of EGR1 as a potent signaling molecule that facilitates bacterial adhesion to host epithelial cells, thus modulating colonization pathways. The pathways for the regulation of EGR1 during host-pathogen interaction remain yet unidentified. The review focuses on the role and regulation of EGR1 during host-pathogen interaction.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, Maharashtra, 412115, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, Maharashtra, 412115, India.
| |
Collapse
|
19
|
A multiomics approach to identify host-microbe alterations associated with infection severity in diabetic foot infections: a pilot study. NPJ Biofilms Microbiomes 2021; 7:29. [PMID: 33753735 PMCID: PMC7985513 DOI: 10.1038/s41522-021-00202-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic foot infections (DFIs) are a major cause of hospitalization and can lead to lower extremity amputation. In this pilot study, we used a multiomics approach to explore the host–microbe complex within DFIs. We observed minimal differences in the overall microbial composition between PEDIS infection severities, however Staphylococcus aureus and Streptococcus genera were abundant and highly active in most mild to moderate DFIs. Further, we identified the significant enrichment of several virulence factors associated with infection pathogenicity belonging to both Staphylococcus aureus and Streptococcus. In severe DFIs, patients demonstrated a greater microbial diversity and differential gene expression demonstrated the enrichment of multispecies virulence genes suggestive of a complex polymicrobial infection. The host response in patients with severe DFIs was also significantly different as compared to mild to moderate DFIs. This was attributed to the enrichment of host genes associated with inflammation, acute phase response, cell stress and broad immune-related responses, while those associated with wound healing and myogenesis were significantly depleted.
Collapse
|
20
|
Jia R, Cui K, Li Z, Gao Y, Zhang B, Wang Z, Cui J. NK cell-derived exosomes improved lung injury in mouse model of Pseudomonas aeruginosa lung infection. J Physiol Sci 2020; 70:50. [PMID: 33096976 PMCID: PMC10717361 DOI: 10.1186/s12576-020-00776-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) is one of the most common bacteria that causes lung infection in hospital. The aim of our study is to explore the role and action mechanism of NK cells in lung PA infection. METHODS In this present study, 2.5 × 108 CFU/mouse PA was injected into murine trachea to make lung PA infection mouse model. Anti-asialo GM1 was used to inhibit NK cell. The percentage of NK cells was ensured by flow cytometry, and the M1- and M2-polarized macrophages were determined by flow cytometry, qRT-PCR, and ELISA assay. Besides, H&E staining was performed to ensure the pathological changes in lung tissues. Transmission electron microscopy and western blot were carried out to identify the exosome. RESULTS Here, in the mouse model of PA lung infection, NK cell depletion caused M2 polarization of lung macrophage, and exacerbated PA-induced lung injury. Next, our data shown that M2 macrophage polarization was enhanced when the generation of NK cell-derived exosome was blocked in the co-culture system of NK cells and macrophages. Subsequently, we demonstrated that NK cells promoted M1 macrophage polarization both in PA-infected macrophage and the mouse model of PA lung infection, and attenuated lung injury through exosome. CONCLUSION Overall, our data proved that NK cell may improve PA-induced lung injury through promoting M1 lung macrophage polarization by secreting exosome. Our results provide a new idea for the treatment of PA lung infection.
Collapse
Affiliation(s)
- Ruiqi Jia
- Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Xinxiang, 453003, China
| | - Kuili Cui
- Tuberculosis Medicine, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Xinxiang, 453003, China
| | - Zhenkui Li
- Tuberculosis Medicine, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Xinxiang, 453003, China
| | - Yuan Gao
- Tuberculosis Medicine, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Xinxiang, 453003, China
| | - Bianfang Zhang
- Tuberculosis Medicine, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Xinxiang, 453003, China
| | - Zhixia Wang
- Respiratory Medicine, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Xinxiang, 453003, China
| | - Junwei Cui
- Tuberculosis Medicine, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Xinxiang, 453003, China.
| |
Collapse
|
21
|
Gao B, Zhang X, Xue D, Zhang W. Effects of Egr1 on pancreatic acinar intracellular trypsinogen activation and the associated ceRNA network. Mol Med Rep 2020; 22:2496-2506. [PMID: 32705196 PMCID: PMC7411386 DOI: 10.3892/mmr.2020.11316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is a common digestive disorder with high morbidity and mortality. The present study aimed to investigate the expression of early growth response protein 1 (Egr1), and the effect of competing endogenous (ce)RNA network on trypsinogen activation. Pancreatic acinar intracellular trypsinogen activation (PAITA) is an important event in the early stage of AP; however, the underlying mechanisms remain unclear. The present study used taurolithocholic acid 3-sulfate (TLC-S)-treated AR42J cells (pancreatic cell line) to establish a PAITA model. A gene microarray and bioinformatics analysis was performed to identify the potential key targets in PAITA. The results demonstrated that Egr1, an important transcription factor, was significantly overexpressed in PAITA. In Egr1 small interfering (si)RNA-transfected cells, Egr1 expression was decreased and trypsinogen activation was significantly decreased compared with negative control siRNA-transfected cells, indicating that in TLC-S-induced PAITA, overexpression of Egr1 enhanced trypsinogen activation. A ceRNA network [mRNA-microRNA (miRNA/miR)-long non-coding (lnc)RNA] generated using the PAITA model revealed that the effects of Egr1 on PAITA may be regulated by multiple ceRNA pairs, and the lncRNAs (including NONRATT022624 and NONRATT031002) and miRNAs [including Rattus norvegicus (rno)-miR-214-3p and rno-miR-764-5p] included in the ceRNA pairs may serve roles in PAITA by regulating the expression of Egr1. The results of the present study may provide novel targets for researching the underlying mechanisms of, and developing treatments for AP.
Collapse
Affiliation(s)
- Bo Gao
- Department of General Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Xueming Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 100086, P.R. China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 100086, P.R. China
| | - Weihui Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 100086, P.R. China
| |
Collapse
|