1
|
Martins FRB, Beltrami VA, Zenóbio IC, Martins DG, da Silva Gurgel IL, de Assis Rabelo Ribeiro N, Queiroz-Junior CM, Bonaventura D, Rezende BM, Teixeira MM, Pinho V, Oliveira NL, Soriani FM. Chronic ethanol exposure decreases H3K27me3 in the Il6 promoter region of macrophages and generates persistent dysfunction on neutrophils during fungal infection. Inflamm Res 2024; 73:1747-1763. [PMID: 39127870 DOI: 10.1007/s00011-024-01928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVE AND DESIGN The aim of this study was to investigate the effects of ethanol exposure on epigenetic markers in bone marrow (BM) and their impact on inflammatory response during Aspergillus fumigatus infection. RESULTS Chronic ethanol exposure decreased H3K27me3 enrichment in the Il6 promoter region while increased H3K4me3 enrichment in Tnf. Chimeric mice were generated by transplanting BM from mice exposed to ethanol or water. Infection of ethanol-chimeric mice culminated in higher clinical scores, although there was no effect on mortality. However, previous chronic exposure to ethanol affects persistently the inflammatory response in lung tissue, demonstrated by increased lung damage, neutrophil accumulation and IL-6, TNF and CXCL2 production in ethanol-chimeric mice, resulting in a decreased neutrophil infiltration into the alveolar space. Neutrophil killing and phagocytosis were also significantly lower. Moreover, BM derived macrophages (BMDM) from ethanol-chimeric mice stimulated with A. fumigatus conidia exhibited higher levels of TNF, CXCL2 and IL-6 release and a higher killing activity. The Il6 promoter of BMDM from ethanol-chimeric mice exhibited a reduction in H3K27me3 enrichment, a finding also observed in BM donors exposed to ethanol. CONCLUSIONS These evidences demonstrate that prior chronic alcohol exposure of bone-marrow modify immune effector cells functions impairing the inflammatory response during A. fumigatus infection. These findings highlight the persistent impact of chronic ethanol exposure on infectious disease outcomes.
Collapse
Affiliation(s)
- Flávia Rayssa Braga Martins
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vinicius Amorim Beltrami
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Isabelle Cruz Zenóbio
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Débora Gonzaga Martins
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Luísa da Silva Gurgel
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Bonaventura
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Barbara Maximino Rezende
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nathalia Luisa Oliveira
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Frederico Marianetti Soriani
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
2
|
Vymazal O, Papatheodorou I, Andrejčinová I, Bosáková V, Vascelli G, Bendíčková K, Zelante T, Hortová-Kohoutková M, Frič J. Calcineurin-NFAT signaling controls neutrophils' ability of chemoattraction upon fungal infection. J Leukoc Biol 2024; 116:816-829. [PMID: 38648505 DOI: 10.1093/jleuko/qiae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/03/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Calcineurin-nuclear factor of activated T cells (CN-NFAT) inhibitors are widely clinically used drugs for immunosuppression, but besides their required T cell response inhibition, they also undesirably affect innate immune cells. Disruption of innate immune cell function can explain the observed susceptibility of CN-NFAT inhibitor-treated patients to opportunistic fungal infections. Neutrophils play an essential role in innate immunity as a defense against pathogens; however, the effect of CN-NFAT inhibitors on neutrophil function was poorly described. Thus, we tested the response of human neutrophils to opportunistic fungal pathogens, namely Candida albicans and Aspergillus fumigatus, in the presence of CN-NFAT inhibitors. Here, we report that the NFAT pathway members were expressed in neutrophils and mediated part of the neutrophil response to pathogens. Upon pathogen exposure, neutrophils underwent profound transcriptomic changes with subsequent production of effector molecules. Importantly, genes and proteins involved in the regulation of the immune response and chemotaxis, including the chemokines CCL2, CCL3, and CCL4 were significantly upregulated. The presence of CN-NFAT inhibitors attenuated the expression of these chemokines and impaired the ability of neutrophils to chemoattract other immune cells. Our results amend knowledge about the impact of CN-NFAT inhibition in human neutrophils.
Collapse
Affiliation(s)
- Ondrej Vymazal
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Ioanna Papatheodorou
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Ivana Andrejčinová
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Veronika Bosáková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Gianluca Vascelli
- Section of Immunology and General Pathology, Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1/8, Perugia, 06132, Italy
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Teresa Zelante
- Section of Immunology and General Pathology, Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1/8, Perugia, 06132, Italy
| | - Marcela Hortová-Kohoutková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, 128 00, Czech Republic
| |
Collapse
|
3
|
Thrikawala SU, Anderson MH, Rosowski EE. Glucocorticoids Suppress NF-κB-Mediated Neutrophil Control of Aspergillus fumigatus Hyphal Growth. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:971-987. [PMID: 39178124 PMCID: PMC11408098 DOI: 10.4049/jimmunol.2400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
Glucocorticoids are a major class of therapeutic anti-inflammatory and immunosuppressive drugs prescribed to patients with inflammatory diseases, to avoid transplant rejection, and as part of cancer chemotherapy. However, exposure to these drugs increases the risk of opportunistic infections such as with the fungus Aspergillus fumigatus, which causes mortality in >50% of infected patients. The mechanisms by which glucocorticoids increase susceptibility to A. fumigatus are poorly understood. In this article, we used a zebrafish larva Aspergillus infection model to identify innate immune mechanisms altered by glucocorticoid treatment. Infected larvae exposed to dexamethasone succumb to infection at a significantly higher rate than control larvae. However, both macrophages and neutrophils are still recruited to the site of infection, and dexamethasone treatment does not significantly affect fungal spore killing. Instead, the primary effect of dexamethasone manifests later in infection with treated larvae exhibiting increased invasive hyphal growth. In line with this, dexamethasone predominantly inhibits neutrophil function rather than macrophage function. Dexamethasone-induced mortality also depends on the glucocorticoid receptor. Dexamethasone partially suppresses NF-κB activation at the infection site by inducing the transcription of IκB via the glucocorticoid receptor. Independent CRISPR/Cas9 targeting of IKKγ to prevent NF-κB activation also increases invasive A. fumigatus growth and larval mortality. However, dexamethasone treatment of IKKγ crispant larvae further increases invasive hyphal growth and host mortality, suggesting that dexamethasone may suppress other pathways in addition to NF-κB to promote host susceptibility. Collectively, we find that dexamethasone acts through the glucocorticoid receptor to suppress NF-κB-mediated neutrophil control of A. fumigatus hyphae in zebrafish larvae.
Collapse
Affiliation(s)
- Savini U Thrikawala
- Department of Biological Sciences, Clemson University, Clemson, SC; and Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC
| | - Molly H Anderson
- Department of Biological Sciences, Clemson University, Clemson, SC; and Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC
| | - Emily E Rosowski
- Department of Biological Sciences, Clemson University, Clemson, SC; and Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC
| |
Collapse
|
4
|
Harding AT, Crossen AJ, Reedy JL, Basham KJ, Hepworth OW, Zhang Y, Shah VS, Harding HB, Surve MV, Simaku P, Kwaku GN, Jensen KN, Otto Y, Ward RA, Thompson GR, Klein BS, Rajagopal J, Sen P, Haber AL, Vyas JM. Single-cell analysis of human airway epithelium identifies cell type-specific responses to Aspergillus and Coccidioides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612147. [PMID: 39314271 PMCID: PMC11418999 DOI: 10.1101/2024.09.09.612147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Respiratory fungal infections pose a significant threat to human health. Animal models do not fully recapitulate human disease, necessitating advanced models to study human-fungal pathogen interactions. In this study, we utilized primary human airway epithelial cells (hAECs) to recapitulate the lung environment in vitro and investigate cellular responses to two diverse, clinically significant fungal pathogens, Aspergillus fumigatus and Coccidioides posadasii. To understand the mechanisms of early pathogenesis for both fungi, we performed single-cell RNA sequencing of infected hAECs. Analysis revealed that both fungi induced cellular stress and cytokine production. However, the cell subtypes affected and specific pathways differed between fungi, with A. fumigatus and C. posadasii triggering protein-folding-related stress in ciliated cells and hypoxia responses in secretory cells, respectively. This study represents one of the first reports of single-cell transcriptional analysis of hAECs infected with either A. fumigatus or C. posadasii, providing a vital dataset to dissect the mechanism of disease and potentially identify targetable pathways.
Collapse
Affiliation(s)
- Alfred T. Harding
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge MA
- Department of Microbiology, Harvard Medical School, Cambridge MA
| | - Arianne J. Crossen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kyle J. Basham
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Olivia W. Hepworth
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yanting Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Viral S. Shah
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Hannah Brown Harding
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manalee V. Surve
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patricia Simaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Geneva N. Kwaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kristine Nolling Jensen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yohana Otto
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca A. Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - George R. Thompson
- Division of Infectious Diseases, and Departments of Internal Medicine and Medical Microbiology and Immunology, University of California-Davis, Sacramento, CA, USA
| | - Bruce S. Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jayaraj Rajagopal
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Pritha Sen
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Transplant, Oncology, and Immunocompromised Host Group, Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adam L. Haber
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
5
|
James MR, Doss KE, Cramer RA. New developments in Aspergillus fumigatus and host reactive oxygen species responses. Curr Opin Microbiol 2024; 80:102521. [PMID: 39079399 PMCID: PMC11475146 DOI: 10.1016/j.mib.2024.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 09/25/2024]
Abstract
Aspergillus fumigatus is a filamentous fungus abundant in the environment and the most common causative agent of a spectrum of human diseases collectively termed aspergillosis. Invasive pulmonary aspergillosis is caused by deficiencies in innate immune function that result in the inability of the host to clear inhaled Aspergillus conidia that then germinate and form invasive hyphae. Myeloid cells, and their ability to generate reactive oxygen species (ROS), are essential for conidia clearance from the host. To combat ROS, A. fumigatus employs an expansive antioxidant system, though how these canonical antioxidant mechanisms contribute to infection initiation and disease progression remain to be fully defined. Recent research has identified noncanonical pathways in the A. fumigatus ROS response and new host populations with ROS deficiencies that are at-risk for invasive aspergillosis. Here, we highlight recent developments in the understanding of ROS at the interface of the dynamic A. fumigatus-host interaction.
Collapse
Affiliation(s)
- Matthew R James
- Geisel School of Medicine, Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA
| | - Katherine E Doss
- Geisel School of Medicine, Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Geisel School of Medicine, Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA.
| |
Collapse
|
6
|
Bertuzzi M, Howell GJ, Thomson DD, Fortune-Grant R, Möslinger A, Dancer P, Van Rhijn N, Motsi N, Codling A, Bignell EM. Epithelial uptake leads to fungal killing in vivo and is aberrant in COPD-derived epithelial cells. iScience 2024; 27:109939. [PMID: 38846001 PMCID: PMC11154633 DOI: 10.1016/j.isci.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Hundreds of spores of Aspergillus fumigatus (Af) are inhaled daily by human beings, representing a constant, possibly fatal, threat to respiratory health. The small size of Af spores suggests that interactions with alveolar epithelial cells (AECs) are frequent; thus, we hypothesized that spore uptake by AECs is important for driving fungal killing and susceptibility to Aspergillus-related disease. Using single-cell approaches to measure spore uptake and its outcomes in vivo, we demonstrate that Af spores are internalized and killed by AECs during whole-animal infection. Moreover, comparative analysis of primary human AECs from healthy and chronic obstructive pulmonary disease (COPD) donors revealed significant alterations in the uptake and killing of spores in COPD-derived AECs. We conclude that AECs contribute to the killing of Af spores and that dysregulation of curative AEC responses in COPD may represent a driver of Aspergillus-related diseases.
Collapse
Affiliation(s)
- Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Gareth J. Howell
- Flow Cytometry Core Facility, Faculty of Biology, Medicine and Health, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Darren D. Thomson
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Rachael Fortune-Grant
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Anna Möslinger
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Patrick Dancer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Natasha Motsi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Alice Codling
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Elaine M. Bignell
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
7
|
Vargas-Blanco DA, Hepworth OW, Basham KJ, Simaku P, Crossen AJ, Timmer KD, Hopke A, Brown Harding H, Vandal SR, Jensen KN, Floyd DJ, Reedy JL, Reardon C, Mansour MK, Ward RA, Irimia D, Abramson JS, Vyas JM. BTK inhibitor-induced defects in human neutrophil effector activity against Aspergillus fumigatus are restored by TNF-α. JCI Insight 2024; 9:e176162. [PMID: 38713531 PMCID: PMC11383172 DOI: 10.1172/jci.insight.176162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
Inhibition of Bruton's tyrosine kinase (BTK) through covalent modifications of its active site (e.g., ibrutinib [IBT]) is a preferred treatment for multiple B cell malignancies. However, IBT-treated patients are more susceptible to invasive fungal infections, although the mechanism is poorly understood. Neutrophils are the primary line of defense against these infections; therefore, we examined the effect of IBT on primary human neutrophil effector activity against Aspergillus fumigatus. IBT significantly impaired the ability of neutrophils to kill A. fumigatus and potently inhibited reactive oxygen species (ROS) production, chemotaxis, and phagocytosis. Importantly, exogenous TNF-α fully compensated for defects imposed by IBT and newer-generation BTK inhibitors and restored the ability of neutrophils to contain A. fumigatus hyphal growth. Blocking TNF-α did not affect ROS production in healthy neutrophils but prevented exogenous TNF-α from rescuing the phenotype of IBT-treated neutrophils. The restorative capacity of TNF-α was independent of transcription. Moreover, the addition of TNF-α immediately rescued ROS production in IBT-treated neutrophils, indicating that TNF-α worked through a BTK-independent signaling pathway. Finally, TNF-α restored effector activity of primary neutrophils from patients on IBT therapy. Altogether, our data indicate that TNF-α rescued the antifungal immunity block imposed by inhibition of BTK in primary human neutrophils.
Collapse
Affiliation(s)
- Diego A. Vargas-Blanco
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Olivia W. Hepworth
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Kyle J. Basham
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patricia Simaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Arianne J. Crossen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kyle D. Timmer
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alex Hopke
- Harvard Medical School, Boston, Massachusetts, USA
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Hannah Brown Harding
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Steven R. Vandal
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Kirstine N. Jensen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J. Floyd
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Reardon
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K. Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca A. Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Irimia
- Harvard Medical School, Boston, Massachusetts, USA
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Jeremy S. Abramson
- Center for Lymphoma, Mass General Cancer Center, Boston, Massachusetts, USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Biyun L, Yahui H, Yuanfang L, Xifeng G, Dao W. Risk factors for invasive fungal infections after haematopoietic stem cell transplantation: a systematic review and meta-analysis. Clin Microbiol Infect 2024; 30:601-610. [PMID: 38280518 DOI: 10.1016/j.cmi.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Invasive fungal infections (IFIs) are common infectious complications after haematopoietic stem cell transplantation (HSCT), seriously threatening the survival of patients. OBJECTIVES This systematic review aimed to investigate risk factors associated with IFIs following HSCT. METHODS Two authors independently conducted the selection of studies and extraction of data. Risk factors for IFIs, invasive aspergillosis or invasive mould infections and invasive candida infection after HSCT were compiled separately by meta-analysis using RevMan 5.4 and R language 4.1.2. DATA SOURCES Pubmed, EMBASE, Web of Science, and the Cochrane Library until April 2023. STUDY ELIGIBILITY CRITERIA Case-control or cohort studies that assessed risk factors for IFIs among HSCT recipients were included. PARTICIPANTS Patients experiencing HSCT. TEST/S None. REFERENCE STANDARD The IFIs were defined according to the European Organisation for Research and Treatment of Cancer/Mycosis Study Group (EORTC/MSG) criteria, or a similar definition. ASSESSMENT OF RISK OF BIAS A modified version of the Newcastle-Ottawa Scale was used. METHODS OF DATA SYNTHESIS A random-effects model with the Mantel-Haenszel method was used to pool results from primary studies. RESULTS Out of 1637 studies screened, 51 studies involving 109 155 patients were included, with 45 studies providing adequate data for meta-analysis. Identified risk factors for IFIs included prolonged neutropenia, intensified therapy for graft-versus-host disease (GVHD), previous transplantation, previous proven or probable IFI, acute GVHD ≥ grade II, extensive or severe chronic GVHD, use of anti-thymocyte globulin during transplantation, haploidentical transplantation, high-dose glucocorticoids, Epstein-Barr virus infection, cytomegalovirus infection or reactivation, and lower albumin. Conversely, antifungal prophylaxis emerged as the sole preventive factor. For invasive aspergillosis or invasive mould infections, the top risk factors were extensive or severe chronic GVHD, respiratory viral infection, high-dose glucocorticoids, acute GVHD ≥ grade II, and human leukocyte antigen mismatch. Cord blood transplantation was the sole significant risk factor for invasive candidiasis. However, there was likely a high degree of interdependence among various risk factors. DISCUSSION This meta-analysis provides a thorough review of risk factors for IFIs infection after HSCT. The achieved insights can aid in stratifying patients who are at an elevated risk of IFIs and promoting antifungal preventive strategies.
Collapse
Affiliation(s)
- Li Biyun
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Han Yahui
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yuanfang
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo Xifeng
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Dao
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Xin Y, Xiong S, Zhou L, Lin X. Activation of leukotriene B 4 receptor 1 is a prerequisite for complement receptor 3-mediated antifungal responses of neutrophils. Cell Mol Immunol 2024; 21:245-259. [PMID: 38297112 PMCID: PMC10901876 DOI: 10.1038/s41423-024-01130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
Invasive fungal infections are life-threatening, and neutrophils are vital cells of the innate immune system that defend against them. The role of LTA4H-LTB4-BLT1 axis in regulation of neutrophil responses to fungal infection remains poorly understood. Here, we demonstrated that the LTA4H-LTB4-BLT1 axis protects the host against Candida albicans and Aspergillus fumigatus, but not Cryptococcus neoformans infection, by regulating the antifungal activity of neutrophils. Our results show that deleting Lta4h or Blt1 substantially impairs the fungal-specific phagocytic capacity of neutrophils. Moreover, defective activation of the spleen tyrosine kinase (Syk) and extracellular signal-related kinase (ERK1/2) pathways in neutrophils accompanies this impairment. Mechanistically, BLT1 regulates CR3-mediated, β-1,3-glucan-induced neutrophil phagocytosis, while a physical interaction with CR3 with slight influence on its dynamics is observed. Our findings thus demonstrate that the LTA4H-LTB4-BLT1 axis is essential for the phagocytic function of neutrophils in host antifungal immune response against Candida albicans and Aspergillus fumigatus.
Collapse
Affiliation(s)
- Yan Xin
- Institute for Immunology and School of Medicine, Tsinghua University, 100084, Beijing, China
- Tsinghua University-Peking University Center for Life Sciences, 100084, Beijing, China
| | - Sihan Xiong
- Institute for Immunology and School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Linghong Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xin Lin
- Institute for Immunology and School of Medicine, Tsinghua University, 100084, Beijing, China.
- Tsinghua University-Peking University Center for Life Sciences, 100084, Beijing, China.
| |
Collapse
|
10
|
Thakur R, Shishodia SK, Sharma A, Chauhan A, Kaur S, Shankar J. Accelerating the understanding of Aspergillus terreus: Epidemiology, physiology, immunology and advances. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100220. [PMID: 38303967 PMCID: PMC10831165 DOI: 10.1016/j.crmicr.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Aspergillus species encompass a variety of infections, ranging from invasive aspergillosis to allergic conditions, contingent upon the immune status of the host. In this spectrum, Aspergillus terreus stands out due to its emergence as a notable pathogen and its intrinsic resistance to amphotericin-B. The significance of Aspergillus-associated infections has witnessed a marked increase in the past few decades, particularly with the increasing number of immunocompromised individuals. The exploration of epidemiology, morphological transitions, immunopathology, and novel treatment approaches such as new antifungal drugs (PC945, olorofim) and combinational therapy using antifungal drugs and phytochemicals (Phytochemicals: quercetin, shikonin, artemisinin), also using immunotherapies to modulate immune response has resulted in better outcomes. Furthermore, in the context COVID-19 era and its aftermath, fungal infections have emerged as a substantial challenge for both immunocompromised and immunocompetent individuals. This is attributed to the use of immune-suppressing therapies during COVID-19 infections and the increase in transplant cases. Consequently, this review aims to provide an updated overview encompassing the epidemiology, germination events, immunopathology, and novel drug treatment strategies against Aspergillus terreus-associated infections.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | | | - Ananya Sharma
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sumanpreet Kaur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | - Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| |
Collapse
|
11
|
James MR, Aufiero MA, Vesely EM, Dhingra S, Liu KW, Hohl TM, Cramer RA. Aspergillus fumigatus cytochrome c impacts conidial survival during sterilizing immunity. mSphere 2023; 8:e0030523. [PMID: 37823656 PMCID: PMC10871163 DOI: 10.1128/msphere.00305-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Aspergillus fumigatus can cause a life-threatening infection known as invasive pulmonary aspergillosis (IPA), which is marked by fungus-attributable mortality rates of 20%-30%. Individuals at risk for IPA harbor genetic mutations or incur pharmacologic defects that impair myeloid cell numbers and/or function, exemplified by bone marrow transplant recipients, patients that receive corticosteroid therapy, or patients with chronic granulomatous disease (CGD). However, treatments for Aspergillus infections remain limited, and resistance to the few existing drug classes is emerging. Recently, the World Health Organization classified A. fumigatus as a critical priority fungal pathogen. Our cell death research identifies an important aspect of fungal biology that impacts susceptibility to leukocyte killing. Furthering our understanding of mechanisms that mediate the outcome of fungal-leukocyte interactions will increase our understanding of both the underlying fungal biology governing cell death and innate immune evasion strategies utilized during mammalian infection pathogenesis. Consequently, our studies are a critical step toward leveraging these mechanisms for novel therapeutic advances.
Collapse
Affiliation(s)
- Matthew R. James
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Mariano A. Aufiero
- Louis V Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elisa M. Vesely
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Ko-Wei Liu
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Tobias M. Hohl
- Louis V Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Infectious Disease Service, Department of Medicine, Memorial Hospital, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
12
|
King J, Dambuza IM, Reid DM, Yuecel R, Brown GD, Warris A. Detailed characterisation of invasive aspergillosis in a murine model of X-linked chronic granulomatous disease shows new insights in infections caused by Aspergillus fumigatus versus Aspergillus nidulans. Front Cell Infect Microbiol 2023; 13:1241770. [PMID: 37724291 PMCID: PMC10505440 DOI: 10.3389/fcimb.2023.1241770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Introduction Invasive aspergillosis (IA) is the most prevalent infectious complication in patients with chronic granulomatous disease (CGD). Yet, understanding of fungal pathogenesis in the CGD host remains limited, particularly with regards to A. nidulans infection. Methods We have used a murine model of X-linked CGD to investigate how the pathogenesis of IA varies between A. fumigatus and A. nidulans, comparing infection in both X-linked CGD (gp91-/-) mice and their parent C57BL/6 (WT) mice. A 14-colour flow cytometry panel was used to assess the cell dynamics over the course of infection, with parallel assessment of pulmonary cytokine production and lung histology. Results We observed a lack of association between pulmonary pathology and infection outcome in gp91-/- mice, with no significant mortality in A. nidulans infected mice. An overwhelming and persistent neutrophil recruitment and IL-1 release in gp91-/- mice following both A. fumigatus and A. nidulans infection was observed, with divergent macrophage, dendritic cell and eosinophil responses and distinct cytokine profiles between the two infections. Conclusion We have provided an in-depth characterisation of the immune response to pulmonary aspergillosis in an X-linked CGD murine model. This provides the first description of distinct pulmonary inflammatory environments in A. fumigatus and A. nidulans infection in X-linked CGD and identifies several new avenues for further research.
Collapse
Affiliation(s)
- Jill King
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of General Paediatrics, Royal Aberdeen Children’s Hospital, Aberdeen, United Kingdom
| | - Ivy M. Dambuza
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Delyth M. Reid
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Raif Yuecel
- Exeter Centre for Cytometrics, University of Exeter, Exeter, United Kingdom
- Iain Fraser Cytometry Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gordon D. Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Adilia Warris
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
13
|
James MR, Aufiero MA, Vesely EM, Dhingra S, Liu KW, Hohl TM, Cramer RA. Aspergillus fumigatus cytochrome c impacts conidial survival during sterilizing immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544103. [PMID: 37333187 PMCID: PMC10274773 DOI: 10.1101/2023.06.07.544103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening infection caused by species in the ubiquitous fungal genus Aspergillus . While leukocyte-generated reactive oxygen species (ROS) are critical for the clearance of fungal conidia from the lung and resistance to IPA, the processes that govern ROS-dependent fungal cell death remain poorly defined. Using a flow cytometric approach that monitors two independent cell death markers, an endogenous histone H2A:mRFP nuclear integrity reporter and Sytox Blue cell impermeable (live/dead) stain, we observed that loss of A. fumigatus cytochrome c ( cycA ) results in reduced susceptibility to cell death from hydrogen peroxide (H 2 O 2 ) treatment. Consistent with these observations in vitro , loss of cycA confers resistance to both NADPH-oxidase -dependent and -independent killing by host leukocytes. Fungal ROS resistance is partly mediated in part by Bir1, a homolog to survivin in humans, as Bir1 overexpression results in decreased ROS-induced conidial cell death and reduced killing by innate immune cells in vivo . We further report that overexpression of the Bir1 N-terminal BIR domain in A. fumigatus conidia results in altered expression of metabolic genes that functionally converge on mitochondrial function and cytochrome c ( cycA ) activity. Together, these studies demonstrate that cycA in A. fumigatus contributes to cell death responses that are induced by exogenous H 2 O 2 and by host leukocytes. Importance Aspergillus fumigatus can cause a life-threatening infection known as invasive pulmonary aspergillosis (IPA), which is marked by fungus-attributable mortality rates of 20%-30%. Individuals at risk of IPA harbor genetic mutations or incur pharmacologic defects that impair myeloid cell numbers and/or function, exemplified by bone marrow transplant recipients, patients that receive corticosteroid therapy, or patients with Chronic Granulomatous Disease (CGD). However, treatments for Aspergillus infections remains limited, and resistance to the few existing drug classes is emerging. Recently, the World Health Organization (WHO) classified A. fumigatus as a critical priority fungal pathogen. Our research identifies an important aspect of fungal biology that impacts susceptibility to leukocyte killing. Furthering our understanding of mechanisms that mediate the outcome of fungal-leukocyte interactions will increase our understanding of both the underlying fungal biology governing cell death and innate immune evasion strategies utilized during mammalian infection pathogenesis. Consequently, our studies are a critical step toward leveraging these mechanisms for novel therapeutic advances.
Collapse
|
14
|
Sarden N, Yipp BG. Virus-associated fungal infections and lost immune resistance. Trends Immunol 2023; 44:305-318. [PMID: 36890064 DOI: 10.1016/j.it.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Invasive fungal infections are an increasing threat to human health. Of recent concern is the emergence of influenza- or SARS-CoV-2-virus-associated invasive fungal infections. Understanding acquired susceptibilities to fungi requires consideration of the collective and newly explored roles of adaptive, innate, and natural immunity. Neutrophils are known to provide host resistance, but new concepts are emerging that implicate innate antibodies, the actions of specialized B1 B cell subsets, and B cell-neutrophil crosstalk in mediating antifungal host resistance. Based on emerging evidence, we propose that virus infections impact on neutrophil and innate B cell resistance against fungi, leading to invasive infections. These concepts provide novel approaches to developing candidate therapeutics with the aim of restoring natural and humoral immunity and boosting neutrophil resistance against fungi.
Collapse
Affiliation(s)
- Nicole Sarden
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G Yipp
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
15
|
Forn-Cuní G, Welvaarts L, Stel FM, van den Hondel CJ, Arentshorst M, Ram AFJ, Meijer AH. Stimulating the autophagic-lysosomal axis enhances host defense against fungal infection in a zebrafish model of invasive Aspergillosis. Autophagy 2023; 19:324-337. [PMID: 35775203 PMCID: PMC9809955 DOI: 10.1080/15548627.2022.2090727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The increasing prevalence of antifungal-resistant human pathogenic fungi, particularly azole-resistant Aspergillus fumigatus, is a life-threatening challenge to the immunocompromised population. Autophagy-related processes such as LC3-associated phagocytosis have been shown to be activated in the host response against fungal infection, but their overall effect on host resistance remains uncertain. To analyze the relevance of these processes in vivo, we used a zebrafish animal model of invasive Aspergillosis. To confirm the validity of this model to test potential treatments for this disease, we confirmed that immunosuppressive treatments or neutropenia rendered zebrafish embryos more susceptible to A. fumigatus. We used GFP-Lc3 transgenic zebrafish to visualize the autophagy-related processes in innate immune phagocytes shortly after phagocytosis of A. fumigatus conidia, and found that both wild-type and melanin-deficient conidia elicited Lc3 recruitment. In macrophages, we observed GFP-Lc3 accumulation in puncta after phagocytosis, as well as short, rapid events of GFP-Lc3 decoration of single and multiple conidia-containing vesicles, while neutrophils covered single conidia-containing vesicles with bright and long-lasting GFP-Lc3 signal. Next, using genetic and pharmacological stimulation of three independent autophagy-inducing pathways, we showed that the antifungal autophagy response improves the host survival against A. fumigatus infection, but only in the presence of phagocytes. Therefore, we provide proof-of-concept that stimulating the (auto)phagolysosomal pathways is a promising approach to develop host-directed therapies against invasive Aspergillosis, and should be explored further either as adjunctive or stand-alone therapy for drug-resistant Aspergillus infections.Abbreviations: DMSO: dimethyl sulfoxide; HR: hazard ratio; HDT: host-directed therapy; Hpf: hours post fertilization; IA: invasive Aspergillosis; LAP: LC3-associated phagocytosis; MTZ: metronidazole; PTU: N-phenylthiourea; ROS: reactive oxygen species.
Collapse
Affiliation(s)
- G Forn-Cuní
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands,CONTACT G Forn-Cuní Institute of Biology Leiden, Leiden University, Einsteinweg 55, Leiden, The Netherlands
| | - L Welvaarts
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - FM Stel
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - CJ van den Hondel
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - M Arentshorst
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - AFJ Ram
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - AH Meijer
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands,AH Meijer Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
16
|
Crossen AJ, Ward RA, Reedy JL, Surve MV, Klein BS, Rajagopal J, Vyas JM. Human Airway Epithelium Responses to Invasive Fungal Infections: A Critical Partner in Innate Immunity. J Fungi (Basel) 2022; 9:40. [PMID: 36675861 PMCID: PMC9862202 DOI: 10.3390/jof9010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
The lung epithelial lining serves as the primary barrier to inhaled environmental toxins, allergens, and invading pathogens. Pulmonary fungal infections are devastating and carry high mortality rates, particularly in those with compromised immune systems. While opportunistic fungi infect primarily immunocompromised individuals, endemic fungi cause disease in immune competent and compromised individuals. Unfortunately, in the case of inhaled fungal pathogens, the airway epithelial host response is vastly understudied. Furthering our lack of understanding, very few studies utilize primary human models displaying pseudostratified layers of various epithelial cell types at air-liquid interface. In this review, we focus on the diversity of the human airway epithelium and discuss the advantages and disadvantages of oncological cell lines, immortalized epithelial cells, and primary epithelial cell models. Additionally, the responses by human respiratory epithelial cells to invading fungal pathogens will be explored. Future investigations leveraging current human in vitro model systems will enable identification of the critical pathways that will inform the development of novel vaccines and therapeutics for pulmonary fungal infections.
Collapse
Affiliation(s)
- Arianne J. Crossen
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rebecca A. Ward
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Manalee V. Surve
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bruce S. Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Liu KW, Grau MS, Jones JT, Wang X, Vesely EM, James MR, Gutierrez-Perez C, Cramer RA, Obar JJ. Postinfluenza Environment Reduces Aspergillus fumigatus Conidium Clearance and Facilitates Invasive Aspergillosis In Vivo. mBio 2022; 13:e0285422. [PMID: 36377895 PMCID: PMC9765436 DOI: 10.1128/mbio.02854-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Aspergillus fumigatus is a human fungal pathogen that is most often avirulent in immunecompetent individuals because the innate immune system is efficient at eliminating fungal conidia. However, recent clinical observations have shown that severe influenza A virus (IAV) infection can lead to secondary A. fumigatus infections with high mortality. Little is currently known about how IAV infection alters the innate antifungal immune response. Here, we established a murine model of IAV-induced A. fumigatus (IAV-Af) superinfection by inoculating mice with IAV followed 6 days later by A. fumigatus conidia challenge. We observed increased mortality in the IAV-Af-superinfected mice compared to mice challenged with either IAV or A. fumigatus alone. A. fumigatus conidia were able to germinate and establish a biofilm in the lungs of the IAV-Af superinfection group, which was not seen following fungal challenge alone. While we did not observe any differences in inflammatory cell recruitment in the IAV-Af superinfection group compared to single-infection controls, we observed defects in Aspergillus conidial uptake and killing by both neutrophils and monocytes after IAV infection. pHrodo Green zymosan bioparticle (pHrodo-zymosan) and CM-H2DCFDA [5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate] staining, indicators of phagolysosome maturation and reactive oxygen species (ROS) production, respectively, revealed that the fungal killing defect was due in part to reduced phagolysosome maturation. Collectively, our data demonstrate that the ability of neutrophils and monocytes to kill and clear Aspergillus conidia is strongly reduced in the pulmonary environment of an IAV-infected lung, which leads to invasive pulmonary aspergillosis and increased overall mortality in our mouse model, recapitulating what is observed clinically in humans. IMPORTANCE Influenza A virus (IAV) is a common respiratory virus that causes seasonal illness in humans, but can cause pandemics and severe infection in certain patients. Since the emergence of the 2009 H1N1 pandemic strains, there has been an increase in clinical reports of IAV-infected patients in the intensive care unit (ICU) developing secondary pulmonary aspergillosis. These cases of flu-Aspergillus superinfections are associated with worse clinical outcomes than secondary bacterial infections in the setting of IAV. To date, we have a limited understanding of the cause(s) of secondary fungal infections in immunocompetent hosts. IAV-induced modulation of cytokine production and innate immune cellular function generates a unique immune environment in the lung, which could make the host vulnerable to a secondary fungal infection. Our work shows that defects in phagolysosome maturation in neutrophils and monocytes after IAV infection impair the ability of these cells to kill A. fumigatus, thus leading to increased fungal germination and growth and subsequent invasive aspergillosis. Our work lays a foundation for future mechanistic studies examining the exact immune modulatory events occurring in the respiratory tract after viral infection leading to secondary fungal infections.
Collapse
Affiliation(s)
- Ko-Wei Liu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Madeleine S. Grau
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jane T. Jones
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Xi Wang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Elisa M. Vesely
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Matthew R. James
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Cecilia Gutierrez-Perez
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
18
|
Idol RA, Bhattacharya S, Huang G, Song Z, Huttenlocher A, Keller NP, Dinauer MC. Neutrophil and Macrophage NADPH Oxidase 2 Differentially Control Responses to Inflammation and to Aspergillus fumigatus in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1960-1972. [PMID: 36426951 PMCID: PMC9643661 DOI: 10.4049/jimmunol.2200543] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
Aspergillus fumigatus is an important opportunistic fungal pathogen and causes invasive pulmonary aspergillosis in conditions with compromised innate antifungal immunity, including chronic granulomatous disease, which results from inherited deficiency of the superoxide-generating leukocyte NADPH oxidase 2 (NOX2). Derivative oxidants have both antimicrobial and immunoregulatory activity and, in the context of A. fumigatus, contribute to both fungal killing and dampening inflammation induced by fungal cell walls. As the relative roles of macrophage versus neutrophil NOX2 in the host response to A. fumigatus are incompletely understood, we studied mice with conditional deletion of NOX2. When NOX2 was absent in alveolar macrophages as a result of LysM-Cre-mediated deletion, germination of inhaled A. fumigatus conidia was increased. Reducing NOX2 activity specifically in neutrophils via S100a8 (MRP8)-Cre also increased fungal burden, which was inversely proportional to the level of neutrophil NOX2 activity. Moreover, diminished NOX2 in neutrophils synergized with corticosteroid immunosuppression to impair lung clearance of A. fumigatus. Neutrophil-specific reduction in NOX2 activity also enhanced acute inflammation induced by inhaled sterile fungal cell walls. These results advance understanding into cell-specific roles of NOX2 in the host response to A. fumigatus. We show that alveolar macrophage NOX2 is a nonredundant effector that limits germination of inhaled A. fumigatus conidia. In contrast, reducing NOX2 activity only in neutrophils is sufficient to enhance inflammation to fungal cell walls as well as to promote invasive A. fumigatus. This may be relevant in clinical settings with acquired defects in NOX2 activity due to underlying conditions, which overlap risk factors for invasive aspergillosis.
Collapse
Affiliation(s)
- Rachel A. Idol
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Sourav Bhattacharya
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Guangming Huang
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Zhimin Song
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology and Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin, Madison, WI 53706
| | - Mary C. Dinauer
- Department of Pediatrics and Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
19
|
Qiu C, Wang C, Sun X, Xu J, Wu J, Zhang R, Li G, Xue K, Zhang X, Qian S. CXC‐ receptor 2 promotes extracellular matrix production and attenuates migration in peripapillary human scleral fibroblasts under mechanical strain. J Cell Mol Med 2022; 26:5858-5871. [DOI: 10.1111/jcmm.17609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Chen Qiu
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- NHC Key Laboratory of Myopia Fudan University Shanghai China
- Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
| | - Chuandong Wang
- Department of Orthopedic Surgery Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Xinghuai Sun
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- NHC Key Laboratory of Myopia Fudan University Shanghai China
- Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science Fudan University Shanghai China
| | - Jianjiang Xu
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- NHC Key Laboratory of Myopia Fudan University Shanghai China
- Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
| | - Jihong Wu
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- NHC Key Laboratory of Myopia Fudan University Shanghai China
- Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
| | - Rong Zhang
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- NHC Key Laboratory of Myopia Fudan University Shanghai China
- Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
| | - Gang Li
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- NHC Key Laboratory of Myopia Fudan University Shanghai China
- Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
| | - Kang Xue
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Shaohong Qian
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- NHC Key Laboratory of Myopia Fudan University Shanghai China
- Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
| |
Collapse
|
20
|
Ortiz SC, Pennington K, Thomson DD, Bertuzzi M. Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host-Pathogen Interactions during Infection. J Fungi (Basel) 2022; 8:264. [PMID: 35330266 PMCID: PMC8954776 DOI: 10.3390/jof8030264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Aspergillus fumigatus spores initiate more than 3,000,000 chronic and 300,000 invasive diseases annually, worldwide. Depending on the immune status of the host, inhalation of these spores can lead to a broad spectrum of disease, including invasive aspergillosis, which carries a 50% mortality rate overall; however, this mortality rate increases substantially if the infection is caused by azole-resistant strains or diagnosis is delayed or missed. Increasing resistance to existing antifungal treatments is becoming a major concern; for example, resistance to azoles (the first-line available oral drug against Aspergillus species) has risen by 40% since 2006. Despite high morbidity and mortality, the lack of an in-depth understanding of A. fumigatus pathogenesis and host response has hampered the development of novel therapeutic strategies for the clinical management of fungal infections. Recent advances in sample preparation, infection models and imaging techniques applied in vivo have addressed important gaps in fungal research, whilst questioning existing paradigms. This review highlights the successes and further potential of these recent technologies in understanding the host-pathogen interactions that lead to aspergillosis.
Collapse
Affiliation(s)
- Sébastien C Ortiz
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK
| | - Katie Pennington
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK
| | - Darren D Thomson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Margherita Bertuzzi
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
21
|
Ewald J, Rivieccio F, Radosa L, Schuster S, Brakhage AA, Kaleta C. Dynamic optimization reveals alveolar epithelial cells as key mediators of host defense in invasive aspergillosis. PLoS Comput Biol 2021; 17:e1009645. [PMID: 34898608 PMCID: PMC8699926 DOI: 10.1371/journal.pcbi.1009645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/23/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is an important human fungal pathogen and its conidia are constantly inhaled by humans. In immunocompromised individuals, conidia can grow out as hyphae that damage lung epithelium. The resulting invasive aspergillosis is associated with devastating mortality rates. Since infection is a race between the innate immune system and the outgrowth of A. fumigatus conidia, we use dynamic optimization to obtain insight into the recruitment and depletion of alveolar macrophages and neutrophils. Using this model, we obtain key insights into major determinants of infection outcome on host and pathogen side. On the pathogen side, we predict in silico and confirm in vitro that germination speed is an important virulence trait of fungal pathogens due to the vulnerability of conidia against host defense. On the host side, we found that epithelial cells, which have been underappreciated, play a role in fungal clearance and are potent mediators of cytokine release. Both predictions were confirmed by in vitro experiments on established cell lines as well as primary lung cells. Further, our model affirms the importance of neutrophils in invasive aspergillosis and underlines that the role of macrophages remains elusive. We expect that our model will contribute to improvement of treatment protocols by focusing on the critical components of immune response to fungi but also fungal virulence traits.
Collapse
Affiliation(s)
- Jan Ewald
- Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany.,Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), University of Leipzig, Leipzig, Germany
| | - Flora Rivieccio
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Lukáš Radosa
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| |
Collapse
|
22
|
Mitochondrial Reactive Oxygen Species Enhance Alveolar Macrophage Activity against Aspergillus fumigatus but Are Dispensable for Host Protection. mSphere 2021; 6:e0026021. [PMID: 34077261 PMCID: PMC8265640 DOI: 10.1128/msphere.00260-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aspergillus fumigatus is the most common cause of mold pneumonia worldwide, and a significant cause of infectious morbidity and mortality in immunocompromised individuals. The oxidative burst, which generates reactive oxidative species (ROS), plays a pivotal role in host defense against aspergillosis and induces regulated cell death in Aspergillus conidia, the infectious propagules. Beyond the well-established role of NADP (NADPH) oxidase in ROS generation by neutrophils and other innate effector cells, mitochondria represent a major ROS production site in many cell types, though it is unclear whether mitochondrial ROS (mtROS) contribute to antifungal activity in the lung. Following A. fumigatus infection, we observed that innate effector cells, including alveolar macrophages (AMs), monocyte-derived dendritic cells (Mo-DCS), and neutrophils, generated mtROS, primarily in fungus-infected cells. To examine the functional role of mtROS, specifically the H2O2 component, in pulmonary host defense against A. fumigatus, we infected transgenic mice that expressed a mitochondrion-targeted catalase. Using a reporter of fungal viability during interactions with leukocytes, mitochondrial H2O2 (mtH2O2) was essential for optimal AM, but not for neutrophil phagocytic and conidiacidal activity in the lung. Catalase-mediated mtH2O2 neutralization did not lead to invasive aspergillosis in otherwise immunocompetent mice and did not shorten survival in mice that lack NADPH oxidase function. Collectively, these studies indicate that mtROS-associated defects in AM antifungal activity can be functionally compensated by the action of NADPH oxidase and by nonoxidative effector mechanisms during murine A. fumigatus lung infection. IMPORTANCE Aspergillus fumigatus is a fungal pathogen that causes invasive disease in humans with defects in immune function. Airborne conidia, the infectious propagules, are ubiquitous and inhaled on a daily basis. In the respiratory tree, conidia are killed by the coordinated actions of phagocytes, including alveolar macrophages, neutrophils, and monocyte-derived dendritic cells. The oxidative burst represents a central killing mechanism and relies on the assembly of the NADPH oxidase complex on the phagosomal membrane. However, NADPH oxidase-deficient leukocytes have significant residual fungicidal activity in vivo, indicating the presence of alternative effector mechanisms. Here, we report that murine innate immune cells produce mitochondrial reactive oxygen species (mtROS) in response to fungal interactions. Neutralizing the mtROS constituent hydrogen peroxide (H2O2) via a catalase expressed in mitochondria of innate immune cells substantially diminished fungicidal properties of alveolar macrophages, but not of other innate immune cells. These data indicate that mtH2O2 represent a novel AM killing mechanism against Aspergillus conidia. mtH2O2 neutralization is compensated by other killing mechanisms in the lung, demonstrating functional redundancy at the level of host defense in the respiratory tree. These findings have important implications for the development of host-directed therapies against invasive aspergillosis in susceptible patient populations.
Collapse
|
23
|
Aguilar-Marcelino L, Al-Ani LKT, Freitas Soares FED, Moreira ALE, Téllez-Téllez M, Castañeda-Ramírez GS, Lourdes Acosta-Urdapilleta MD, Díaz-Godínez G, Pineda-Alegría JA. Formation, Resistance, and Pathogenicity of Fungal Biofilms: Current Trends and Future Challenges. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Wang X, Caffrey-Carr AK, Liu KW, Espinosa V, Croteau W, Dhingra S, Rivera A, Cramer RA, Obar JJ. MDA5 Is an Essential Sensor of a Pathogen-Associated Molecular Pattern Associated with Vitality That Is Necessary for Host Resistance against Aspergillus fumigatus. THE JOURNAL OF IMMUNOLOGY 2020; 205:3058-3070. [PMID: 33087405 DOI: 10.4049/jimmunol.2000802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
RIG-I-like receptors (RLR) are cytosolic RNA sensors that signal through the MAVS adaptor to activate IFN responses against viruses. Whether the RLR family has broader effects on host immunity against other pathogen families remains to be fully explored. In this study, we demonstrate that MDA5/MAVS signaling was essential for host resistance against pulmonary Aspergillus fumigatus challenge through the regulation of antifungal leukocyte responses in mice. Activation of MDA5/MAVS signaling was driven by dsRNA from live A. fumigatus serving as a key vitality-sensing pattern recognition receptor. Interestingly, induction of type I IFNs after A. fumigatus challenge was only partially dependent on MDA5/MAVS signaling, whereas type III IFN expression was entirely dependent on MDA5/MAVS signaling. Ultimately, type I and III IFN signaling drove the expression of CXCL10. Furthermore, the MDA5/MAVS-dependent IFN response was critical for the induction of optimal antifungal neutrophil killing of A. fumigatus spores. In conclusion, our data broaden the role of the RLR family to include a role in regulating antifungal immunity against A. fumigatus.
Collapse
Affiliation(s)
- Xi Wang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Alayna K Caffrey-Carr
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718; and
| | - Ko-Wei Liu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Vanessa Espinosa
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ 07103
| | - Walburga Croteau
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Amariliz Rivera
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ 07103
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Joshua J Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756;
| |
Collapse
|
25
|
Obar JJ. Sensing the threat posed by Aspergillus infection. Curr Opin Microbiol 2020; 58:47-55. [PMID: 32898768 DOI: 10.1016/j.mib.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022]
Abstract
The mammalian immune system can tune its inflammatory response to the threat level posed by an invading pathogen. It is well established that the host utilizes numerous 'patterns of pathogenicity', such as microbial growth, invasion, and viability, to achieve this tuning during bacterial infections. This review discusses how this notion fits during fungal infection, particularly regarding Aspergillus fumigatus infection. Moreover, how the environmental niches filled by A. fumigatus may drive the evolution of the fungal traits responsible for inducing the strain-specific inflammatory responses that have been experimentally observed will be discussed. Moving forward understanding the mechanisms of the fungal strain-specific inflammatory response due to the initial interactions with the host innate immune system will be essential for enhancing our therapeutic options for the treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Joshua J Obar
- Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Hinman Box 7556, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| |
Collapse
|
26
|
Guo Y, Kasahara S, Jhingran A, Tosini NL, Zhai B, Aufiero MA, Mills KA, Gjonbalaj M, Espinosa V, Rivera A, Luster AD, Hohl TM. During Aspergillus Infection, Monocyte-Derived DCs, Neutrophils, and Plasmacytoid DCs Enhance Innate Immune Defense through CXCR3-Dependent Crosstalk. Cell Host Microbe 2020; 28:104-116.e4. [PMID: 32485165 PMCID: PMC7263227 DOI: 10.1016/j.chom.2020.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/19/2023]
Abstract
Aspergillus fumigatus, a ubiquitous mold, is a common cause of invasive aspergillosis (IA) in immunocompromised patients. Host defense against IA relies on lung-infiltrating neutrophils and monocyte-derived dendritic cells (Mo-DCs). Here, we demonstrate that plasmacytoid dendritic cells (pDCs), which are prototypically antiviral cells, participate in innate immune crosstalk underlying mucosal antifungal immunity. Aspergillus-infected murine Mo-DCs and neutrophils recruited pDCs to the lung by releasing the CXCR3 ligands, CXCL9 and CXCL10, in a Dectin-1 and Card9- and type I and III interferon signaling-dependent manner, respectively. During aspergillosis, circulating pDCs entered the lung in response to CXCR3-dependent signals. Via targeted pDC ablation, we found that pDCs were essential for host defense in the presence of normal neutrophil and Mo-DC numbers. Although interactions between pDC and fungal cells were not detected, pDCs regulated neutrophil NADPH oxidase activity and conidial killing. Thus, pDCs act as positive feedback amplifiers of neutrophil effector activity against inhaled mold conidia.
Collapse
Affiliation(s)
- Yahui Guo
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shinji Kasahara
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anupam Jhingran
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas L. Tosini
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bing Zhai
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mariano A. Aufiero
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathleen A.M. Mills
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY, USA
| | - Mergim Gjonbalaj
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vanessa Espinosa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ, USA,Department of Pediatrics, New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ, USA
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias M. Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY, USA,Corresponding author
| |
Collapse
|
27
|
Abstract
Polymorphonuclear granulocytes (PMNs) are indispensable for controlling life-threatening fungal infections. In addition to various effector mechanisms, PMNs also produce extracellular vesicles (EVs). Their contribution to antifungal defense has remained unexplored. We reveal that the clinically important human-pathogenic fungus Aspergillus fumigatus triggers PMNs to release a distinct set of antifungal EVs (afEVs). Proteome analyses indicated that afEVs are enriched in antimicrobial proteins. The cargo and the release kinetics of EVs are modulated by the fungal strain confronted. Tracking of afEVs indicated that they associated with fungal cells and even entered fungal hyphae, resulting in alterations in the morphology of the fungal cell wall and dose-dependent antifungal effects. To assess as a proof of concept whether the antimicrobial proteins found in afEVs might contribute to growth inhibition of hyphae when present in the fungal cytoplasm, two human proteins enriched in afEVs, cathepsin G and azurocidin, were heterologously expressed in fungal hyphae. This led to reduced fungal growth relative to that of a control strain producing the human retinol binding protein 7. In conclusion, extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. This finding offers an intriguing, previously overlooked mechanism of antifungal defense against A. fumigatus IMPORTANCE Invasive fungal infections caused by the mold Aspergillus fumigatus are a growing concern in the clinic due to the increasing use of immunosuppressive therapies and increasing antifungal drug resistance. These infections result in high rates of mortality, as treatment and diagnostic options remain limited. In healthy individuals, neutrophilic granulocytes are critical for elimination of A. fumigatus from the host; however, the exact extracellular mechanism of neutrophil-mediated antifungal activity remains unresolved. Here, we present a mode of antifungal defense employed by human neutrophils against A. fumigatus not previously described. We found that extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. In the end, antifungal extracellular vesicle biology provides a significant step forward in our understanding of A. fumigatus host pathogenesis and opens up novel diagnostic and therapeutic possibilities.
Collapse
|
28
|
Bastos RW, Valero C, Silva LP, Schoen T, Drott M, Brauer V, Silva-Rocha R, Lind A, Steenwyk JL, Rokas A, Rodrigues F, Resendiz-Sharpe A, Lagrou K, Marcet-Houben M, Gabaldón T, McDonnell E, Reid I, Tsang A, Oakley BR, Loures FV, Almeida F, Huttenlocher A, Keller NP, Ries LNA, Goldman GH. Functional Characterization of Clinical Isolates of the Opportunistic Fungal Pathogen Aspergillus nidulans. mSphere 2020; 5:e00153-20. [PMID: 32269156 PMCID: PMC7142298 DOI: 10.1128/msphere.00153-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/06/2020] [Indexed: 02/08/2023] Open
Abstract
Aspergillus nidulans is an opportunistic fungal pathogen in patients with immunodeficiency, and virulence of A. nidulans isolates has mainly been studied in the context of chronic granulomatous disease (CGD), with characterization of clinical isolates obtained from non-CGD patients remaining elusive. This study therefore carried out a detailed biological characterization of two A. nidulans clinical isolates (CIs), obtained from a patient with breast carcinoma and pneumonia and from a patient with cystic fibrosis that underwent lung transplantation, and compared them to the reference, nonclinical FGSC A4 strain. Both CIs presented increased growth in comparison to that of the reference strain in the presence of physiologically relevant carbon sources. Metabolomic analyses showed that the three strains are metabolically very different from each other in these carbon sources. Furthermore, the CIs were highly susceptible to cell wall-perturbing agents but not to other physiologically relevant stresses. Genome analyses identified several frameshift variants in genes encoding cell wall integrity (CWI) signaling components. Significant differences in CWI signaling were confirmed by Western blotting among the three strains. In vivo virulence studies using several different models revealed that strain MO80069 had significantly higher virulence in hosts with impaired neutrophil function than the other strains. In summary, this study presents detailed biological characterization of two A. nidulanssensu stricto clinical isolates. Just as in Aspergillus fumigatus, strain heterogeneity exists in A. nidulans clinical strains that can define virulence traits. Further studies are required to fully characterize A. nidulans strain-specific virulence traits and pathogenicity.IMPORTANCE Immunocompromised patients are susceptible to infections with opportunistic filamentous fungi from the genus Aspergillus Although A. fumigatus is the main etiological agent of Aspergillus species-related infections, other species, such as A. nidulans, are prevalent in a condition-specific manner. A. nidulans is a predominant infective agent in patients suffering from chronic granulomatous disease (CGD). A. nidulans isolates have mainly been studied in the context of CGD although infection with A. nidulans also occurs in non-CGD patients. This study carried out a detailed biological characterization of two non-CGD A. nidulans clinical isolates and compared the results to those with a reference strain. Phenotypic, metabolomic, and genomic analyses highlight fundamental differences in carbon source utilization, stress responses, and maintenance of cell wall integrity among the strains. One clinical strain had increased virulence in models with impaired neutrophil function. Just as in A. fumigatus, strain heterogeneity exists in A. nidulans clinical strains that can define virulence traits.
Collapse
Affiliation(s)
- Rafael Wesley Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Taylor Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Milton Drott
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Verônica Brauer
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Abigail Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's Associate Laboratory, Guimarães, Portugal
| | - Agustin Resendiz-Sharpe
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Marina Marcet-Houben
- Centre for Genomic Regulation, Barcelona, Spain
- Life Sciences Program, Barcelona Supercomputing Centre, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, Barcelona, Spain
- Life Sciences Program, Barcelona Supercomputing Centre, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Erin McDonnell
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Ian Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Flávio Vieira Loures
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
| | - Fausto Almeida
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
29
|
Schoen TJ, Rosowski EE, Knox BP, Bennin D, Keller NP, Huttenlocher A. Neutrophil phagocyte oxidase activity controls invasive fungal growth and inflammation in zebrafish. J Cell Sci 2019; 133:jcs.236539. [PMID: 31722976 DOI: 10.1242/jcs.236539] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are primary phagocytes of the innate immune system that generate reactive oxygen species (ROS) and mediate host defense. Deficient phagocyte NADPH oxidase (PHOX) function leads to chronic granulomatous disease (CGD) that is characterized by invasive infections, including those by the generally non-pathogenic fungus Aspergillus nidulans The role of neutrophil ROS in this specific host-pathogen interaction remains unclear. Here, we exploit the optical transparency of zebrafish to image the effects of neutrophil ROS on invasive fungal growth and neutrophil behavior in response to Aspergillus nidulans In a wild-type host, A. nidulans germinates rapidly and elicits a robust inflammatory response with efficient fungal clearance. PHOX-deficient larvae have increased susceptibility to invasive A. nidulans infection despite robust neutrophil infiltration. Expression of subunit p22phox (officially known as CYBA), specifically in neutrophils, does not affect fungal germination but instead limits the area of fungal growth and excessive neutrophil inflammation and is sufficient to restore host survival in p22phox-deficient larvae. These findings suggest that neutrophil ROS limits invasive fungal growth and has immunomodulatory activities that contribute to the specific susceptibility of PHOX-deficient hosts to invasive A. nidulans infection.
Collapse
Affiliation(s)
- Taylor J Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emily E Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David Bennin
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA .,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
30
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
31
|
Leipheimer J, Bloom ALM, Panepinto JC. Protein Kinases at the Intersection of Translation and Virulence. Front Cell Infect Microbiol 2019; 9:318. [PMID: 31572689 PMCID: PMC6749009 DOI: 10.3389/fcimb.2019.00318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
As free living organisms, fungi are challenged with a variety of environmental insults that threaten their cellular processes. In some cases, these challenges mimic conditions present within mammals, resulting in the accidental selection of virulence factors over evolutionary time. Be it within a host or the soil, fungi must contend with environmental challenges through the production of stress effector proteins while maintaining factors required for viability in any condition. Initiation and upkeep of this balancing act is mainly under the control of kinases that affect the propensity and selectivity of protein translation. This review will focus on kinases in pathogenic fungi that facilitate a virulence phenotype through translational control.
Collapse
Affiliation(s)
- Jay Leipheimer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Amanda L M Bloom
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - John C Panepinto
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
32
|
Silva JC, Rodrigues NC, Thompson‐Souza GA, Muniz VDS, Neves JS, Figueiredo RT. Mac‐1 triggers neutrophil DNA extracellular trap formation to
Aspergillus fumigatus
independently of PAD4 histone citrullination. J Leukoc Biol 2019; 107:69-83. [DOI: 10.1002/jlb.4a0119-009rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/13/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Juliana C. Silva
- Instituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Najara C. Rodrigues
- Instituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | | - Valdirene de S. Muniz
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Josiane S. Neves
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Rodrigo T. Figueiredo
- Campus de Duque de CaxiasUniversidade Federal do Rio de Janeiro Duque de Caxias Brazil
| |
Collapse
|
33
|
Denham ST, Wambaugh MA, Brown JCS. How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts. J Mol Biol 2019; 431:2982-3009. [PMID: 31078554 PMCID: PMC6646061 DOI: 10.1016/j.jmb.2019.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Environmental fungi are globally ubiquitous and human exposure is near universal. However, relatively few fungal species are capable of infecting humans, and among fungi, few exposure events lead to severe systemic infections. Systemic infections have mortality rates of up to 90%, cost the US healthcare system $7.2 billion annually, and are typically associated with immunocompromised patients. Despite this reputation, exposure to environmental fungi results in a range of outcomes, from asymptomatic latent infections to severe systemic infection. Here we discuss different exposure outcomes for five major fungal pathogens: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma species. These fungi include a mold, a budding yeast, and thermal dimorphic fungi. All of these species must adapt to dramatically changing environments over the course of disease. These dynamic environments include the human lung, which is the first exposure site for these organisms. Fungi must defend themselves against host immune cells while germinating and growing, which risks further exposing microbe-associated molecular patterns to the host. We discuss immune evasion strategies during early infection, from disruption of host immune cells to major changes in fungal cell morphology.
Collapse
Affiliation(s)
- Steven T Denham
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Morgan A Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
34
|
Decker C, Wurster S, Lazariotou M, Hellmann AM, Einsele H, Ullmann AJ, Löffler J. Analysis of the in vitro activity of human neutrophils against Aspergillus fumigatus in presence of antifungal and immunosuppressive agents. Med Mycol 2019; 56:514-519. [PMID: 29420763 DOI: 10.1093/mmy/myx069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/15/2017] [Indexed: 12/22/2022] Open
Abstract
Neutrophils are essential in the first line defense against moulds. This in vitro study assessed different neutrophil effector mechanisms in the presence of clinically relevant antifungal and immunosuppressive agents. Therapeutic concentrations of liposomal amphotericin B led to reduced IL-8 and oxidative burst response to the synthetic stimulus PMA, whereas no major alterations of oxidative burst, phagocytosis, or cytokine response to germinated stages of Aspergillus fumigatus and no supra-additive effects of antifungal and immunosuppressive drugs were observed. Conventional and liposomal amphotericin B as well as voriconazole, however, led to reduced neutrophil extracellular trap formation in response to A. fumigatus germ tubes.
Collapse
Affiliation(s)
- Christina Decker
- University Hospital of Wuerzburg, Department of Internal Medicine II, Wuerzburg
| | - Sebastian Wurster
- University Hospital of Wuerzburg, Department of Internal Medicine II, Wuerzburg
| | - Maria Lazariotou
- University Hospital of Wuerzburg, Department of Internal Medicine II, Wuerzburg
| | - Anna-Maria Hellmann
- University Hospital of Wuerzburg, Department of Internal Medicine II, Wuerzburg
| | - Hermann Einsele
- University Hospital of Wuerzburg, Department of Internal Medicine II, Wuerzburg
| | - Andrew J Ullmann
- University Hospital of Wuerzburg, Department of Internal Medicine II, Wuerzburg
| | - Jürgen Löffler
- University Hospital of Wuerzburg, Department of Internal Medicine II, Wuerzburg
| |
Collapse
|
35
|
Kontoyiannis DP, Selleslag D, Mullane K, Cornely OA, Hope W, Lortholary O, Croos-Dabrera R, Lademacher C, Engelhardt M, Patterson TF. Impact of unresolved neutropenia in patients with neutropenia and invasive aspergillosis: a post hoc analysis of the SECURE trial. J Antimicrob Chemother 2019; 73:757-763. [PMID: 29194488 DOI: 10.1093/jac/dkx423] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/17/2017] [Indexed: 12/19/2022] Open
Abstract
Background Historically, baseline neutropenia and lack of neutrophil recovery have been associated with poor outcomes in invasive aspergillosis (IA). It is unclear how treatment with the new Aspergillus-active triazoles isavuconazole and voriconazole affects outcomes in neutropenic patients with IA. Methods A post hoc analysis of the Phase 3 SECURE trial assessed patients with neutropenia (neutrophil count <0.5 × 109/L for >10 days at baseline) with IA (proven/probable) who had received either isavuconazole or voriconazole. The primary endpoint was all-cause mortality (ACM) through day 42. ACM in patients with resolved versus unresolved neutropenia at day 7 and overall success at end of treatment (EOT) were also assessed. Results One hundred and forty-two patients with neutropenia and IA were included (isavuconazole n = 78, voriconazole n = 64). ACM through day 42 (primary endpoint), day 7 and EOT were higher for patients with unresolved versus resolved neutropenia at each timepoint (day 42, unresolved: 45.0% isavuconazole, 45.2% voriconazole; resolved: 5.0% isavuconazole, 5.9% voriconazole; day 7, unresolved: 31.0% isavuconazole, 29.8% voriconazole; resolved: 5.0% isavuconazole, 5.9% voriconazole; EOT, unresolved: 48.6% isavuconazole, 36.4% voriconazole; resolved: 5.0% isavuconazole, 14.3% voriconazole). ACM was significantly higher for isavuconazole-treated patients with unresolved versus resolved neutropenia (day 7, P = 0.031; day 42, P < 0.001; EOT, P < 0.001). In voriconazole-treated patients, ACM was significantly higher among patients with unresolved versus resolved neutropenia at day 42 (P = 0.002) and numerically higher at day 7 and EOT (P > 0.05 for both). Conclusions Isavuconazole had comparable efficacy and safety to voriconazole in neutropenic patients with IA. Resolution of neutropenia was associated with improved outcomes.
Collapse
Affiliation(s)
- Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Kathleen Mullane
- Department of Medicine/Section of Infectious Diseases, University of Chicago, Chicago, IL, USA
| | - Oliver A Cornely
- Department I for Internal Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Clinical Trials Centre, University of Cologne (ZKS Köln), Cologne, Germany
| | | | - Olivier Lortholary
- Université Paris Descartes, Centre d'Infectiologie Necker Pasteur, Paris, France
| | | | | | | | - Thomas F Patterson
- Infectious Disease, UT Health San Antonio and the South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
36
|
CARD9 + microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment. Nat Immunol 2019; 20:559-570. [PMID: 30996332 PMCID: PMC6494474 DOI: 10.1038/s41590-019-0377-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
The C-type lectin receptor–Syk adaptor CARD9 facilitates protective antifungal immunity within the central nervous system (CNS), as human CARD9-deficiency causes fungal-specific CNS-targeted infection susceptibility. CARD9 promotes neutrophil recruitment to the fungal-infected CNS, which mediates fungal clearance. Here, we investigated host and pathogen factors that promote protective neutrophil recruitment during Candida albicans CNS invasion. IL-1β was essential for CNS antifungal immunity by driving CXCL1 production, which recruited CXCR2-expressing neutrophils. Neutrophil-recruiting IL-1β and CXCL1 production was induced in microglia by the fungal-secreted toxin Candidalysin, in a p38-cFos-dependent manner. Importantly, microglia relied on CARD9 for production of IL-1β, via both Il1b transcriptional regulation and inflammasome activation, and of CXCL1 in the fungal-infected CNS. Microglia-specific Card9 deletion impaired IL-1β and CXCL1 production and neutrophil recruitment, and increased CNS fungal proliferation. Taken together, an intricate network of host-pathogen interactions promotes CNS antifungal immunity, which is impaired in human CARD9-deficiency leading to CNS fungal disease.
Collapse
|
37
|
Jones CN, Ellett F, Robertson AL, Forrest KM, Judice K, Balkovec JM, Springer M, Markmann JF, Vyas JM, Warren HS, Irimia D. Bifunctional Small Molecules Enhance Neutrophil Activities Against Aspergillus fumigatus in vivo and in vitro. Front Immunol 2019; 10:644. [PMID: 31024528 PMCID: PMC6465576 DOI: 10.3389/fimmu.2019.00644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
Aspergillosis is difficult to treat and carries a high mortality rate in immunocompromised patients. Neutrophils play a critical role in control of infection but may be diminished in number and function during immunosuppressive therapies. Here, we measure the effect of three bifunctional small molecules that target Aspergillus fumigatus and prime neutrophils to generate a more effective response against the pathogen. The molecules combine two moieties joined by a chemical linker: a targeting moiety (TM) that binds to the surface of the microbial target, and an effector moiety (EM) that interacts with chemoattractant receptors on human neutrophils. We report that the bifunctional compounds enhance the interactions between primary human neutrophils and A. fumigatus in vitro, using three microfluidic assay platforms. The bifunctional compounds significantly enhance the recruitment of neutrophils, increase hyphae killing by neutrophils in a uniform concentration of drug, and decrease hyphal tip growth velocity in the presence of neutrophils compared to the antifungal targeting moiety alone. We validated that the bifunctional compounds are also effective in vivo, using a zebrafish infection model with neutrophils expressing the appropriate EM receptor. We measured significantly increased phagocytosis of A. fumigatus conidia by neutrophils expressing the EM receptor in the presence of the compounds compared to receptor-negative cells. Finally, we demonstrate that treatment with our lead compound significantly improved the antifungal activity of neutrophils from immunosuppressed patients ex vivo. This type of bifunctional compounds strategy may be utilized to redirect the immune system to destroy fungal, bacterial, and viral pathogens.
Collapse
Affiliation(s)
- Caroline N Jones
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Felix Ellett
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anne L Robertson
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Kevin Judice
- Cidara Therapeutics, San Diego, CA, United States
| | | | | | - James F Markmann
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Division of Transplantation, Massachusetts General Hospital, Boston, MA, United States
| | - Jatin M Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - H Shaw Warren
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Mirkov I, Popov Aleksandrov A, Lazovic B, Glamoclija J, Kataranovski M. Usefulness of animal models of aspergillosis in studying immunity against Aspergillus infections. J Mycol Med 2019; 29:84-96. [DOI: 10.1016/j.mycmed.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
|
39
|
Qiu KY, Liao XY, Fang JP, Xu HG, Li Y, Huang K, Zhou DH. Combination antifungal treatment for invasive fungal disease after hematopoietic stem cell transplantation in children with hematological disorders. Transpl Infect Dis 2019; 21:e13066. [PMID: 30859662 DOI: 10.1111/tid.13066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Invasive fungal disease (IFD) has a poor prognosis in children with hematological disorders after hematopoietic stem cell transplantation (HSCT). We assessed if drug combinations with different targets may improve the outcome. METHODS Retrospective study to assess the outcome of combination antifungal therapy (CAT) for proven-probable IFD (PP-IFD) in children with hematological disorders after HSCT from January 2008 to June 2018. RESULTS Over the 10-year period, 95 PP-IFD were diagnosed in pediatric recipients, median age of 5.6 years. Twenty-seven patients received combinations of caspofungin and voriconazole, 28 patients received combinations of caspofungin and amphotericin B, and 40 patients received combinations of voriconazole and amphotericin B. The overall response rate of PP-IFD was 77.9%, while the 100-day overall survival rates were 66.8%. Univariate analysis showed that factors that significantly affected the response to combination treatments were type of combination (P = 0.02), the stem cell source (P = 0.04), the donor type (P = 0.03), HLA-match (P = 0.03), aGVHD (P = 0.02), period of treatment (P = 0.044), use of corticosteroids (0.036), CD4:CD8 ratio (P = 0.014), and CMV viremia (P = 0.033). In addition, multivariate analysis demonstrated that only the type of combination remained a significant factor (odds ratio = 0.335, 95% confidence interval: 0.071-0.812, P = 0.042). Forty-three children suffered from mild and reversible adverse reactions, no serious side effects during treatment. CONCLUSION A variety of factors can affect the outcome of CAT. Combination of caspofungin with voriconazole is a safe and helpful treatment option for HSCT recipients with IFD.
Collapse
Affiliation(s)
- Kun-Yin Qiu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiong-Yu Liao
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian-Pei Fang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hong-Gui Xu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Li
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ke Huang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dun-Hua Zhou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
40
|
Rosowski EE, Raffa N, Knox BP, Golenberg N, Keller NP, Huttenlocher A. Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLoS Pathog 2018; 14:e1007229. [PMID: 30071103 PMCID: PMC6091969 DOI: 10.1371/journal.ppat.1007229] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/14/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023] Open
Abstract
In immunocompromised individuals, Aspergillus fumigatus causes invasive fungal disease that is often difficult to treat. Exactly how immune mechanisms control A. fumigatus in immunocompetent individuals remains unclear. Here, we use transparent zebrafish larvae to visualize and quantify neutrophil and macrophage behaviors in response to different A. fumigatus strains. We find that macrophages form dense clusters around spores, establishing a protective niche for fungal survival. Macrophages exert these protective effects by inhibiting fungal germination, thereby inhibiting subsequent neutrophil recruitment and neutrophil-mediated killing. Germination directly drives fungal clearance as faster-growing CEA10-derived strains are killed better in vivo than slower-growing Af293-derived strains. Additionally, a CEA10 pyrG-deficient strain with impaired germination is cleared less effectively by neutrophils. Host inflammatory activation through Myd88 is required for killing of a CEA10-derived strain but not sufficient for killing of an Af293-derived strain, further demonstrating the role of fungal-intrinsic differences in the ability of a host to clear an infection. Altogether, we describe a new role for macrophages in the persistence of A. fumigatus and highlight the ability of different A. fumigatus strains to adopt diverse modes of virulence. Immunocompromised patients are susceptible to invasive fungal infections, including aspergillosis. However, healthy humans inhale spores of the fungus Aspergillus fumigatus from the environment every day without becoming sick, and how the immune system clears this infection is still obscure. Additionally, there are many different strains of A. fumigatus, and whether the pathogenesis of these different strains varies is also largely unknown. To investigate these questions, we infected larval zebrafish with A. fumigatus spores derived from two genetically diverse strains. Larval zebrafish allow for visualization of fungal growth and innate immune cell behavior in live, intact animals. We find that differences in the rate of growth between strains directly affect fungal persistence. In both wild-type and macrophage-deficient zebrafish larvae, a fast-germinating strain is actually cleared better than a slow-germinating strain. This fungal killing is driven primarily by neutrophils while macrophages promote fungal persistence by inhibiting spore germination. Our experiments underline different mechanisms of virulence that pathogens can utilize—rapid growth versus dormancy and persistence—and inform future strategies for fighting fungal infections in susceptible immunocompromised patients.
Collapse
Affiliation(s)
- Emily E. Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas Raffa
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Benjamin P. Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Netta Golenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
41
|
The spectrum of pulmonary aspergillosis. Respir Med 2018; 141:121-131. [PMID: 30053957 DOI: 10.1016/j.rmed.2018.06.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 11/24/2022]
Abstract
Notable progress has been made in the past years in the classification, diagnosis and treatment of pulmonary aspergillosis. New criteria were proposed by the Working Group of the International Society for Human and Animal Mycology (ISHAM) for the diagnosis of allergic bronchopulmonary aspergillosis (ABPA). The latest classification of chronic pulmonary aspergillosis (CPA) suggested by the European Society for Clinical Microbiology and Infectious Diseases (ESCMID) has become widely accepted among clinicians. Subacute invasive pulmonary aspergillosis is now considered a type of CPA, yet it is still diagnosed and treated similarly to invasive pulmonary aspergillosis (IPA). Isavuconazole, an extended-spectrum triazole, has recently been approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of IPA. The most recent Infectious Diseases Society of America (IDSA) guidelines strongly recommend reducing mold exposure to patients at high risk for pulmonary aspergillosis. The excessive relapse rate following discontinuation of therapy remains a common reality to all forms of this semi-continuous spectrum of diseases. This highlights the need to continuously reassess patients and individualize therapy accordingly. Thus far, the duration of therapy and the frequency of follow-up have to be well characterized.
Collapse
|
42
|
McDermott AJ, Klein BS. Helper T-cell responses and pulmonary fungal infections. Immunology 2018; 155:155-163. [PMID: 29781185 DOI: 10.1111/imm.12953] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
The mucosal surface of the respiratory tract encounters microbes, such as fungal particles, with every inhaled breath. When pathogenic fungi breach the physical barrier and innate immune system within the lung to establish an infection, adaptive immunity is engaged, often in the form of helper CD4 T-cell responses. Type 1 responses, characterized by interferon-γ production from CD4 cells, promote clearance of Histoplasma capsulatum and Cryptococcus neoformans infection. Likewise, interleukin-17A (IL-17A) production from Th17 cells promotes immunity to Blastomyces dermatitidis and Coccidioides species infection by recruiting neutrophils. In contrast the development of T helper type 2 responses, characterized by IL-5 production from T cells and eosinophil influx into the lungs, drives allergic bronchopulmonary aspergillosis and poor outcomes during C. neoformans infection. Experimental vaccines against several endemic mycoses, including Histoplasma capsulatum, Coccidioides, Cryptococcus and Blastomyces dermatitidis, induce protective T-cell responses and foreshadow the development of vaccines against pulmonary fungal infections for use in humans. Additionally, recent work using antifungal T cells as immunotherapy to protect immune-compromised patients from opportunist fungal infections also shows great promise. This review covers the role of T-cell responses in driving protection and pathology in response to pulmonary fungal infections, and highlights promising therapeutic applications of antifungal T cells.
Collapse
Affiliation(s)
- Andrew J McDermott
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce S Klein
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
43
|
Hünniger K, Kurzai O. Phagocytes as central players in the defence against invasive fungal infection. Semin Cell Dev Biol 2018; 89:3-15. [PMID: 29601862 DOI: 10.1016/j.semcdb.2018.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/26/2018] [Indexed: 12/23/2022]
Abstract
Fungal pathogens cause severe and life-threatening infections worldwide. The majority of invasive infections occurs in immunocompromised patients and is based on acquired as well as congenital defects of innate and adaptive immune responses. In many cases, these defects affect phagocyte functions. Consequently, professional phagocytes - mainly monocytes, macrophages, dendritic cells and polymorphonuclear neutrophilic granulocytes - have been shown to act as central players in initiating and modulating antifungal immune responses as well as elimination of fungal pathogens. In this review we will summarize our current understanding on the role of these professional phagocytes in invasive fungal infection to emphasize two important aspects. (i) Analyses on the interaction between fungi and phagocytes have contributed to significant new insights into phagocyte biology. Important examples for this include the identification of pattern recognition receptors for β-glucan, a major cell wall component of many fungal pathogens, as well as the identification of genetic polymorphisms that determine individual host responses towards invading fungi. (ii) At the same time it was shown that fungal pathogens have evolved sophisticated mechanisms to counteract the attack of professional phagocytes. These mechanisms range from complete mechanical destruction of phagocytes to exquisite adaptation of some fungi to the hostile intracellular environment, enabling them to grow and replicate inside professional phagocytes.
Collapse
Affiliation(s)
- Kerstin Hünniger
- Institute for Hygiene and Microbiology, University of Würzburg, Germany; Septomics Research Center, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Germany; Septomics Research Center, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany.
| |
Collapse
|
44
|
Exogenous Stimulation of Type I Interferon Protects Mice with Chronic Granulomatous Disease from Aspergillosis through Early Recruitment of Host-Protective Neutrophils into the Lung. mBio 2018; 9:mBio.00422-18. [PMID: 29588403 PMCID: PMC5874922 DOI: 10.1128/mbio.00422-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Invasive aspergillosis (IA) remains the primary cause of morbidity and mortality in chronic granulomatous disease (CGD) patients, often due to infection by Aspergillus species refractory to antifungals. This motivates the search for alternative treatments, including immunotherapy. We investigated the effect of exogenous type I interferon (IFN) activation on the outcome of IA caused by three Aspergillus species, A. fumigatus, A. nidulans, and A. tanneri, in CGD mice. The animals were treated with poly(I):poly(C) carboxymethyl cellulose poly-l-lysine (PICLC), a mimetic of double-stranded RNA, 24 h preinfection and postinfection. The survival rates and lung fungal burdens were markedly improved by PICLC immunotherapy in animals infected with any one of the three Aspergillus species. While protection from IA was remarkable, PICLC induction of type I IFN in the lungs surged 24 h posttreatment and returned to baseline levels by 48 h, suggesting that PICLC altered early events in protection against IA. Immunophenotyping of recruited leukocytes and histopathological examination of tissue sections showed that PICLC induced similar cellular infiltrates as those in untreated-infected mice, in both cases dominated by monocytic cells and neutrophils. However, the PICLC immunotherapy resulted in a marked earlier recruitment of the leukocytes. Unlike with conidia, infection with A. nidulans germlings reduced the protective effect of PICLC immunotherapy. Additionally, antibody depletion of neutrophils totally reversed the protection, suggesting that neutrophils are crucial for PICLC-mediated protection. Together, these data show that prophylactic PICLC immunotherapy prerecruits these cells, enabling them to attack the conidia and thus resulting in a profound protection from IA.IMPORTANCE Patients with chronic granulomatous disease (CGD) are highly susceptible to invasive aspergillosis (IA). While Aspergillus fumigatus is the most-studied Aspergillus species, CGD patients often suffer IA caused by A. nidulans, A. tanneri, and other rare species. These non-fumigatus Aspergillus species are more resistant to antifungal drugs and cause higher fatality rates than A. fumigatus Therefore, alternative therapies are needed to protect CGD patients. We report an effective immunotherapy of mice infected with three Aspergillus species via PICLC dosing. While protection from IA was long lasting, PICLC induction of type I IFN surged but quickly returned to baseline levels, suggesting that PICLC was altering early events in IA. Interestingly, we found responding immune cells to be similar between PICLC-treated and untreated-infected mice. However, PICLC immunotherapy resulted in an earlier recruitment of the leukocytes and suppressed fungal growth. This study highlights the value of type I IFN induction in CGD patients.
Collapse
|
45
|
Abstract
The balance between reactive oxygen species and reactive nitrogen species production by the host and stress response by fungi is a key axis of the host-pathogen interaction. This review will describe emerging themes in fungal pathogenesis underpinning this axis.
Collapse
Affiliation(s)
- Adilia Warris
- Medical Research Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, UK
| | - Elizabeth R Ballou
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
46
|
Host response to pulmonary fungal infections: A highlight on cell-driven immunity to Cryptococcus species and Aspergillus fumigatus. ACTA ACUST UNITED AC 2018; 3:335-345. [PMID: 29430385 DOI: 10.1007/s40495-017-0111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Aspergillus fumigatus Infection-Induced Neutrophil Recruitment and Location in the Conducting Airway of Immunocompetent, Neutropenic, and Immunosuppressed Mice. J Immunol Res 2018; 2018:5379085. [PMID: 29577051 PMCID: PMC5822902 DOI: 10.1155/2018/5379085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/05/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Abstract
Susceptibility to fungal infection is commonly associated with impaired neutrophil responses. To study the mechanisms underlying this association, we investigated neutrophil recruitment to the conducting airway wall after Aspergillus fumigatus conidium inhalation in mouse models of drug-induced immunosuppression and antibody-mediated neutrophil depletion (neutropenia) by performing three-dimensional confocal laser-scanning microscopy of whole-mount primary bronchus specimens. Actin staining enabled visualization of the epithelial and smooth muscle layers that mark the airway wall. Gr-1+ or Ly6G+ neutrophils located between the epithelium and smooth muscles were considered airway wall neutrophils. The number of airway wall neutrophils for immunocompetent, immunosuppressed, and neutropenic mice before and 6 h after A. fumigatus infection were analyzed and compared. Our results show that the number of conducting airway wall neutrophils in immunocompetent mice significantly increased upon inflammation, while a dramatic reduction in this number was observed following immunosuppression and neutropenia. Interestingly, a slight increase in the infiltration of neutrophils into the airway wall was detected as a result of infection, even in immunosuppressed and neutropenic mice. Taken together, these data indicate that neutrophils are present in intact conducting airway walls and the number elevates upon A. fumigatus infection. Conducting airway wall neutrophils are affected by both neutropenia and immunosuppression.
Collapse
|
48
|
Kernien JF, Snarr BD, Sheppard DC, Nett JE. The Interface between Fungal Biofilms and Innate Immunity. Front Immunol 2018; 8:1968. [PMID: 29375581 PMCID: PMC5767580 DOI: 10.3389/fimmu.2017.01968] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 01/17/2023] Open
Abstract
Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.
Collapse
Affiliation(s)
- John F Kernien
- Department of Medicine, University of Wisconsin, Madison, WI, United States
| | - Brendan D Snarr
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Donald C Sheppard
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Jeniel E Nett
- Department of Medicine, University of Wisconsin, Madison, WI, United States.,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
49
|
Immune responses to invasive aspergillosis: new understanding and therapeutic opportunities. Curr Opin Infect Dis 2018; 30:364-371. [PMID: 28509673 DOI: 10.1097/qco.0000000000000381] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Invasive aspergillosis is a worldwide disease that primarily affects immune-compromised patients, agricultural workers with corneal abrasions, individuals with structural lung disease, and patients with primary immune deficiency. The critical function of the immune system is to prevent the germination of airborne conidia into tissue-invasive hyphae. This review covers recent advances that shape our understanding of anti-Aspergillus immunity at the molecular and cellular level. RECENT FINDINGS Host defense against conidia and hyphae occurs via distinct molecular mechanisms that involve intracellular and extracellular killing pathways, as well as cooperation between different myeloid cell subsets. The strength and efficacy of the host response is shaped by the tissue microenvironment. In preclinical models of disease, host immune augmentation strategies have yielded benefits, yet translating these insights into therapeutic strategies in humans remains challenging. SUMMARY Although advances in early diagnostic strategies and in antifungal drugs have ameliorated clinical outcomes of invasive aspergillosis, further improvements depend on gaining deeper insight into and translating advances in anti-Aspergillus immunity.
Collapse
|
50
|
Gresnigt MS, Jaeger M, Subbarao Malireddi RK, Rasid O, Jouvion G, Fitting C, Melchers WJG, Kanneganti TD, Carvalho A, Ibrahim-Granet O, van de Veerdonk FL. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression. Front Immunol 2017; 8:1777. [PMID: 29326692 PMCID: PMC5733348 DOI: 10.3389/fimmu.2017.01777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/28/2017] [Indexed: 01/01/2023] Open
Abstract
One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus. When exploring the role of NOD1 in an experimental mouse model, we found that Nod1−/− mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1−/− mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus. Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1−/− mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1−/− cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus. This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host immune cells to clear the infection by increasing fungal killing and cytokine responses.
Collapse
Affiliation(s)
- Mark S Gresnigt
- Unité de recherche Cytokines and Inflammation, Institut Pasteur, Paris, France.,Laboratory for Experimental Internal Medicine, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Martin Jaeger
- Laboratory for Experimental Internal Medicine, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Orhan Rasid
- Unité de recherche Cytokines and Inflammation, Institut Pasteur, Paris, France
| | - Grégory Jouvion
- Unité Histopathologie Humaine et Modèles Animaux, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Catherine Fitting
- Unité de recherche Cytokines and Inflammation, Institut Pasteur, Paris, France
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | | | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Frank L van de Veerdonk
- Laboratory for Experimental Internal Medicine, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|