1
|
Prajapati SK, Williamson KC. Genome-scale, functional screen of Plasmodium sexual replication. Trends Parasitol 2025:S1471-4922(24)00376-3. [PMID: 39824704 DOI: 10.1016/j.pt.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/20/2025]
Abstract
Malaria mortality remains above 500 000 people annually, demonstrating the need for new and innovative control approaches. Using a genome-scale, functional screen of Plasmodium sexual replication, Sayers et al. identified over 300 genes essential for malaria transmission through the mosquito, providing many new candidates for drug and vaccine development.
Collapse
Affiliation(s)
- Surendra K Prajapati
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
2
|
Dolan B, Correa Gaviria T, Dong Y, Cresswell P, Dimopoulos G, Chuang YM, Fikrig E. mosGILT antibodies interfere with Plasmodium sporogony in Anopheles gambiae. Nat Commun 2025; 16:592. [PMID: 39799117 PMCID: PMC11724845 DOI: 10.1038/s41467-025-55902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
Plasmodium, the causative agents of malaria, are obtained by mosquitoes from an infected human. Following Plasmodium acquisition by Anopheles gambiae, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT) plays a critical role in its subsequent sporogony in the mosquito. A critical location for this development is the midgut, a tissue we show expresses mosGILT. Using membrane-feeding and murine infection models, we demonstrate that antibodies against mosGILT reduce the number of P. falciparum and P. berghei oocysts in the midgut and the infection prevalence of both species in the mosquito. mosGILT antibodies act in the mosquito midgut, specifically impacting the Plasmodium oocyst stage. Targeting mosGILT can therefore interfere with the Plasmodium life cycle in the mosquito and potentially serve as a transmission-blocking vaccine.
Collapse
Affiliation(s)
- Brady Dolan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Tomás Correa Gaviria
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
3
|
Noranate N, Sripanomphong J, Mphande- Nyasulu FA, Chaorattanakawee S. Plasmodium falciparum surf4.1 in clinical isolates: From genetic variation and variant diversity to in silico design immunopeptides for vaccine development. PLoS One 2024; 19:e0312091. [PMID: 39775228 PMCID: PMC11684625 DOI: 10.1371/journal.pone.0312091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/01/2024] [Indexed: 01/11/2025] Open
Abstract
SURFINs protein family expressed on surface of both infected red blood cell and merozoite surface making them as interesting vaccine candidate for erythrocytic stage of malaria infection. In this study, we analyze genetic variation of Pfsurf4.1 gene, copy number variation, and frequency of SURFIN4.1 variants of P. falciparum in clinical isolates. In addition, secondary structure prediction and immunoinformatic were employed to identify immunogenic epitopes in humoral response as proposed vaccine candidates. Overall, our data demonstrate extensive polymorphism of SURFIN4.1 in both genetic and protein level. The surf4.1 gene showed extensive genetic variation with total of 447 polymorphic sites with maximum of three variants as well as singlet/triplet bases indels and mini/microsatellites in the coding sequence. The exon1 encoding extracellular region exhibited higher variation compared to exon2 which coding for intracellular domain. Interestingly, selective pressure was detected on both extracellular region (Var1 and Var2) as well as intracellular region (WRD2 and WRD3). Importantly, extensive full gene analysis suggests adenosine insertion at three key points nucleotide bases (nt 2409/2410, 3809/3810, and 4439/4440) of exon2 could lead to frameshift mutation resulted in four different SURFIN4.1 variants (TMs, WD1, WD2 and WD3). The SURFIN4.1 variant TMs was the most observed type with 67% frequency (51/76). Along with more than one copy number of surf4.1 gene was observed with frequency of 13% (9/70). Despite substantial polymorphism, analysis of relatedness within P. falciparum population using full coding sequence was able to group SURFIN4.1 protein into five distinct clades and reduced into four clades when using only exon1 coding sequence. Also, predicted secondary structure revealed conserved structure of five helix domains of extracellular region which similar among four SURFIN4.1 variant types. In addition, in silico design eight immunopeptides derived from SURFIN4.1, four of which are highly conserved and four of dimorphic epitopes, as potential vaccine candidates.
Collapse
Affiliation(s)
- Nitchakarn Noranate
- Faculty of medicine, King’s Mongkut Institute of Technology (KMITL), Ladkrabang, Bangkok, Thailand
| | - Jariya Sripanomphong
- Faculty of medicine, King’s Mongkut Institute of Technology (KMITL), Ladkrabang, Bangkok, Thailand
| | | | - Suwanna Chaorattanakawee
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Abbasi AM, Nasir S, Bajwa AA, Akbar H, Artigas-Jerónimo S, Muñoz-Hernández C, Sánchez-Sánchez M, Moraga-Fernández A, de Mera IGF, de la Fuente J, Rashid MI. De novo assembly of sialotranscriptome of Hyalomma anatolicum and insights into expression dynamics in response to Theileria annulata infection. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:887-906. [PMID: 39271544 DOI: 10.1007/s10493-024-00962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Hyalomma anatolicum is a tick of significant one-health importance due to its role as a vector for various pathogens affecting humans, animals and the environment, such as Theileria annulata, which causes tropical theileriosis in cattle, leading to severe economic losses. When infected with pathogens like T. annulata, the salivary glands of H. anatolicum undergo gene expression changes, secrete modified proteins and activate immune responses, all of which facilitate pathogen survival and transmission by modulating the host immune response and optimizing conditions for pathogen development. Understanding these responses is crucial for developing control strategies for tick-borne diseases. To understand the interaction between H. anatolicum and T. annulata, we performed a differential gene expression analysis of H. anatolicum salivary glands. An average of approximately 25 million raw sequencing reads were generated in each replicate using Illumina Sequencing. The sequenced reads were de novo assembled and the assembled transcriptome yielded approximately 50,231 non-redundant transcripts after clustering with CD-HIT using a sequence identity of 95% and alignment coverage of 90%. The assembly quality was evaluated with BUSCO analysis and found to be 86% complete using the Arachnida dataset and then blasted against non-redundant protein sequence database from NCBI followed by counting of reads and differential expression analysis. Overall, around 2400 and 400 genes were found differentially expressed with logFC > 1 and logFC > 2 respectively at FDR < 0.05. Top up-regulated genes included Calpain, Papilin, Neprilysin, and Ankyrin repeat-containing protein. Top down-regulated genes included Scoloptoxin, and Selenoprotein S and other uncharacterized proteins. Many other up-regulated proteins with high significance were uncharacterized suggesting room for further H. anatolicum functional and structural characterization studies. To our best knowledge, this is the first study of H. anatolicum sialotranscriptome which greatly contributes to sialotranscriptome information not only as sequence database but also indicates the potential targets for development of vaccine against ticks and transmission-blocking vaccines against T. annulata.
Collapse
Affiliation(s)
| | - Shiza Nasir
- University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan
| | | | - Haroon Akbar
- University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan
| | - Sara Artigas-Jerónimo
- Biochemistry Section, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071, Ciudad Real, Spain
- DOE Research Group, Institute of Biomedicine of the University of Castilla-La Mancha (IB-UCLM), Ciudad Real, Spain
| | - Clara Muñoz-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Marta Sánchez-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Alberto Moraga-Fernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | | |
Collapse
|
5
|
Pourhashem Z, Nourani L, Pirahmadi S, Yousefi H, J. Sani J, Raz A, Zakeri S, Dinparast Djadid N, Abouie Mehrizi A. Malaria transmission blocking activity of Anopheles stephensi alanyl aminopeptidase N antigen formulated with MPL, CpG, and QS21 adjuvants. PLoS One 2024; 19:e0306664. [PMID: 38968270 PMCID: PMC11226095 DOI: 10.1371/journal.pone.0306664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/29/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUNDS Malaria, a preventive and treatable disease, is still responsible for annual deaths reported in most tropical regions, principally in sub-Saharan Africa. Subunit recombinant transmission-blocking vaccines (TBVs) have been proposed as promising vaccines to succeed in malaria elimination and eradication. Here, a provisional study was designed to assess the immunogenicity and functional activity of alanyl aminopeptidase N (APN1) of Anopheles stephensi, as a TBV candidate, administered with MPL, CpG, and QS21 adjuvants in the murine model. METHODOLOGY/PRINCIPAL FINDINGS The mouse groups were immunized with recombinant APN1 (rAPN1) alone or formulated with CpG, MPL, QS-21, or a combination of adjuvants (CMQ), and the elicited immune responses were evaluated after the third immunization. The standard membrane feeding assay (SMFA) measured the functional activity of antibodies against bacterial-expressed APN1 protein in adjuvanted vaccine groups on transmission of P. falciparum (NF54) to An. stephensi mosquitoes. Evaluation of mice vaccinated with rAPN1 formulated with distinct adjuvants manifested a significant increase in the high-avidity level of anti-APN1 IgG and IgG subclasses; however, rAPN1 induced the highest level of high-avidity anti-APN1 IgG1, IgG2a, and IgG2b antibodies in the immunized vaccine group 5 (APN1/CMQ). In addition, vaccine group 5 (receiving APN1/CMQ), had still the highest level of anti-APN1 IgG antibodies relative to other immunized groups after six months, on day 180. The SMFA data indicates a trend towards higher transmission-reducing activity in groups 2 and 5, which received the antigen formulated with CpG or a combination of three adjuvants. CONCLUSIONS/SIGNIFICANCE The results have shown the capability of admixture to stimulate high-affinity and long-lasting antibodies against the target antigen to hinder Plasmodium parasite development in the mid-gut of An. stephensi. The attained results authenticated APN1/CMQ and APN1/CpG as a potent APN1-based TBV formulation which will be helpful in designing a vaccine in the future.
Collapse
Affiliation(s)
- Zeinab Pourhashem
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Leila Nourani
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Sakineh Pirahmadi
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Hemn Yousefi
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Jafar J. Sani
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Abbasali Raz
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Sedigheh Zakeri
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Navid Dinparast Djadid
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Akram Abouie Mehrizi
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| |
Collapse
|
6
|
Scaria PV, Roth N, Schwendt K, Muratova OV, Alani N, Lambert LE, Barnafo EK, Rowe CG, Zaidi IU, Rausch KM, Narum DL, Petsch B, Duffy PE. mRNA vaccines expressing malaria transmission-blocking antigens Pfs25 and Pfs230D1 induce a functional immune response. NPJ Vaccines 2024; 9:9. [PMID: 38184666 PMCID: PMC10771442 DOI: 10.1038/s41541-023-00783-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 01/08/2024] Open
Abstract
Malaria transmission-blocking vaccines (TBV) are designed to inhibit the sexual stage development of the parasite in the mosquito host and can play a significant role in achieving the goal of malaria elimination. Preclinical and clinical studies using protein-protein conjugates of leading TBV antigens Pfs25 and Pfs230 domain 1 (Pfs230D1) have demonstrated the feasibility of TBV. Nevertheless, other promising vaccine platforms for TBV remain underexplored. The recent success of mRNA vaccines revealed the potential of this technology for infectious diseases. We explored the mRNA platform for TBV development. mRNA constructs of Pfs25 and Pfs230D1 variously incorporating signal peptides (SP), GPI anchor, and Trans Membrane (TM) domain were assessed in vitro for antigen expression, and selected constructs were evaluated in mice. Only mRNA constructs with GPI anchor or TM domain that resulted in high cell surface expression of the antigens yielded strong immune responses in mice. These mRNA constructs generated higher transmission-reducing functional activity versus the corresponding alum-adjuvanted protein-protein conjugates used as comparators. Pfs25 mRNA with GPI anchor or TM maintained >99% transmission reducing activity through 126 days, the duration of the study, demonstrating the potential of mRNA platform for TBV.
Collapse
Affiliation(s)
- Puthupparampil V Scaria
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, 29 Lincoln Drive, Building 29B, MD, 20892-2903, USA
| | | | | | - Olga V Muratova
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, 29 Lincoln Drive, Building 29B, MD, 20892-2903, USA
| | - Nada Alani
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, 29 Lincoln Drive, Building 29B, MD, 20892-2903, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, 29 Lincoln Drive, Building 29B, MD, 20892-2903, USA
| | - Emma K Barnafo
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, 29 Lincoln Drive, Building 29B, MD, 20892-2903, USA
| | - Christopher G Rowe
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, 29 Lincoln Drive, Building 29B, MD, 20892-2903, USA
| | - Irfan U Zaidi
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, 29 Lincoln Drive, Building 29B, MD, 20892-2903, USA
| | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, 29 Lincoln Drive, Building 29B, MD, 20892-2903, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, 29 Lincoln Drive, Building 29B, MD, 20892-2903, USA
| | | | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, 29 Lincoln Drive, Building 29B, MD, 20892-2903, USA.
| |
Collapse
|
7
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
8
|
Rajneesh, Tiwari R, Singh VK, Kumar A, Gupta RP, Singh AK, Gautam V, Kumar R. Advancements and Challenges in Developing Malaria Vaccines: Targeting Multiple Stages of the Parasite Life Cycle. ACS Infect Dis 2023; 9:1795-1814. [PMID: 37708228 DOI: 10.1021/acsinfecdis.3c00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Malaria, caused by Plasmodium species, remains a major global health concern, causing millions of deaths annually. While the introduction of the RTS,S vaccine has shown promise, there is a pressing need for more effective vaccines due to the emergence of drug-resistant parasites and insecticide-resistant vectors. However, the complex life cycle and genetic diversity of the parasite, technical obstacles, limited funding, and the impact of the 2019 pandemic have hindered progress in malaria vaccine development. This review focuses on advancements in malaria vaccine development, particularly the ongoing clinical trials targeting antigens from different stages of the Plasmodium life cycle. Additionally, we discuss the rationale, strategies, and challenges associated with vaccine design, aiming to enhance the immune response and protective efficacy of vaccine candidates. A cost-effective and multistage vaccine could hold the key to controlling and eradicating malaria.
Collapse
Affiliation(s)
- Rajneesh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vishal K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rohit P Gupta
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Applied Microbiology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh K Singh
- Faculty of Dental Science, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
9
|
da Silva GG, Zaldívar MF, Oliveira LAR, Mariano RMDS, Lair DF, de Souza RA, Galdino AS, Chávez-Fumagalli MA, da Silveira-Lemos D, Dutra WO, Nascimento Araújo R, Ferreira LL, Giunchetti RC. Advances in Non-Chemical Tools to Control Poultry Hematophagous Mites. Vet Sci 2023; 10:589. [PMID: 37888541 PMCID: PMC10611074 DOI: 10.3390/vetsci10100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
The blood-sucking mites Dermanyssus gallinae ("red mite"), Ornithonyssus sylviarum ("northern fowl mite"), and Ornithonyssus bursa ("tropical fowl mite") stand out for causing infestations in commercial poultry farms worldwide, resulting in significant economic damage for producers. In addition to changes in production systems that include new concerns for animal welfare, global climate change in recent years has become a major challenge in the spread of ectoparasites around the world. This review includes information regarding the main form of controlling poultry mites through the use of commercially available chemicals. In addition, non-chemical measures against blood-sucking mites were discussed such as extracts and oils from plants and seeds, entomopathogenic fungi, semiochemicals, powder such as diatomaceous earth and silica-based products, and vaccine candidates. The control of poultry mites using chemical methods that are currently used to control or eliminate them are proving to be less effective as mites develop resistance. In contrast, the products based on plant oils and extracts, powders of plant origin, fungi, and new antigens aimed at developing transmission-blocking vaccines against poultry mites provide some encouraging options for the rational control of these ectoparasites.
Collapse
Affiliation(s)
- Geralda Gabriele da Silva
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Maykelin Fuentes Zaldívar
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Lucilene Aparecida Resende Oliveira
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Reysla Maria da Silveira Mariano
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Daniel Ferreira Lair
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Renata Antunes de Souza
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, Federal University of São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil;
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Arequipa 04000, Peru;
| | - Denise da Silveira-Lemos
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Walderez Ornelas Dutra
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Ricardo Nascimento Araújo
- Laboratory of Hematophagous Arthropods, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Lorena Lopes Ferreira
- Laboratory of Ectoparasites, Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| |
Collapse
|
10
|
McLeod B, Mabrouk MT, Miura K, Ravichandran R, Kephart S, Hailemariam S, Pham TP, Semesi A, Kucharska I, Kundu P, Huang WC, Johnson M, Blackstone A, Pettie D, Murphy M, Kraft JC, Leaf EM, Jiao Y, van de Vegte-Bolmer M, van Gemert GJ, Ramjith J, King CR, MacGill RS, Wu Y, Lee KK, Jore MM, King NP, Lovell JF, Julien JP. Vaccination with a structure-based stabilized version of malarial antigen Pfs48/45 elicits ultra-potent transmission-blocking antibody responses. Immunity 2022; 55:1680-1692.e8. [PMID: 35977542 PMCID: PMC9487866 DOI: 10.1016/j.immuni.2022.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023]
Abstract
Malaria transmission-blocking vaccines (TBVs) aim to elicit human antibodies that inhibit sporogonic development of Plasmodium falciparum in mosquitoes, thereby preventing onward transmission. Pfs48/45 is a leading clinical TBV candidate antigen and is recognized by the most potent transmission-blocking monoclonal antibody (mAb) yet described; still, clinical development of Pfs48/45 antigens has been hindered, largely by its poor biochemical characteristics. Here, we used structure-based computational approaches to design Pfs48/45 antigens stabilized in the conformation recognized by the most potently inhibitory mAb, achieving >25°C higher thermostability compared with the wild-type protein. Antibodies elicited in mice immunized with these engineered antigens displayed on liposome-based or protein nanoparticle-based vaccine platforms exhibited 1-2 orders of magnitude superior transmission-reducing activity, compared with immunogens bearing the wild-type antigen, driven by improved antibody quality. Our data provide the founding principles for using molecular stabilization solely from antibody structure-function information to drive improved immune responses against a parasitic vaccine target.
Collapse
Affiliation(s)
- Brandon McLeod
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Moustafa T Mabrouk
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Sally Kephart
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Sophia Hailemariam
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Thao P Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Anthony Semesi
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Iga Kucharska
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Prasun Kundu
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Max Johnson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alyssa Blackstone
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - John C Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M Leaf
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Yang Jiao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jordache Ramjith
- Radboud Institute for Health Sciences, Department for Health Evidence, Biostatistics Section, Radboud University Medical Center, Nijmegen, the Netherlands
| | - C Richter King
- PATH's Malaria Vaccine Initiative, 455 Massachusetts Avenue NW Suite 1000, Washington, DC 20001, USA
| | - Randall S MacGill
- PATH's Malaria Vaccine Initiative, 455 Massachusetts Avenue NW Suite 1000, Washington, DC 20001, USA
| | - Yimin Wu
- PATH's Malaria Vaccine Initiative, 455 Massachusetts Avenue NW Suite 1000, Washington, DC 20001, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
11
|
Jagannath DK, Valiyaparambil A, Viswanath VK, Hurakadli MA, Kamariah N, Jafer AC, Patole C, Pradhan S, Kumar N, Lakshminarasimhan A. Refolding and characterization of a diabody against Pfs25, a vaccine candidate of Plasmodium falciparum. Anal Biochem 2022; 655:114830. [DOI: 10.1016/j.ab.2022.114830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
|
12
|
de Jong RM, Alkema M, Oulton T, Dumont E, Teelen K, Nakajima R, de Assis RR, Press KWD, Ngotho P, Tetteh KK, Felgner P, Marti M, Collins KA, Drakeley C, Bousema T, Stone WJ. The acquisition of humoral immune responses targeting Plasmodium falciparum sexual stages in controlled human malaria infections. Front Immunol 2022; 13:930956. [PMID: 35924245 PMCID: PMC9339717 DOI: 10.3389/fimmu.2022.930956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals infected with P. falciparum develop antibody responses to intra-erythrocytic gametocyte proteins and exported gametocyte proteins present on the surface of infected erythrocytes. However, there is currently limited knowledge on the immunogenicity of gametocyte antigens and the specificity of gametocyte-induced antibody responses. In this study, we assessed antibody responses in participants of two controlled human malaria infection (CHMI) studies by ELISA, multiplexed bead-based antibody assays and protein microarray. By comparing antibody responses in participants with and without gametocyte exposure, we aimed to disentangle the antibody response induced by asexual and sexual stage parasites. We showed that after a single malaria infection, a significant anti-sexual stage humoral response is induced in malaria-naïve individuals, even after exposure to relatively low gametocyte densities (up to ~1,600 gametocytes/mL). In contrast to antibody responses to well-characterised asexual blood stage antigens that were detectable by day 21 after infection, responses to sexual stage antigens (including transmission blocking vaccine candidates Pfs48/45 and Pfs230) were only apparent at 51 days after infection. We found antigens previously associated with early gametocyte or anti-gamete immunity were highly represented among responses linked with gametocyte exposure. Our data provide detailed insights on the induction and kinetics of antibody responses to gametocytes and identify novel antigens that elicit antibody responses exclusively in individuals with gametocyte exposure. Our findings provide target identification for serological assays for surveillance of the malaria infectious reservoir, and support vaccine development by describing the antibody response to leading vaccine antigens after primary infection.
Collapse
Affiliation(s)
- Roos M. de Jong
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Manon Alkema
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Tate Oulton
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elin Dumont
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Karina Teelen
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Rie Nakajima
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | - Rafael Ramiro de Assis
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | | | - Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Kevin K.A. Tetteh
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Phil Felgner
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Katharine A. Collins
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Will J.R. Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom,*Correspondence: Will J.R. Stone,
| |
Collapse
|
13
|
Wang J, Chen K, Yang J, Zhang S, Li Y, Liu G, Luo J, Yin H, Wang G, Guan G. Comparative genomic analysis of Babesia duncani responsible for human babesiosis. BMC Biol 2022; 20:153. [PMID: 35790982 PMCID: PMC9258201 DOI: 10.1186/s12915-022-01361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background Human babesiosis, caused by parasites of the genus Babesia, is an emerging and re-emerging tick-borne disease that is mainly transmitted by tick bites and infected blood transfusion. Babesia duncani has caused majority of human babesiosis in Canada; however, limited data are available to correlate its genomic information and biological features. Results We generated a B. duncani reference genome using Oxford Nanopore Technology (ONT) and Illumina sequencing technology and uncovered its biological features and phylogenetic relationship with other Apicomplexa parasites. Phylogenetic analyses revealed that B. duncani form a clade distinct from B. microti, Babesia spp. infective to bovine and ovine species, and Theileria spp. infective to bovines. We identified the largest species-specific gene family that could be applied as diagnostic markers for this pathogen. In addition, two gene families show signals of significant expansion and several genes that present signatures of positive selection in B. duncani, suggesting their possible roles in the capability of this parasite to infect humans or tick vectors. Conclusions Using ONT sequencing and Illumina sequencing technologies, we provide the first B. duncani reference genome and confirm that B. duncani forms a phylogenetically distinct clade from other Piroplasm parasites. Comparative genomic analyses show that two gene families are significantly expanded in B. duncani and may play important roles in host cell invasion and virulence of B. duncani. Our study provides basic information for further exploring B. duncani features, such as host-parasite and tick-parasite interactions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01361-9.
Collapse
Affiliation(s)
- Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, 730046, Gansu, China.
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, 730046, Gansu, China
| | - Shangdi Zhang
- Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, 730046, Gansu, China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, 730046, Gansu, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, 730046, Gansu, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, 730046, Gansu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, 730046, Gansu, China.
| |
Collapse
|
14
|
Keleta Y, Ramelow J, Cui L, Li J. Molecular interactions between parasite and mosquito during midgut invasion as targets to block malaria transmission. NPJ Vaccines 2021; 6:140. [PMID: 34845210 PMCID: PMC8630063 DOI: 10.1038/s41541-021-00401-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Despite considerable effort, malaria remains a major public health burden. Malaria is caused by five Plasmodium species and is transmitted to humans via the female Anopheles mosquito. The development of malaria vaccines against the liver and blood stages has been challenging. Therefore, malaria elimination strategies advocate integrated measures, including transmission-blocking approaches. Designing an effective transmission-blocking strategy relies on a sophisticated understanding of the molecular mechanisms governing the interactions between the mosquito midgut molecules and the malaria parasite. Here we review recent advances in the biology of malaria transmission, focusing on molecular interactions between Plasmodium and Anopheles mosquito midgut proteins. We provide an overview of parasite and mosquito proteins that are either targets for drugs currently in clinical trials or candidates of promising transmission-blocking vaccines.
Collapse
Affiliation(s)
- Yacob Keleta
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Julian Ramelow
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Liwang Cui
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
15
|
Zaric M, Marini A, Nielsen CM, Gupta G, Mekhaiel D, Pham TP, Elias SC, Taylor IJ, de Graaf H, Payne RO, Li Y, Silk SE, Williams C, Hill AVS, Long CA, Miura K, Biswas S. Poor CD4 + T Cell Immunogenicity Limits Humoral Immunity to P. falciparum Transmission-Blocking Candidate Pfs25 in Humans. Front Immunol 2021; 12:732667. [PMID: 34659219 PMCID: PMC8515144 DOI: 10.3389/fimmu.2021.732667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum transmission-blocking vaccines (TBVs) targeting the Pfs25 antigen have shown promise in mice but the same efficacy has never been achieved in humans. We have previously published pre-clinical data related to a TBV candidate Pfs25-IMX313 encoded in viral vectors which was very promising and hence progressed to human clinical trials. The results from the clinical trial of this vaccine were very modest. Here we unravel why, contrary to mice, this vaccine has failed to induce robust antibody (Ab) titres in humans to elicit transmission-blocking activity. We examined Pfs25-specific B cell and T follicular helper (Tfh) cell responses in mice and humans after vaccination with Pfs25-IMX313 encoded by replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA) delivered in the heterologous prime-boost regimen via intramuscular route. We found that after vaccination, the Pfs25-IMX313 was immunologically suboptimal in humans compared to mice in terms of serum Ab production and antigen-specific B, CD4+ and Tfh cell responses. We identified that the key determinant for the poor anti-Pfs25 Ab formation in humans was the lack of CD4+ T cell recognition of Pfs25-IMX313 derived peptide epitopes. This is supported by correlations established between the ratio of proliferated antigen-specific CD4+/Tfh-like T cells, CXCL13 sera levels, and the corresponding numbers of circulating Pfs25-specific memory B cells, that consequently reflected on antigen-specific IgG sera levels. These correlations can inform the design of next-generation Pfs25-based vaccines for robust and durable blocking of malaria transmission.
Collapse
Affiliation(s)
- Marija Zaric
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Arianna Marini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carolyn M Nielsen
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Gaurav Gupta
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Mekhaiel
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Thao P Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sean C Elias
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona J Taylor
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Hans de Graaf
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth O Payne
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Yuanyuan Li
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah E Silk
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris Williams
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Adrian V S Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sumi Biswas
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Broichhagen J, Kilian N. Chemical Biology Tools To Investigate Malaria Parasites. Chembiochem 2021; 22:2219-2236. [PMID: 33570245 PMCID: PMC8360121 DOI: 10.1002/cbic.202000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Parasitic diseases like malaria tropica have been shaping human evolution and history since the beginning of mankind. After infection, the response of the human host ranges from asymptomatic to severe and may culminate in death. Therefore, proper examination of the parasite's biology is pivotal to deciphering unique molecular, biochemical and cell biological processes, which in turn ensure the identification of treatment strategies, such as potent drug targets and vaccine candidates. However, implementing molecular biology methods for genetic manipulation proves to be difficult for many parasite model organisms. The development of fast and straightforward applicable alternatives, for instance small-molecule probes from the field of chemical biology, is essential. In this review, we will recapitulate the highlights of previous molecular and chemical biology approaches that have already created insight and understanding of the malaria parasite Plasmodium falciparum. We discuss current developments from the field of chemical biology and explore how their application could advance research into this parasite in the future. We anticipate that the described approaches will help to close knowledge gaps in the biology of P. falciparum and we hope that researchers will be inspired to use these methods to gain knowledge - with the aim of ending this devastating disease.
Collapse
Affiliation(s)
- Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGermany
| | - Nicole Kilian
- Centre for Infectious DiseasesParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| |
Collapse
|
17
|
Niu G, Cui Y, Wang X, Keleta Y, Li J. Studies of the Parasite-Midgut Interaction Reveal Plasmodium Proteins Important for Malaria Transmission to Mosquitoes. Front Cell Infect Microbiol 2021; 11:654216. [PMID: 34262880 PMCID: PMC8274421 DOI: 10.3389/fcimb.2021.654216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Malaria transmission relies on parasite-mosquito midgut interaction. The interactive proteins are hypothesized to be ideal targets to block malaria transmission to mosquitoes. We chose 76 genes that contain signal peptide-coding regions and are upregulated and highly abundant at sexual stages. Forty-six of these candidate genes (60%) were cloned and expressed using the baculovirus expression system in insect cells. Six of them, e.g., PF3D7_0303900, PF3D7_0406200 (Pfs16), PF3D7_1204400 (Pfs37), PF3D7_1214800, PF3D7_1239400, and PF3D7_1472800 were discovered to interact with blood-fed mosquito midgut lysate. Previous works showed that among these interactive proteins, knockout the orthologs of Pfs37 or Pfs16 in P. berghei reduced oocysts in mosquitoes. Here we further found that anti-Pfs16 polyclonal antibody significantly inhibited P. falciparum transmission to Anopheles gambiae. Investigating these candidate proteins will improve our understanding of malaria transmission and discover new targets to break malaria transmission.
Collapse
Affiliation(s)
| | | | | | | | - Jun Li
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
18
|
Arévalo-Herrera M, Miura K, Cespedes N, Echeverry C, Solano E, Castellanos A, Ramirez JS, Miranda A, Kajava AV, Long C, Corradin G, Herrera S. Immunoreactivity of Sera From Low to Moderate Malaria-Endemic Areas Against Plasmodium vivax r Pvs48/45 Proteins Produced in Escherichia coli and Chinese Hamster Ovary Systems. Front Immunol 2021; 12:634738. [PMID: 34248932 PMCID: PMC8264144 DOI: 10.3389/fimmu.2021.634738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
P48/45 is a conserved gametocyte antigen involved in Plasmodium parasite fertilization. A recombinant Plasmodium vivax P48/45 (Pvs48/45) protein expressed in Escherichia coli (E. coli) was highly antigenic and immunogenic in experimental animals and elicited specific transmission-blocking (TB) antibodies in a previous pilot study. Here, a similar Pvs48/45 gene was expressed in Chinese Hamster Ovary (CHO) cells and we compared its immunoreactivity with the E. coli product. Specific antibody titers were determined using plasma from Colombian individuals (n=227) living in endemic areas where both P. vivax and P. falciparum are prevalent and from Guatemala (n=54) where P. vivax is highly prevalent. In Colombia, plasma seroprevalence to CHO-rPvs48/45 protein was 46.3%, while for E. coli-rPvs48/45 protein was 36.1% (p<0.001). In Guatemala, the sero prevalence was 24.1% and 14.8% (p<0.001), respectively. Reactivity index (RI) against both proteins showed an age-dependent increase. IgG2 was the predominant subclass and the antibody avidity index evaluated by ELISA ranged between 4-6 mol/L. Ex vivo P. vivax mosquito direct membrane feeding assays (DMFA) performed in presence of study plasmas, displayed significant parasite transmission-blocking (TB), however, there was no direct correlation between antibody titers and oocysts transmission reduction activity (%TRA). Nevertheless, DMFA with CHO rPvs48/45 affinity purified IgG showed a dose response; 90.2% TRA at 100 μg/mL and 71.8% inhibition at 10 μg/mL. In conclusion, the CHO-rPvs48/45 protein was more immunoreactive in most of the malaria endemic places studied, and CHO-rPvs48/45 specific IgG showed functional activity, supporting further testing of the protein vaccine potential.
Collapse
Affiliation(s)
- Myriam Arévalo-Herrera
- Immunology Department, Malaria Vaccine and Drug Development Center, Cali, Colombia
- Immunology Department, Caucaseco Scientific Research Center, Cali, Colombia
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Nora Cespedes
- Immunology Department, Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Carlos Echeverry
- Immunology Department, Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Eduardo Solano
- Immunology Department, Caucaseco Scientific Research Center, Cali, Colombia
| | - Angélica Castellanos
- Immunology Department, Malaria Vaccine and Drug Development Center, Cali, Colombia
| | | | - Adolfo Miranda
- Parasitology Department, Centro Nacional de Epidemiología (CNE), Guatemala City, Guatemala
| | - Andrey V. Kajava
- Centre de Recherche en Biologie Cellulaire de Montpellier, Université Montpellier, Montpellier, France
| | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | | | - Sócrates Herrera
- Immunology Department, Malaria Vaccine and Drug Development Center, Cali, Colombia
- Immunology Department, Caucaseco Scientific Research Center, Cali, Colombia
| |
Collapse
|
19
|
Cai J, Chen S, Zhu F, Lu X, Liu T, Xu W. Whole-Killed Blood-Stage Vaccine: Is It Worthwhile to Further Develop It to Control Malaria? Front Microbiol 2021; 12:670775. [PMID: 33995336 PMCID: PMC8119638 DOI: 10.3389/fmicb.2021.670775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
Major challenges have been encountered regarding the development of highly efficient subunit malaria vaccines, and so whole-parasite vaccines have regained attention in recent years. The whole-killed blood-stage vaccine (WKV) is advantageous as it can be easily manufactured and efficiently induced protective immunity against a blood-stage challenge, as well as inducing cross-stage protection against both the liver and sexual-stages. However, it necessitates a high dose of parasitized red blood cell (pRBC) lysate for immunization, and this raises concerns regarding its safety and low immunogenicity. Knowledge of the major components of WKV that can induce or evade the host immune response, and the development of appropriate human-compatible adjuvants will greatly help to optimize the WKV. Therefore, we argue that the further development of the WKV is worthwhile to control and potentially eradicate malaria worldwide.
Collapse
Affiliation(s)
- Jingjing Cai
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Suilin Chen
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Feng Zhu
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Taiping Liu
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Wenyue Xu
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| |
Collapse
|
20
|
Alzan HF, Bastos RG, Ueti MW, Laughery JM, Rathinasamy VA, Cooke BM, Suarez CE. Assessment of Babesia bovis 6cys A and 6cys B as components of transmission blocking vaccines for babesiosis. Parasit Vectors 2021; 14:210. [PMID: 33879245 PMCID: PMC8056569 DOI: 10.1186/s13071-021-04712-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Background Babesia bovis reproduces sexually in the gut of its tick vector Rhipicephalus microplus, which involves expression of 6cys A and 6cys B proteins. Members of the widely conserved 6cys superfamily are candidates for transmission blocking vaccines (TBV), but intricacies in the immunogenicity of the 6cys proteins in the related Plasmodium parasites required the identification of transmission blocking domains in these molecules for vaccine design. Hereby, the immunogenic efficacy of recombinant (r) B. bovis 6cys A and B proteins as a TBV formulation was studied. Methods The immunogenicity of r6cys A and 6cys B proteins expressed in a eukaryotic system was evaluated in a cattle immunization trial (3 immunized and 3 control calves). A B. bovis sexual stage induction in vitro inhibition assay to assess the ability of antibodies to block the production of sexual forms by the parasite was developed. Results Immunized cattle generated antibodies against r6cys A and r6cys B that were unable to block sexual reproduction of the parasite in ticks. Additionally, these antibodies also failed in recognizing native 6cys A and 6cys B and peptides representing 6cys A and 6cys B functional domains and in inhibiting the development of sexual forms in an in vitro induction system. In contrast, rabbit antibodies generated against synthetic peptides representing predicted B-cell epitopes of 6cys A and 6cys B recognized recombinant and native forms of both 6cys proteins as well as peptides representing 6cys A and 6cys B functional domains and were able to neutralize development of sexual forms of the parasite in vitro. Conclusions These data, combined with similar work performed on Plasmodium 6cys proteins, indicate that an effective 6cys protein-based TBV against B. bovis will require identifying and targeting selected regions of proteins containing epitopes able to reduce transmission. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04712-7.
Collapse
Affiliation(s)
- Heba F Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA. .,Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt. .,Tick and Tick-Borne Disease Research Unit, National Research Center, Dokki, Giza, 12622, Egypt.
| | - Reginaldo G Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Massaro W Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.,Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, USA
| | - Jacob M Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Vignesh A Rathinasamy
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Brian M Cooke
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA. .,Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, USA.
| |
Collapse
|
21
|
McCoy KD, Weldon CT, Ansumana R, Lamin JM, Stenger DA, Ryan SJ, Bardosh K, Jacobsen KH, Dinglasan RR. Are malaria transmission-blocking vaccines acceptable to high burden communities? Results from a mixed methods study in Bo, Sierra Leone. Malar J 2021; 20:183. [PMID: 33849572 PMCID: PMC8045381 DOI: 10.1186/s12936-021-03723-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/04/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Malaria transmission-blocking vaccines (TBVs) could help break the cycle of malaria transmission by conferring community rather than individual protection. When introducing new intervention strategies, uptake is dependent on acceptability, not just efficacy. In this exploratory study on acceptability of TBVs in Sierra Leone, it was hypothesized that TBVs would be largely acceptable to adults and health workers in areas with relatively few ongoing malaria interventions, and that (i) knowledge of malaria and vaccines, (ii) health behaviours associated with malaria and vaccines, and (iii) attitudes towards different vaccines types could lead to greater TBV acceptability. METHODS This study used a mixed methods approach in Bo, Sierra Leone, to understand community knowledge, attitudes, and practices related to malaria and vaccination in general. This included: (i) a population-based cross-sectional survey (n=615 adults), (ii) 6 focus group discussions with parents, and (iii) 20 key informant interviews. The concept of a TBV was explained to participants before they were asked about their willingness to accept this vaccine modality as part of an integrated malaria elimination programme. RESULTS This study found that most adults would be willing to receive a TBV vaccine. Respondents noted mostly positive past experiences with adult and childhood vaccinations for other infectious diseases and high levels of engagement in other malaria prevention behaviors such as bed nets. Perceived barriers to TBV acceptance were largely focused on general community-level distribution of a vaccine, including personal fears of vaccination and possible costs. After an explanation of the TBV mechanism, nearly all focus group and interview participants believed that community members would accept the vaccine as part of an integrated malaria control approach. Both parents and health workers offered insight on how to successfully roll-out a future TBV vaccination programme. CONCLUSIONS The willingness of community members in Bo, Sierra Leone to accept a TBV as part of an integrated anti-malarial strategy suggests that the atypical mechanism of TBV action might not be an obstacle to future clinical trials. This study's findings suggests that perceived general barriers to vaccination implementation, such as perceived personal fears and vaccine cost, must be addressed in future clinical and implementation research studies.
Collapse
Affiliation(s)
- Kaci D McCoy
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, FL, USA
- Emerging Pathogens Institute, Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Caroline T Weldon
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, FL, USA
| | - Rashid Ansumana
- Mercy Hospital Research Laboratory, Bo, Sierra Leone
- School of Community Health Sciences, Njala University, Bo, Sierra Leone
| | | | - David A Stenger
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Sadie J Ryan
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, FL, USA
- Emerging Pathogens Institute, Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
- Department of Geography, College of Liberal Arts & Sciences, University of Florida, Gainesville, FL, USA
| | - Kevin Bardosh
- Center for One Health Research, School of Public Health, University of Washington, Seattle, WA, USA
| | - Kathryn H Jacobsen
- Department of Global and Community Health, College of Health and Human Services, George Mason University, Fairfax, VA, USA
| | - Rhoel R Dinglasan
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, FL, USA.
- Emerging Pathogens Institute, Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
22
|
Chawla J, Oberstaller J, Adams JH. Targeting Gametocytes of the Malaria Parasite Plasmodium falciparum in a Functional Genomics Era: Next Steps. Pathogens 2021; 10:346. [PMID: 33809464 PMCID: PMC7999360 DOI: 10.3390/pathogens10030346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/04/2023] Open
Abstract
Mosquito transmission of the deadly malaria parasite Plasmodium falciparum is mediated by mature sexual forms (gametocytes). Circulating in the vertebrate host, relatively few intraerythrocytic gametocytes are picked up during a bloodmeal to continue sexual development in the mosquito vector. Human-to-vector transmission thus represents an infection bottleneck in the parasite's life cycle for therapeutic interventions to prevent malaria. Even though recent progress has been made in the identification of genetic factors linked to gametocytogenesis, a plethora of genes essential for sexual-stage development are yet to be unraveled. In this review, we revisit P. falciparum transmission biology by discussing targetable features of gametocytes and provide a perspective on a forward-genetic approach for identification of novel transmission-blocking candidates in the future.
Collapse
Affiliation(s)
- Jyotsna Chawla
- Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, MDC 7, Tampa, FL 33612, USA;
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| |
Collapse
|
23
|
Mathematical assessment of the impact of human-antibodies on sporogony during the within-mosquito dynamics of Plasmodium falciparum parasites. J Theor Biol 2020; 515:110562. [PMID: 33359209 DOI: 10.1016/j.jtbi.2020.110562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022]
Abstract
We develop and analyze a deterministic ordinary differential equation mathematical model for the within-mosquito dynamics of the Plasmodium falciparum malaria parasite. Our model takes into account the action and effect of blood resident human-antibodies, ingested by the mosquito during a blood meal from humans, in inhibiting gamete fertilization. The model also captures subsequent developmental processes that lead to the different forms of the parasite within the mosquito. Continuous functions are used to model the switching transition from oocyst to sporozoites as well as human antibody density variations within the mosquito gut are proposed and used. In sum, our model integrates the developmental stages of the parasite within the mosquito such as gametogenesis, fertilization and sporogenesis culminating in the formation of sporozoites. Quantitative and qualitative analyses including a sensitivity analysis for influential parameters are performed. We quantify the average sporozoite load produced at the end of the within-mosquito malaria parasite's developmental stages. Our analysis shows that an increase in the efficiency of the ingested human antibodies in inhibiting fertilization within the mosquito's gut results in lowering the density of oocysts and hence sporozoites that are eventually produced by each mosquito vector. So, it is possible to control and limit oocysts development and hence sporozoites development within a mosquito by boosting the efficiency of antibodies as a pathway to the development of transmission-blocking vaccines which could potentially reduce oocysts prevalence among mosquitoes and hence reduce the transmission potential from mosquitoes to human.
Collapse
|
24
|
Plasmodium's journey through the Anopheles mosquito: A comprehensive review. Biochimie 2020; 181:176-190. [PMID: 33346039 DOI: 10.1016/j.biochi.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
The malaria parasite has an extraordinary ability to evade the immune system due to which the development of a malaria vaccine is a challenging task. Extensive research on malarial infection in the human host particularly during the liver stage has resulted in the discovery of potential candidate vaccines including RTS,S/AS01 and R21. However, complete elimination of malaria would require a holistic multi-component approach. In line with this, under the World Health Organization's PATH Malaria Vaccine Initiative (MVI), the research focus has shifted towards the sexual stages of malaria in the mosquito host. Last two decades of scientific research obtained seminal information regarding the sexual/mosquito stages of the malaria. This updated and comprehensive review would provide the basis for consolidated understanding of cellular, biochemical, molecular and immunological aspects of parasite transmission right from the sexual stage commitment in the human host to the sporozoite delivery back into subsequent vertebrate host by the female Anopheles mosquito.
Collapse
|
25
|
Prajapati SK, Ayanful-Torgby R, Pava Z, Barbeau MC, Acquah FK, Cudjoe E, Kakaney C, Amponsah JA, Obboh E, Ahmed AE, Abuaku BK, McCarthy JS, Amoah LE, Williamson KC. The transcriptome of circulating sexually committed Plasmodium falciparum ring stage parasites forecasts malaria transmission potential. Nat Commun 2020; 11:6159. [PMID: 33268801 PMCID: PMC7710746 DOI: 10.1038/s41467-020-19988-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022] Open
Abstract
Malaria is spread by the transmission of sexual stage parasites, called gametocytes. However, with Plasmodium falciparum, gametocytes can only be detected in peripheral blood when they are mature and transmissible to a mosquito, which complicates control efforts. Here, we identify the set of genes overexpressed in patient blood samples with high levels of gametocyte-committed ring stage parasites. Expression of all 18 genes is regulated by transcription factor AP2-G, which is required for gametocytogenesis. We select three genes, not expressed in mature gametocytes, to develop as biomarkers. All three biomarkers we validate in vitro using 6 different parasite lines and develop an algorithm that predicts gametocyte production in ex vivo samples and volunteer infection studies. The biomarkers are also sensitive enough to monitor gametocyte production in asymptomatic P. falciparum carriers allowing early detection and treatment of infectious reservoirs, as well as the in vivo analysis of factors that modulate sexual conversion. Malaria gametocytes are sexual-stage parasites transmitted from mammalian host’s blood back to their insect vector. Here, Prajapati et al. identify gametocyte-committed ring-stage biomarkers allowing to forecast malaria transmission potential.
Collapse
Affiliation(s)
- Surendra K Prajapati
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Ruth Ayanful-Torgby
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Zuleima Pava
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michelle C Barbeau
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,University of Virginia, Charlottesville, VA, USA
| | - Festus K Acquah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Elizabeth Cudjoe
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Courage Kakaney
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Jones A Amponsah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Anwar E Ahmed
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Benjamin K Abuaku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Linda E Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
26
|
Bucşan AN, Williamson KC. Setting the stage: The initial immune response to blood-stage parasites. Virulence 2020; 11:88-103. [PMID: 31900030 PMCID: PMC6961725 DOI: 10.1080/21505594.2019.1708053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/22/2023] Open
Abstract
Individuals growing up in malaria endemic areas gradually develop protection against clinical malaria and passive transfer experiments in humans have demonstrated that this protection is mediated in part by protective antibodies. However, neither the target antigens, specific effector mechanisms, nor the role of continual parasite exposure have been elucidated, which complicates vaccine development. Progress has been made in defining the innate signaling pathways activated by parasite components, including DNA, RNA, hemozoin, and phospholipids, which initiate the immune response and will be the focus of this review. The challenge that remains within the field is to understand the role of these early responses in the development of protective adaptive responses that clear iRBC and block merozoite invasion so that optimal vaccines and therapeutics may be produced.
Collapse
Affiliation(s)
- Allison N. Bucşan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kim C. Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
27
|
Diversify and Conquer: The Vaccine Escapism of Plasmodium falciparum. Microorganisms 2020; 8:microorganisms8111748. [PMID: 33171746 PMCID: PMC7694999 DOI: 10.3390/microorganisms8111748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last century, a great deal of effort and resources have been poured into the development of vaccines to protect against malaria, particularly targeting the most widely spread and deadly species of the human-infecting parasites: Plasmodium falciparum. Many of the known proteins the parasite uses to invade human cells have been tested as vaccine candidates. However, precisely because of the importance and immune visibility of these proteins, they tend to be very diverse, and in many cases redundant, which limits their efficacy in vaccine development. With the advent of genomics and constantly improving sequencing technologies, an increasingly clear picture is emerging of the vast genomic diversity of parasites from different geographic areas. This diversity is distributed throughout the genome and includes most of the vaccine candidates tested so far, playing an important role in the low efficacy achieved. Genomics is a powerful tool to search for genes that comply with the most desirable attributes of vaccine targets, allowing us to evaluate function, immunogenicity and also diversity in the worldwide parasite populations. Even predicting how this diversity might evolve and spread in the future becomes possible, and can inform novel vaccine efforts.
Collapse
|
28
|
Pigeault R, Isaïa J, Yerbanga RS, Dabiré KR, Ouédraogo JB, Cohuet A, Lefèvre T, Christe P. Different distribution of malaria parasite in left and right extremities of vertebrate hosts translates into differences in parasite transmission. Sci Rep 2020; 10:10183. [PMID: 32576924 PMCID: PMC7311528 DOI: 10.1038/s41598-020-67180-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
Malaria, a vector-borne disease caused by Plasmodium spp., remains a major global cause of mortality. Optimization of disease control strategies requires a thorough understanding of the processes underlying parasite transmission. While the number of transmissible stages (gametocytes) of Plasmodium in blood is frequently used as an indicator of host-to-mosquito transmission potential, this relationship is not always clear. Significant effort has been made in developing molecular tools that improve gametocyte density estimation and therefore prediction of mosquito infection rates. However a significant level of uncertainty around estimates remains. The weakness in the relationship between gametocyte burden, measured from a blood sample, and the mosquito infection rate could be explained by a non-homogeneous distribution of gametocytes in the bloodstream. The estimated gametocyte density would then only be a single snapshot that does not reflect the host infectivity. This aspect of Plasmodium infection, however, remains largely neglected. In both humans and birds, we found here that the gametocyte densities differed depending on which side of the body the sample was taken, suggesting that gametocytes are not homogeneously distributed within the vertebrate host. We observed a fluctuating asymmetry, in other words, the extremity of the body with the highest density of parasites is not always the same from one individual to another. An estimation of gametocyte density from only one blood sample, as is commonly measured, could, therefore, over- or underestimated the infectivity of gametocyte carriers. This might have important consequences on the epidemiology of the disease since we show that this variation influences host-to-mosquito transmission. Vectors fed on the least infected body part had a lower parasite burden than those fed on the most infected part. The heterogeneous distribution of gametocytes in bloodstream should be considered to improve diagnosis and test new malaria control strategies.
Collapse
Affiliation(s)
- Romain Pigeault
- Department of Ecology and Evolution, CH-1015, Lausanne, Switzerland.
| | - Julie Isaïa
- Department of Ecology and Evolution, CH-1015, Lausanne, Switzerland
| | | | - Kounbobr R Dabiré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | | | - Anna Cohuet
- Unité MIVEGEC, IRD 224-CNRS 5290-Université Montpellier, Montpellier, France
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Unité MIVEGEC, IRD 224-CNRS 5290-Université Montpellier, Montpellier, France
| | - Philippe Christe
- Department of Ecology and Evolution, CH-1015, Lausanne, Switzerland
| |
Collapse
|
29
|
Li D, Yu C, Guo J, Wang Y, Zhao Y, Wang L, Soe MT, Feng H, Kyaw MP, Sattabongkot J, Jiang L, Cui L, Zhu X, Cao Y. Plasmodium vivax HAP2/GCS1 gene exhibits limited genetic diversity among parasite isolates from the Greater Mekong Subregion. Parasit Vectors 2020; 13:175. [PMID: 32264948 PMCID: PMC7137254 DOI: 10.1186/s13071-020-04050-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/28/2020] [Indexed: 12/02/2022] Open
Abstract
Background Antigens expressed in sexual stages of the malaria parasites are targets of transmission-blocking vaccines (TBVs). HAP2/GCS1, a TBV candidate, is critical for fertilization in Plasmodium. Here, the genetic diversity of PvHAP2 was studied in Plasmodium vivax parasite populations from the Greater Mekong Subregion (GMS). Methods Plasmodium vivax clinical isolates were collected in clinics from the China-Myanmar border region (135 samples), western Thailand (41 samples) and western Myanmar (51 samples). Near full-length Pvhap2 (nucleotides 13–2574) was amplified and sequenced from these isolates. Molecular evolution studies were conducted to evaluate the genetic diversity, selection and population differentiation. Results Sequencing of the pvhap2 gene for a total of 227 samples from the three P. vivax populations revealed limited genetic diversity of this gene in the GMS (π = 0.00036 ± 0.00003), with the highest π value observed in Myanmar (0.00053 ± 0.00009). Y133S was the dominant mutation in the China-Myanmar border (99.26%), Myanmar (100%) and Thailand (95.12%). Results of all neutrality tests were negative for all the three populations, suggesting the possible action of purifying selection. Codon-based tests identified specific codons which are under purifying or positive selections. Wright’s fixation index showed low to moderate genetic differentiation of P. vivax populations in the GMS, with FST ranging from 0.04077 to 0.24833, whereas high levels of genetic differentiation were detected between the China-Myanmar border and Iran populations (FST = 0.60266), and between Thailand and Iran populations (FST = 0.44161). A total of 20 haplotypes were identified, with H2 being the abundant haplotype in China-Myanmar border, Myanmar and Thailand populations. Epitope mapping prediction of Pvhap2 antigen showed that high-score B-cell epitopes are located in the S307-G324, L429-P453 and V623-D637 regions. The E317K and D637N mutations located within S307-G324 and V623-D637 epitopes slightly reduced the predicted score for potential epitopes. Conclusions The present study showed a very low level of genetic diversity of pvhap2 gene among P. vivax populations in the Greater Mekong Subregion. The relative conservation of pvhap2 supports further evaluation of a Pvhap2-based TBV.![]()
Collapse
Affiliation(s)
- Danni Li
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Chunyun Yu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji School of Medicine, Shanghai, People's Republic of China
| | - Yazhou Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Lin Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Hui Feng
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
30
|
Antibody response of a particle-inducing, liposome vaccine adjuvant admixed with a Pfs230 fragment. NPJ Vaccines 2020; 5:23. [PMID: 32218995 PMCID: PMC7080793 DOI: 10.1038/s41541-020-0173-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Pfs230 is a malaria transmission-blocking antigen candidate, expressed on the surface of Plasmodium falciparum gametocytes. A recombinant, his-tagged Pfs230 fragment (Pfs230C1; amino acids 443–731) formed serum-stable particles upon incubation with liposomes containing cobalt-porphyrin-phospholipid (CoPoP). In mice, immunization with Pfs230C1, admixed with the adjuvants Alum, Montanide ISA720 or CoPoP liposomes (also containing synthetic monophosphoryl lipid A; PHAD), resulted in elicitation of IgG antibodies, but only those induced with CoPoP/PHAD or ISA720 strongly reduced parasite transmission. Immunization with micrograms of Pfs230C1 adjuvanted with identical liposomes lacking cobalt (that did not induce particle formation) or Alum was less effective than immunization with nanograms of Pfs230C1 with CoPoP/PHAD. CoPoP/PHAD and ISA720 adjuvants induced antibodies with similar Pfs230C1 avidity but higher IgG2-to-IgG1 ratios than Alum, which likely contributed to enhanced functional activity. Unlike prior work with another transmission-blocking antigen (Pfs25), Pfs230C1 was found to be effectively taken up by antigen-presenting cells without particle formation. The anti-Pfs230C1 IgG response was durable in mice for 250 days following immunization with CoPoP/PHAD, as were antibody avidity and elevated IgG2-to-IgG1 ratios. Immunization of rabbits with 20 µg Pfs230C1 admixed with CoPoP/PHAD elicited antibodies that inhibited parasite transmission. Taken together, these results show that liposomes containing CoPoP and PHAD are an effective vaccine adjuvant platform for recombinant malaria transmission blocking antigens.
Collapse
|
31
|
Qiu Y, Zhao Y, Liu F, Ye B, Zhao Z, Thongpoon S, Roobsoong W, Sattabongkot J, Cui L, Fan Q, Cao Y. Evaluation of Plasmodium vivax HAP2 as a transmission-blocking vaccine candidate. Vaccine 2020; 38:2841-2848. [PMID: 32093983 DOI: 10.1016/j.vaccine.2020.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022]
Abstract
Transmission-blocking vaccine (TBV) is a promising strategy to interfere with the transmission of malaria. To date, only limited TBV candidate antigens have been identified for Plasmodium vivax. HAP2 is a gamete membrane fusion protein, with homology to the class II viral fusion proteins. Herein we reported the characterization of the PvHAP2 for its potential as a TBV candidate for P. vivax. The HAP2/GCS1 domain of PvHAP2 was expressed in the baculovirus expression system and the recombinant protein was used to raise antibodies in rabbits. Indirect immunofluorescence assays showed that anti-PvHAP2 antibodies reacted only with the male gametocytes on blood smears. Direct membrane feeding assays were conducted using four field P. vivax isolates in Anopheles dirus. At a mean infection intensity of 72.4, 70.7, 51.3, and 15.6 oocysts/midgut with the control antibodies, anti-PvHAP2 antibodies significantly reduced the midgut oocyst intensity by 40.3, 44.4, 61.9, and 89.7%. Whereas the anti-PvHAP2 antibodies were not effective in reducing the infection prevalence at higher parasite exposure (51.3-72.4 oocysts/midgut in the control group), the anti-PvHAP2 antibodies reduced infection prevalence by 50% at a low challenge (15.6 oocysts/midgut). Multiple sequence alignment showed 100% identity among these Thai P. vivax isolates, suggesting that polymorphism may not be an impediment for the utilization of PvHAP2 as a TBV antigen. In conclusion, our results suggest that PvHAP2 could serve as a TBV candidate for P. vivax, and further optimization and evaluation are warranted.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Bo Ye
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Sataporn Thongpoon
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL 33612, USA
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
32
|
Lee SM, Hickey JM, Miura K, Joshi SB, Volkin DB, King CR, Plieskatt JL. A C-terminal Pfs48/45 malaria transmission-blocking vaccine candidate produced in the baculovirus expression system. Sci Rep 2020; 10:395. [PMID: 31942034 PMCID: PMC6962329 DOI: 10.1038/s41598-019-57384-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/30/2019] [Indexed: 11/09/2022] Open
Abstract
The Plasmodium falciparum gametocyte surface protein, Pfs48/45, is a potential target for malaria transmission-blocking vaccines. However, due to its size and complexity, expression of the full-length protein has been difficult, leading to focus on the C-terminal six cysteine domain (6C) with the use of fusion proteins to facilitate expression and folding. In this study, we utilized the baculovirus system to evaluate the expression of three Pfs48/45 proteins including the full-length protein, the 6C domain fragment and the 6C domain mutant to prevent glycosylation. Expression of the recombinant Pfs48/45 proteins was conducted in super Sf9 cells combined with the use of tunicamycin to prevent N-glycosylation. The proteins were then evaluated as immunogens in mice to demonstrate the induction of functionally active polyclonal antibody responses as measured in the standard membrane feeding assay (SMFA). Only the 6C protein was found to exhibit significant transmission-reducing activity. Further characterization of the biologically active 6C protein demonstrated it was homogeneous in terms of size, charge, conformation, absence of glycosylation, and containing proper disulfide bond pairings. This study presents an alternative expression system, without the need of a fusion protein partner, for the Pfs48/45 6C protein fragment including further evaluation as a potential transmission-blocking vaccine candidate.
Collapse
Affiliation(s)
- Shwu-Maan Lee
- PATH's Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA.
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, USA
| | - C Richter King
- PATH's Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| | - Jordan L Plieskatt
- PATH's Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| |
Collapse
|
33
|
The Pfs230 N-terminal fragment, Pfs230D1+: expression and characterization of a potential malaria transmission-blocking vaccine candidate. Malar J 2019; 18:356. [PMID: 31703583 PMCID: PMC6839146 DOI: 10.1186/s12936-019-2989-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/24/2019] [Indexed: 12/31/2022] Open
Abstract
Background Control and elimination of malaria can be accelerated by transmission-blocking interventions such as vaccines. A surface antigen of Plasmodium falciparum gametocytes, Pfs230, is a leading vaccine target antigen, and has recently progressed to experimental clinical trials. To support vaccine product development, an N-terminal Pfs230 antigen was designed to increase yield, as well as to improve antigen quality, integrity, and homogeneity. Methods A scalable baculovirus expression system was used to express the Pfs230D1+ construct (aa 552–731), which was subsequently purified and analysed. Pfs230D1+ was designed to avoid glycosylation and protease digestion, thereby potentially increasing homogeneity and stability. The resulting Pfs230D1+ protein was compared to a previous iteration of the Pfs230 N-terminal domain, Pfs230C1 (aa 443–731), through physiochemical characterization and in vivo analysis. The induction of functional antibody responses was confirmed via the standard membrane feeding assay (SMFA). Results Pfs230D1+ was produced and purified to an overall yield of 23 mg/L culture supernatant, a twofold yield increase over Pfs230C1. The Pfs230D1+ protein migrated as a single band via SDS-PAGE and was detected by anti-Pfs230C1 monoclonal antibodies. Evaluation by SDS-PAGE, chromatography (size-exclusion and reversed phase) and capillary isoelectric focusing demonstrated the molecule had improved homogeneity in terms of size, conformation, and charge. Intact mass spectrometry confirmed its molecular weight and that it was free of glycosylation, a key difference to the prior Pfs230C1 protein. The correct formation of the two intramolecular disulfide bonds was initially inferred by binding of a conformation specific monoclonal antibody and directly confirmed by LC/MS and peptide mapping. When injected into mice the Pfs230D1+ protein elicited antibodies that demonstrated transmission-reducing activity, via SMFA, comparable to Pfs230C1. Conclusion By elimination of an O-glycosylation site, a potential N-glycosylation site, and two proteolytic cleavage sites, an improved N-terminal Pfs230 fragment was produced, termed D1+, which is non-glycosylated, homogeneous, and biologically active. An intact protein at higher yield than that previously observed for the Pfs230C1 fragment was achieved. The results indicate that Pfs230D1+ protein produced in the baculovirus expression system is an attractive antigen for transmission-blocking vaccine development.
Collapse
|
34
|
Amoah LE, Abagna HB, Ayanful-Torgby R, Blankson SO, Aryee NA. Diversity and immune responses against Plasmodium falciparum gametocytes in non-febrile school children living in Southern Ghana. Malar J 2019; 18:265. [PMID: 31370841 PMCID: PMC6676606 DOI: 10.1186/s12936-019-2895-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022] Open
Abstract
Background Natural exposure to gametocytes can result in the development of immunity against the gametocyte by the host as well as genetic diversity in the gametocyte. This study evaluated the quantity and quality of natural immune responses against a gametocyte antigen, Pfs230 as well as the prevalence and diversity of gametocytes circulating in children living in two communities in southern Ghana. Methods Whole blood (2.5 ml) was collected from 137 non-febrile school children aged between 6 and 12 years old quarterly for a 6-month period. A drop of blood was used to prepare thick and thin blood films for parasite prevalence and density estimation. Subsequently, stored plasma samples were used in ELISAs assays to measure antibody responses and avidity against Pfs230. RNA was extraction from Trizol preserved packed cells and subsequently converted to complementary DNA (cDNA) which was used for reverse transcriptase PCR (RT-PCR) to determine gametocytes prevalence and diversity. Results Gametocyte carriage in the peak season (July) determined by Pfg377 RT-PCR was 49.2% in Obom and 22.2% in Abura, and was higher than that determined by microscopy. Gametocyte diversity was low and predominated by the same allele at both sites. The relative avidity index for antibodies measured in Abura was higher than that recorded in Obom at all time points although Pfs230 IgG concentrations were significantly high (P < 0.0001) in Obom than in Abura at all time points. The IgG responses in Obom were significantly higher than that in Abura during the peak season. Conclusion Naturally induced antibody responses against Pfs230 in children living in both high perennial and low seasonal malaria transmission settings reduced significantly in moving from the peak to the off-peak season. The relative avidity of antibodies against Pfs230 in Abura was significantly higher than those measured in Obom, despite having lower IgG levels. Very limited diversity was identified in the gametocytes circulating in both Obom and Abura. Electronic supplementary material The online version of this article (10.1186/s12936-019-2895-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linda E Amoah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana. .,West Africa Center for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.
| | - Hamza B Abagna
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana.,Department of Medical Biochemistry, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Ruth Ayanful-Torgby
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Samuel O Blankson
- Department of Medical Biochemistry, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Nii A Aryee
- Department of Medical Biochemistry, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|