1
|
Liu A, Giacani L, Hawley KL, Cameron CE, Seña AC, Konda KA, Radolf JD, Klausner JD. New Pathways in Syphilis Vaccine Development. Sex Transm Dis 2024; 51:e49-e53. [PMID: 39037061 DOI: 10.1097/olq.0000000000002050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
ABSTRACT The New Pathways in Syphilis Vaccine Development meeting was held before the start of the STI & HIV 2023 World Congress as a pre-meeting symposium to highlight recent advances in the development of an effective syphilis vaccine and discuss the challenges still faced by investigators. Internationally renowned public health officials, clinical investigators, and basic researchers from academia, government, and community-based organizations met on July 24, 2023, in Chicago, Illinois. Four speakers discussed key research findings in syphilis vaccine development, which included antigen selection, identification of epitopes associated with protective immunity, and delivery platforms, with great emphasis on development of chimeric antigens. Significant progress was also shown on the elucidation of Treponema pallidum genomes from virtually all continents to assess the diversity in vaccine candidates of the syphilis spirochete.
Collapse
Affiliation(s)
- Andy Liu
- From the Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | | | | | | | - Arlene C Seña
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelika A Konda
- Center for Interdisciplinary Studies in Sexuality, AIDS and Society, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Jeffrey D Klausner
- From the Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| |
Collapse
|
2
|
Delgado KN, Vicente CF, Hennelly CM, Aghakhanian F, Parr JB, Claffey KP, Radolf JD, Hawley KL, Caimano MJ. Development and utilization of Treponema pallidum expressing green fluorescent protein to study spirochete-host interactions and antibody-mediated clearance: expanding the toolbox for syphilis research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619476. [PMID: 39484466 PMCID: PMC11526989 DOI: 10.1101/2024.10.21.619476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Syphilis is a sexually transmitted infection caused by the highly invasive and immunoevasive spirochetal pathogen Treponema pallidum subsp. pallidum (TPA). Untreated syphilis can lead to infection of multiple organ systems, including the central nervous system. The alarming increase in syphilis cases globally underscores the importance of developing novel strategies to understand the complexities of syphilis pathogenesis. In this study, we took advantage of recent advances in in vitro cultivation and genetic manipulation of syphilis spirochetes to engineer a TPA strain that constitutively expresses green fluorescent protein (GFP). GFP+ TPA grew identically to the Nichols parent strain in vitro and exhibited wild-type infectivity in the rabbit model. We then used the GFP+ strain to visualize TPA interactions with host cells during co-cultivation in vitro, within infected rabbit testes, and following opsonophagocytosis by murine bone marrow-derived macrophages. Development of fluorescent strain also enabled us to develop a flow cytometric-based assay to assess antibody-mediated damage to the spirochete's fragile outer membrane (OM), demonstrating dose-dependent growth inhibition and OM disruption in vitro. Notably, we observed greater OM disruption of GFP+ TPA with sera from immune rabbits infected with the TPA Nichols strain compared to sera generated against the genetically distinct SS14 strain. These latter findings highlight the importance of OM protein-specific antibody responses for clearance of TPA during syphilitic infection. The availability of fluorescent TPA strains paves the way for future studies investigating spirochete-host interactions as well as functional characterization of antibodies directed treponemal OM proteins, the presumptive targets for protective immunity.
Collapse
Affiliation(s)
- Kristina N. Delgado
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Crystal F. Vicente
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, USA
| | - Christopher M. Hennelly
- Institute for Global Health and Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Farhang Aghakhanian
- Institute for Global Health and Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan B. Parr
- Institute for Global Health and Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin P. Claffey
- Department of Cell Biology,University of Connecticut Health, Farmington, CT, USA
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
- Department of Molecular Biology and Biophysics,University of Connecticut Health, Farmington, CT, USA
- Department of Immunology,University of Connecticut Health, Farmington, CT, USA
- Genetics and Genome Sciences, University of Connecticut Health, Farmington, CT, USA
- Connecticut Children’s Research Institute, Connecticut Children’s, Hartford, Connecticut, USA
| | - Kelly L. Hawley
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, USA
- Department of Immunology,University of Connecticut Health, Farmington, CT, USA
- Connecticut Children’s Research Institute, Connecticut Children’s, Hartford, Connecticut, USA
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, USA
- Department of Molecular Biology and Biophysics,University of Connecticut Health, Farmington, CT, USA
- Connecticut Children’s Research Institute, Connecticut Children’s, Hartford, Connecticut, USA
| |
Collapse
|
3
|
Delgado KN, Caimano MJ, Orbe IC, Vicente CF, La Vake CJ, Grassmann AA, Moody MA, Radolf JD, Hawley KL. Immunodominant extracellular loops of Treponema pallidum FadL outer membrane proteins elicit antibodies with opsonic and growth-inhibitory activities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605823. [PMID: 39131275 PMCID: PMC11312542 DOI: 10.1101/2024.07.30.605823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The global resurgence of syphilis has created a potent stimulus for vaccine development. To identify potentially protective antibodies (Abs) against Treponema pallidum (TPA), we used Pyrococcus furiosus thioredoxin (PfTrx) to display extracellular loops (ECLs) from three TPA outer membrane protein families (outer membrane factors for efflux pumps, eight-stranded β-barrels, and FadLs) to assess their reactivity with immune rabbit serum (IRS). Five ECLs from the FadL orthologs TP0856, TP0858 and TP0865 were immunodominant. Rabbits and mice immunized with these five PfTrx constructs produced ECL-specific Abs that promoted opsonophagocytosis of TPA by rabbit peritoneal and murine bone marrow-derived macrophages at levels comparable to IRS and mouse syphilitic serum. ECL-specific rabbit and mouse Abs also impaired viability, motility, and cellular attachment of spirochetes during in vitro cultivation. The results support the use of ECL-based vaccines and suggest that ECL-specific Abs promote spirochete clearance via Fc receptor-independent as well as Fc receptor-dependent mechanisms.
Collapse
Affiliation(s)
- Kristina N. Delgado
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT, United States
| | - Isabel C. Orbe
- Department of Pediatrics, UConn Health, Farmington, CT, United States
| | | | - Carson J. La Vake
- Department of Pediatrics, UConn Health, Farmington, CT, United States
| | - André A. Grassmann
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT, United States
- Department of Immunology, UConn Health, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - Kelly L. Hawley
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT, United States
- Department of Immunology, UConn Health, Farmington, CT, United States
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, CT, United States
| |
Collapse
|
4
|
Houston S, Gomez A, Geppert A, Goodyear MC, Cameron CE. In-Depth Proteome Coverage of In Vitro-Cultured Treponema pallidum and Quantitative Comparison Analyses with In Vivo-Grown Treponemes. J Proteome Res 2024; 23:1725-1743. [PMID: 38636938 PMCID: PMC11077495 DOI: 10.1021/acs.jproteome.3c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Previous mass spectrometry (MS)-based global proteomics studies have detected a combined total of 86% of all Treponema pallidum proteins under infection conditions (in vivo-grown T. pallidum). Recently, a method was developed for the long-term culture of T. pallidum under in vitro conditions (in vitro-cultured T. pallidum). Herein, we used our previously reported optimized MS-based proteomics approach to characterize the T. pallidum global protein expression profile under in vitro culture conditions. These analyses provided a proteome coverage of 94%, which extends the combined T. pallidum proteome coverage from the previously reported 86% to a new combined total of 95%. This study provides a more complete understanding of the protein repertoire of T. pallidum. Further, comparison of the in vitro-expressed proteome with the previously determined in vivo-expressed proteome identifies only a few proteomic changes between the two growth conditions, reinforcing the suitability of in vitro-cultured T. pallidum as an alternative to rabbit-based treponemal growth. The MS proteomics data have been deposited in the MassIVE repository with the data set identifier MSV000093603 (ProteomeXchange identifier PXD047625).
Collapse
Affiliation(s)
- Simon Houston
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Alloysius Gomez
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Andrew Geppert
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mara C. Goodyear
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Caroline E. Cameron
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Department
of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Germany EM, Thewasano N, Imai K, Maruno Y, Bamert RS, Stubenrauch CJ, Dunstan RA, Ding Y, Nakajima Y, Lai X, Webb CT, Hidaka K, Tan KS, Shen H, Lithgow T, Shiota T. Dual recognition of multiple signals in bacterial outer membrane proteins enhances assembly and maintains membrane integrity. eLife 2024; 12:RP90274. [PMID: 38226797 PMCID: PMC10945584 DOI: 10.7554/elife.90274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Outer membrane proteins (OMPs) are essential components of the outer membrane of Gram-negative bacteria. In terms of protein targeting and assembly, the current dogma holds that a 'β-signal' imprinted in the final β-strand of the OMP engages the β-barrel assembly machinery (BAM) complex to initiate membrane insertion and assembly of the OMP into the outer membrane. Here, we revealed an additional rule that signals equivalent to the β-signal are repeated in other, internal β-strands within bacterial OMPs, by peptidomimetic and mutational analysis. The internal signal is needed to promote the efficiency of the assembly reaction of these OMPs. BamD, an essential subunit of the BAM complex, recognizes the internal signal and the β-signal, arranging several β-strands and partial folding for rapid OMP assembly. The internal signal-BamD ordering system is not essential for bacterial viability but is necessary to retain the integrity of the outer membrane against antibiotics and other environmental insults.
Collapse
Affiliation(s)
- Edward M Germany
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Nakajohn Thewasano
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
| | - Yuki Maruno
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Rebecca S Bamert
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Christopher J Stubenrauch
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Rhys A Dunstan
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Yue Ding
- Department of Materials Science and Engineering, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | - Yukari Nakajima
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - XiangFeng Lai
- Department of Materials Science and Engineering, Monash UniversityClaytonAustralia
| | - Chaille T Webb
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Kentaro Hidaka
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Kher Shing Tan
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Hsinhui Shen
- Department of Materials Science and Engineering, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Takuya Shiota
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| |
Collapse
|
6
|
Wu S, Ye F, Wang Y, Li D. Neurosyphilis: insights into its pathogenesis, susceptibility, diagnosis, treatment, and prevention. Front Neurol 2024; 14:1340321. [PMID: 38274871 PMCID: PMC10808744 DOI: 10.3389/fneur.2023.1340321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Background and aim Invasion of the central nervous system by Treponema pallidum can occur at any stage of syphilis. In the event that T. pallidum is not cleared promptly, certain individuals may experience progression to neurosyphilis, which manifests as cognitive and behavioral abnormalities, limb paralysis, and potentially fatal outcomes. Early identification or prevention of neurosyphilis is therefore crucial. The aim of this paper is to conduct a critical and narrative review of the latest information focusing exclusively to the pathogenesis and clinical management of neurosyphilis. Methodology To compile this review, we have conducted electronic literature searches from the PubMed database relating to neurosyphilis. Priority was given to studies published from the past 10 years (from 2013 to 2023) and other studies if they were of significant importance (from 1985 to 2012), including whole genome sequencing results, cell structure of T. pallidum, history of genotyping, and other related topics. These studies are classic or reflect a developmental process. Results Neurosyphilis has garnered global attention, yet susceptibility to and the pathogenesis of this condition remain under investigation. Cerebrospinal fluid examination plays an important role in the diagnosis of neurosyphilis, but lacks the gold standard. Intravenous aqueous crystalline penicillin G continues to be the recommended therapeutic approach for neurosyphilis. Considering its sustained prominence, it is imperative to develop novel public health tactics in order to manage the resurgence of neurosyphilis. Conclusion This review gives an updated narrative description of neurosyphilis with special emphasis on its pathogenesis, susceptibility, diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
| | | | | | - Dongdong Li
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Liu D, Chen R, Wang YJ, Li W, Liu LL, Lin LR, Yang TC, Tong ML. Insights into the protective immune response by immunization with full-length recombinant TprK protein: cellular and humoral responses. NPJ Vaccines 2023; 8:146. [PMID: 37773233 PMCID: PMC10542339 DOI: 10.1038/s41541-023-00748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023] Open
Abstract
Syphilis has resurged in many countries, which has called attention to vaccine development. Based on the immunization-based rabbit model of infection with the Nichols strain, this study explored the protective immune response of a controversial syphilis vaccine candidate, TprK, and found that immunization with full-length rTprK was effective in attenuating lesion development and accelerating lesion resolution, which could reduce the probability of the pathogen spreading to distant tissue sites to prevent the progression of the disease to some extent. Furthermore, the results revealed that immunization with rTprK not only rapidly induced a strong Th1-like cellular response but also elicited a humoral immune response to produce opsonic antibodies to enhance macrophage-mediated opsonophagocytosis. Although complete protection against infection was not achieved, the study provided a comprehensive and in-depth exploration of the immunogenicity of TprK and highlighted the importance of TprK as a promising syphilis vaccine component.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Rui Chen
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yong-Jing Wang
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Li
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
8
|
Ferguson MR, Delgado KN, McBride S, Orbe IC, La Vake CJ, Caimano MJ, Mendez Q, Moraes TF, Schryvers AB, Moody MA, Radolf JD, Weiner MP, Hawley KL. Use of Epivolve phage display to generate a monoclonal antibody with opsonic activity directed against a subdominant epitope on extracellular loop 4 of Treponema pallidum BamA (TP0326). Front Immunol 2023; 14:1222267. [PMID: 37675118 PMCID: PMC10478084 DOI: 10.3389/fimmu.2023.1222267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Syphilis, a sexually transmitted infection caused by the spirochete Treponema pallidum (Tp), is resurging globally. Tp's repertoire of outer membrane proteins (OMPs) includes BamA (β-barrel assembly machinery subunit A/TP0326), a bipartite protein consisting of a 16-stranded β-barrel with nine extracellular loops (ECLs) and five periplasmic POTRA (polypeptide transport-associated) domains. BamA ECL4 antisera promotes internalization of Tp by rabbit peritoneal macrophages. Methods Three overlapping BamA ECL4 peptides and a two-stage, phage display strategy, termed "Epivolve" (for epitope evolution) were employed to generate single-chain variable fragments (scFvs). Additionally, antisera generated by immunizing mice and rabbits with BamA ECL4 displayed by a Pyrococcus furiosus thioredoxin scaffold (PfTrxBamA/ECL4). MAbs and antisera reactivities were evaluated by immunoblotting and ELISA. A comparison of murine and rabbit opsonophagocytosis assays was conducted to evaluate the functional ability of the Abs (e.g., opsonization) and validate the mouse assay. Sera from Tp-infected mice (MSS) and rabbits (IRS) were evaluated for ECL4-specific Abs using PfTrxBamA/ECL4 and overlapping ECL4 peptides in immunoblotting and ELISA assays. Results Each of the five mAbs demonstrated reactivity by immunoblotting and ELISA to nanogram amounts of PfTrxBamA/ECL4. One mAb, containing a unique amino acid sequence in both the light and heavy chains, showed activity in the murine opsonophagocytosis assay. Mice and rabbits hyperimmunized with PfTrxBamA/ECL4 produced opsonic antisera that strongly recognized the ECL presented in a heterologous scaffold and overlapping ECL4 peptides, including S2. In contrast, Abs generated during Tp infection of mice and rabbits poorly recognized the peptides, indicating that S2 contains a subdominant epitope. Discussion Epivolve produced mAbs target subdominant opsonic epitopes in BamA ECL4, a top syphilis vaccine candidate. The murine opsonophagocytosis assay can serve as an alternative model to investigate the opsonic potential of vaccinogens. Detailed characterization of BamA ECL4-specific Abs provided a means to dissect Ab responses elicited by Tp infection.
Collapse
Affiliation(s)
- Mary R. Ferguson
- Department of Molecular Sciences, Abbratech, Branford, CT, United States
| | | | | | - Isabel C. Orbe
- Department of Pediatrics, UConn Health, Farmington, CT, United States
| | - Carson J. La Vake
- Department of Pediatrics, UConn Health, Farmington, CT, United States
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, CT, United States
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Qiana Mendez
- Department of Molecular Sciences, Abbratech, Branford, CT, United States
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Anthony B. Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, United States
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, CT, United States
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- Department of Immunology, UConn Health, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - Michael P. Weiner
- Department of Molecular Sciences, Abbratech, Branford, CT, United States
| | - Kelly L. Hawley
- Department of Medicine, UConn Health, Farmington, CT, United States
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Immunology, UConn Health, Farmington, CT, United States
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, CT, United States
| |
Collapse
|
9
|
Tang Y, Zhou Y, He B, Cao T, Zhou X, Ning L, Chen E, Li Y, Xie X, Peng B, Hu Y, Liu S. Investigation of the immune escape mechanism of Treponema pallidum. Infection 2022; 51:305-321. [PMID: 36260281 DOI: 10.1007/s15010-022-01939-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Syphilis is a chronic sexually transmitted disease caused by Treponema pallidum subspecies pallidum (T. pallidum), which is a public health problem that seriously affects human health worldwide. T. pallidum is characterized by early transmission and immune escape and is therefore termed an "invisible pathogen". METHODS This review systematically summarizes the host's innate and adaptive immune responses to T. pallidum infection as well as the escape mechanisms of T. pallidum. PURPOSE To lay the foundation for assessing the pathogenic mechanism and the systematic prevention and treatment of syphilis. CONCLUSION The immune escape mechanism of T. pallidum plays an important role in its survival. Exploring the occurrence and development of these mechanisms has laid the foundation for the development of syphilis vaccine.
Collapse
Affiliation(s)
- Yun Tang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Yingjie Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Bisha He
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Xiangping Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Lichang Ning
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - En Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Xiaoping Xie
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Binfeng Peng
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China.
| |
Collapse
|
10
|
Delgado KN, Montezuma-Rusca JM, Orbe IC, Caimano MJ, La Vake CJ, Luthra A, Hennelly CM, Nindo FN, Meyer JW, Jones LD, Parr JB, Salazar JC, Moody MA, Radolf JD, Hawley KL. Extracellular Loops of the Treponema pallidum FadL Orthologs TP0856 and TP0858 Elicit IgG Antibodies and IgG +-Specific B-Cells in the Rabbit Model of Experimental Syphilis. mBio 2022; 13:e0163922. [PMID: 35862766 PMCID: PMC9426418 DOI: 10.1128/mbio.01639-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
The resurgence of syphilis in the new millennium has called attention to the importance of a vaccine for global containment strategies. Studies with immune rabbit serum (IRS) indicate that a syphilis vaccine should elicit antibodies (Abs) that promote opsonophagocytosis of treponemes by activated macrophages. The availability of three-dimensional models for Treponema pallidum's (Tp) repertoire of outer membrane proteins (OMPs) provides an architectural framework for identification of candidate vaccinogens with extracellular loops (ECLs) as the targets for protective Abs. Herein, we used Pyrococcus furiosus thioredoxin (PfTrx) as a scaffold to display Tp OMP ECLs to interrogate sera and peripheral blood mononuclear cells (PBMCs) from immune rabbits for ECL-specific Abs and B cells. We validated this approach using a PfTrx scaffold presenting ECL4 from BamA, a known opsonic target. Using scaffolds displaying ECLs of the FadL orthologs TP0856 and TP0858, we determined that ECL2 and ECL4 of both proteins are strongly antigenic. Comparison of ELISA and immunoblot results suggested that the PfTrx scaffolds present conformational and linear epitopes. We then used the FadL ECL2 and ECL4 PfTrx constructs as "hooks" to confirm the presence of ECL-specific B cells in PBMCs from immune rabbits. Our results pinpoint immunogenic ECLs of two newly discovered OMPs, while advancing the utility of the rabbit model for circumventing bottlenecks in vaccine development associated with large-scale production of folded OMPs. They also lay the groundwork for production of rabbit monoclonal Abs (MAbs) to characterize potentially protective ECL epitopes at the atomic level. IMPORTANCE Recent identification and structural modeling of Treponema pallidum's (Tp) repertoire of outer membrane proteins (OMPs) represent a critical breakthrough in the decades long quest for a syphilis vaccine. However, little is known about the antigenic nature of these β-barrel-forming OMPs and, more specifically, their surface exposed regions, the extracellular loops (ECLs). In this study, using Pyrococcus furiosus thioredoxin (PfTrx) as a scaffold to display Tp OMP ECLs, we interrogated immune rabbit sera and peripheral blood mononuclear cells for the presence of antibodies (Abs) and circulating rare antigen-specific B cells. Our results pinpoint immunogenic ECLs of two newly discovered OMPs, while advancing the utility of the rabbit model for surveying the entire Tp OMPeome for promising OMP vaccinogens. This work represents a major advancement toward characterizing potentially protective OMP ECLs and future vaccine studies. Additionally, this strategy could be applied to OMPs of nonspirochetal bacterial pathogens.
Collapse
Affiliation(s)
| | - Jairo M. Montezuma-Rusca
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Division of Infectious Diseases, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
| | - Isabel C. Orbe
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Carson J. La Vake
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
| | - Amit Luthra
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Christopher M. Hennelly
- Division of Infectious Diseases, Department of Medicine, and Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Fredrick N. Nindo
- Division of Infectious Diseases, Department of Medicine, and Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jacob W. Meyer
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | | | - Jonathan B. Parr
- Division of Infectious Diseases, Department of Medicine, and Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Juan C. Salazar
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, Connecticut, USA
- Department of Immunology, UConn Health, Farmington, Connecticut, USA
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Durham, North Carolina, USA
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
- Department of Immunology, UConn Health, Farmington, Connecticut, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA
| | - Kelly L. Hawley
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, Connecticut, USA
| |
Collapse
|
11
|
Chen D, Wang S, He Y, Fu Y, Zhao F, Zhou X, Yin H, Wan J, Huang Y, Wu Y, Cao L, Zeng T. Assessment of recombinant antigens Tp0100 and Tp1016 of Treponema pallidum for serological diagnosis of syphilis. J Clin Lab Anal 2022; 36:e24635. [PMID: 35908795 PMCID: PMC9459255 DOI: 10.1002/jcla.24635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
Objective To discover novel serodiagnostic candidates for the serological diagnosis of syphilis. Methods Two recombinant Treponema pallidum proteins Tp0100 and Tp1016 were expressed, purified, and identified by Western Blotting. A total of 600 clinical serum samples were tested with the Tp0100‐based ELISA, the Tp1016‐based ELISA, and the commercial LICA Syphilis TP kit (ChIVD, Beijing, China). The sensitivities were determined by testing 340 samples from individuals with clinically diagnosed primary, secondary, latent, and tertiary syphilis. The specificities were determined by screening 260 samples from healthy controls and individuals with potentially cross‐reactive infections, including leptospirosis, Lyme disease, hepatitis B, tuberculosis, rheumatoid arthritis, systemic lupus erythematosus. Kappa (κ) values were applied to compare the agreement between clinical syphilis diagnosis and the Tp0100‐based ELISA, the Tp1016‐based ELISA, or the LICA Syphilis TP test. Results Using clinical syphilis diagnosis as the gold standard, Tp0100 exhibited an overall sensitivity of 95.6% and specificity of 98.1% for testing IgG antibody while Tp1016 demonstrated only an overall sensitivity of 75.0% and specificity of 79.6%. In contrast, the LICA Syphilis TP test revealed an overall sensitivity of 97.6% and specificity of 96.2%. In addition, the overall percent agreement and corresponding κ values were 96.7% (95% CI 95.6%–97.8%) and 0.93 for the Tp0100‐based ELISA, 77.0% (95% CI 74.3%–79.7%) and 0.54 for the Tp1016‐based ELISA, and 97.0% (95% CI 96.0%–98.0%) and 0.94 for the LICA Syphilis TP test, respectively. Conclusion The recombinant T. pallidum protein Tp0100 shows promise as a novel diagnostic antigen in the serological tests for syphilis.
Collapse
Affiliation(s)
- Dejun Chen
- Institution of Pathogenic Biology and Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Siqian Wang
- Clinical laboratory of the First Pepole's Hospital of Changde City, Changde, China
| | - Yuxing He
- Institution of Pathogenic Biology and Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yue Fu
- Institution of Pathogenic Biology and Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Feijun Zhao
- Institution of Pathogenic Biology and Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiuping Zhou
- Department of Laboratory Medicine, Changsha Health Vocational College, Changsha, China
| | - Haoquan Yin
- Department of Clinical Medical Undergraduates, Hengyang Medical School, University of South China, Hengyang, China
| | - Jia Wan
- Department of Clinical Medical Undergraduates, Hengyang Medical School, University of South China, Hengyang, China
| | - Yunting Huang
- Department of Clinical Medical Undergraduates, Hengyang Medical School, University of South China, Hengyang, China
| | - Yimou Wu
- Institution of Pathogenic Biology and Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Longgu Cao
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, China
| | - Tiebing Zeng
- Institution of Pathogenic Biology and Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
12
|
Kojima N, Konda KA, Klausner JD. Notes on syphilis vaccine development. Front Immunol 2022; 13:952284. [PMID: 35967432 PMCID: PMC9365935 DOI: 10.3389/fimmu.2022.952284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The quest for a syphilis vaccine to provide protection from infection or disease began not long after the isolation of the first Treponema pallidum subspecies pallidum (T. pallidum) strain in 1912. Yet, a practical and effective vaccine formulation continues to elude scientists. Over the last few years, however, efforts toward developing a syphilis vaccine have increased thanks to an improved understanding of the repertoire of T. pallidum outer membrane proteins (OMPs), which are the most likely syphilis vaccine candidates. More has been also learned about the molecular mechanisms behind pathogen persistence and immune evasion. Published vaccine formulations based on a subset of the pathogen's OMPs have conferred only partial protection upon challenge of immunized laboratory animals, primarily rabbits. Nonetheless, those experiments have improved our approach to the choice of immunization regimens, adjuvants, and vaccine target selection, although significant knowledge gaps remain. Herein, we provide a brief overview on current technologies and approaches employed in syphilis vaccinology, and possible future directions to develop a vaccine that could be pivotal to future syphilis control and elimination initiatives.
Collapse
Affiliation(s)
- Noah Kojima
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Kelika A. Konda
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- Centro de Investigación Interdisciplinaria en Sexualidad Sida y Sociedad, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jeffrey D. Klausner
- Departments of Medicine and Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
13
|
Chen J, Huang J, Liu Z, Xie Y. Treponema pallidum outer membrane proteins: current status and prospects. Pathog Dis 2022; 80:6649208. [PMID: 35869970 DOI: 10.1093/femspd/ftac023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The outer membrane proteins (OMPs) of Treponema pallidum subsp. Pallidum (T. pallidum), the etiological agent of the sexually transmitted disease syphilis, has long been a hot research topic. Despite many hurdles to studying the pathogen, especially the inability to manipulate T. pallidum in vitro genetically1, considerable progress has been made in elucidating the structure, pathogenesis, and functions of T. pallidum OMPs. In this review, we integrate this information to garner fresh insights into the role of OMPs in the diagnosis, pathogenicity, and vaccine development of T. pallidum. Collectively, the essential scientific discussions herein should provide a framework for understanding the current status and prospects of T. pallidum OMPs.
Decades ago, researchers postulated that the poor surface antigenicity of T. pallidum is the basis for its ability to cause persistent infection. Still, they believed that the mysterious properties of T. pallidum should not be attributed to the presence of the outer membrane proteins (OMPs). Subsequent studies revealed that the OM, which lacks integral membrane proteins, prevents antibody binding2. Since the advent of recombinant DNA technology, the fragility of the OM, low protein content, and the lack of sequence relatedness between T. pallidum and Gram-negative OMPs have complicated efforts to characterize molecules residing at the host-pathogen interface. These hurdles have been overcome by using the genomic sequence with computational tools to identify proteins predicted to form beta barrels, the hallmark conformation of OMPs in many organisms. Diverse methodologies have also confirmed that some candidate OMPs from amphiphilic β-barrels are surface-exposed in T. pallidum. These studies have led to a structural homology model for BamA and established the bipartite topology of the T. pallidum repeat (Tpr) family of proteins. Recent bioinformatics has identified several structural orthologs for well-characterized Gram-negative OMPs, suggesting that the T. pallidum OMPs are more Gram-negative-like than previously supposed. Lipoprotein adhesins and proteases on the spirochete surface also may contribute to disease pathogenesis and protective immunity.
Collapse
Affiliation(s)
- Jinlin Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China , Hengyang 421001 , China
| | - Jielite Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China , Hengyang 421001 , China
| | - Zhuoran Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China , Hengyang 421001 , China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China , Hengyang 421001 , China
| |
Collapse
|
14
|
Li QL, Xu QY, Gao K, Zhang HL, Liu LL, Lin LR, Niu JJ, Yang TC. Membrane location of cardiolipin antigen in Treponema pallidum: further study on the origin of nontreponemal antibodies. Future Microbiol 2022; 17:873-886. [PMID: 35833787 DOI: 10.2217/fmb-2021-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The present study examined the membrane location of cardiolipin antigen in treponemes. Materials & methods: The authors used different methods to disrupt the outer membrane of treponemes, detected the location of the cardiolipin antigen and analyzed the immune response in rabbits immunized with various antigens. Results: All organisms were labeled with nontreponemal antibodies on immunoelectron and fluorescence microscopy, except the citrate buffer-treated group, which is a method leading to relatively complete removal. Except for citrate buffer-treated spirochetes, all treponemes produced low-titer, nontreponemal antibodies in immunized rabbits. Conclusion: These findings indicated that the cardiolipin antigen was localized in the outer membrane of spirochetes. This study provided further evidence of the origin of nontreponemal antibodies during Treponema pallidum infection.
Collapse
Affiliation(s)
- Qiu-Ling Li
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Qiu-Yan Xu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Kun Gao
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hui-Lin Zhang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Molini B, Fernandez MC, Godornes C, Vorobieva A, Lukehart SA, Giacani L. B-Cell Epitope Mapping of TprC and TprD Variants of Treponema pallidum Subspecies Informs Vaccine Development for Human Treponematoses. Front Immunol 2022; 13:862491. [PMID: 35422800 PMCID: PMC9001972 DOI: 10.3389/fimmu.2022.862491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Several recent studies have focused on the identification, functional analysis, and structural characterization of outer membrane proteins (OMPs) of Treponema pallidum (Tp). The Tp species encompasses the highly related pallidum, pertenue, and endemicum subspecies of this pathogen, known to be the causative agents of syphilis, yaws, and bejel, respectively. These studies highlighted the importance of identifying surface-exposed OMP regions and the identification of B-cell epitopes that could be protective and used in vaccine development efforts. We previously reported that the TprC and TprD OMPs of Tp are predicted to contain external loops scattered throughout the entire length of the proteins, several of which show a low degree of sequence variability among strains and subspecies. In this study, these models were corroborated using AlphaFold2, a state-of-the-art protein structure modeling software. Here, we identified B-cell epitopes across the full-length TprC and TprD variants using the Geysan pepscan mapping approach with antisera from rabbits infected with syphilis, yaws, and bejel strains and from animals immunized with refolded recombinant TprC proteins from three syphilis strains. Our results show that the humoral response is primarily directed to sequences predicted to be on surface-exposed loops of TprC and TprD proteins, and that the magnitude of the humoral response to individual epitopes differs among animals infected with various syphilis strains and Tp subspecies. Rather than exhibiting strain-specificity, antisera showed various degrees of cross-reactivity with variant sequences from other strains. The data support the further exploration of TprC and TprD as vaccine candidates.
Collapse
Affiliation(s)
- Barbara Molini
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Mark C. Fernandez
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Charmie Godornes
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Anastassia Vorobieva
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sheila A. Lukehart
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Lorenzo Giacani
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
16
|
Pereira MJ, Wager B, Garrigues RJ, Gerlach E, Quinn JD, Dowdell AS, Osburne MS, Zückert WR, Kraiczy P, Garcia BL, Leong JM. Lipoproteome screening of the Lyme disease agent identifies inhibitors of antibody-mediated complement killing. Proc Natl Acad Sci U S A 2022; 119:e2117770119. [PMID: 35312359 PMCID: PMC9060444 DOI: 10.1073/pnas.2117770119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
Spirochetal pathogens, such as the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, encode an abundance of lipoproteins; however, due in part to their evolutionary distance from more well-studied bacteria, such as Proteobacteria and Firmicutes, few spirochetal lipoproteins have assigned functions. Indeed, B. burgdorferi devotes almost 8% of its genome to lipoprotein genes and interacts with its environment primarily through the production of at least 80 surface-exposed lipoproteins throughout its tick vector–vertebrate host lifecycle. Several B. burgdorferi lipoproteins have been shown to serve roles in cellular adherence or immune evasion, but the functions for most B. burgdorferi surface lipoproteins remain unknown. In this study, we developed a B. burgdorferi lipoproteome screening platform utilizing intact spirochetes that enables the identification of previously unrecognized host interactions. As spirochetal survival in the bloodstream is essential for dissemination, we targeted our screen to C1, the first component of the classical (antibody-initiated) complement pathway. We identified two high-affinity C1 interactions by the paralogous lipoproteins, ElpB and ElpQ (also termed ErpB and ErpQ, respectively). Using biochemical, microbiological, and biophysical approaches, we demonstrate that ElpB and ElpQ bind the activated forms of the C1 proteases, C1r and C1s, and represent a distinct mechanistic class of C1 inhibitors that protect the spirochete from antibody-mediated complement killing. In addition to identifying a mode of complement inhibition, our study establishes a lipoproteome screening methodology as a discovery platform for identifying direct host–pathogen interactions that are central to the pathogenesis of spirochetes, such as the Lyme disease agent.
Collapse
Affiliation(s)
- Michael J. Pereira
- Department of Molecular Biology and Microbiology, Tufts School of Medicine, Tufts University, Boston, MA 02155
| | - Beau Wager
- Department of Molecular Biology and Microbiology, Tufts School of Medicine, Tufts University, Boston, MA 02155
| | - Ryan J. Garrigues
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858
| | - Eva Gerlach
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, D-60596 Frankfurt, Germany
| | - Joshua D. Quinn
- Department of Molecular Biology and Microbiology, Tufts School of Medicine, Tufts University, Boston, MA 02155
| | - Alexander S. Dowdell
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marcia S. Osburne
- Department of Molecular Biology and Microbiology, Tufts School of Medicine, Tufts University, Boston, MA 02155
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66103
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, D-60596 Frankfurt, Germany
| | - Brandon L. Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts School of Medicine, Tufts University, Boston, MA 02155
| |
Collapse
|
17
|
Xu M, Xie Y, Zheng K, Luo H, Tan M, Zhao F, Zeng T, Wu Y. Two Potential Syphilis Vaccine Candidates Inhibit Dissemination of Treponema pallidum. Front Immunol 2021; 12:759474. [PMID: 34899710 PMCID: PMC8657604 DOI: 10.3389/fimmu.2021.759474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
Syphilis, caused by the spirochete Treponema pallidum subspecies pallidum, continues to be a major public health problem worldwide. Recent increases in the number of syphilis cases, in addition to the lack of an efficient vaccine against T. pallidum for humans, highlights an urgent need for the design and development of an efficacious syphilis vaccine. Here, we assess the vaccine potential of the adhesion protein Tp0136 and the outer membrane protein Tp0663. Rabbits were subcutaneously immunized with recombinant proteins Tp0136, Tp0663, or control PBS. Immunization with Tp0136 or Tp0663 generated a strong humoral immune response with high titers of IgG, as assessed by ELISA. Moreover, animals immunized with Tp0136 or Tp0663 exhibited attenuated lesion development, increased cellular infiltration at the lesion sites, and inhibition of treponemal dissemination to distant organs compared to the unimmunized animals. These findings indicate that Tp0136 and Tp0663 are promising syphilis vaccine candidates. Furthermore, these results provide novel and important information for not only understanding the pathogenic mechanisms of spirochetes, but also the development of spirochete-specific subunit vaccines.
Collapse
Affiliation(s)
- Man Xu
- Institution of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yafeng Xie
- Institution of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Kang Zheng
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang, China
| | - Haodang Luo
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Manyi Tan
- Department of Toxicology, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Feijun Zhao
- Institution of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Tiebing Zeng
- Institution of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yimou Wu
- Institution of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
18
|
Hawley KL, Montezuma-Rusca JM, Delgado KN, Singh N, Uversky VN, Caimano MJ, Radolf JD, Luthra A. Structural Modeling of the Treponema pallidum Outer Membrane Protein Repertoire: a Road Map for Deconvolution of Syphilis Pathogenesis and Development of a Syphilis Vaccine. J Bacteriol 2021; 203:e0008221. [PMID: 33972353 PMCID: PMC8407342 DOI: 10.1128/jb.00082-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/27/2021] [Indexed: 01/11/2023] Open
Abstract
Treponema pallidum, an obligate human pathogen, has an outer membrane (OM) whose physical properties, ultrastructure, and composition differ markedly from those of phylogenetically distant Gram-negative bacteria. We developed structural models for the outer membrane protein (OMP) repertoire (OMPeome) of T. pallidum Nichols using solved Gram-negative structures, computational tools, and small-angle X-ray scattering (SAXS) of selected recombinant periplasmic domains. The T. pallidum "OMPeome" harbors two "stand-alone" proteins (BamA and LptD) involved in OM biogenesis and four paralogous families involved in the influx/efflux of small molecules: 8-stranded β-barrels, long-chain-fatty-acid transporters (FadLs), OM factors (OMFs) for efflux pumps, and T. pallidum repeat proteins (Tprs). BamA (TP0326), the central component of a β-barrel assembly machine (BAM)/translocation and assembly module (TAM) hybrid, possesses a highly flexible polypeptide-transport-associated (POTRA) 1-5 arm predicted to interact with TamB (TP0325). TP0515, an LptD ortholog, contains a novel, unstructured C-terminal domain that models inside the β-barrel. T. pallidum has four 8-stranded β-barrels, each containing positively charged extracellular loops that could contribute to pathogenesis. Three of five FadL-like orthologs have a novel α-helical, presumptively periplasmic C-terminal extension. SAXS and structural modeling further supported the bipartite membrane topology and tridomain architecture of full-length members of the Tpr family. T. pallidum's two efflux pumps presumably extrude noxious small molecules via four coexpressed OMFs with variably charged tunnels. For BamA, LptD, and OMFs, we modeled the molecular machines that deliver their substrates into the OM or external milieu. The spirochete's extended families of OM transporters collectively confer a broad capacity for nutrient uptake. The models also furnish a structural road map for vaccine development. IMPORTANCE The unusual outer membrane (OM) of T. pallidum, the syphilis spirochete, is the ultrastructural basis for its well-recognized capacity for invasiveness, immune evasion, and persistence. In recent years, we have made considerable progress in identifying T. pallidum's repertoire of OMPs. Here, we developed three-dimensional (3D) models for the T. pallidum Nichols OMPeome using structural modeling, bioinformatics, and solution scattering. The OM contains three families of OMP transporters, an OMP family involved in the extrusion of noxious molecules, and two "stand-alone" proteins involved in OM biogenesis. This work represents a major advance toward elucidating host-pathogen interactions during syphilis; understanding how T. pallidum, an extreme auxotroph, obtains a wide array of biomolecules from its obligate human host; and developing a vaccine with global efficacy.
Collapse
Affiliation(s)
- Kelly L. Hawley
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, Connecticut, USA
| | - Jairo M. Montezuma-Rusca
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Division of Infectious Diseases, UConn Health, Farmington, Connecticut, USA
| | | | - Navreeta Singh
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Melissa J. Caimano
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Justin D. Radolf
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA
- Department of Immunology, UConn Health, Farmington, Connecticut, USA
| | - Amit Luthra
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
19
|
Roumia AF, Tsirigos KD, Theodoropoulou MC, Tamposis IA, Hamodrakas SJ, Bagos PG. OMPdb: A Global Hub of Beta-Barrel Outer Membrane Proteins. FRONTIERS IN BIOINFORMATICS 2021; 1:646581. [PMID: 36303794 PMCID: PMC9581022 DOI: 10.3389/fbinf.2021.646581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/18/2021] [Indexed: 11/14/2022] Open
Abstract
OMPdb (www.ompdb.org) was introduced as a database for β-barrel outer membrane proteins from Gram-negative bacteria in 2011 and then included 69,354 entries classified into 85 families. The database has been updated continuously using a collection of characteristic profile Hidden Markov Models able to discriminate between the different families of prokaryotic transmembrane β-barrels. The number of families has increased ultimately to a total of 129 families in the current, second major version of OMPdb. New additions have been made in parallel with efforts to update existing families and add novel families. Here, we present the upgrade of OMPdb, which from now on aims to become a global repository for all transmembrane β-barrel proteins, both eukaryotic and bacterial.
Collapse
Affiliation(s)
- Ahmed F. Roumia
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | | | | | - Ioannis A. Tamposis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Stavros J. Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- *Correspondence: Pantelis G. Bagos
| |
Collapse
|
20
|
Haynes AM, Fernandez M, Romeis E, Mitjà O, Konda KA, Vargas SK, Eguiluz M, Caceres CF, Klausner JD, Giacani L. Transcriptional and immunological analysis of the putative outer membrane protein and vaccine candidate TprL of Treponema pallidum. PLoS Negl Trop Dis 2021; 15:e0008812. [PMID: 33497377 PMCID: PMC7864442 DOI: 10.1371/journal.pntd.0008812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/05/2021] [Accepted: 01/09/2021] [Indexed: 11/29/2022] Open
Abstract
Background An effective syphilis vaccine should elicit antibodies to Treponema pallidum subsp. pallidum (T. p. pallidum) surface antigens to induce pathogen clearance through opsonophagocytosis. Although the combination of bioinformatics, structural, and functional analyses of T. p. pallidum genes to identify putative outer membrane proteins (OMPs) resulted in a list of potential vaccine candidates, still very little is known about whether and how transcription of these genes is regulated during infection. This knowledge gap is a limitation to vaccine design, as immunity generated to an antigen that can be down-regulated or even silenced at the transcriptional level without affecting virulence would not induce clearance of the pathogen, hence allowing disease progression. Principal findings We report here that tp1031, the T. p. pallidum gene encoding the putative OMP and vaccine candidate TprL is differentially expressed in several T. p. pallidum strains, suggesting transcriptional regulation. Experimental identification of the tprL transcriptional start site revealed that a homopolymeric G sequence of varying length resides within the tprL promoter and that its length affects promoter activity compatible with phase variation. Conversely, in the closely related pathogen T. p. subsp. pertenue, the agent of yaws, where a naturally-occurring deletion has eliminated the tprL promoter region, elements necessary for protein synthesis, and part of the gene ORF, tprL transcription level are negligible compared to T. p. pallidum strains. Accordingly, the humoral response to TprL is absent in yaws-infected laboratory animals and patients compared to syphilis-infected subjects. Conclusion The ability of T. p. pallidum to stochastically vary tprL expression should be considered in any vaccine development effort that includes this antigen. The role of phase variation in contributing to T. p. pallidum antigenic diversity should be further studied. Syphilis is still an endemic disease in many low- and middle-income countries and has been resurgent in high-income nations for almost two decades now. In endemic areas, syphilis still causes significant morbidity and mortality in patients, particularly when its causative agent, the bacterium Treponema pallidum subsp. pallidum is transmitted to the fetus during pregnancy. Although there are significant ongoing efforts to identify an effective syphilis vaccine to bring into clinical trials within the decade in the U.S., such efforts are partially hindered by the lack of knowledge on transcriptional regulation of many genes encoding vaccine candidates. Here, we start addressing this knowledge gap for the putative outer membrane protein (OMP) and vaccine candidates TprL, encoded by the tp1031 gene. As we previously reported for other putative OMP-encoding genes of the syphilis agent, tprL transcription level appears to be affected by the length of a homopolymeric sequence of guanosines (Gs) located within the gene promoter. This is a mechanism known as phase variation and often involved in altering the surface antigenic profile of a bacterial pathogen to facilitate immune evasion and/or adaptation to the host milieu.
Collapse
Affiliation(s)
- Austin M. Haynes
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Mark Fernandez
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Emily Romeis
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Oriol Mitjà
- Fight Aids and Infectious Diseases Foundation, Hospital Germans Trias I Pujol, Badalona, Barcelona, Spain
- Lihir Medical Centre-International SOS, Newcrest Mining, Lihir Island, Papua New Guinea
| | - Kelika A. Konda
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
- David Geffen School of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, United States of America
| | - Silver K. Vargas
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
- School of Public Health and Administration “Carlos Vidal Layseca”, Universidad Peruana Cayetano-Heredia, Lima, Peru
| | - Maria Eguiluz
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
| | - Carlos F. Caceres
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
| | - Jeffrey D. Klausner
- David Geffen School of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, United States of America
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
21
|
Luthra A, Montezuma-Rusca JM, La Vake CJ, LeDoyt M, Delgado KN, Davenport TC, Fiel-Gan M, Caimano MJ, Radolf JD, Hawley KL. Evidence that immunization with TP0751, a bipartite Treponema pallidum lipoprotein with an intrinsically disordered region and lipocalin fold, fails to protect in the rabbit model of experimental syphilis. PLoS Pathog 2020; 16:e1008871. [PMID: 32936831 PMCID: PMC7521688 DOI: 10.1371/journal.ppat.1008871] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Deconvolution of syphilis pathogenesis and selection of candidate syphilis vaccinogens requires detailed knowledge of the molecular architecture of the Treponema pallidum outer membrane (OM). The T. pallidum OM contains a low density of integral OM proteins, while the spirochete's many lipoprotein immunogens are periplasmic. TP0751, a lipoprotein with a lipocalin fold, is reportedly a surface-exposed protease/adhesin and protective antigen. The rapid expansion of calycin/lipocalin structures in the RCSB PDB database prompted a comprehensive reassessment of TP0751. Small angle X-ray scattering analysis of full-length protein revealed a bipartite topology consisting of an N-terminal, intrinsically disordered region (IDR) and the previously characterized C-terminal lipocalin domain. A DALI server query using the lipocalin domain yielded 97 hits, 52 belonging to the calycin superfamily, including 15 bacterial lipocalins, but no Gram-negative surface proteins. Surprisingly, Tpp17 (TP0435) was identified as a structural ortholog of TP0751. In silico docking predicted that TP0751 can bind diverse ligands along the rim of its eight-stranded β-barrel; high affinity binding of one predicted ligand, heme, to the lipocalin domain was demonstrated. qRT-PCR and immunoblotting revealed very low expression of TP0751 compared to other T. pallidum lipoproteins. Immunoblot analysis of immune rabbit serum failed to detect TP0751 antibodies, while only one of five patients with secondary syphilis mounted a discernible TP0751-specific antibody response. In opsonophagocytosis assays, neither TP0751 nor Tpp17 antibodies promoted uptake of T. pallidum by rabbit peritoneal macrophages. Rabbits immunized with intact, full-length TP0751 showed no protection against local or disseminated infection following intradermal challenge with T. pallidum. Our data argue that, like other lipoprotein lipocalins in dual-membrane bacteria, TP0751 is periplasmic and binds small molecules, and we propose that its IDR facilitates ligand binding by and offloading from the lipocalin domain. The inability of TP0751 to elicit opsonic or protective antibodies is consistent with a subsurface location.
Collapse
Affiliation(s)
- Amit Luthra
- Department of Medicine, UConn Health, Farmington, United States of America
| | - Jairo M. Montezuma-Rusca
- Department of Medicine, UConn Health, Farmington, United States of America
- Division of Infectious Diseases, UConn Health, Farmington, United States of America
- Department of Pediatrics, UConn Health, Farmington, United States of America
| | - Carson J. La Vake
- Department of Pediatrics, UConn Health, Farmington, United States of America
| | - Morgan LeDoyt
- Department of Medicine, UConn Health, Farmington, United States of America
| | | | | | - Mary Fiel-Gan
- Department of Pathology, Hartford Hospital, Hartford, United States of America
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, United States of America
- Department of Pediatrics, UConn Health, Farmington, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, United States of America
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, United States of America
- Department of Pediatrics, UConn Health, Farmington, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, United States of America
- Department of Genetics and Genome Sciences, UConn Health, Farmington, United States of America
- Department of Immunology, UConn Health, Farmington, United States of America
| | - Kelly L. Hawley
- Department of Pediatrics, UConn Health, Farmington, United States of America
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, United States of America
| |
Collapse
|
22
|
Osias E, Hung P, Giacani L, Stafylis C, Konda KA, Vargas SK, Reyes-Díaz EM, Comulada WS, Haake DA, Haynes AM, Caceres CF, Klausner JD. Investigation of syphilis immunology and Treponema pallidum subsp. pallidum biology to improve clinical management and design a broadly protective vaccine: study protocol. BMC Infect Dis 2020; 20:444. [PMID: 32576149 PMCID: PMC7309211 DOI: 10.1186/s12879-020-05141-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/08/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The syphilis epidemic continues to cause substantial morbidity and mortality worldwide, particularly in low- and middle-income countries, despite several recent disease control initiatives. Though our understanding of the pathogenesis of this disease and the biology of the syphilis agent, Treponema pallidum subsp. pallidum has improved over the last two decades, further research is necessary to improve clinical diagnosis and disease management protocols. Additionally, such research efforts could contribute to the identification of possible targets for the development of an effective vaccine to stem syphilis spread. METHODS This study will recruit two cohorts of participants with active syphilis infection, one with de novo infection, one with repeat infection. Whole blood specimens will be collected from each study participant at baseline, 4, 12, 24, 36, and 48 weeks, to track specific markers of their immunological response, as well as to compare humoral reactivity to Treponema pallidum antigens between the two groups. Additionally, we will use serum specimens to look for unique cytokine patterns in participants with early syphilis. Oral and blood samples, as well as samples from any syphilitic lesions present, will also be collected to sequence any Treponema pallidum DNA found. DISCUSSION By furthering our understanding of syphilis pathogenesis and human host immune response to Treponema pallidum, we will provide important data that will help in development of new point-of-care tests that could better identify active infection, leading to improved syphilis diagnosis and management. Findings could also contribute to vaccine development efforts.
Collapse
Affiliation(s)
- Ethan Osias
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.
| | - Phoebe Hung
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, and Department of Global Health, University of Washington, Seattle, WA, USA
| | - Chrysovalantis Stafylis
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Kelika A Konda
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Silver K Vargas
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - E Michael Reyes-Díaz
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - W Scott Comulada
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - David A Haake
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Austin M Haynes
- Department of Medicine, Division of Allergy and Infectious Diseases, and Department of Global Health, University of Washington, Seattle, WA, USA
| | - Carlos F Caceres
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jeffrey D Klausner
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| |
Collapse
|
23
|
Addetia A, Tantalo LC, Lin MJ, Xie H, Huang ML, Marra CM, Greninger AL. Comparative genomics and full-length Tprk profiling of Treponema pallidum subsp. pallidum reinfection. PLoS Negl Trop Dis 2020; 14:e0007921. [PMID: 32251462 PMCID: PMC7162541 DOI: 10.1371/journal.pntd.0007921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/16/2020] [Accepted: 02/08/2020] [Indexed: 12/25/2022] Open
Abstract
Developing a vaccine against Treponema pallidum subspecies pallidum, the causative agent of syphilis, remains a public health priority. Syphilis vaccine design efforts have been complicated by lack of an in vitro T. pallidum culture system, prolific antigenic variation in outer membrane protein TprK, and lack of functional annotation for nearly half of the genes. Understanding the genetic basis of T. pallidum reinfection can provide insights into variation among strains that escape cross-protective immunity. Here, we present comparative genomic sequencing and deep, full-length tprK profiling of two T. pallidum isolates from blood from the same patient that were collected six years apart. Notably, this patient was diagnosed with syphilis four times, with two of these episodes meeting the definition of neurosyphilis, during this interval. Outside of the highly variable tprK gene, we identified 14 coding changes in 13 genes. Nine of these genes putatively localized to the periplasmic or outer membrane spaces, consistent with a potential role in serological immunoevasion. Using a newly developed full-length tprK deep sequencing protocol, we profiled the diversity of this gene that far outpaces the rest of the genome. Intriguingly, we found that the reinfecting isolate demonstrated less diversity across each tprK variable region compared to the isolate from the first infection. Notably, the two isolates did not share any full-length TprK sequences. Our results are consistent with an immunodominant-evasion model in which the diversity of TprK explains the ability of T. pallidum to successfully reinfect individuals, even when they have been infected with the organism multiple times.
Collapse
Affiliation(s)
- Amin Addetia
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Lauren C. Tantalo
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Michelle J. Lin
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Christina M. Marra
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Alexander L. Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
24
|
The Treponema pallidum outer membrane protein Tp92 activates endothelial cells via the chemerin/CMKLR1 pathway. Int J Med Microbiol 2020; 310:151416. [PMID: 32173267 DOI: 10.1016/j.ijmm.2020.151416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/30/2020] [Accepted: 03/05/2020] [Indexed: 01/11/2023] Open
Abstract
Endothelium damage caused by Treponema pallidum is the key step in the systemic dissemination and pathophysiology of syphilis, particularly cardiovascular syphilis and neurosyphilis. However, the molecular mechanisms supporting endothelium damage of syphilis are undefined. The outer membrane proteins were thought to be involved. Tp92 was first identified as an outer membrane protein of T. pallidum. Homologous proteins to Tp92 play important roles in cell attachment, inflammation, and tissue destruction in other bacterial species. In this study, we investigated the effect of Tp92 on endothelial cells activation. The data showed that Tp92 induced chemerin production in activated endothelial cells. Endothelial cell-derived chemerin upregulated the expression of TNF-α and ICAM-1 in endothelial cells via CMKLR1. In addition, endothelial cell-derived chemerin promoted THP-1-derived macrophage migration towards endothelial cells. These findings suggest that Tp92 may play an important role in mediating endothelial cell activation by inducing the secretion of chemerin.
Collapse
|
25
|
Abstract
Spirochetes form a separate phylum of bacteria with two membranes but otherwise unusual morphologies and envelope structures. Distinctive common features of Borrelia, Leptospira, and Treponema include the sequestration of flagella to the periplasm and thin peptidoglycan cell walls that are more closely associated with the inner membrane. Outer membrane compositions differ significantly between the genera. Leptospira most closely track Gram-negative bacteria due to the incorporation of lipopolysaccharides. Treponema and Borrelia outer membranes lack lipopolysaccharide, with treponemes expressing only a few outer membrane proteins and Borrelia displaying a dizzying diversity of abundant surface lipoproteins instead. Phylogenetic and experimental evidence indicates that spirochetes have adapted various modules of bacterial export and secretion pathways to build and maintain their envelopes. Export and insertion pathways in the inner membrane appear conserved, while spirochetal experimentation with various envelope architectures over time has led to variations in secretion pathways in the periplasm and outer membrane. Classical type I to III secretion systems have been identified, with demonstrated roles in drug efflux and export of flagellar proteins only. Unique activities of periplasmic proteases, including a C-terminal protease, are involved in maturation of some periplasmic proteins. Proper lipoprotein sorting within the periplasm appears to be dependent on functional Lol pathways that lack the outer membrane lipoprotein insertase LolB. The abundance of surface lipoproteins in Borrelia and detailed protein sorting studies suggest a lipoprotein secretion pathway that either extends Lol through the outer membrane or bypasses it altogether. Proteins can be released from cells in outer membrane vesicles or, rarely, as soluble proteins.
Collapse
|
26
|
Liu Y, Bian QQ, Zhang SH, Wang J, Wang ZM, Li JY. Post-treatment serological changes in some patients with early syphilis exhibit a parabolic trend. Int J STD AIDS 2019; 30:1389-1396. [PMID: 31744395 DOI: 10.1177/0956462419871855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Early syphilis accounts for a large proportion of patients with syphilis. Non- Treponema pallidum tests are commonly used to assess treatment effectiveness by analyzing the serological titer before treatment and six months after treatment. However, serological changes during the first three months after completion of treatment have not been completely understood. This prompted us to investigate whether serum titers of patients exhibit a continuous decrease post-treatment and to assess the trend of change in serological titer during this period. One hundred and seventy-three eligible patients with early syphilis were included in the analysis. Pre-treatment serological titers and those at three and six months post-treatment were compared and analyzed. Serological recovery was defined as a 4-fold or greater decrease in titer from pre-treatment level. Forty patients (23.1%) were found to have an increased serum titer at three months after treatment. Among the 40 patients, 13 patients had primary syphilis, 5 patients had secondary syphilis, and 22 patients had early latent syphilis. The proportion of patients with primary syphilis was higher, and their initial titers were significantly lower. No significant differences were observed with respect to age, gender, or initial treatment. The assessment results of 17 patients (9.8% of the total patients) change. Serological changes in some patients exhibit a parabolic pattern that may affect the clinician’s assessment of patient recovery. Therefore, more frequent assessment of serological titer might be required within the first six months post-treatment.
Collapse
Affiliation(s)
- Yong Liu
- Department of Dermatology and STD, The Third Central Hospital of Tianjin; Tianjin Key Laboratory of Artificial Cell; Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Que-Qiao Bian
- Department of Dermatology and STD, The Third Central Hospital of Tianjin; Tianjin Key Laboratory of Artificial Cell; Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Shu-Huan Zhang
- Department of Dermatology and STD, The Third Central Hospital of Tianjin; Tianjin Key Laboratory of Artificial Cell; Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Jun Wang
- Department of Dermatology and STD, The Third Central Hospital of Tianjin; Tianjin Key Laboratory of Artificial Cell; Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Zhen-Ming Wang
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin, China
| | - Jun-Yue Li
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin, China
| |
Collapse
|
27
|
Gao K, Shen X, Lin Y, Zhu XZ, Lin LR, Tong ML, Xiao Y, Zhang HL, Liang XM, Niu JJ, Liu LL, Yang TC. Origin of Nontreponemal Antibodies During Treponema pallidum Infection: Evidence From a Rabbit Model. J Infect Dis 2019; 218:835-843. [PMID: 29701849 DOI: 10.1093/infdis/jiy241] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/21/2018] [Indexed: 11/13/2022] Open
Abstract
The origin of nontreponemal antibodies during syphilis infection is hotly debated. Here, we analyzed the immune response in rabbits immunized with various antigens. Inactivated treponemes elicited the production of low-titer nontreponemal antibodies in some rabbits. Cardiolipin combined with bovine serum albumin also induced anticardiolipin antibody production. These findings indicate that Treponema pallidum contained a cardiolipin antigen with weak immunogenicity. However, active T. pallidum induced higher nontreponemal antibody production with strong immunogenicity at an earlier time point, and the antibody titer was consecutive, suggesting the high nontreponemal antibody titer resulted from the combined effects of both the T. pallidum cardiolipin antigen and the damaged host-cell cardiolipin antigen during syphilis infection, the latter of which plays a major role in the induction of nontreponemal antibody production. Our study provides direct animal evidence of the origin of nontreponemal antibodies during T. pallidum infection.
Collapse
Affiliation(s)
- Kun Gao
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Xu Shen
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Fujian Medical University, Fujian Province, China
| | - Yong Lin
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Xiao-Zhen Zhu
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Li-Rong Lin
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Man-Li Tong
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Yao Xiao
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Xiamen Hospital of Traditional Chinese Medicine, Fujian Province, China
| | - Hui-Lin Zhang
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Xian-Ming Liang
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Jian-Jun Niu
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Li-Li Liu
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Tian-Ci Yang
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| |
Collapse
|
28
|
Evaluation of the Protective Ability of the Treponema pallidum subsp. pallidum Tp0126 OmpW Homolog in the Rabbit Model of Syphilis. Infect Immun 2019; 87:IAI.00323-19. [PMID: 31182617 DOI: 10.1128/iai.00323-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/30/2019] [Indexed: 12/16/2022] Open
Abstract
In silico analyses of Treponema pallidum subsp. pallidum genomes and predicted proteomes to search for homologs of known bacterial outer membrane proteins (OMPs) led to the identification of tp0126 as a gene encoding a putative member of the OmpW family of porins/virulence factors. Our previous investigations on the role of Tp0126 in T. pallidum biology and syphilis pathogenesis showed that Tp0126 is fully conserved among T. pallidum strains and that transcription of tp0126 is driven by σ70 These initial results pointed to a housekeeping function for this protein. We also demonstrated that a guanosine homopolymer of various lengths located between the -10 and -35 consensus sequences in the tp0126 promoter modulates transcription consistently with phase variation, a mechanism that we also previously described for other T. pallidum genes encoding putative OMPs/virulence factors and that is often employed as a strategy for immune evasion. Circular dichroism spectra of recombinant Tp0126 also supported its structural homology with OmpW. Here we further investigated the humoral and cellular responses to Tp0126 during experimental and natural syphilis and the ability of Tp0126 to confer protection against syphilis in immunized rabbits. B-cell epitope mapping showed that compared to sera from experimentally infected animals, immunizations enhanced humoral immunity to sequences located in the putative Tp0126 surface-exposed loops, while phagocytosis assays showed that postimmunization sera opsonized T. pallidum Despite such promising results, no significant protection was seen following infectious challenge in immunized animals versus controls. Functional redundancy and phase variation might explain the lack of effectiveness of this vaccine candidate and/or design.
Collapse
|
29
|
Liu D, Tong ML, Lin Y, Liu LL, Lin LR, Yang TC. Insights into the genetic variation profile of tprK in Treponema pallidum during the development of natural human syphilis infection. PLoS Negl Trop Dis 2019; 13:e0007621. [PMID: 31329597 PMCID: PMC6675121 DOI: 10.1371/journal.pntd.0007621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/01/2019] [Accepted: 07/09/2019] [Indexed: 01/25/2023] Open
Abstract
Background Although the tprK gene of Treponema pallidum are thought to play a critical role in the pathogenesis of syphilis, the profile of variations in tprK during the development of human syphilis infection have remained unclear. Methods/Principal findings Through next-generation sequencing, we compared the tprK gene of 14 secondary syphilis patients with that of 14 primary syphilis patients, and the results showed an increased number of variants within the seven V regions of the tprK gene in the secondary syphilis samples. The length of the sequences within each V region also presented a 3-bp changing pattern. Interestingly, the frequencies of predominant sequences within the V regions in the secondary syphilis samples were generally decreased compared with those found in the primary syphilis samples, particularly in the V7 region, where a frequency below 60% was found in up to 57% (8/14) of all secondary samples compared with 7% (1/14) of all primary samples. Moreover, the number of minor variants distributed between frequencies of 10 and 49.9% was increased. The alignment of all amino acid sequences within each V region of the primary and secondary syphilis samples revealed that some amino acid sequences, particularly the amino acid sequences IASDGGAIKH and IASEDGSAGNLKH in V1, were highly stable. Additionally, the amino acid sequences in V6 also exhibited notable intrastrain heterogeneity and were likely to form a strain-specific pattern at the interstrain level. Conclusions The identification of different profiles of the tprK gene in primary and secondary syphilis patients indicated that the tprK gene of T. pallidum undergoes constant variation to result in the best adaptation to the host. The highly stable peptides found in V1 are likely promising potential vaccine components. The highly heterogenetic regions (e.g., V6) could help to understand the role of tprK in immune evasion. Antigenic variation of the TprK antigen has been acknowledged to explain the persistence of Treponema pallidum in the host, however, the profile of variations in tprK during the development of human syphilis infection has not been well characterized. Here, we performed next-generation sequencing to compare the variations in tprK between primary and secondary syphilis samples. The profiles of tprK in the samples at different stages showed differences. A higher amount of pool variants within seven V regions was found in the secondary syphilis samples, and the frequencies of their predominant sequences generally decreased with increases in the number of minor variants with frequencies in the range of 10 to 49.9%. However, the length of variable sequences within the V regions of tprK in the secondary syphilis samples also presented a 3-bp changing pattern. Notably, the amino acid sequences IASDGGAIKH and IASEDGSAGNLKH in V1 not only presented a high proportion of interstrain sharing but also were found at a relatively high frequency (above 80%) in the populations. The sequences in V6 of the samples demonstrated substantial variability at the intra- and interstrain levels. These findings could provide insights into the potential syphilis vaccine components and the role of TprK in immune evasion.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
30
|
Abstract
The outer membrane (OM) of Treponema pallidum, the uncultivatable agent of venereal syphilis, has long been the subject of misconceptions and controversy. Decades ago, researchers postulated that T. pallidum's poor surface antigenicity is the basis for its ability to cause persistent infection, but they mistakenly attributed this enigmatic property to the presence of a protective outer coat of serum proteins and mucopolysaccharides. Subsequent studies revealed that the OM is the barrier to antibody binding, that it contains a paucity of integral membrane proteins, and that the preponderance of the spirochete's immunogenic lipoproteins is periplasmic. Since the advent of recombinant DNA technology, the fragility of the OM, its low protein content, and the lack of sequence relatedness between T. pallidum and Gram-negative outer membrane proteins (OMPs) have complicated efforts to characterize molecules residing at the host-pathogen interface. We have overcome these hurdles using the genomic sequence in concert with computational tools to identify proteins predicted to form β-barrels, the hallmark conformation of OMPs in double-membrane organisms and evolutionarily related eukaryotic organelles. We also have employed diverse methodologies to confirm that some candidate OMPs do, in fact, form amphiphilic β-barrels and are surface-exposed in T. pallidum. These studies have led to a structural homology model for BamA and established the bipartite topology of the T. pallidum repeat (Tpr) family of proteins. Recent bioinformatics has identified several structural orthologs for well-characterized Gram-negative OMPs, suggesting that the T. pallidum OMP repertoire is more Gram-negative-like than previously supposed. Lipoprotein adhesins and proteases on the spirochete surface also may contribute to disease pathogenesis and protective immunity.
Collapse
Affiliation(s)
- Justin D Radolf
- Departments of Medicine, Pediatrics, Molecular Biology and Biophysics, Genetics and Genomic Sciences, and Immunology, UConn Health, Farmington, CT 06030-3715, USA.
| | - Sanjiv Kumar
- Department of Medicine, UConn Health, Farmington, CT 06030-3715, USA
| |
Collapse
|
31
|
Djokic V, Giacani L, Parveen N. Analysis of host cell binding specificity mediated by the Tp0136 adhesin of the syphilis agent Treponema pallidum subsp. pallidum. PLoS Negl Trop Dis 2019; 13:e0007401. [PMID: 31071095 PMCID: PMC6529012 DOI: 10.1371/journal.pntd.0007401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/21/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
Background Syphilis affects approximately 11 million people each year globally, and is the third most prevalent sexually transmitted bacterial infection in the United States. Inability to independently culture and genetically manipulate Treponema pallidum subsp. pallidum, the causative agent of this disease, has hindered our understanding of the molecular mechanisms of syphilis pathogenesis. Here, we used the non-infectious and poorly adherent B314 strain of the Lyme disease-causing spirochete, Borrelia burgdorferi, to express two variants of a known fibronectin-binding adhesin, Tp0136, from T. pallidum SS14 and Nichols strains. Using this surrogate system, we investigated the ability of Tp0136 in facilitating differential binding to mammalian cell lines offering insight into the possible role of this virulence factor in colonization of specific tissues by T. pallidum during infection. Principal findings Expression of Tp0136 could be detected on the surface of B. burgdorferi by indirect immunofluorescence assay using sera from a secondary syphilis patient that does not react with intact B314 spirochetes transformed with the empty vector. Increase in Tp0136-mediated adherence of B314 strain to human epithelial HEK293 cells was observed with comparable levels of binding exhibited by both Tp0136 alleles. Adherence of Tp0136-expressing B314 was highest to epithelial HEK293 and C6 glioma cells. Gain in binding of B314 strain expressing Tp0136 to purified fibronectin and poor binding of these spirochetes to the fibronectin-deficient cell line (HEp-2) indicated that Tp0136 interaction with this host receptor plays an important role in spirochetal attachment to mammalian cells. Furthermore, preincubation of these cell lines with fibronectin-binding peptide from Staphylococcus aureus FnbA-2 protein significantly inhibited binding of B314 expressing Tp0136. Conclusions Our results show that Tp0136 facilitates differential level of binding to cell lines representing various host tissues, which highlights the importance of this protein in colonization of human organs by T. pallidum and resulting syphilis pathogenesis. Syphilis is one of the most prevalent sexually transmitted infections that affect millions of people around the world. The causative bacterium, Treponema pallidum subsp. pallidum, can be transmitted from mother to fetus during maternal infection, resulting in adverse pregnancy outcomes. Although timely treatment of syphilis is highly effective, untreated infection causes late syphilis that affects virtually every organ and leads to serious clinical manifestations. Therefore, syphilis remains a serious healthcare problem. T. pallidum cannot be grown in laboratory using traditional methods, which has slowed the progress in understanding this pathogen biology and pathogenesis. We employed a novel approach of using a related bacterium, Borrelia burgdorferi, to express Tp0136 protein from two different T. pallidum isolates to study the function of this protein. This strategy enabled us to demonstrate the ability of this protein to bind to fibronectin and laminin receptors present on the surface of various host cells. We showed that Tp0136 facilitates binding to only those host cells that produce fibronectin. In addition, we found that Tp0136-mediated binding is not equivalent in all host cell types, suggesting that the protein could help in colonization of specific human organs and tissues during infection by T. pallidum.
Collapse
Affiliation(s)
- Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
32
|
Liu D, Tong ML, Luo X, Liu LL, Lin LR, Zhang HL, Lin Y, Niu JJ, Yang TC. Profile of the tprK gene in primary syphilis patients based on next-generation sequencing. PLoS Negl Trop Dis 2019; 13:e0006855. [PMID: 30789907 PMCID: PMC6400401 DOI: 10.1371/journal.pntd.0006855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/05/2019] [Accepted: 12/07/2018] [Indexed: 12/04/2022] Open
Abstract
Background The highly variable tprK gene of Treponema pallidum has been acknowledged to be one of the mechanisms that causes persistent infection. Previous studies have mainly focused on the heterogeneity in tprK in propagated strains using a clone-based Sanger approach. Few studies have investigated tprK directly from clinical samples using deep sequencing. Methods/Principal findings We conducted a comprehensive analysis of 14 primary syphilis clinical isolates of T. pallidum via next-generation sequencing to gain better insight into the profile of tprK in primary syphilis patients. Our results showed that there was a mixture of distinct sequences within each V region of tprK. Except for the predominant sequence for each V region as previously reported using the clone-based Sanger approach, there were many minor variants of all strains that were mainly observed at a frequency of 1–5%. Interestingly, the identified distinct sequences within the regions were variable in length and differed by only 3 bp or multiples of 3 bp. In addition, amino acid sequence consistency within each V region was found among the 14 strains. Among the regions, the sequence IASDGGAIKH in V1 and the sequence DVGHKKENAANVNGTVGA in V4 showed a high stability of inter-strain redundancy. Conclusions The seven V regions of the tprK gene in primary syphilis infection demonstrated high diversity; they generally contained a high proportion sequence and numerous low-frequency minor variants, most of which are far below the detection limit of Sanger sequencing. The rampant variation in each V region was regulated by a strict gene conversion mechanism that maintained the length difference to 3 bp or multiples of 3 bp. The highly stable sequence of inter-strain redundancy may indicate that the sequences play a critical role in T. pallidum virulence. These highly stable peptides are also likely to be potential targets for vaccine development. Variations in tprK have been acknowledged to be the major contributors to persistent Treponema pallidum infections. Previous studies were based on the clone-based Sanger approach, and most of them were performed in propagated strains using rabbits, which could not reflect the actual heterogeneous characteristics of tprK in the context of human infection. In the present study, we employed next-generation sequencing (NGS) to explore the profile of tprK directly from 14 patients with primary syphilis. Our results showed a mixture of distinct sequences within each V region of tprK in these clinical samples. First, the length of identified distinct sequences within the region was variable, which differed by only 3 bp or multiples of 3 bp. Then, among the mixtures, a predominant sequence was usually observed for each V region, and the remaining minor variants were mainly observed at a frequency of 1–5%. In addition, there was a scenario of amino acid sequence consistency within the regions among the 14 primary syphilis strains. The identification of the profile of tprK in the context of human primary syphilis infection contributes to further exploration of the pathogenesis of syphilis.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Xi Luo
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hui-Lin Zhang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Zhongshan Hospital, Fujian Medical University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
33
|
Parveen N, Fernandez MC, Haynes AM, Zhang RL, Godornes BC, Centurion-Lara A, Giacani L. Non-pathogenic Borrelia burgdorferi expressing Treponema pallidum TprK and Tp0435 antigens as a novel approach to evaluate syphilis vaccine candidates. Vaccine 2019; 37:1807-1818. [PMID: 30797635 DOI: 10.1016/j.vaccine.2019.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Syphilis is resurgent in many developed countries and still prevalent in developing nations. Current and future control campaigns would benefit from the development of a vaccine, but although promising vaccine candidates were identified among the putative surface-exposed integral outer membrane proteins of the syphilis spirochete, immunization experiments in the rabbit model using recombinant antigens have failed to fully protect animals upon infectious challenge. We speculated that such recombinant immunogens, purified under denaturing conditions from Escherichia coli prior to immunization might not necessarily harbor their original structure, and hypothesized that enhanced protection would result from performing similar immunization/challenge experiments with native antigens. METHODS To test our hypothesis, we engineered non-infectious Borrelia burgdorferi strains to express the tp0897 (tprK) and tp0435 genes of Treponema pallidum subsp. pallidum and immunized two groups of rabbits by injecting recombinant strains intramuscularly with no adjuvant. TprK is a putative integral outer membrane protein of the syphilis agent, while tp0435 encodes the highly immunogenic T. pallidum 17-kDa lipoprotein, a periplasmic antigen that was also shown on the pathogen surface. Following development of a specific host immune response to these antigens as the result of immunization, animals were challenged by intradermal inoculation of T. pallidum. Cutaneous lesion development was monitored and treponemal burden within lesions were assessed by dark-field microscopy and RT-qPCR, in comparison to control rabbits. RESULTS Partial protection was observed in rabbits immunized with B. burgdorferi expressing TprK while immunity to Tp0435 was not protective. Analysis of the humoral response to TprK antigen suggested reactivity to conformational epitopes. CONCLUSIONS Immunization with native antigens might not be sufficient to obtain complete protection to infection. Nonetheless we showed that non-infectious B. burgdorferi can be an effective carrier to deliver and elicit a specific host response to T. pallidum antigens to assess the efficacy of syphilis vaccine candidates.
Collapse
Affiliation(s)
- Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, United States
| | - Mark C Fernandez
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States
| | - Austin M Haynes
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States
| | - Rui-Li Zhang
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States; Department of Dermatology, Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, 214002 Wuxi, China
| | - B Charmie Godornes
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States
| | | | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States; Department of Global Health, University of Washington, Seattle, WA 98104, United States.
| |
Collapse
|
34
|
Veith PD, Glew MD, Gorasia DG, Chen D, O’Brien-Simpson NM, Reynolds EC. Localization of Outer Membrane Proteins in Treponema denticola by Quantitative Proteome Analyses of Outer Membrane Vesicles and Cellular Fractions. J Proteome Res 2019; 18:1567-1581. [DOI: 10.1021/acs.jproteome.8b00860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michelle D. Glew
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dhana G. Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dina Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil M. O’Brien-Simpson
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
35
|
Kumar S, Caimano MJ, Anand A, Dey A, Hawley KL, LeDoyt ME, La Vake CJ, Cruz AR, Ramirez LG, Paštěková L, Bezsonova I, Šmajs D, Salazar JC, Radolf JD. Sequence Variation of Rare Outer Membrane Protein β-Barrel Domains in Clinical Strains Provides Insights into the Evolution of Treponema pallidum subsp. pallidum, the Syphilis Spirochete. mBio 2018; 9:e01006-18. [PMID: 29895642 PMCID: PMC6016234 DOI: 10.1128/mbio.01006-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, considerable progress has been made in topologically and functionally characterizing integral outer membrane proteins (OMPs) of Treponema pallidum subspecies pallidum, the syphilis spirochete, and identifying its surface-exposed β-barrel domains. Extracellular loops in OMPs of Gram-negative bacteria are known to be highly variable. We examined the sequence diversity of β-barrel-encoding regions of tprC, tprD, and bamA in 31 specimens from Cali, Colombia; San Francisco, California; and the Czech Republic and compared them to allelic variants in the 41 reference genomes in the NCBI database. To establish a phylogenetic framework, we used T. pallidum 0548 (tp0548) genotyping and tp0558 sequences to assign strains to the Nichols or SS14 clades. We found that (i) β-barrels in clinical strains could be grouped according to allelic variants in T. pallidum subsp. pallidum reference genomes; (ii) for all three OMP loci, clinical strains within the Nichols or SS14 clades often harbored β-barrel variants that differed from the Nichols and SS14 reference strains; and (iii) OMP variable regions often reside in predicted extracellular loops containing B-cell epitopes. On the basis of structural models, nonconservative amino acid substitutions in predicted transmembrane β-strands of T. pallidum repeat C (TprC) and TprD2 could give rise to functional differences in their porin channels. OMP profiles of some clinical strains were mosaics of different reference strains and did not correlate with results from enhanced molecular typing. Our observations suggest that human host selection pressures drive T. pallidum subsp. pallidum OMP diversity and that genetic exchange contributes to the evolutionary biology of T. pallidum subsp. pallidum They also set the stage for topology-based analysis of antibody responses to OMPs and help frame strategies for syphilis vaccine development.IMPORTANCE Despite recent progress characterizing outer membrane proteins (OMPs) of Treponema pallidum, little is known about how their surface-exposed, β-barrel-forming domains vary among strains circulating within high-risk populations. In this study, sequences for the β-barrel-encoding regions of three OMP loci, tprC, tprD, and bamA, in T. pallidum subsp. pallidum isolates from a large number of patient specimens from geographically disparate sites were examined. Structural models predict that sequence variation within β-barrel domains occurs predominantly within predicted extracellular loops. Amino acid substitutions in predicted transmembrane strands that could potentially affect porin channel function were also noted. Our findings suggest that selection pressures exerted within human populations drive T. pallidum subsp. pallidum OMP diversity and that recombination at OMP loci contributes to the evolutionary biology of syphilis spirochetes. These results also set the stage for topology-based analysis of antibody responses that promote clearance of T. pallidum subsp. pallidum and frame strategies for vaccine development based upon conserved OMP extracellular loops.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Melissa J Caimano
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Arvind Anand
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Abhishek Dey
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Kelly L Hawley
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Division of Pediatric Infectious Diseases, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - Morgan E LeDoyt
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Carson J La Vake
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
| | - Adriana R Cruz
- Centro Internacional de Entrenamiento e Investigaciones Medicas (CIDEIM), Cali, Colombia
| | - Lady G Ramirez
- Centro Internacional de Entrenamiento e Investigaciones Medicas (CIDEIM), Cali, Colombia
| | - Lenka Paštěková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Juan C Salazar
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Division of Pediatric Infectious Diseases, Connecticut Children's Medical Center, Hartford, Connecticut, USA
- Centro Internacional de Entrenamiento e Investigaciones Medicas (CIDEIM), Cali, Colombia
- Department of Immunology, UConn Health, Farmington, Connecticut, USA
| | - Justin D Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
- Department of Immunology, UConn Health, Farmington, Connecticut, USA
- Department of Genetic and Genome Sciences, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
36
|
Šmajs D, Strouhal M, Knauf S. Genetics of human and animal uncultivable treponemal pathogens. INFECTION GENETICS AND EVOLUTION 2018; 61:92-107. [PMID: 29578082 DOI: 10.1016/j.meegid.2018.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
Abstract
Treponema pallidum is an uncultivable bacterium and the causative agent of syphilis (subsp. pallidum [TPA]), human yaws (subsp. pertenue [TPE]), and bejel (subsp. endemicum). Several species of nonhuman primates in Africa are infected by treponemes genetically undistinguishable from known human TPE strains. Besides Treponema pallidum, the equally uncultivable Treponema carateum causes pinta in humans. In lagomorphs, Treponema paraluisleporidarum ecovar Cuniculus and ecovar Lepus are the causative agents of rabbit and hare syphilis, respectively. All uncultivable pathogenic treponemes harbor a relatively small chromosome (1.1334-1.1405 Mbp) and show gene synteny with minimal genetic differences (>98% identity at the DNA level) between subspecies and species. While uncultivable pathogenic treponemes contain a highly conserved core genome, there are a number of highly variable and/or recombinant chromosomal loci. This is also reflected in the occurrence of intrastrain heterogeneity (genetic diversity within an infecting bacterial population). Molecular differences at several different chromosomal loci identified among TPA strains or isolates have been used for molecular typing and the epidemiological characterization of syphilis isolates. This review summarizes genome structure of uncultivable pathogenic treponemes including genetically variable regions.
Collapse
Affiliation(s)
- David Šmajs
- Department of Biology, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic.
| | - Michal Strouhal
- Department of Biology, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic.
| | - Sascha Knauf
- Work Group Neglected Tropical Diseases, Pathology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany,.
| |
Collapse
|
37
|
The major outer sheath protein forms distinct conformers and multimeric complexes in the outer membrane and periplasm of Treponema denticola. Sci Rep 2017; 7:13260. [PMID: 29038532 PMCID: PMC5643300 DOI: 10.1038/s41598-017-13550-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
The major outer sheath protein (MOSP) is a prominent constituent of the cell envelope of Treponema denticola (TDE) and one of its principal virulence determinants. Bioinformatics predicts that MOSP consists of N- and C-terminal domains, MOSPN and MOSPC. Biophysical analysis of constructs refolded in vitro demonstrated that MOSPC, previously shown to possess porin activity, forms amphiphilic trimers, while MOSPN forms an extended hydrophilic monomer. In TDE and E. coli expressing MOSP with a PelB signal sequence (PelB-MOSP), MOSPC is OM-embedded and surface-exposed, while MOSPN resides in the periplasm. Immunofluorescence assay, surface proteolysis, and novel cell fractionation schemes revealed that MOSP in TDE exists as outer membrane (OM) and periplasmic trimeric conformers; PelB-MOSP, in contrast, formed only OM-MOSP trimers. Although both conformers form hetero-oligomeric complexes in TDE, only OM-MOSP associates with dentilisin. Mass spectrometry (MS) indicated that OM-MOSP interacts with proteins in addition to dentilisin, most notably, oligopeptide-binding proteins (OBPs) and the β-barrel of BamA. MS also identified candidate partners for periplasmic MOSP, including TDE1658, a spirochete-specific SurA/PrsA ortholog. Collectively, our data suggest that MOSP destined for the TDE OM follows the canonical BAM pathway, while formation of a stable periplasmic conformer involves an export-related, folding pathway not present in E. coli.
Collapse
|
38
|
Abstract
Treponema pallidum subspecies pallidum (T. pallidum) causes syphilis via sexual exposure or via vertical transmission during pregnancy. T. pallidum is renowned for its invasiveness and immune-evasiveness; its clinical manifestations result from local inflammatory responses to replicating spirochaetes and often imitate those of other diseases. The spirochaete has a long latent period during which individuals have no signs or symptoms but can remain infectious. Despite the availability of simple diagnostic tests and the effectiveness of treatment with a single dose of long-acting penicillin, syphilis is re-emerging as a global public health problem, particularly among men who have sex with men (MSM) in high-income and middle-income countries. Syphilis also causes several hundred thousand stillbirths and neonatal deaths every year in developing nations. Although several low-income countries have achieved WHO targets for the elimination of congenital syphilis, an alarming increase in the prevalence of syphilis in HIV-infected MSM serves as a strong reminder of the tenacity of T. pallidum as a pathogen. Strong advocacy and community involvement are needed to ensure that syphilis is given a high priority on the global health agenda. More investment is needed in research on the interaction between HIV and syphilis in MSM as well as into improved diagnostics, a better test of cure, intensified public health measures and, ultimately, a vaccine.
Collapse
Affiliation(s)
- Rosanna W Peeling
- London School of Hygiene &Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - David Mabey
- London School of Hygiene &Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Mary L Kamb
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xiang-Sheng Chen
- National Center for STD Control, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Dermatology, Nanjing, China
| | - Justin D Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Adele S Benzaken
- Department of Surveillance, Prevention and Control of STI, HIV/AIDS and Viral Hepatitis, Ministry of Health, Brasília, Brazil
| |
Collapse
|
39
|
Hawley KL, Cruz AR, Benjamin SJ, La Vake CJ, Cervantes JL, LeDoyt M, Ramirez LG, Mandich D, Fiel-Gan M, Caimano MJ, Radolf JD, Salazar JC. IFNγ Enhances CD64-Potentiated Phagocytosis of Treponema pallidum Opsonized with Human Syphilitic Serum by Human Macrophages. Front Immunol 2017; 8:1227. [PMID: 29051759 PMCID: PMC5633599 DOI: 10.3389/fimmu.2017.01227] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/15/2017] [Indexed: 12/23/2022] Open
Abstract
Syphilis is a multi-stage, sexually transmitted disease caused by the spirochete Treponema pallidum (Tp). Considered broadly, syphilis can be conceptualized as a dualistic process in which spirochete-driven inflammation, the cause of clinical manifestations, coexists to varying extents with bacterial persistence. Inflammation is elicited in the tissues, along with the persistence of spirochetes to keep driving a robust immune response while evading host defenses; this duality is best exemplified during the florid, disseminated stage called secondary syphilis (SS). SS lesions typically contain copious amounts of spirochetes along with a mixed cellular infiltrate consisting of CD4+ T cells, CD8+ T cells, NK cells, plasma cells, and macrophages. In the rabbit model, Tp are cleared by macrophages via antibody-mediated opsonophagocytosis. Previously, we demonstrated that human syphilitic serum (HSS) promotes efficient uptake of Tp by human monocytes and that opsonophagocytosis of Tp markedly enhances cytokine production. Herein, we used monocyte-derived macrophages to study Tp–macrophage interactions ex vivo. In the absence of HSS, monocyte-derived macrophages internalized low numbers of Tp and secreted little cytokine (e.g., TNF). By contrast, these same macrophages internalized large numbers of unopsonized Borrelia burgdorferi and secreted robust levels of cytokines. Maturation of macrophages with M-CSF and IFNγ resulted in a macrophage phenotype with increased expression of HLA-DR, CD14, inducible nitric oxide synthase, TLR2, TLR8, and the Fcγ receptors (FcγR) CD64 and CD16, even in the absence of LPS. Importantly, IFNγ-polarized macrophages resulted in a statistically significant increase in opsonophagocytosis of Tp accompanied by enhanced production of cytokines, macrophage activation markers (CD40, CD80), TLRs (TLR2, TLR7, TLR8), chemokines (CCL19, CXCL10, CXCL11), and TH1-promoting cytokines (IL-12, IL-15). Finally, the blockade of FcγRs, primarily CD64, significantly diminished spirochetal uptake and proinflammatory cytokine secretion by IFNγ-stimulated macrophages. Our ex vivo studies demonstrate the importance of CD64-potentiated uptake of opsonized Tp and suggest that IFNγ-activated macrophages have an important role in the context of early syphilis. Our study results also provide an ex vivo surrogate system for use in future syphilis vaccine studies.
Collapse
Affiliation(s)
- Kelly L Hawley
- Department of Pediatrics, UConn Health, Farmington, CT, United States.,Division of Infectious Diseases, Connecticut Children's Medical Center, Hartford, CT, United States
| | - Adriana R Cruz
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Sarah J Benjamin
- Department of Pediatrics, UConn Health, Farmington, CT, United States.,Division of Infectious Diseases, Connecticut Children's Medical Center, Hartford, CT, United States.,Department of Immunology, UConn Health, Farmington, CT, United States
| | - Carson J La Vake
- Department of Pediatrics, UConn Health, Farmington, CT, United States
| | - Jorge L Cervantes
- Department of Pediatrics, UConn Health, Farmington, CT, United States.,Division of Infectious Diseases, Connecticut Children's Medical Center, Hartford, CT, United States
| | - Morgan LeDoyt
- Department of Medicine, UConn Health, Farmington, CT, United States
| | - Lady G Ramirez
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Daniza Mandich
- Department of Pathology, Hartford Hospital, Hartford, CT, United States
| | - Mary Fiel-Gan
- Department of Pathology, Hartford Hospital, Hartford, CT, United States
| | | | - Justin D Radolf
- Department of Pediatrics, UConn Health, Farmington, CT, United States.,Division of Infectious Diseases, Connecticut Children's Medical Center, Hartford, CT, United States.,Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia.,Department of Immunology, UConn Health, Farmington, CT, United States.,Department of Medicine, UConn Health, Farmington, CT, United States.,Department of Genetics and Developmental Biology, UConn Health, Farmington, CT, United States
| | - Juan C Salazar
- Department of Pediatrics, UConn Health, Farmington, CT, United States.,Division of Infectious Diseases, Connecticut Children's Medical Center, Hartford, CT, United States.,Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia.,Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
40
|
Novel Treponema pallidum Recombinant Antigens for Syphilis Diagnostics: Current Status and Future Prospects. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1436080. [PMID: 28523273 PMCID: PMC5421087 DOI: 10.1155/2017/1436080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/21/2017] [Indexed: 11/18/2022]
Abstract
The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized.
Collapse
|
41
|
Mikalová L, Strouhal M, Oppelt J, Grange PA, Janier M, Benhaddou N, Dupin N, Šmajs D. Human Treponema pallidum 11q/j isolate belongs to subsp. endemicum but contains two loci with a sequence in TP0548 and TP0488 similar to subsp. pertenue and subsp. pallidum, respectively. PLoS Negl Trop Dis 2017; 11:e0005434. [PMID: 28263990 PMCID: PMC5354452 DOI: 10.1371/journal.pntd.0005434] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/16/2017] [Accepted: 02/23/2017] [Indexed: 11/25/2022] Open
Abstract
Background Treponema pallidum subsp. endemicum (TEN) is the causative agent of endemic syphilis (bejel). An unusual human TEN 11q/j isolate was obtained from a syphilis-like primary genital lesion from a patient that returned to France from Pakistan. Methodology/Principal findings The TEN 11q/j isolate was characterized using nested PCR followed by Sanger sequencing and/or direct Illumina sequencing. Altogether, 44 chromosomal regions were analyzed. Overall, the 11q/j isolate clustered with TEN strains Bosnia A and Iraq B as expected from previous TEN classification of the 11q/j isolate. However, the 11q/j sequence in a 505 bp-long region at the TP0488 locus was similar to Treponema pallidum subsp. pallidum (TPA) strains, but not to TEN Bosnia A and Iraq B sequences, suggesting a recombination event at this locus. Similarly, the 11q/j sequence in a 613 bp-long region at the TP0548 locus was similar to Treponema pallidum subsp. pertenue (TPE) strains, but not to TEN sequences. Conclusions/Significance A detailed analysis of two recombinant loci found in the 11q/j clinical isolate revealed that the recombination event occurred just once, in the TP0488, with the donor sequence originating from a TPA strain. Since TEN Bosnia A and Iraq B were found to contain TPA-like sequences at the TP0548 locus, the recombination at TP0548 took place in a treponeme that was an ancestor to both TEN Bosnia A and Iraq B. The sequence of 11q/j isolate in TP0548 represents an ancestral TEN sequence that is similar to yaws-causing treponemes. In addition to the importance of the 11q/j isolate for reconstruction of the TEN phylogeny, this case emphasizes the possible role of TEN strains in development of syphilis-like lesions. Treponema pallidum subsp. endemicum (TEN) is an uncultivable pathogenic treponeme that causes bejel (endemic syphilis), a chronic human infection mostly affecting children under 15 years of age, occurring mainly in several African and Middle East countries. In this work, we characterized a TEN 11q/j isolate from France that was obtained from an adult male with genital lesions, who was suspected of having syphilis and who received benzathine penicillin G. DNA sequencing of the isolate revealed two loci that were, rather than to TEN, related either to T. pallidum subsp. pertenue or to T. pallidum subsp. pallidum and likely resulted from recombination events. The recombination event in TP0488 as well as the recombination in TP0548, of the 11q/j, helped clarify the phylogeny of the TEN strains indicating that the recombination in TP0548 took place in a treponeme that was ancestral of Bosnia A and Iraq B, but was not an ancestor of the 11q/j isolate. In contrast, a recombination event in TP0488 appeared in the ancestor of the 11q/j isolate after separation of the ancestral treponeme of Bosnia A and Iraq B. This case also points to a possible role of TEN strains in development of syphilis-like lesions in countries with endemic syphilis.
Collapse
Affiliation(s)
- Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- CEITEC–Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Philippe Alain Grange
- Institut Cochin U1016, Laboratoire de Dermatologie—CNR Syphilis, Faculté de Médecine, Université Sorbonne Paris Descartes, Paris, France
| | - Michel Janier
- Centre des MST, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Nadjet Benhaddou
- Institut Cochin U1016, Laboratoire de Dermatologie—CNR Syphilis, Faculté de Médecine, Université Sorbonne Paris Descartes, Paris, France
- Service de Bactériologie, Groupe Hospitalier Paris Centre Cochin-Hôtel Dieu-Broca, Paris, France
| | - Nicolas Dupin
- Institut Cochin U1016, Laboratoire de Dermatologie—CNR Syphilis, Faculté de Médecine, Université Sorbonne Paris Descartes, Paris, France
- Service de Dermatologie-Vénéréologie, Hôpital Cochin–Pavillon Tarnier, AP-HP, Paris, France
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
42
|
Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nat Microbiol 2016; 2:16190. [PMID: 27748767 DOI: 10.1038/nmicrobiol.2016.190] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/31/2016] [Indexed: 11/08/2022]
Abstract
Insights into the genomic adaptive traits of Treponema pallidum, the causative bacterium of syphilis, have long been hampered due to the absence of in vitro culture models and the constraints associated with its propagation in rabbits. Here, we have bypassed the culture bottleneck by means of a targeted strategy never applied to uncultivable bacterial human pathogens to directly capture whole-genome T. pallidum data in the context of human infection. This strategy has unveiled a scenario of discreet T. pallidum interstrain single-nucleotide-polymorphism-based microevolution, contrasting with a rampant within-patient genetic heterogeneity mainly targeting multiple phase-variable loci and a major antigen-coding gene (tprK). TprK demonstrated remarkable variability and redundancy, intra- and interpatient, suggesting ongoing parallel adaptive diversification during human infection. Some bacterial functions (for example, flagella- and chemotaxis-associated) were systematically targeted by both inter- and intrastrain single nucleotide polymorphisms, as well as by ongoing within-patient phase variation events. Finally, patient-derived genomes possess mutations targeting a penicillin-binding protein coding gene (mrcA) that had never been reported, unveiling it as a candidate target to investigate the impact on the susceptibility to penicillin. Our findings decode the major genetic mechanisms by which T. pallidum promotes immune evasion and survival, and demonstrate the exceptional power of characterizing evolving pathogen subpopulations during human infection.
Collapse
|
43
|
Radolf JD, Deka RK, Anand A, Šmajs D, Norgard MV, Yang XF. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol 2016; 14:744-759. [PMID: 27721440 DOI: 10.1038/nrmicro.2016.141] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The past two decades have seen a worldwide resurgence in infections caused by Treponema pallidum subsp. pallidum, the syphilis spirochete. The well-recognized capacity of the syphilis spirochete for early dissemination and immune evasion has earned it the designation 'the stealth pathogen'. Despite the many hurdles to studying syphilis pathogenesis, most notably the inability to culture and to genetically manipulate T. pallidum, in recent years, considerable progress has been made in elucidating the structural, physiological, and regulatory facets of T. pallidum pathogenicity. In this Review, we integrate this eclectic body of information to garner fresh insights into the highly successful parasitic lifestyles of the syphilis spirochete and related pathogenic treponemes.
Collapse
Affiliation(s)
- Justin D Radolf
- Departments of Medicine, Pediatrics, Genetics and Genomic Science, Molecular Biology and Biophysics, and Immunology, UConn Health, 263 Farmington Avenue, Farmington, Connecticut 06030-3715, USA
| | - Ranjit K Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9048, USA
| | - Arvind Anand
- Department of Medicine, UConn Health, 263 Farmington Avenue, Farmington, Connecticut 06030-3715, USA
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Michael V Norgard
- Department of Microbiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9048, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
44
|
Osbak KK, Houston S, Lithgow KV, Meehan CJ, Strouhal M, Šmajs D, Cameron CE, Van Ostade X, Kenyon CR, Van Raemdonck GA. Characterizing the Syphilis-Causing Treponema pallidum ssp. pallidum Proteome Using Complementary Mass Spectrometry. PLoS Negl Trop Dis 2016; 10:e0004988. [PMID: 27606673 PMCID: PMC5015957 DOI: 10.1371/journal.pntd.0004988] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/19/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The spirochete bacterium Treponema pallidum ssp. pallidum is the etiological agent of syphilis, a chronic multistage disease. Little is known about the global T. pallidum proteome, therefore mass spectrometry studies are needed to bring insights into pathogenicity and protein expression profiles during infection. METHODOLOGY/PRINCIPAL FINDINGS To better understand the T. pallidum proteome profile during infection, we studied T. pallidum ssp. pallidum DAL-1 strain bacteria isolated from rabbits using complementary mass spectrometry techniques, including multidimensional peptide separation and protein identification via matrix-assisted laser desorption ionization-time of flight (MALDI-TOF/TOF) and electrospray ionization (ESI-LTQ-Orbitrap) tandem mass spectrometry. A total of 6033 peptides were detected, corresponding to 557 unique T. pallidum proteins at a high level of confidence, representing 54% of the predicted proteome. A previous gel-based T. pallidum MS proteome study detected 58 of these proteins. One hundred fourteen of the detected proteins were previously annotated as hypothetical or uncharacterized proteins; this is the first account of 106 of these proteins at the protein level. Detected proteins were characterized according to their predicted biological function and localization; half were allocated into a wide range of functional categories. Proteins annotated as potential membrane proteins and proteins with unclear functional annotations were subjected to an additional bioinformatics pipeline analysis to facilitate further characterization. A total of 116 potential membrane proteins were identified, of which 16 have evidence supporting outer membrane localization. We found 8/12 proteins related to the paralogous tpr gene family: TprB, TprC/D, TprE, TprG, TprH, TprI and TprJ. Protein abundance was semi-quantified using label-free spectral counting methods. A low correlation (r = 0.26) was found between previous microarray signal data and protein abundance. CONCLUSIONS This is the most comprehensive description of the global T. pallidum proteome to date. These data provide valuable insights into in vivo T. pallidum protein expression, paving the way for improved understanding of the pathogenicity of this enigmatic organism.
Collapse
Affiliation(s)
- Kara K Osbak
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karen V Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Conor J Meehan
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Xaveer Van Ostade
- Laboratory for Protein Science, Proteomics and Epigenetic Signaling (PPES) and Centre for Proteomics (CFP), University of Antwerp, Wilrijk, Belgium
| | - Chris R Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Geert A Van Raemdonck
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory for Protein Science, Proteomics and Epigenetic Signaling (PPES) and Centre for Proteomics (CFP), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
45
|
Brautigam CA, Deka RK, Liu WZ, Norgard MV. The Tp0684 (MglB-2) Lipoprotein of Treponema pallidum: A Glucose-Binding Protein with Divergent Topology. PLoS One 2016; 11:e0161022. [PMID: 27536942 PMCID: PMC4990184 DOI: 10.1371/journal.pone.0161022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/24/2016] [Indexed: 11/18/2022] Open
Abstract
Treponema pallidum, the bacterium that causes syphilis, is an obligate human parasite. As such, it must acquire energy, in the form of carbon sources, from the host. There is ample evidence that the principal source of energy for this spirochete is D-glucose acquired from its environment, likely via an ABC transporter. Further, there is genetic evidence of a D-glucose chemotaxis system in T. pallidum. Both of these processes may be dependent on a single lipidated chemoreceptor: Tp0684, also called TpMglB-2 for its sequence homology to MglB of Escherichia coli. To broaden our understanding of this potentially vital protein, we determined a 2.05-Å X-ray crystal structure of a soluble form of the recombinant protein. Like its namesake, TpMglB-2 adopts a bilobed fold that is similar to that of the ligand-binding proteins (LBPs) of other ABC transporters. However, the protein has an unusual, circularly permuted topology. This feature prompted a series of biophysical studies that examined whether the protein's topological distinctiveness affected its putative chemoreceptor functions. Differential scanning fluorimetry and isothermal titration calorimetry were used to confirm that the protein bound D-glucose in a cleft between its two lobes. Additionally, analytical ultracentrifugation was employed to reveal that D-glucose binding is accompanied by a significant conformational change. TpMglB-2 thus appears to be fully functional in vitro, and given the probable central importance of the protein to T. pallidum's physiology, our results have implications for the viability and pathogenicity of this obligate human pathogen.
Collapse
Affiliation(s)
- Chad A. Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Ranjit K. Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Wei Z. Liu
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Michael V. Norgard
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| |
Collapse
|
46
|
Abstract
INTRODUCTION Syphilis, caused by the spirochete Treponema pallidum subspecies pallidum, continues to be a globally prevalent disease despite remaining susceptible to penicillin treatment. Syphilis vaccine development is a viable preventative approach that will serve to complement public health-oriented syphilis prevention, screening and treatment initiatives to deliver a two-pronged approach to stemming disease spread worldwide. Areas covered: This article provides an overview of the need for development of a syphilis vaccine, summarizes significant information that has been garnered from prior syphilis vaccine studies, discusses the critical aspects of infection that would have to be targeted by a syphilis vaccine, and presents the current understanding within the field of the correlates of protection needed to be achieved through vaccination. Expert commentary: Syphilis vaccine development should be considered a priority by industry, regulatory and funding agencies, and should be appropriately promoted and supported.
Collapse
Affiliation(s)
- Karen V Lithgow
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada
| | - Caroline E Cameron
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada
| |
Collapse
|
47
|
Kenedy MR, Scott EJ, Shrestha B, Anand A, Iqbal H, Radolf JD, Dyer DW, Akins DR. Consensus computational network analysis for identifying candidate outer membrane proteins from Borrelia spirochetes. BMC Microbiol 2016; 16:141. [PMID: 27400788 PMCID: PMC4939628 DOI: 10.1186/s12866-016-0762-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/02/2016] [Indexed: 01/15/2023] Open
Abstract
Background Similar to Gram-negative organisms, Borrelia spirochetes are dual-membrane organisms with both an inner and outer membrane. Although the outer membrane contains integral membrane proteins, few of the borrelial outer membrane proteins (OMPs) have been identified and characterized to date. Therefore, we utilized a consensus computational network analysis to identify novel borrelial OMPs. Results Using a series of computer-based algorithms, we selected all protein-encoding sequences predicted to be OM-localized and/or to form β-barrels in the borrelial OM. Using this system, we identified 41 potential OMPs from B. burgdorferi and characterized three (BB0838, BB0405, and BB0406) to confirm that our computer-based methodology did, in fact, identify borrelial OMPs. Triton X-114 phase partitioning revealed that BB0838 is found in the detergent phase, which would be expected of a membrane protein. Proteolysis assays indicate that BB0838 is partially sensitive to both proteinase K and trypsin, further indicating that BB0838 is surface-exposed. Consistent with a prior study, we also confirmed that BB0405 is surface-exposed and associates with the borrelial OM. Furthermore, we have shown that BB0406, the product of a co-transcribed downstream gene, also encodes a novel, previously uncharacterized borrelial OMP. Interestingly, while BB0406 has several physicochemical properties consistent with it being an OMP, it was found to be resistant to surface proteolysis. Consistent with BB0405 and BB0406 being OMPs, both were found to be capable of incorporating into liposomes and exhibit pore-forming activity, suggesting that both proteins are porins. Lastly, we expanded our computational analysis to identify OMPs from other borrelial organisms, including both Lyme disease and relapsing fever spirochetes. Conclusions Using a consensus computer algorithm, we generated a list of candidate OMPs for both Lyme disease and relapsing fever spirochetes and determined that three of the predicted B. burgdorferi proteins identified were indeed novel borrelial OMPs. The combined studies have identified putative spirochetal OMPs that can now be examined for their roles in virulence, physiology, and disease pathogenesis. Importantly, the studies described in this report provide a framework by which OMPs from any human pathogen with a diderm ultrastructure could be cataloged to identify novel virulence factors and vaccine candidates. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0762-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Edgar J Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Binu Shrestha
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Arvind Anand
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA
| | - Henna Iqbal
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Justin D Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA.,Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA.,Department of Genetics and Genomic Science, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA.,Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA.,Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA
| | - David W Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.
| |
Collapse
|
48
|
Luthra A, Anand A, Radolf JD. Treponema pallidum in Gel Microdroplets: A Method for Topological Analysis of BamA (TP0326) and Localization of Rare Outer Membrane Proteins. Methods Mol Biol 2016; 1329:67-75. [PMID: 26427677 DOI: 10.1007/978-1-4939-2871-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The noncultivable spirochete Treponema pallidum subspecies pallidum (T. pallidum) is the etiological agent of venereal syphilis. In contrast to the outer membranes (OMs) of gram-negative bacteria, the OM of T. pallidum lacks lipopolysaccharide, contains a paucity of integral membrane proteins, and is extremely labile. The lability of the T. pallidum OM greatly hinders efforts to localize the bacterium's rare outer membrane proteins (OMPs). To circumvent this problem, we developed the gel microdroplet method in which treponemes are encapsulated in porous agarose beads and then probed with specific antibodies in the absence or presence of low concentrations of the non-ionic detergent Triton X-100. To demonstrate the general utility of this method for surface localization of any T. pallidum antigen, herein we describe a protocol for immunolabeling of encapsulated treponemes using antibodies directed against the β-barrel and POTRA domains of TP0326, the spirochete's BamA ortholog.
Collapse
Affiliation(s)
- Amit Luthra
- Department of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Arvind Anand
- Department of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Justin D Radolf
- Department of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA.
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, 06030, USA.
- Department of Genetics and Genomics Sciences, University of Connecticut Health, Farmington, CT, 06030, USA.
- Department of Immunology, University of Connecticut Health, Farmington, CT, 06030, USA.
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
49
|
Watts PJ, Greenberg HL, Khachemoune A. Unusual primary syphilis: Presentation of a likely case with a review of the stages of acquired syphilis, its differential diagnoses, management, and current recommendations. Int J Dermatol 2016; 55:714-28. [PMID: 26756536 DOI: 10.1111/ijd.13206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/06/2015] [Accepted: 09/22/2015] [Indexed: 11/28/2022]
Abstract
Syphilis is an ancient disease that has re-emerged in the last decade. It is prevalent among men who have sex with men and has increased in incidence with certain ethnic groups. It usually presents as primary or secondary syphilis and can progress to tertiary syphilis if not treated. Primary syphilis will classically manifest as a single, painless ulcer with smooth, clean, and raised borders on the genitals or less often on the oral mucosa. Unusual primary syphilis cases have been reported and can be easily misdiagnosed with a resulting delay of treatment. Secondary syphilis is a systemic disease, wherein the treponemes have disseminated to various organ systems, typically presenting with characteristic mucocutaneous lesions. Tertiary syphilis has a higher rate of morbidity and mortality; as such, the aim of this article is to provide the readers with tools to recognize early syphilis and prevent its progression to late stages. In this review, we present a likely case of unusual primary syphilis mimicking herpes progenitalis as well as a compilation of all atypical cases of primary syphilis from 1973 to 2015. We will also review the differential diagnosis, management, and recommendations for each stage of syphilis.
Collapse
Affiliation(s)
- Paula J Watts
- Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| | | | - Amor Khachemoune
- Department of Dermatology, Veterans Affairs Medical Center Brooklyn and SUNY Downstate, Brooklyn, NY, USA
| |
Collapse
|
50
|
Čejková D, Strouhal M, Norris SJ, Weinstock GM, Šmajs D. A Retrospective Study on Genetic Heterogeneity within Treponema Strains: Subpopulations Are Genetically Distinct in a Limited Number of Positions. PLoS Negl Trop Dis 2015; 9:e0004110. [PMID: 26436423 PMCID: PMC4593590 DOI: 10.1371/journal.pntd.0004110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/02/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pathogenic uncultivable treponemes comprise human and animal pathogens including agents of syphilis, yaws, bejel, pinta, and venereal spirochetosis in rabbits and hares. A set of 10 treponemal genome sequences including those of 4 Treponema pallidum ssp. pallidum (TPA) strains (Nichols, DAL-1, Mexico A, SS14), 4 T. p. ssp. pertenue (TPE) strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), 1 T. p. ssp. endemicum (TEN) strain (Bosnia A) and one strain (Cuniculi A) of Treponema paraluisleporidarum ecovar Cuniculus (TPLC) were examined with respect to the presence of nucleotide intrastrain heterogeneous sites. METHODOLOGY/PRINCIPAL FINDINGS The number of identified intrastrain heterogeneous sites in individual genomes ranged between 0 and 7. Altogether, 23 intrastrain heterogeneous sites (in 17 genes) were found in 5 out of 10 investigated treponemal genomes including TPA strains Nichols (n = 5), DAL-1 (n = 4), and SS14 (n = 7), TPE strain Samoa D (n = 1), and TEN strain Bosnia A (n = 5). Although only one heterogeneous site was identified among 4 tested TPE strains, 16 such sites were identified among 4 TPA strains. Heterogeneous sites were mostly strain-specific and were identified in four tpr genes (tprC, GI, I, K), in genes involved in bacterial motility and chemotaxis (fliI, cheC-fliY), in genes involved in cell structure (murC), translation (prfA), general and DNA metabolism (putative SAM dependent methyltransferase, topA), and in seven hypothetical genes. CONCLUSIONS/SIGNIFICANCE Heterogeneous sites likely represent both the selection of adaptive changes during infection of the host as well as an ongoing diversifying evolutionary process.
Collapse
Affiliation(s)
- Darina Čejková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Steven J. Norris
- Pathology & Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - George M. Weinstock
- The Genome Institute, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|