1
|
Kong X, Wang W, Xia S, Zhi Y, Cai Y, Zhang H, Shen X. Molecular and functional characterization of short peptidoglycan recognition proteins in Vesicomyidae clam. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024:105284. [PMID: 39489409 DOI: 10.1016/j.dci.2024.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Within cold seep environments, the Vesicomyidae clam emerges as a prevalent species, distinguished by its symbiotic relationship with microorganisms housed within its organ gill. Given the extreme conditions and the symbiotic nature of this association, investigating the host's immune genes, particularly immune recognition receptors, is essential for understanding their role in facilitating host-symbiotic interactions. Three short peptidoglycan recognition proteins (PGRPs) were identified in the clam. AmPGRP-S1, -S2, and -S3 were found to possess conserved amidase binding sites and Zn2+ binding sites. Quantitative Real-time PCR (qRT-PCR) analysis revealed differential expression patterns among the PGRPs. AmPGRP-S1 and AmPGRP-S2 exhibited elevated expression levels in the gill, while AmPGRP-S3 displayed the highest expression in the adductor muscle. Functional experiments demonstrated that recombinant AmPGRP-S1, -S2, and -S3 (rAmPGRPs) exhibited binding capabilities to both L-PGN and D-PGN (peptidoglycan). Notably, rAmPGRP-S1 and -S2 possessed Zn2+-independent amidase activity, while rAmPGRP-S3 lacked this enzymatic function. rAmPGRPs were shown to bind to five different bacterial species. Among these, rAmPGRP-S1 inhibited Escherichia coli and Bacillus subtilis, while rAmPGRP-S2 and -S3 inhibited Bacillus subtilis in the absence of Zn2+. In the presence of Zn2+, rAmPGRP-S1 and -S2 exhibited enhanced inhibitory activity against Staphylococcus aureus or Bacillus subtilis. These findings suggest that AmPGRPs may play a pivotal role in mediating the interaction between the host and endosymbiotic bacteria, functioning as PGN and microbe receptors, antibacterial effectors, and regulators of host-microbe symbiosis. These results contribute to our understanding of the adaptive mechanisms of deep-sea organisms to the challenging cold seep environments.
Collapse
Affiliation(s)
- Xue Kong
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Wei Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Sunan Xia
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Ying Zhi
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Yuefeng Cai
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xin Shen
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China.
| |
Collapse
|
2
|
Verpalen ECJM, Ehlers AM, van Wingaarden ACA, Brouwer AJ, Boons GJ. Synthesis and biological evaluation of lipid A derived from commensal Bacteroides. Org Biomol Chem 2024. [PMID: 39400282 PMCID: PMC11472770 DOI: 10.1039/d4ob01340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
The inflammation-inducing properties of lipopolysaccharides (LPS) of Gram-negative bacteria reside in their lipid A moiety. Bacillus fragilis, which is a commensal Gram-negative bacterium, biosynthesises lipid A that is structurally distinct from that of E. coli and other enteric bacteria. It is composed of a β1,6-linked glucosamine (GlcN) disaccharide that is only phosphorylated at the anomeric center. The major species of B. fragilis has five fatty acids and the amine of the distal GlcN moiety carries the unusual (R)-3-(13-methyltetradecanoyloxy)-1.5-methylhexadecanoic acid. A recent study indicates that the LPS of B. fragilis has anti-viral activity by selective induction of interferon (IFN)-β and is protective in mouse models of vesicular stomatitis virus (VSV) and influenza A. Heterogeneity in the structures of LPS and lipid A and possible contamination with other inflammatory components make it difficult to unambiguously define the immune-modulatory properties of LPS or lipid A. Therefore, we developed a synthetic approach for the preparation of the unusual major lipid A species derived from B. fragilis, which includes a synthetic approach for (R)-3-(13-methyltetradecanoyloxy)-1.5-methylhexadecanoic acid by the Wittig olefination to install the terminal isopropyl moiety. The proinflammatory and antiviral responses of synthetic B. fragilis lipid A were investigated in several cell lines and primary human monocytes by examining the production of interleukin (IL)-6 and IFN-β. It was found that B. fragilis does not induce the production of IL-6 and IFN-β but can partially antagonize the production of pro-inflammatory cytokines induced by E. coli LPS and lipid A.
Collapse
Affiliation(s)
- Enrico C J M Verpalen
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Anna M Ehlers
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Aldo C A van Wingaarden
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Arwin J Brouwer
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Chemistry Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Keener JE, Goh B, Yoo JS, Oh SF, Brodbelt JS. Top-Down Characterization of Bacterial Lipopolysaccharides and Lipooligosaccharides Using Activated-Electron Photodetachment Mass Spectrometry. Anal Chem 2024; 96:9151-9158. [PMID: 38758019 PMCID: PMC11384421 DOI: 10.1021/acs.analchem.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are located in the outer membrane of Gram-negative bacteria and are comprised of three distinctive parts: lipid A, core oligosaccharide (OS), and O-antigen. The structure of each region influences bacterial stability, toxicity, and pathogenesis. Here, we highlight the use of targeted activated-electron photodetachment (a-EPD) tandem mass spectrometry to characterize LPS and LOS from two crucial players in the human gut microbiota, Escherichia coli Nissle and Bacteroides fragilis. a-EPD is a hybrid activation method that uses ultraviolet photoirradiation to generate charge-reduced radical ions followed by collisional activation to produce informative fragmentation patterns. We benchmark the a-EPD method for top-down characterization of triacyl LOS from E. coli R2, then focus on characterization of LPS from E. coli Nissle and B. fragilis. Notably, a-EPD affords extensive fragmentation throughout the backbone of the core OS and O-antigen regions of LPS from E. coli Nissle. This hybrid approach facilitated the elucidation of structural details for LPS from B. fragilis, revealing a putative hexuronic acid (HexA) conjugated to lipid A.
Collapse
Affiliation(s)
- James E Keener
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Byoungsook Goh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Ji-Sun Yoo
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Sungwhan F Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Zhou AL, Ward RE. Dietary milk polar lipids modulate gut barrier integrity and lipid metabolism in C57BL/6J mice during systemic inflammation induced by Escherichia coli lipopolysaccharide. J Dairy Sci 2024:S0022-0302(24)00863-4. [PMID: 38825111 DOI: 10.3168/jds.2024-24759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 06/04/2024]
Abstract
The focus of this work is the role milk polar lipids play in affecting gut permeability, systemic inflammation, and lipid metabolism during acute and chronic inflammation induced by a single subcutaneous injection of lipopolysaccharide. Three groups of C57BL/6J mice were fed: modified AIN-93G diet with moderate level of fat (CO); CO with milk gangliosides (GG); CO with milk phospholipids (MPL). The MPL did not prevent a gut permeability increase upon LPS stress but increased the expression of tight junction proteins zonula occludens-1 and occludin in colon mucosa. The GG prevented the gut permeability increase upon LPS stress. The MPL decreased absolute and relative liver mass and decreased hepatic gene expression of acetyl-CoA carboxylase 2 and 3-hydroxy-3-methylglutaryl-CoA reductase. The GG increased hepatic gene expression of acetyl-CoA acyltransferase 2. In conclusion, milk GG protected the intestinal barrier integrity but had little effect on systemic inflammation and lipid metabolism; milk MPL, conversely, had complex effects on gut permeability, did not affect systemic inflammation, and had beneficial effect on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Albert Lihong Zhou
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322, USA
| | - Robert E Ward
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322, USA.
| |
Collapse
|
5
|
Dardelle F, Phelip C, Darabi M, Kondakova T, Warnet X, Combret E, Juranville E, Novikov A, Kerzerho J, Caroff M. Diversity, Complexity, and Specificity of Bacterial Lipopolysaccharide (LPS) Structures Impacting Their Detection and Quantification. Int J Mol Sci 2024; 25:3927. [PMID: 38612737 PMCID: PMC11011966 DOI: 10.3390/ijms25073927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Endotoxins are toxic lipopolysaccharides (LPSs), extending from the outer membrane of Gram-negative bacteria and notorious for their toxicity and deleterious effects. The comparison of different LPSs, isolated from various Gram-negative bacteria, shows a global similar architecture corresponding to a glycolipid lipid A moiety, a core oligosaccharide, and outermost long O-chain polysaccharides with molecular weights from 2 to 20 kDa. LPSs display high diversity and specificity among genera and species, and each bacterium contains a unique set of LPS structures, constituting its protective external barrier. Some LPSs are not toxic due to their particular structures. Different, well-characterized, and highly purified LPSs were used in this work to determine endotoxin detection rules and identify their impact on the host. Endotoxin detection is a major task to ensure the safety of human health, especially in the pharma and food sectors. Here, we describe the impact of different LPS structures obtained under different bacterial growth conditions on selective LPS detection methods such as LAL, HEK-blue TLR-4, LC-MS2, and MALDI-MS. In these various assays, LPSs were shown to respond differently, mainly attributable to their lipid A structures, their fatty acid numbers and chain lengths, the presence of phosphate groups, and their possible substitutions.
Collapse
Affiliation(s)
- Flavien Dardelle
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Capucine Phelip
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Maryam Darabi
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Tatiana Kondakova
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Xavier Warnet
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Edyta Combret
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Eugenie Juranville
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Alexey Novikov
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Jerome Kerzerho
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Martine Caroff
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| |
Collapse
|
6
|
Zhong M, Huang J, Wu Z, Chan KG, Wang L, Li J, Lee LH, Law JWF. Potential Roles of Selectins in Periodontal Diseases and Associated Systemic Diseases: Could They Be Targets for Immunotherapy? Int J Mol Sci 2022; 23:14280. [PMID: 36430760 PMCID: PMC9698067 DOI: 10.3390/ijms232214280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Periodontal diseases are predisposing factors to the development of many systemic disorders, which is often initiated via leukocyte infiltration and vascular inflammation. These diseases could significantly affect human health and quality of life. Hence, it is vital to explore effective therapies to prevent disease progression. Periodontitis, which is characterized by gingival bleeding, disruption of the gingival capillary's integrity, and irreversible destruction of the periodontal supporting bone, appears to be caused by overexpression of selectins in periodontal tissues. Selectins (P-, L-, and E-selectins) are vital members of adhesion molecules regulating inflammatory and immune responses. They are mainly located in platelets, leukocytes, and endothelial cells. Furthermore, selectins are involved in the immunopathogenesis of vascular inflammatory diseases, such as cardiovascular disease, diabetes, cancers, and so on, by mediating leukocyte recruitment, platelet activation, and alteration of endothelial barrier permeability. Therefore, selectins could be new immunotherapeutic targets for periodontal disorders and their associated systemic diseases since they play a crucial role in immune regulation and endothelium dysfunction. However, the research on selectins and their association with periodontal and systemic diseases remains limited. This review aims to discuss the critical roles of selectins in periodontitis and associated systemic disorders and highlights the potential of selectins as therapeutic targets.
Collapse
Affiliation(s)
- Mei Zhong
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Jiangyong Huang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Zhe Wu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Lijing Wang
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiang Li
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
7
|
Xia B, Wu W, Fang W, Wen X, Xie J, Zhang H. Heat stress-induced mucosal barrier dysfunction is potentially associated with gut microbiota dysbiosis in pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:289-299. [PMID: 35024466 PMCID: PMC8717382 DOI: 10.1016/j.aninu.2021.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Heat stress (HS) can be detrimental to the gut health of swine. Many negative outcomes induced by HS are increasingly recognized as including modulation of intestinal microbiota. In turn, the intestinal microbiota is a unique ecosystem playing a critical role in mediating the host stress response. Therefore, we aimed to characterize gut microbiota of pigs’ exposure to short-term HS, to explore a possible link between the intestinal microbiota and HS-related changes, including serum cytokines, oxidation status, and intestinal epithelial barrier function. Our findings showed that HS led to intestinal morphological and integrity changes (villus height, serum diamine oxidase [DAO], serum D-lactate and the relative expressions of tight junction proteins), reduction of serum cytokines (interleukin [IL]-8, IL-12, interferon-gamma [IFN-γ]), and antioxidant activity (higher glutathione [GSH] and malondialdehyde [MDA] content, and lower superoxide dismutase [SOD]). Also, 16S rRNA sequencing analysis revealed that although there was no difference in microbial α-diversity, some HS-associated composition differences were revealed in the ileum and cecum, which partly led to an imbalance in the production of short-chain fatty acids including propionate acid and valerate acid. Relevance networks revealed that HS-derived changes in bacterial genera and microbial metabolites, such as Chlamydia, Lactobacillus, Succinivibrio, Bifidobacterium, Lachnoclostridium, and propionic acid, were correlated with oxidative stress, intestinal barrier dysfunction, and inflammation in pigs. Collectively, our observations suggest that intestinal damage induced by HS is probably partly related to the gut microbiota dysbiosis, though the underlying mechanism remains to be fully elucidated.
Collapse
Affiliation(s)
- Bing Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weida Wu
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Fang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Academy of State Administration of Grain, Beijing, 100037, China
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingjing Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
8
|
The Xanthomonas RaxH-RaxR Two-Component Regulatory System Is Orthologous to the Zinc-Responsive Pseudomonas ColS-ColR System. Microorganisms 2021; 9:microorganisms9071458. [PMID: 34361895 PMCID: PMC8306577 DOI: 10.3390/microorganisms9071458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
Genome sequence comparisons to infer likely gene functions require accurate ortholog assignments. In Pseudomonas spp., the sensor-regulator ColS-ColR two-component regulatory system responds to zinc and other metals to control certain membrane-related functions, including lipid A remodeling. In Xanthomonas spp., three different two-component regulatory systems, RaxH-RaxR, VgrS-VgrR, and DetS-DetR, have been denoted as ColS-ColR in several different genome annotations and publications. To clarify these assignments, we compared the sensor periplasmic domain sequences and found that those from Pseudomonas ColS and Xanthomonas RaxH share a similar size as well as the location of a Glu-X-X-Glu metal ion-binding motif. Furthermore, we determined that three genes adjacent to raxRH are predicted to encode enzymes that remodel the lipid A component of lipopolysaccharide. The modifications catalyzed by lipid A phosphoethanolamine transferase (EptA) and lipid A 1-phosphatase (LpxE) previously were detected in lipid A from multiple Xanthomonas spp. The third gene encodes a predicted lipid A glycosyl transferase (ArnT). Together, these results indicate that the Xanthomonas RaxH-RaxR system is orthologous to the Pseudomonas ColS-ColR system that regulates lipid A remodeling. To avoid future confusion, we recommend that the terms ColS and ColR no longer be applied to Xanthomonas spp., and that the Vgr, Rax, and Det designations be used instead.
Collapse
|
9
|
Zenobia C, Herpoldt KL, Freire M. Is the oral microbiome a source to enhance mucosal immunity against infectious diseases? NPJ Vaccines 2021; 6:80. [PMID: 34078913 PMCID: PMC8172910 DOI: 10.1038/s41541-021-00341-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/24/2021] [Indexed: 12/14/2022] Open
Abstract
Mucosal tissues act as a barrier throughout the oral, nasopharyngeal, lung, and intestinal systems, offering first-line protection against potential pathogens. Conventionally, vaccines are applied parenterally to induce serotype-dependent humoral response but fail to drive adequate mucosal immune protection for viral infections such as influenza, HIV, and coronaviruses. Oral mucosa, however, provides a vast immune repertoire against specific microbial pathogens and yet is shaped by an ever-present microbiome community that has co-evolved with the host over thousands of years. Adjuvants targeting mucosal T-cells abundant in oral tissues can promote soluble-IgA (sIgA)-specific protection to confer increased vaccine efficacy. Th17 cells, for example, are at the center of cell-mediated immunity and evidence demonstrates that protection against heterologous pathogen serotypes is achieved with components from the oral microbiome. At the point of entry where pathogens are first encountered, typically the oral or nasal cavity, the mucosal surfaces are layered with bacterial cohabitants that continually shape the host immune profile. Constituents of the oral microbiome including their lipids, outer membrane vesicles, and specific proteins, have been found to modulate the Th17 response in the oral mucosa, playing important roles in vaccine and adjuvant designs. Currently, there are no approved adjuvants for the induction of Th17 protection, and it is critical that this research is included in the preparedness for the current and future pandemics. Here, we discuss the potential of oral commensals, and molecules derived thereof, to induce Th17 activity and provide safer and more predictable options in adjuvant engineering to prevent emerging infectious diseases.
Collapse
Affiliation(s)
| | | | - Marcelo Freire
- Departments of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA.
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Jost M, Jacobson AN, Hussmann JA, Cirolia G, Fischbach MA, Weissman JS. CRISPR-based functional genomics in human dendritic cells. eLife 2021; 10:e65856. [PMID: 33904395 PMCID: PMC8104964 DOI: 10.7554/elife.65856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) regulate processes ranging from antitumor and antiviral immunity to host-microbe communication at mucosal surfaces. It remains difficult, however, to genetically manipulate human DCs, limiting our ability to probe how DCs elicit specific immune responses. Here, we develop a CRISPR-Cas9 genome editing method for human monocyte-derived DCs (moDCs) that mediates knockouts with a median efficiency of >94% across >300 genes. Using this method, we perform genetic screens in moDCs, identifying mechanisms by which DCs tune responses to lipopolysaccharides from the human microbiome. In addition, we reveal donor-specific responses to lipopolysaccharides, underscoring the importance of assessing immune phenotypes in donor-derived cells, and identify candidate genes that control this specificity, highlighting the potential of our method to pinpoint determinants of inter-individual variation in immunity. Our work sets the stage for a systematic dissection of the immune signaling at the host-microbiome interface and for targeted engineering of DCs for neoantigen vaccination.
Collapse
Affiliation(s)
- Marco Jost
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
- California Institute for Quantitative Biosciences, University of California, San FranciscoSan FranciscoUnited States
- Department of Microbiology and Immunology, University of California, San FranciscoSan FranciscoUnited States
| | - Amy N Jacobson
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- ChEM-H, Stanford UniversityStanfordUnited States
| | - Jeffrey A Hussmann
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
- California Institute for Quantitative Biosciences, University of California, San FranciscoSan FranciscoUnited States
- Department of Microbiology and Immunology, University of California, San FranciscoSan FranciscoUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | | | - Michael A Fischbach
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- ChEM-H, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
- California Institute for Quantitative Biosciences, University of California, San FranciscoSan FranciscoUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
11
|
Complementation in trans of Porphyromonas gingivalis Lipopolysaccharide Biosynthetic Mutants Demonstrates Lipopolysaccharide Exchange. J Bacteriol 2021; 203:JB.00631-20. [PMID: 33685973 DOI: 10.1128/jb.00631-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Porphyromonas gingivalis, a bacterial pathogen contributing to human periodontitis, exports and anchors cargo proteins to its surface, enabling the production of black pigmentation using a type IX secretion system (T9SS) and conjugation to anionic lipopolysaccharide (A-LPS). To determine whether T9SS components need to be assembled in situ for correct secretion and A-LPS modification of cargo proteins, combinations of nonpigmented mutants lacking A-LPS or a T9SS component were mixed to investigate in trans complementation. Reacquisition of pigmentation occurred only between an A-LPS mutant and a T9SS mutant, which coincided with A-LPS modification of cargo proteins detected by Western blotting and coimmunoprecipitation/quantitative mass spectrometry. Complementation also occurred using an A-LPS mutant mixed with outer membrane vesicles (OMVs) or purified A-LPS. Fluorescence experiments demonstrated that OMVs can fuse with and transfer lipid to P. gingivalis, leading to the conclusion that complementation of T9SS function occurred through A-LPS transfer between cells. None of the two-strain crosses involving only the five T9SS OM component mutants produced black pigmentation, implying that the OM proteins cannot be transferred in a manner that restores function and surface pigmentation, and hence, a more ordered temporal in situ assembly of T9SS components may be required. Our results show that LPS can be transferred between cells or between cells and OMVs to complement deficiencies in LPS biosynthesis and hemin-related pigmentation to reveal a potentially new mechanism by which the oral microbial community is modulated to produce clinical consequences in the human host.IMPORTANCE Porphyromonas gingivalis is a keystone pathogen contributing to periodontitis in humans, leading to tooth loss. The oral microbiota is essential in this pathogenic process and changes from predominantly Gram-positive (health) to predominantly Gram-negative (disease) species. P. gingivalis uses its type IX secretion system (T9SS) to secrete and conjugate virulence proteins to anionic lipopolysaccharide (A-LPS). This study investigated whether components of this secretion system could be complemented and found that it was possible for A-LPS biosynthetic mutants to be complemented in trans both by strains that had the A-LPS on the cell surface and by exogenous sources of A-LPS. This is the first known example of LPS exchange in a human bacterial pathogen which causes disease through complex microbiota-host interactions.
Collapse
|
12
|
Nara PL, Sindelar D, Penn MS, Potempa J, Griffin WST. Porphyromonas gingivalis Outer Membrane Vesicles as the Major Driver of and Explanation for Neuropathogenesis, the Cholinergic Hypothesis, Iron Dyshomeostasis, and Salivary Lactoferrin in Alzheimer's Disease. J Alzheimers Dis 2021; 82:1417-1450. [PMID: 34275903 PMCID: PMC8461682 DOI: 10.3233/jad-210448] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Porphyromonas gingivalis (Pg) is a primary oral pathogen in the widespread biofilm-induced "chronic" multi-systems inflammatory disease(s) including Alzheimer's disease (AD). It is possibly the only second identified unique example of a biological extremophile in the human body. Having a better understanding of the key microbiological and genetic mechanisms of its pathogenesis and disease induction are central to its future diagnosis, treatment, and possible prevention. The published literature around the role of Pg in AD highlights the bacteria's direct role within the brain to cause disease. The available evidence, although somewhat adopted, does not fully support this as the major process. There are alternative pathogenic/virulence features associated with Pg that have been overlooked and may better explain the pathogenic processes found in the "infection hypothesis" of AD. A better explanation is offered here for the discrepancy in the relatively low amounts of "Pg bacteria" residing in the brain compared to the rather florid amounts and broad distribution of one or more of its major bacterial protein toxins. Related to this, the "Gingipains Hypothesis", AD-related iron dyshomeostasis, and the early reduced salivary lactoferrin, along with the resurrection of the Cholinergic Hypothesis may now be integrated into one working model. The current paper suggests the highly evolved and developed Type IX secretory cargo system of Pg producing outer membrane vesicles may better explain the observed diseases. Thus it is hoped this paper can provide a unifying model for the sporadic form of AD and guide the direction of research, treatment, and possible prevention.
Collapse
Affiliation(s)
| | | | - Marc S. Penn
- Summa Heart Health and Vascular Institute, Akron, OH, USA
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases in the School of Dentistry, University of Louisville, Louisville, KY, USA
| | - W. Sue T. Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
13
|
John CM, Phillips NJ, Jarvis GA. Predominant phosphorylation patterns in Neisseria meningitidis lipid A determined by top-down MS/MS. J Lipid Res 2020; 61:1437-1449. [PMID: 32839198 DOI: 10.1194/jlr.ra120001014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the virulence factors in Neisseria infections, a major inducer of inflammatory cytokines is the lipooligosaccharide (LOS). The activation of NF-κB via extracellular binding of LOS or lipopolysaccharide (LPS) to the toll-like receptor 4 and its coreceptor, MD-2, results in production of pro-inflammatory cytokines that initiate adaptive immune responses. LOS can also be absorbed by cells and activate intracellular inflammasomes, causing the release of inflammatory cytokines and pyroptosis. Studies of LOS and LPS have shown that their inflammatory potential is highly dependent on lipid A phosphorylation and acylation, but little is known on the location and pattern of these posttranslational modifications. Herein, we report on the localization of phosphoryl groups on phosphorylated meningococcal lipid A, which has two to three phosphate and zero to two phosphoethanolamine substituents. Intact LOS with symmetrical hexa-acylated and asymmetrical penta-acylated lipid A moieties was subjected to high-resolution ion mobility spectrometry MALDI-TOF MS. LOS molecular ions readily underwent in-source decay to give fragments of the oligosaccharide and lipid A formed by cleavage of the ketosidic linkage, which enabled performing MS/MS (pseudo-MS3). The resulting spectra revealed several patterns of phosphoryl substitution on lipid A, with certain species predominating. The extent of phosphoryl substitution, particularly phosphoethanolaminylation, on the 4'-hydroxyl was greater than that on the 1-hydroxyl. The heretofore unrecognized phosphorylation patterns of lipid A of meningococcal LOS that we detected are likely determinants of both pathogenicity and the ability of the bacteria to evade the innate immune system.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nancy J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, CA, USA .,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria. Infect Immun 2020; 88:IAI.00920-19. [PMID: 32253250 DOI: 10.1128/iai.00920-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer that consists of inner leaflet phospholipids and outer leaflet lipopolysaccharides (LPS). The asymmetric character and unique biochemistry of LPS molecules contribute to the OM's ability to function as a molecular permeability barrier that protects the bacterium against hazards in the environment. Assembly and regulation of the OM have been extensively studied for understanding mechanisms of antibiotic resistance and bacterial defense against host immunity; however, there is little knowledge on how Gram-negative bacteria release their OMs into their environment to manipulate their hosts. Discoveries in bacterial lipid trafficking, OM lipid homeostasis, and host recognition of microbial patterns have shed new light on how microbes secrete OM vesicles (OMVs) to influence inflammation, cell death, and disease pathogenesis. Pathogens release OMVs that contain phospholipids, like cardiolipins, and components of LPS molecules, like lipid A endotoxins. These multiacylated lipid amphiphiles are molecular patterns that are differentially detected by host receptors like the Toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD-2), mouse caspase-11, and human caspases 4 and 5. We discuss how lipid ligands on OMVs engage these pattern recognition receptors on the membranes and in the cytosol of mammalian cells. We then detail how bacteria regulate OM lipid asymmetry, negative membrane curvature, and the phospholipid-to-LPS ratio to control OMV formation. The goal is to highlight intersections between OM lipid regulation and host immunity and to provide working models for how bacterial lipids influence vesicle formation.
Collapse
|
15
|
Sándor V, Berkics BV, Kilár A, Kocsis B, Kilár F, Dörnyei Á. NACE–ESI‐MS/MS method for separation and characterization of phosphorylation and acylation isomers of lipid A. Electrophoresis 2020; 41:1178-1188. [DOI: 10.1002/elps.201900251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Viktor Sándor
- Institute of Bioanalysis Medical School and Szentágothai Research Centre University of Pécs Pécs Hungary
| | - Balázs Viktor Berkics
- Institute of Bioanalysis Medical School and Szentágothai Research Centre University of Pécs Pécs Hungary
| | - Anikó Kilár
- Institute of Bioanalysis Medical School and Szentágothai Research Centre University of Pécs Pécs Hungary
| | - Béla Kocsis
- Department of Microbiology and Immunology, Medical School University of Pécs Pécs Hungary
| | - Ferenc Kilár
- Institute of Bioanalysis Medical School and Szentágothai Research Centre University of Pécs Pécs Hungary
- Department of Bioengineering Sapientia Hungarian University of Transylvania Miercurea Ciuc Romania
| | - Ágnes Dörnyei
- Department of Analytical and Environmental Chemistry, Faculty of Science University of Pécs Pécs Hungary
| |
Collapse
|
16
|
Lin TL, Shu CC, Chen YM, Lu JJ, Wu TS, Lai WF, Tzeng CM, Lai HC, Lu CC. Like Cures Like: Pharmacological Activity of Anti-Inflammatory Lipopolysaccharides From Gut Microbiome. Front Pharmacol 2020; 11:554. [PMID: 32425790 PMCID: PMC7212368 DOI: 10.3389/fphar.2020.00554] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Gut microbiome maintains local gut integrity and systemic host homeostasis, where optimal control of intestinal lipopolysaccharides (LPS) activity may play an important role. LPS mainly produced from gut microbiota are a group of lipid-polysaccharide chemical complexes existing in the outer membrane of Gram-negative bacteria. Traditionally, LPS mostly produced from Proteobacteria are well known for their ability in inducing strong inflammatory responses (proinflammatory LPS, abbreviated as P-LPS), leading to septic shock or even death in animals and humans. Although the basic structures and chemical properties of P-LPS derived from different bacterial species generally show similarity, subtle and differential immune activation activities are observed. On the other hand, frequently ignored, a group of LPS molecules mainly produced by certain microbiota bacteria such as Bacteroidetes show blunt or even antagonistic activity in initiating pro-inflammatory responses (anti-inflammatory LPS, abbreviated as A-LPS). In this review, besides the immune activation properties of P-LPS, we also focus on the description of anti-inflammatory effects of A-LPS, and their potential antagonistic mechanism. We address the possibility of using native or engineered A-LPS for immune modulation in prevention or even treatment of P-LPS induced chronic inflammation related diseases. Understanding the exquisite interactive relationship between structure-activity correlation of P- and A-LPS not only contributes to molecular understanding of immunomodulation and homeostasis, but also re-animates the development of novel LPS-based pharmacological strategy for prevention and therapy of chronic inflammation related diseases.
Collapse
Affiliation(s)
- Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Young-Mao Chen
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Fan Lai
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Meng Tzeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, Taiwan.,Central Research Laboratory, Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China.,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chia-Chen Lu
- Department of Chest Medicine, Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
17
|
Tawab A, Akbar N, Hasssan M, Habib F, Ali A, Rahman M, Jabbar A, Rauf W, Iqbal M. Mass spectrometric analysis of lipid A obtained from the lipopolysaccharide ofPasteurella multocida. RSC Adv 2020; 10:30917-30933. [PMID: 35516050 PMCID: PMC9056370 DOI: 10.1039/d0ra05463a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/06/2020] [Indexed: 01/14/2023] Open
Abstract
LC/MS-based variant profiling of lipid A component of endotoxic lipopolysaccharides ofPasteurella multocidatype B:2, a causative agent of haemorrhagic septicaemia in water buffalo and cattle.
Collapse
Affiliation(s)
- Abdul Tawab
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
- Department of Biotechnology NIBGE
| | - Noor Akbar
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Mujtaba Hasssan
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Fazale Habib
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Aamir Ali
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Moazur Rahman
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
- School of Biological Sciences
| | - Abdul Jabbar
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
- Department of Biotechnology
| | - Waqar Rauf
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
- Department of Biotechnology NIBGE
| |
Collapse
|
18
|
Liu XL, Ye S, Cheng CY, Li HW, Lu B, Yang WJ, Yang JS. Identification and characterization of a symbiotic agglutination-related C-type lectin from the hydrothermal vent shrimp Rimicaris exoculata. FISH & SHELLFISH IMMUNOLOGY 2019; 92:1-10. [PMID: 31141718 DOI: 10.1016/j.fsi.2019.05.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/16/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Rimicaris exoculata (Decapoda: Bresiliidae) is one of the dominant species of hydrothermal vent communities, which inside its gill chamber harbors ectosymbioses with taxonomic invariability while compositional flexibility. Several studies have revealed that the establishment of symbiosis can be initiated and selected by innate immunity-related pattern recognition receptors (PRRs), such as C-type lectins (CTLs). In this research, a CTL was identified in R. exoculata (termed RCTL), which showed high expression at both mRNA and protein levels in the scaphognathite, an organ where the ectosymbionts are attached outside its setae. Linear correlationships were observed between the relative quantities of two major symbionts and the expression of RCTL based on analyzing different shrimp individuals. The recombinant protein of RCTL could recognize and agglutinate the cultivable γ-proteobacterium of Escherichia coli in a Ca2+-dependent manner, obeying a dose-dependent and time-cumulative pattern. Unlike conventional crustacean CTLs, the involvement of RCTL could not affect the bacterial growth, which is a key issue for the successful establishment of symbiosis. These results implied that RCTL might play a critical role in symbiotic recognition and attachment to R. exoculata. It also provides insights to understand how R. exoculata adapted to such a chemosynthesis-based environment.
Collapse
Affiliation(s)
- Xiao-Li Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Sen Ye
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Cai-Yuan Cheng
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Hua-Wei Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Bo Lu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, 310012, PR China
| | - Wei-Jun Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jin-Shu Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
19
|
Identification of PGN_1123 as the Gene Encoding Lipid A Deacylase, an Enzyme Required for Toll-Like Receptor 4 Evasion, in Porphyromonas gingivalis. J Bacteriol 2019; 201:JB.00683-18. [PMID: 30782639 DOI: 10.1128/jb.00683-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
Removal of one acyl chain from bacterial lipid A by deacylase activity is a mechanism used by many pathogenic bacteria to evade the host's Toll-like receptor 4 (TLR4)-mediated innate immune response. In Porphyromonas gingivalis, a periodontal pathogen, lipid A deacylase activity converts a majority of the initially synthesized penta-acylated lipid A, a TLR4 agonist, to tetra-acylated structures, which effectively evade TLR4 sensing by being either inert or antagonistic at TLR4. In this paper, we report successful identification of the gene that encodes the P. gingivalis lipid A deacylase enzyme. This gene, PGN_1123 in P. gingivalis 33277, is highly conserved within P. gingivalis, and putative orthologs are phylogenetically restricted to the Bacteroidetes phylum. Lipid A of ΔPGN_1123 mutants is penta-acylated and devoid of tetra-acylated structures, and the mutant strain provokes a strong TLR4-mediated proinflammatory response, in contrast to the negligible response elicited by wild-type P. gingivalis Heterologous expression of PGN_1123 in Bacteroides thetaiotaomicron promoted lipid A deacylation, confirming that PGN_1123 encodes the lipid A deacylase enzyme.IMPORTANCE Periodontitis, commonly referred to as gum disease, is a chronic inflammatory condition that affects a large proportion of the population. Porphyromonas gingivalis is a bacterium closely associated with periodontitis, although how and if it is a cause for the disease are not known. It has a formidable capacity to dampen the host's innate immune response, enabling its persistence in diseased sites and triggering microbial dysbiosis in animal models of infection. P. gingivalis is particularly adept at evading the host's TLR4-mediated innate immune response by modifying the structure of lipid A, the TLR4 ligand. In this paper, we report identification of the gene encoding lipid A deacylase, a key enzyme that modifies lipid A to TLR4-evasive structures.
Collapse
|
20
|
Ledov VA, Golovina ME, Markina AA, Knirel YA, L'vov VL, Kovalchuk AL, Aparin PG. Highly homogenous tri-acylated S-LPS acts as a novel clinically applicable vaccine against Shigella flexneri 2a infection. Vaccine 2019; 37:1062-1072. [PMID: 30670300 DOI: 10.1016/j.vaccine.2018.12.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/08/2018] [Accepted: 12/30/2018] [Indexed: 12/24/2022]
Abstract
Shigellosis, a major cause of diarrhea worldwide, exhibits high morbidity and mortality in children. Specificity of Shigella immunity is determined by the structure of the main protective O-antigen polysaccharide component incorporated into the lipopolysaccharide (LPS) molecule. Endotoxicity, however, precludes LPS clinical use. Thus, there is still no vaccine against the most prevalent shigellosis species (serotype S. flexneri 2a), despite ongoing efforts focused on inducing serotype-specific immunity. As LPS is highly heterogenous, we hypothesized that more homogenous pools of LPS might be less toxic. We developed a method to generate a homogenous S. flexneri 2a LPS subfraction, Ac3-S-LPS, containing long chain O-specific polysaccharide (S-LPS) and mainly tri-acylated lipid A, with no penta- and hexa-acylated, and rare tetra-acylated lipid A. Ac3-S-LPS had dramatically reduced pyrogenicity and protected guinea pigs from shigellosis. In volunteers, 50 µg of injected Ac3-S-LPS vaccine was safe, with low pyrogenicity, no severe and few minor adverse events, and did not induce pro-inflammatory cytokines. In spite of the profound lipid A modification, the vaccine induced a prevalence of IgG and IgA antibodies. Thus, we have developed the first safe immunogenic LPS-based vaccine candidate for human administration. Homogenous underacetylated LPSs may also be useful for treating other LPS-driven human diseases. Clinical trial registry: http://grls.rosminzdrav.ru/.
Collapse
Affiliation(s)
- Vladimir A Ledov
- Laboratory of Carbohydrate Vaccines, National Research Center-Institute of Immunology, Federal Medical Biological Agency of Russia, 24, Kashirskoe Shosse, Moscow 115478, Russia
| | - Marina E Golovina
- Laboratory of Carbohydrate Vaccines, National Research Center-Institute of Immunology, Federal Medical Biological Agency of Russia, 24, Kashirskoe Shosse, Moscow 115478, Russia
| | - Anna A Markina
- Laboratory of Carbohydrate Vaccines, National Research Center-Institute of Immunology, Federal Medical Biological Agency of Russia, 24, Kashirskoe Shosse, Moscow 115478, Russia
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky Prospect, Moscow 117913, Russia
| | - Vyacheslav L L'vov
- Laboratory of Preparative Biochemistry, National Research Center-Institute of Immunology, Federal Medical Biological Agency of Russia, 24, Kashirskoe Shosse, Moscow 115478, Russia
| | - Alexander L Kovalchuk
- The Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, United States
| | - Petr G Aparin
- Laboratory of Carbohydrate Vaccines, National Research Center-Institute of Immunology, Federal Medical Biological Agency of Russia, 24, Kashirskoe Shosse, Moscow 115478, Russia.
| |
Collapse
|
21
|
Chow AT, Quah SY, Bergenholtz G, Lim KC, Yu VSH, Tan KS. Bacterial species associated with persistent apical periodontitis exert differential effects on osteogenic differentiation. Int Endod J 2018; 52:201-210. [PMID: 30099741 DOI: 10.1111/iej.12994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/06/2018] [Indexed: 01/11/2023]
Abstract
AIM To determine if bacteria associated with persistent apical periodontitis induce species-specific pro-inflammatory cytokine responses in macrophages, and the effects of this species-specific microenvironment on osteogenic differentiation. METHODOLOGY Macrophages were exposed to Enterococcus faecalis, Streptococcus oralis, Streptococcus mitis, Fusobacterium nucleatum, Treponema denticola or Tannerella forsythia, and levels of TNF-α and IL-1β elicited were determined by immunoassay. Following treatment of MG-63 pre-osteoblasts with conditioned media from bacteria-exposed macrophages, osteogenic differentiation and viability of osteoblasts were analyzed by Alizarin Red Staining and MTS assay, respectively. Statistical analysis was carried out by one-way anova with the Tukey post-hoc test. Differences were considered to be significant if P < 0.05. RESULTS Macrophages exposed to Gram-positive bacteria did not produce significant amounts of cytokines. F. nucleatum-challenged macrophages produced up to four-fold more TNF-α and IL-1β compared to T. denticola or T. forsythia. Only conditioned media from macrophages treated with Gram-negative bacteria decreased mineralization and viability of osteoblasts. CONCLUSIONS Gram-positive bacteria did not impact osteogenic differentiation and appeared innocuous. Gram-negative bacteria, in particular F. nucleatum elicited an enhanced pro-inflammatory response in macrophages, inhibited osteogenic differentiation and reduced cell viability. The findings suggest that the presence of this organism could potentially increase the severity of persistent apical periodontitis.
Collapse
Affiliation(s)
- A T Chow
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - S Y Quah
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - G Bergenholtz
- The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - K C Lim
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - V S H Yu
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - K S Tan
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Pizzicannella J, Diomede F, Merciaro I, Caputi S, Tartaro A, Guarnieri S, Trubiani O. Endothelial committed oral stem cells as modelling in the relationship between periodontal and cardiovascular disease. J Cell Physiol 2018; 233:6734-6747. [DOI: 10.1002/jcp.26515] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/30/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Jacopo Pizzicannella
- Department of Medical, Oral and Biotechnological Sciences University “G. d'Annunzio” Chieti and Pescara Chieti Italy
- Institute of Cardiology ASL 02 Lanciano/Vasto/Chieti Chieti Italy
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences University “G. d'Annunzio” Chieti and Pescara Chieti Italy
| | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences University “G. d'Annunzio” Chieti and Pescara Chieti Italy
| | - Sergio Caputi
- Department of Medical, Oral and Biotechnological Sciences University “G. d'Annunzio” Chieti and Pescara Chieti Italy
| | - Armando Tartaro
- Department of Neuroscience, Imaging and Clinical Sciences University “G. d'Annunzio” Chieti and Pescara Chieti Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences University “G. d'Annunzio” Chieti and Pescara Chieti Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences University “G. d'Annunzio” Chieti and Pescara Chieti Italy
| |
Collapse
|
23
|
Abstract
Lipopolysaccharide (LPS), a cell-associated glycolipid that makes up the outer leaflet of the outer membrane of Gram-negative bacteria, is a canonical mediator of microbe-host interactions. The most prevalent Gram-negative gut bacterial taxon, Bacteroides, makes up around 50% of the cells in a typical Western gut; these cells harbor ~300 mg of LPS, making it one of the highest-abundance molecules in the intestine. As a starting point for understanding the biological function of Bacteroides LPS, we have identified genes in Bacteroides thetaiotaomicron VPI 5482 involved in the biosynthesis of its lipid A core and glycan, generated mutants that elaborate altered forms of LPS, and used matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry to interrogate the molecular features of these variants. We demonstrate, inter alia, that the glycan does not appear to have a repeating unit, and so this strain produces lipooligosaccharide (LOS) rather than LPS. This result contrasts with Bacteroides vulgatus ATCC 8482, which by SDS-PAGE analysis appears to produce LPS with a repeating unit. Additionally, our identification of the B. thetaiotaomicron LOS oligosaccharide gene cluster allowed us to identify similar clusters in other Bacteroides species. Our work lays the foundation for developing a structure-function relationship for Bacteroides LPS/LOS in the context of host colonization. Much is known about the bacterial species and genes that make up the human microbiome, but remarkably little is known about the molecular mechanisms through which the microbiota influences host biology. A well-known mechanism by which bacteria influence the host centers around lipopolysaccharide (LPS), a component of the Gram-negative bacterial outer membrane. Pathogen-derived LPS is a potent ligand for host receptor Toll-like receptor 4, which plays an important role in sensing bacteria as part of the innate immune response. Puzzlingly, the most common genus of human gut bacteria, Bacteroides, produces LPS but does not elicit a potent proinflammatory response. Previous work showing that Bacteroides LPS differs structurally from pathogen-derived LPS suggested the outlines of an explanation. Here, we take the next step, elucidating the biosynthetic pathway for Bacteroides LPS and generating mutants in the process that will be of great use in understanding how this molecule modulates the host immune response.
Collapse
|
24
|
Sándor V, Kilár A, Kilár F, Kocsis B, Dörnyei Á. Characterization of complex, heterogeneous lipid A samples using HPLC-MS/MS technique III. Positive-ion mode tandem mass spectrometry to reveal phosphorylation and acylation patterns of lipid A. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:146-161. [PMID: 29144587 DOI: 10.1002/jms.4046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
In this study, we report the detailed analysis of the fragmentation patterns of positively charged lipid A species based on their tandem mass spectra obtained under low-energy collision-induced dissociation conditions of an electrospray quadrupole time-of-flight mass spectrometer. The tandem mass spectrometry experiments were performed after the separation of the compounds with a reversed-phase high performance liquid chromatography method. We found that both, phosphorylated and nonphosphorylated lipid A molecules can be readily ionized in the positive-ion mode by adduct formation with triethylamine added to the eluent. The tandem mass spectra of the lipid A triethylammonium adduct ions showed several product ions corresponding to inter-ring glycosidic cleavages of the sugar residues, as well as consecutive and competitive eliminations of fatty acids, phosphoric acid, and water following the neutral loss of triethylamine. Characteristic product ions provided direct information on the phosphorylation site(s), also when phosphorylation isomers (ie, containing either a C1 or a C4' phosphate group) were simultaneously present in the sample. Continuous series of high-abundance B-type and low-abundance Y-type inter-ring fragment ions were indicative of the fatty acyl distribution between the nonreducing and reducing ends of the lipid A backbone. The previously reported lipid A structures of Proteus morganii O34 and Escherichia coli O111 bacteria were used as standards. Although, the fragmentation pathways of the differently phosphorylated lipid A species significantly differed in the negative-ion mode, they were very similar in the positive-ion mode. The complementary use of positive-ion and negative-ion mode tandem mass spectrometry was found to be essential for the full structural characterization of the C1-monophosphorylated lipid A species.
Collapse
Affiliation(s)
- Viktor Sándor
- Institute of Bioanalysis, Medical School and Szentágothai Research Centre, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary
| | - Anikó Kilár
- Institute of Bioanalysis, Medical School and Szentágothai Research Centre, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6, 7624, Pécs, Hungary
| | - Ferenc Kilár
- Institute of Bioanalysis, Medical School and Szentágothai Research Centre, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6, 7624, Pécs, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary
| | - Ágnes Dörnyei
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6, 7624, Pécs, Hungary
| |
Collapse
|
25
|
Xiao X, Sankaranarayanan K, Khosla C. Biosynthesis and structure-activity relationships of the lipid a family of glycolipids. Curr Opin Chem Biol 2017; 40:127-137. [PMID: 28942130 DOI: 10.1016/j.cbpa.2017.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 10/18/2022]
Abstract
Lipopolysaccharide (LPS), a glycolipid found in the outer membrane of Gram-negative bacteria, is a potent elicitor of innate immune responses in mammals. A typical LPS molecule is composed of three different structural domains: a polysaccharide called the O-antigen, a core oligosaccharide, and Lipid A. Lipid A is the amphipathic glycolipid moiety of LPS. It stimulates the immune system by tightly binding to Toll-like receptor 4. More recently, Lipid A has also been shown to activate intracellular caspase-4 and caspase-5. An impressive diversity is observed in Lipid A structures from different Gram-negative bacteria, and it is well established that subtle changes in chemical structure can result in dramatically different immune activities. For example, Lipid A from Escherichia coli is highly toxic to humans, whereas a biosynthetic precursor called Lipid IVA blocks this toxic activity, and monophosphoryl Lipid A from Salmonella minnesota is a vaccine adjuvant. Thus, an understanding of structure-activity relationships in this glycolipid family could be used to design useful immunomodulatory agents. Here we review the biosynthesis, modification, and structure-activity relationships of Lipid A.
Collapse
Affiliation(s)
- Xirui Xiao
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | | | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
26
|
Rangarajan M, Aduse-Opoku J, Hashim A, McPhail G, Luklinska Z, Haurat MF, Feldman MF, Curtis MA. LptO (PG0027) Is Required for Lipid A 1-Phosphatase Activity in Porphyromonas gingivalis W50. J Bacteriol 2017; 199:e00751-16. [PMID: 28320881 PMCID: PMC5424252 DOI: 10.1128/jb.00751-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/09/2017] [Indexed: 01/27/2023] Open
Abstract
Porphyromonas gingivalis produces outer membrane vesicles (OMVs) rich in virulence factors, including cysteine proteases and A-LPS, one of the two lipopolysaccharides (LPSs) produced by this organism. Previous studies had suggested that A-LPS and PG0027, an outer membrane (OM) protein, may be involved in OMV formation. Their roles in this process were examined by using W50 parent and the ΔPG0027 mutant strains. Inactivation of PG0027 caused a reduction in the yield of OMVs. Lipid A from cells and OMVs of P. gingivalis W50 and the ΔPG0027 mutant strains were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Lipid A from W50 cells contained bis-P-pentaacyl, mono-P-pentaacyl, mono-P-tetraacyl, non-P-pentaacyl, and non-P-tetraacyl species, whereas lipid A from ΔPG0027 mutant cells contained only phosphorylated species; nonphosphorylated species were absent. MALDI-TOF/TOF tandem MS of mono-P-pentaacyl (m/z 1,688) and mono-P-tetraacyl (m/z 1,448) lipid A from ΔPG0027 showed that both contained lipid A 1-phosphate, suggesting that the ΔPG0027 mutant strain lacked lipid A 1-phosphatase activity. The total phosphatase activities in the W50 and the ΔPG0027 mutant strains were similar, whereas the phosphatase activity in the periplasm of the ΔPG0027 mutant was lower than that in W50, supporting a role for PG0027 in lipid A dephosphorylation. W50 OMVs were enriched in A-LPS, and its lipid A did not contain nonphosphorylated species, whereas lipid A from the ΔPG0027 mutant (OMVs and cells) contained similar species. Thus, OMVs in P. gingivalis are apparently formed in regions of the OM enriched in A-LPS devoid of nonphosphorylated lipid A. Conversely, dephosphorylation of lipid A through a PG0027-dependent process is required for optimal formation of OMVs. Hence, the relative proportions of nonphosphorylated and phosphorylated lipid A appear to be crucial for OMV formation in this organism.IMPORTANCE Gram-negative bacteria produce outer membrane vesicles (OMVs) by "blebbing" of the outer membrane (OM). OMVs can be used offensively as delivery systems for virulence factors and defensively to aid in the colonization of a host and in the survival of the bacterium in hostile environments. Earlier studies using the oral anaerobe Porphyromonas gingivalis as a model organism to study the mechanism of OMV formation suggested that the OM protein PG0027 and one of the two lipopolysaccharides (LPSs) synthesized by this organism, namely, A-LPS, played important roles in OMV formation. We suggest a novel mechanism of OMV formation in P. gingivalis involving dephosphorylation of lipid A of A-LPS controlled/regulated by PG0027, which causes destabilization of the OM, resulting in blebbing and generation of OMVs.
Collapse
Affiliation(s)
- Minnie Rangarajan
- Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Joseph Aduse-Opoku
- Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ahmed Hashim
- Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Graham McPhail
- Cellular Pathology, Barts Health NHS Trust, London, United Kingdom
| | - Zofia Luklinska
- Nanovision Centre, Advanced Electron Microscopy, School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom
| | - M Florencia Haurat
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mario F Feldman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael A Curtis
- Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
27
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
28
|
Bradley PH, Pollard KS. Proteobacteria explain significant functional variability in the human gut microbiome. MICROBIOME 2017; 5:36. [PMID: 28330508 PMCID: PMC5363007 DOI: 10.1186/s40168-017-0244-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/13/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND While human gut microbiomes vary significantly in taxonomic composition, biological pathway abundance is surprisingly invariable across hosts. We hypothesized that healthy microbiomes appear functionally redundant due to factors that obscure differences in gene abundance between individuals. RESULTS To account for these biases, we developed a powerful test of gene variability called CCoDA, which is applicable to shotgun metagenomes from any environment and can integrate data from multiple studies. Our analysis of healthy human fecal metagenomes from three separate cohorts revealed thousands of genes whose abundance differs significantly and consistently between people, including glycolytic enzymes, lipopolysaccharide biosynthetic genes, and secretion systems. Even housekeeping pathways contain a mix of variable and invariable genes, though most highly conserved genes are significantly invariable. Variable genes tend to be associated with Proteobacteria, as opposed to taxa used to define enterotypes or the dominant phyla Bacteroidetes and Firmicutes. CONCLUSIONS These results establish limits on functional redundancy and predict specific genes and taxa that may explain physiological differences between gut microbiomes.
Collapse
Affiliation(s)
| | - Katherine S. Pollard
- Gladstone Institutes, San Francisco, CA USA
- Division of Biostatistics, Institute for Human Genetics, and Institute for Computational Health Sciences, University of California, San Francisco, CA USA
| |
Collapse
|
29
|
Kramer CD, Genco CA. Microbiota, Immune Subversion, and Chronic Inflammation. Front Immunol 2017; 8:255. [PMID: 28348558 PMCID: PMC5346547 DOI: 10.3389/fimmu.2017.00255] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/21/2017] [Indexed: 12/12/2022] Open
Abstract
Several host-adapted pathogens and commensals have evolved mechanisms to evade the host innate immune system inducing a state of low-grade inflammation. Epidemiological studies have also documented the association of a subset of these microorganisms with chronic inflammatory disorders. In this review, we summarize recent studies demonstrating the role of the microbiota in chronic inflammatory diseases and discuss how specific microorganisms subvert or inhibit protective signaling normally induced by toll-like receptors (TLRs). We highlight our work on the oral pathogen Porphyromonas gingivalis and discuss the role of microbial modulation of lipid A structures in evasion of TLR4 signaling and resulting systemic immunopathology associated with atherosclerosis. P. gingivalis intrinsically expresses underacylated lipid A moieties and can modify the phosphorylation of lipid A, leading to altered TLR4 signaling. Using P. gingivalis mutant strains expressing distinct lipid A moieties, we demonstrated that expression of antagonist lipid A was associated with P. gingivalis-mediated systemic inflammation and immunopathology, whereas strains expressing agonist lipid A exhibited modest systemic inflammation. Likewise, mice deficient in TLR4 were more susceptible to vascular inflammation after oral infection with P. gingivalis wild-type strain compared to mice possessing functional TLR4. Collectively, our studies support a role for P. gingivalis-mediated dysregulation of innate and adaptive responses resulting in immunopathology and systemic inflammation. We propose that anti-TLR4 interventions must be designed with caution, given the balance between the protective and destructive roles of TLR signaling in response to microbiota and associated immunopathologies.
Collapse
Affiliation(s)
- Carolyn D Kramer
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine , Boston, MA , USA
| | - Caroline Attardo Genco
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine , Boston, MA , USA
| |
Collapse
|
30
|
Ottman N, Reunanen J, Meijerink M, Pietilä TE, Kainulainen V, Klievink J, Huuskonen L, Aalvink S, Skurnik M, Boeren S, Satokari R, Mercenier A, Palva A, Smidt H, de Vos WM, Belzer C. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One 2017; 12:e0173004. [PMID: 28249045 PMCID: PMC5332112 DOI: 10.1371/journal.pone.0173004] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/12/2017] [Indexed: 12/24/2022] Open
Abstract
Gut barrier function is key in maintaining a balanced response between the host and its microbiome. The microbiota can modulate changes in gut barrier as well as metabolic and inflammatory responses. This highly complex system involves numerous microbiota-derived factors. The gut symbiont Akkermansia muciniphila is positively correlated with a lean phenotype, reduced body weight gain, amelioration of metabolic responses and restoration of gut barrier function by modulation of mucus layer thickness. However, the molecular mechanisms behind its metabolic and immunological regulatory properties are unexplored. Herein, we identify a highly abundant outer membrane pili-like protein of A. muciniphila MucT that is directly involved in immune regulation and enhancement of trans-epithelial resistance. The purified Amuc_1100 protein and enrichments containing all its associated proteins induced production of specific cytokines through activation of Toll-like receptor (TLR) 2 and TLR4. This mainly leads to high levels of IL-10 similar to those induced by the other beneficial immune suppressive microorganisms such as Faecalibacterium prausnitzii A2-165 and Lactobacillus plantarum WCFS1. Together these results indicate that outer membrane protein composition and particularly the newly identified highly abundant pili-like protein Amuc_1100 of A. muciniphila are involved in host immunological homeostasis at the gut mucosa, and improvement of gut barrier function.
Collapse
Affiliation(s)
- Noora Ottman
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Justus Reunanen
- Cancer and Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Marjolein Meijerink
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
- Department Risk Analysis for Products in Development, TNO, Zeist, the Netherlands
| | - Taija E. Pietilä
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Veera Kainulainen
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Judith Klievink
- Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Laura Huuskonen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Steven Aalvink
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Reetta Satokari
- Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Annick Mercenier
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Airi Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
31
|
Lipid A structural modifications in extreme conditions and identification of unique modifying enzymes to define the Toll-like receptor 4 structure-activity relationship. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1439-1450. [PMID: 28108356 DOI: 10.1016/j.bbalip.2017.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 01/23/2023]
Abstract
Strategies utilizing Toll-like receptor 4 (TLR4) agonists for treatment of cancer, infectious diseases, and other targets report promising results. Potent TLR4 antagonists are also gaining attention as therapeutic leads. Though some principles for TLR4 modulation by lipid A have been described, a thorough understanding of the structure-activity relationship (SAR) is lacking. Only through a complete definition of lipid A-TLR4 SAR is it possible to predict TLR4 signaling effects of discrete lipid A structures, rendering them more pharmacologically relevant. A limited 'toolbox' of lipid A-modifying enzymes has been defined and is largely composed of enzymes from mesophile human and zoonotic pathogens. Expansion of this 'toolbox' will result from extending the search into lipid A biosynthesis and modification by bacteria living at the extremes. Here, we review the fundamentals of lipid A structure, advances in lipid A uses in TLR4 modulation, and the search for novel lipid A-modifying systems in extremophile bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
|
32
|
Kajiwara K, Takata S, To TT, Takara K, Hatakeyama Y, Tamaoki S, Darveau RP, Ishikawa H, Sawa Y. The promotion of nephropathy by Porphyromonas gingivalis lipopolysaccharide via toll-like receptors. Diabetol Metab Syndr 2017; 9:73. [PMID: 29018490 PMCID: PMC5610442 DOI: 10.1186/s13098-017-0271-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 09/13/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Recently, we reported that toll-like receptor (TLR)2 and TLR4 localized on the glomerular endothelium in the glomeruli of streptozotocin (STZ)-induced type 1 diabetic mice and high fat diet feed-induced type 2 diabetic mice, and that periodontal pathogen Porphyromonas gingivalis LPS (Pg-LPS) administration lowered the survival rate of diabetic mice. The present study aims to examine the effect of TLR4 blocking on the suppression of Pg-LPS-induced diabetic nephropathy. METHODS The survival rate and morphological/biochemical features for streptozotocin-induced diabetic mice with Pg-LPS and TLR4 blocker eritoran administration were investigated by reporter gene assay, urine and blood analysis, immunohistochemistry, and real time-PCR. RESULTS AND CONCLUSIONS All of the diabetic mice administered Pg-LPS were euthanized within the survival period of almost all of the diabetic mice. The blood urea nitrogen and creatinine, expression of TLR2 and TGF-b, and type 1 collagen accumulation, in the diabetic mice increased significantly with the Pg-LPS administration. In spite of the limited TLR4 activation with Pg-LPS, the TLR4 blocker eritoran decreased blood urea nitrogen and creatinine, and raised the survival rate of the Pg-LPS-administered diabetic mice slightly. The high expression levels of TLR2, TGF-b, and type 1 collagen in Pg-LPS-administered diabetic mice decreased with eritoran. Nuclear STAT3 which enhances TLR2 expression was detected in the TLR2-expressing glomeruli of diabetic mice. The TLR2 and STAT3 gene expression increased by the Pg-LPS administration but decreased with eritoran. These may suggest that Pg-LPS-induced diabetic nephropathy is mainly dependent on TLR2 signaling on glomerular endothelial cells, and that TLR4 blocker eritoran may play a role to slow the progress of diabetic nephropathy.
Collapse
Affiliation(s)
- Koichiro Kajiwara
- Department of Oral Growth & Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193 Japan
| | - Shunsuke Takata
- Department of Oral Growth & Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193 Japan
| | - Thao T. To
- Department of Periodontics, University of Washington School of Dentistry, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Kenyo Takara
- Department of Oral Growth & Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193 Japan
| | - Yuji Hatakeyama
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193 Japan
| | - Sachio Tamaoki
- Department of Oral Growth & Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193 Japan
| | - Richard Peters Darveau
- Department of Periodontics & Microbiology, University of Washington School of Dentistry, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Hiroyuki Ishikawa
- Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193 Japan
| | - Yoshihiko Sawa
- Department of Oral Function & Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-0914 Japan
| |
Collapse
|
33
|
Phillips NJ, John CM, Jarvis GA. Analysis of Bacterial Lipooligosaccharides by MALDI-TOF MS with Traveling Wave Ion Mobility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1263-1276. [PMID: 27056565 DOI: 10.1007/s13361-016-1383-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 06/05/2023]
Abstract
Lipooligosaccharides (LOS) are major microbial virulence factors displayed on the outer membrane of rough-type Gram-negative bacteria. These amphipathic glycolipids are comprised of two domains, a core oligosaccharide linked to a lipid A moiety. Isolated LOS samples are generally heterogeneous mixtures of glycoforms, with structural variability in both domains. Traditionally, the oligosaccharide and lipid A components of LOS have been analyzed separately following mild acid hydrolysis, although important acid-labile moieties can be cleaved. Recently, an improved method was introduced for analysis of intact LOS by MALDI-TOF MS using a thin layer matrix composed of 2,4,6-trihydroxyacetophenone (THAP) and nitrocellulose. In addition to molecular ions, the spectra show in-source "prompt" fragments arising from regiospecific cleavage between the lipid A and oligosaccharide domains. Here, we demonstrate the use of traveling wave ion mobility spectrometry (TWIMS) for IMS-MS and IMS-MS/MS analyses of intact LOS from Neisseria spp. ionized by MALDI. Using IMS, the singly charged prompt fragments for the oligosaccharide and lipid A domains of LOS were readily separated into resolved ion plumes, permitting the extraction of specific subspectra, which led to increased confidence in assigning compositions and improved detection of less abundant ions. Moreover, IMS separation of precursor ions prior to collision-induced dissociation (CID) generated time-aligned, clean MS/MS spectra devoid of fragments from interfering species. Incorporating IMS into the profiling of intact LOS by MALDI-TOF MS exploits the unique domain structure of the molecule and offers a new means of extracting more detailed information from the analysis. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Nancy J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94143, USA
| | - Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121, USA.
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
34
|
Cardiolipins Act as a Selective Barrier to Toll-Like Receptor 4 Activation in the Intestine. Appl Environ Microbiol 2016; 82:4264-78. [PMID: 27208127 DOI: 10.1128/aem.00463-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/01/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Intestinal homeostasis mechanisms must protect the host intestinal tissue from endogenous lipopolysaccharides (LPSs) produced by the intestinal microbiota. In this report, we demonstrate that murine intestinal fecal lipids effectively block Toll-like receptor 4 (TLR4) responses to naturally occurring Bacteroidetes sp. LPS. Cardiolipin (CL) represents a significant proportion of the total intestinal and fecal lipids and, furthermore, potently antagonizes TLR4 activation by reducing LPS binding at the lipopolysaccharide binding protein (LBP), CD14, and MD-2 steps of the TLR4 signaling pathway. It is further demonstrated that intestinal lipids and CL are less effective at neutralizing more potent Enterobacteriaceae-type LPS, which is enriched in feces obtained from mice with dextran sodium sulfate (DSS)-treated inflammatory bowel disease. The selective inhibition of naturally occurring LPS structures by intestinal lipids may represent a novel homeostasis mechanism that blocks LPS activation in response to symbiotic but not dysbiotic microbial communities. IMPORTANCE The guts of animals harbor a variety of Gram-negative bacteria associated with both states of intestinal health and states of disease. Environmental factors, such as dietary habits, can drive the microbial composition of the host animal's intestinal bacterial community toward a more pathogenic state. Both beneficial and harmful Gram-negative bacteria are capable of eliciting potentially damaging inflammatory responses from the host intestinal tissues via a lipopolysaccharide (LPS)-dependent pathway. Physical mucosal barriers and antibodies produced by the intestinal immune system protect against the undesired inflammatory effects of LPS, although it is unknown why some bacteria are more effective at overcoming the protective barriers than others. This report describes the discovery of a lipid-type protective barrier in the intestine that reduces the deleterious effects of LPSs from beneficial bacteria but is less effective in dampening the inflammatory effects of LPSs from harmful bacteria, providing a novel mechanistic insight into inflammatory intestinal disorders.
Collapse
|
35
|
Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM, Trent MS. The Power of Asymmetry: Architecture and Assembly of the Gram-Negative Outer Membrane Lipid Bilayer. Annu Rev Microbiol 2016; 70:255-78. [PMID: 27359214 DOI: 10.1146/annurev-micro-102215-095308] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Determining the chemical composition of biological materials is paramount to the study of natural phenomena. Here, we describe the composition of model gram-negative outer membranes, focusing on the predominant assembly, an asymmetrical bilayer of lipid molecules. We also give an overview of lipid biosynthetic pathways and molecular mechanisms that organize this material into the outer membrane bilayer. An emphasis is placed on the potential of these pathways as targets for antibiotic development. We discuss deviations in composition, through bacterial cell surface remodeling, and alternative modalities to the asymmetric lipid bilayer. Outer membrane lipid alterations of current microbiological interest, such as lipid structures found in commensal bacteria, are emphasized. Additionally, outer membrane components could potentially be engineered to develop vaccine platforms. Observations related to composition and assembly of gram-negative outer membranes will continue to generate novel discoveries, broaden biotechnologies, and reveal profound mysteries to compel future research.
Collapse
Affiliation(s)
- Jeremy C Henderson
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Shawn M Zimmerman
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Alexander A Crofts
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Joseph M Boll
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Lisa G Kuhns
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Carmen M Herrera
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - M Stephen Trent
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
36
|
Gnauck A, Lentle RG, Kruger MC. The Characteristics and Function of Bacterial Lipopolysaccharides and Their Endotoxic Potential in Humans. Int Rev Immunol 2015; 35:189-218. [PMID: 26606737 DOI: 10.3109/08830185.2015.1087518] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cross-talk between enteral microbiota and human host is essential for the development and maintenance of the human gastrointestinal and systemic immune systems. The presence of lipopolysaccharides (LPS) lysed from the cell membrane of Gram-negative bacteria in the gut lumen is thought to promote the development of a balanced gut immune response whilst the entry of the same LPS into systemic circulation may lead to a deleterious pro-inflammatory systemic immune response. Recent data suggest that chronically low levels of circulating LPS may be associated with the development of metabolic diseases such as insulin resistance, type 2 diabetes, atherosclerosis and cardiovascular disease. This review focuses on the cross-talk between enteral commensal bacteria and the human immune system via LPS. We explain the structural characterisation of the LPS molecule and its function in the bacteria. We then examine how LPS is recognised by various elements of the human immune system and the signalling pathways that are activated by the structure of the LPS molecule and the effect of various concentrations. Further, we discuss the sequelae of this signalling in the gut-associated and systemic immune systems i.e. the neutralisation of LPS and the development of tolerance to LPS.
Collapse
Affiliation(s)
- Anne Gnauck
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| | - Roger G Lentle
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| | - Marlena C Kruger
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| |
Collapse
|
37
|
Blasi I, Korostoff J, Dhingra A, Reyes-Reveles J, Shenker BJ, Shahabuddin N, Alexander D, Lally ET, Bragin A, Boesze-Battaglia K. Variants of Porphyromonas gingivalis lipopolysaccharide alter lipidation of autophagic protein, microtubule-associated protein 1 light chain 3, LC3. Mol Oral Microbiol 2015; 31:486-500. [PMID: 26452236 DOI: 10.1111/omi.12141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 01/13/2023]
Abstract
Porphyromonas gingivalis often subverts host cell autophagic processes for its own survival. Our previous studies document the association of the cargo sorting protein, melanoregulin (MREG), with its binding partner, the autophagic protein, microtubule-associated protein 1 light chain 3 (LC3) in macrophages incubated with P. gingivalis (strain 33277). Differences in the lipid A moiety of lipopolysaccharide (LPS) affect the virulence of P. gingivalis; penta-acylated LPS1690 is a weak Toll-like receptor 4 agonist compared with Escherichia coli LPS, whereas tetra-acylated LPS1435/1449 acts as an LPS1690 antagonist. To determine how P. gingivalis LPS1690 affects autophagy we assessed LC3-dependent and MREG-dependent processes in green fluorescent protein (GFP)-LC3-expressing Saos-2 cells. LPS1690 stimulated the formation of very large LC3-positive vacuoles and MREG puncta. This LPS1690 -mediated LC3 lipidation decreased in the presence of LPS1435/1449 . When Saos-2 cells were incubated with P. gingivalis the bacteria internalized but did not traffic to GFP-LC3-positive structures. Nevertheless, increases in LC3 lipidation and MREG puncta were observed. Collectively, these results suggest that P. gingivalis internalization is not necessary for LC3 lipidation. Primary human gingival epithelial cells isolated from patients with periodontitis showed both LC3II and MREG puncta whereas cells from disease-free individuals exhibited little co-localization of these two proteins. These results suggest that the prevalence of a particular LPS moiety may modulate the degradative capacity of host cells, so influencing bacterial survival.
Collapse
Affiliation(s)
- I Blasi
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthodontics, School of Dentistry, International University of Catalonia, Barcelona, Spain
| | - J Korostoff
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Dhingra
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Reyes-Reveles
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B J Shenker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - N Shahabuddin
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D Alexander
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Bragin
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Subgingival Plaque in Periodontal Health Antagonizes at Toll-Like Receptor 4 and Inhibits E-Selectin Expression on Endothelial Cells. Infect Immun 2015; 84:120-6. [PMID: 26483407 DOI: 10.1128/iai.00693-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/12/2015] [Indexed: 12/24/2022] Open
Abstract
The ability of the subgingival microbial community to induce an inappropriate inflammatory response ultimately results in the destruction of bone and gingival tissue. In this study, subgingival plaque samples from both healthy and diseased sites in the same individual were obtained from adults with chronic periodontitis and screened for their ability to either activate Toll-like receptor 2 (TLR2) or TLR4 and to antagonize TLR4-specific activation by agonist, Fusobacterium nucleatum LPS. Subgingival plaque from diseased sites strongly activated TLR4, whereas matched plaque samples obtained from healthy sites were significantly more variable, with some samples displaying strong TLR4 antagonism, while others were strong TLR4 agonists when combined with F. nucleatum LPS. Similar results were observed when TLR4 dependent E-selectin expression by endothelial cells was determined. These results are the first to demonstrate TLR4 antagonism from human plaque samples and demonstrate that healthy but not diseased sites display a wide variation in TLR4 agonist and antagonist behavior. The results have identified a novel characteristic of clinically healthy sites and warrant further study on the contribution of TLR4 antagonism in the progression of a healthy periodontal site to a diseased one.
Collapse
|
39
|
Lipopolysaccharides from Commensal and Opportunistic Bacteria: Characterization and Response of the Immune System of the Host Sponge Suberites domuncula. Mar Drugs 2015; 13:4985-5006. [PMID: 26262625 PMCID: PMC4557011 DOI: 10.3390/md13084985] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/29/2022] Open
Abstract
Marine sponges harbor a rich bacterioflora with which they maintain close relationships. However, the way these animals make the distinction between bacteria which are consumed to meet their metabolic needs and opportunistic and commensal bacteria which are hosted is not elucidated. Among the elements participating in this discrimination, bacterial cell wall components such as lipopolysaccharides (LPS) could play a role. In the present study, we investigated the LPS chemical structure of two bacteria associated with the sponge Suberites domuncula: a commensal Endozoicomonas sp. and an opportunistic Pseudoalteromonas sp. Electrophoretic patterns indicated different LPS structures for these bacteria. The immunomodulatory lipid A was isolated after mild acetic acid hydrolysis. The electrospray ionization ion-trap mass spectra revealed monophosphorylated molecules corresponding to tetra- and pentaacylated structures with common structural features between the two strains. Despite peculiar structural characteristics, none of these two LPS influenced the expression of the macrophage-expressed gene S. domuncula unlike the Escherichia coli ones. Further research will have to include a larger number of genes to understand how this animal can distinguish between LPS with resembling structures and discriminate between bacteria associated with it.
Collapse
|
40
|
Wheat WH, Dhouib R, Angala SK, Larrouy-Maumus G, Dobos K, Nigou J, Spencer JS, Jackson M. The presence of a galactosamine substituent on the arabinogalactan of Mycobacterium tuberculosis abrogates full maturation of human peripheral blood monocyte-derived dendritic cells and increases secretion of IL-10. Tuberculosis (Edinb) 2015; 95:476-89. [PMID: 26048627 DOI: 10.1016/j.tube.2015.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/08/2015] [Indexed: 12/28/2022]
Abstract
Slow-growing and pathogenic Mycobacterium spp. are characterized by the presence of galactosamine (GalN) that modifies the interior branched arabinosyl residues of the arabinogalactan (AG) that is a major heteropolysaccharide cell wall component. The availability of null mutants of the polyprenyl-phospho-N-acetylgalactosaminyl synthase (Rv3631, PpgS) and the (N-acetyl-) galactosaminyl transferase (Rv3779) of Mycobacterium tuberculosis (Mtb) has provided a means to elucidate the role of the GalN substituent of AG in terms of host-pathogen interactions. Comparisons of treating human peripheral blood monocyte-derived dendritic cells (hPMC-DCs) with wild-type, Rv3631 and Rv3779 mutant strains of Mtb revealed increased expression of DC maturation markers, decreased affinity for a soluble DC-SIGN probe, reduced IL-10 secretion and increased TLR-2-mediated NF-κB activation among GalN-deficient Mtb strains compared to GalN-producing strains. Analysis of surface expression of a panel of defined or putative DC-SIGN ligands on both WT strains or either Rv3631 or Rv3779 mutant did not show significant differences suggesting that the role of the GalN substituent of AG may be to modulate access of the bacilli to immunologically-relevant receptor domains on DCs or contribute to higher ordered pathogen associated molecular pattern (PAMP)/pattern recognition receptor (PRR) interactions rather than the GalN-AG components having a direct immunological effect per se.
Collapse
Affiliation(s)
- William H Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
| | - Rabeb Dhouib
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Shiva K Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Gérald Larrouy-Maumus
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 route de Narbonne, F-31077 Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Karen Dobos
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Jérôme Nigou
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 route de Narbonne, F-31077 Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - John S Spencer
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| |
Collapse
|
41
|
Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA, Trent MS, Degnan PH, Booth CJ, Yu H, Goodman AL. Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 2015; 347:170-5. [PMID: 25574022 DOI: 10.1126/science.1260580] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Resilience to host inflammation and other perturbations is a fundamental property of gut microbial communities, yet the underlying mechanisms are not well understood. We have found that human gut microbes from all dominant phyla are resistant to high levels of inflammation-associated antimicrobial peptides (AMPs) and have identified a mechanism for lipopolysaccharide (LPS) modification in the phylum Bacteroidetes that increases AMP resistance by four orders of magnitude. Bacteroides thetaiotaomicron mutants that fail to remove a single phosphate group from their LPS were displaced from the microbiota during inflammation triggered by pathogen infection. These findings establish a mechanism that determines the stability of prominent members of a healthy microbiota during perturbation.
Collapse
Affiliation(s)
- T W Cullen
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA. Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - W B Schofield
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA. Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - N A Barry
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA. Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - E E Putnam
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA. Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - E A Rundell
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - M S Trent
- Department of Molecular Biosciences and Institute of Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - P H Degnan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - C J Booth
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - H Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - A L Goodman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA. Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
42
|
Ha CWY, Lam YY, Holmes AJ. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World J Gastroenterol 2014; 20:16498-16517. [PMID: 25469018 PMCID: PMC4248193 DOI: 10.3748/wjg.v20.i44.16498] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 06/26/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging.
Collapse
|
43
|
TLR signaling that induces weak inflammatory response and SHIP1 enhances osteogenic functions. Bone Res 2014; 2:14031. [PMID: 26273527 PMCID: PMC4472124 DOI: 10.1038/boneres.2014.31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/12/2014] [Accepted: 09/03/2014] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor (TLR)-mediated inflammatory response could negatively affect bone metabolism. In this study, we determined how osteogenesis is regulated during inflammatory responses that are downstream of TLR signaling. Human primary osteoblasts were cultured in collagen gels. Pam3CSK4 (P3C) and Escherichia coli lipopolysaccharide (EcLPS) were used as TLR2 and TLR4 ligand respectively. Porphyromonas gingivalis LPS having TLR2 activity with either TLR4 agonism (Pg1690) or TLR4 antagonism (Pg1449) and mutant E. coli LPS (LPxE/LPxF/WSK) were used. IL-1β, SH2-containing inositol phosphatase-1 (SHIP1) that has regulatory roles in osteogenesis, alkaline phosphatase and mineralization were analyzed. 3α-Aminocholestane (3AC) was used to inhibit SHIP1. Our results suggest that osteoblasts stimulated by P3C, poorly induced IL-1β but strongly upregulated SHIP1 and enhanced osteogenic mediators. On the contrary, EcLPS significantly induced IL-1β and osteogenic mediators were not induced. While Pg1690 downmodulated osteogenic mediators, Pg1449 enhanced osteogenic responses, suggesting that TLR4 signaling annuls osteogenesis even with TLR2 activity. Interestingly, mutant E. coli LPS that induces weak inflammation upregulated osteogenesis, but SHIP1 was not induced. Moreover, inhibiting SHIP1 significantly upregulated TLR2-mediated inflammatory response and downmodulated osteogenesis. In conclusion, these results suggest that induction of weak inflammatory response through TLR2 (with SHIP1 activity) and mutant TLR4 ligands could enhance osteogenesis.
Collapse
|
44
|
Anaya-Bergman C, Rosato A, Lewis JP. Iron- and hemin-dependent gene expression of Porphyromonas gingivalis. Mol Oral Microbiol 2014; 30:39-61. [PMID: 25043610 DOI: 10.1111/omi.12066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
Abstract
Although iron under anaerobic conditions is more accessible and highly reactive because of its reduced form, iron-dependent regulation is not well known in anaerobic bacteria. Here, we investigated iron- and hemin-dependent gene regulation in Porphyromonas gingivalis, an established periodontopathogen that primarily inhabits anaerobic pockets. Whole-genome microarrays of P. gingivalis genes were used to compare the levels of gene expression under iron-replete and iron-depleted conditions as well as under hemin-replete and hemin-depleted conditions. Under iron-depleted conditions, the expression of genes encoding proteins that participate in iron uptake and adhesion/invasion of host cells was increased, while that of genes encoding proteins involved in iron storage, energy metabolism, and electron transport was decreased. Interestingly, many of the genes with altered expression had no known function. Limiting the amount of hemin also resulted in a reduced expression of the genes encoding proteins involved in energy metabolism and electron transport. However, hemin also had a significant effect on many other biological processes such as oxidative stress protection and lipopolysaccharide synthesis. Overall, comparison of the data from iron-depleted conditions to those from hemin-depleted ones showed that although some regulation is through the iron derived from hemin, there also is significant distinct regulation through hemin only. Furthermore, our data showed that the molecular mechanisms of iron-dependent regulation are novel as the deletion of the putative Fur protein had no effect on the expression of iron-regulated genes. Finally, our functional studies demonstrated greater survivability of host cells in the presence of the iron-stressed bacterium than the iron-replete P. gingivalis cells. The major iron-regulated proteins encoded by PG1019-20 may play a role in this process as deletion of these sequences also resulted in reduced survival of the bacterium when grown with eukaryotic cells. Taken together, the results of this study demonstrated the utility of whole-genome microarray analysis for the identification of genes with altered expression profiles during varying growth conditions and provided a framework for the detailed analysis of the molecular mechanisms of iron and hemin acquisition, metabolism and virulence of P. gingivalis.
Collapse
Affiliation(s)
- C Anaya-Bergman
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | | |
Collapse
|
45
|
Species-specific activation of TLR4 by hypoacylated endotoxins governed by residues 82 and 122 of MD-2. PLoS One 2014; 9:e107520. [PMID: 25203747 PMCID: PMC4159346 DOI: 10.1371/journal.pone.0107520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/19/2014] [Indexed: 11/20/2022] Open
Abstract
The Toll-like receptor 4/MD-2 receptor complex recognizes endotoxin, a Gram-negative bacterial cell envelope component. Recognition of the most potent hexaacylated form of endotoxin is mediated by the sixth acyl chain that protrudes from the MD-2 hydrophobic pocket and bridges TLR4/MD-2 to the neighboring TLR4 ectodomain, driving receptor dimerization via hydrophobic interactions. In hypoacylated endotoxins all acyl chains could be accommodated within the binding pocket of the human hMD-2. Nevertheless, tetra- and pentaacylated endotoxins activate the TLR4/MD-2 receptor of several species. We observed that amino acid residues 82 and 122, located at the entrance to the endotoxin binding site of MD-2, have major influence on the species-specific endotoxin recognition. We show that substitution of hMD-2 residue V82 with an amino acid residue with a bulkier hydrophobic side chain enables activation of TLR4/MD-2 by pentaacylated and tetraacylated endotoxins. Interaction of the lipid A phosphate group with the amino acid residue 122 of MD-2 facilitates the appropriate positioning of the hypoacylated endotoxin. Moreover, mouse TLR4 contributes to the agonistic effect of pentaacylated msbB endotoxin. We propose a molecular model that explains how the molecular differences between the murine or equine MD-2, which both have sufficiently large hydrophobic pockets to accommodate all five or four acyl chains, influence the positioning of endotoxin so that one of the acyl chains remains outside the pocket and enables hydrophobic interactions with TLR4, leading to receptor activation.
Collapse
|
46
|
Distinct lipid a moieties contribute to pathogen-induced site-specific vascular inflammation. PLoS Pathog 2014; 10:e1004215. [PMID: 25010102 PMCID: PMC4092147 DOI: 10.1371/journal.ppat.1004215] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/16/2014] [Indexed: 01/11/2023] Open
Abstract
Several successful pathogens have evolved mechanisms to evade host defense, resulting in the establishment of persistent and chronic infections. One such pathogen, Porphyromonas gingivalis, induces chronic low-grade inflammation associated with local inflammatory bone loss and systemic inflammation manifested as atherosclerosis. P. gingivalis expresses an atypical lipopolysaccharide (LPS) structure containing heterogeneous lipid A species, that exhibit Toll-like receptor-4 (TLR4) agonist or antagonist activity, or are non-activating at TLR4. In this study, we utilized a series of P. gingivalis lipid A mutants to demonstrate that antagonistic lipid A structures enable the pathogen to evade TLR4-mediated bactericidal activity in macrophages resulting in systemic inflammation. Production of antagonistic lipid A was associated with the induction of low levels of TLR4-dependent proinflammatory mediators, failed activation of the inflammasome and increased bacterial survival in macrophages. Oral infection of ApoE−/− mice with the P. gingivalis strain expressing antagonistic lipid A resulted in vascular inflammation, macrophage accumulation and atherosclerosis progression. In contrast, a P. gingivalis strain producing exclusively agonistic lipid A augmented levels of proinflammatory mediators and activated the inflammasome in a caspase-11-dependent manner, resulting in host cell lysis and decreased bacterial survival. ApoE−/− mice infected with this strain exhibited diminished vascular inflammation, macrophage accumulation, and atherosclerosis progression. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A expression, indicative of distinct mechanisms for induction of local versus systemic inflammation by this pathogen. Collectively, our results point to a pivotal role for activation of the non-canonical inflammasome in P. gingivalis infection and demonstrate that P. gingivalis evades immune detection at TLR4 facilitating chronic inflammation in the vasculature. These studies support the emerging concept that pathogen-mediated chronic inflammatory disorders result from specific pathogen-mediated evasion strategies resulting in low-grade chronic inflammation. Several human pathogens express structurally divergent forms of lipid A, the endotoxic portion of lipopolysaccharide (LPS), as a strategy to evade host innate immune detection and establish persistent infection. Expression of modified lipid A species promotes pathogen evasion of host recognition by Toll-like receptor-4 (TLR4) and the non-canonical inflammasome. The Gram-negative oral anaerobe, Porphyromonas gingivalis, expresses lipid A structures that function as TLR4 agonists or antagonists, or are immunologically inert. It is currently unclear how modulation of P. gingivalis lipid A expression contributes to innate immune recognition, survival, and the ability of the pathogen to induce local and systemic inflammation. In this study, we demonstrate that P. gingivalis expression of antagonist lipid A species results in attenuated production of proinflammatory mediators and evasion of non-canonical inflammasome activation, facilitating bacterial survival in the macrophage. Infection of atherosclerosis-prone ApoE−/− mice with this strain resulted in progression of chronic inflammation in the vasculature. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A modifications, supporting distinct mechanisms for induction of local versus systemic inflammation. Our work demonstrates that evasion of immune detection at TLR4 contributes to pathogen persistence and facilitates low-grade chronic inflammation.
Collapse
|
47
|
Huang N, Gibson FC. Immuno-pathogenesis of Periodontal Disease: Current and Emerging Paradigms. ACTA ACUST UNITED AC 2014; 1:124-132. [PMID: 24839590 DOI: 10.1007/s40496-014-0017-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Periodontal disease (PD) is a highly complex disease involving many factors; however, two principal facets central to initiation and progression of the majority of PD are the composition of the microbes in the sub-gingival plaque, and the host immune response to these organisms. Numerous studies point to the complexity of PD, and to the fact that despite innate and adaptive immune activation, and resultant inflammation, our immune response fails to cure disease. Stunning new findings have begun to clarify several complexities of the host-pathogen interaction of PD pointing to key roles for microbial dysboisis and immune imbalance in the pathogenesis of disease. Furthermore, these investigations have identified novel translational opportunities to intercede in PD treatment. In this review we will highlight a select few recent findings in innate and adaptive immunity, and host pathogen interactions of PD at a micro-environmental level that may have profound impact on PD progression.
Collapse
Affiliation(s)
- Nasi Huang
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118
| | - Frank C Gibson
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118
| |
Collapse
|
48
|
Abstract
Lipopolysaccharide molecules represent a unique family of glycolipids based on a highly conserved lipid moiety known as lipid A. These molecules are produced by most gram-negative bacteria, in which they play important roles in the integrity of the outer-membrane permeability barrier and participate extensively in host-pathogen interplay. Few bacteria contain lipopolysaccharide molecules composed only of lipid A. In most forms, lipid A is glycosylated by addition of the core oligosaccharide that, in some bacteria, provides an attachment site for a long-chain O-antigenic polysaccharide. The complexity of lipopolysaccharide structures is reflected in the processes used for their biosynthesis and export. Rapid growth and cell division depend on the bacterial cell's capacity to synthesize and export lipopolysaccharide efficiently and in large amounts. We review recent advances in those processes, emphasizing the reactions that are essential for viability.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| | | |
Collapse
|
49
|
Darveau RP, Chilton PM. Naturally occurring low biological reactivity lipopolysaccharides as vaccine adjuvants. Expert Rev Vaccines 2014; 12:707-9. [DOI: 10.1586/14760584.2013.811181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Xiao S, Zhao L. Gut microbiota-based translational biomarkers to prevent metabolic syndrome via nutritional modulation. FEMS Microbiol Ecol 2013; 87:303-14. [PMID: 24219358 PMCID: PMC4262049 DOI: 10.1111/1574-6941.12250] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/20/2013] [Accepted: 11/04/2013] [Indexed: 12/14/2022] Open
Abstract
In the face of the global epidemic of metabolic syndrome (MetS) and its strong association with the increasing rate of cardiovascular morbidity and mortality, it is critical to detect MetS at an early stage in the clinical setting to implement preventive intervention long before the complications arise. Lipopolysaccharide, the cell wall component of Gram-negative bacteria produced from diet-disrupted gut microbiota, has been shown to induce metabolic endotoxemia, chronic low-grade inflammation, and ultimately insulin resistance. Therefore, ameliorating the inflammation and insulin resistance underlying MetS by gut microbiota-targeted, dietary intervention has gained increasing attention. In this review, we propose using dynamic monitoring of a set of translational biomarkers related with the etiological role of gut microbiota, including lipopolysaccharide binding protein (LBP), C-reactive protein (CRP), fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR), for early detection and prevention of MetS via nutritional modulation. LBP initiates the recognition and monomerization of lipopolysaccharide and amplifies host immune responses, linking the gut-derived antigen load and inflammation indicated by the plasma levels of CRP. Fasting plasma insulin and HOMA-IR are measured to evaluate insulin sensitivity that is damaged by pro-inflammatory cytokines. The dynamic monitoring of these biomarkers in high-risk populations may provide translational methods for the quantitative and dynamic evaluation of dysbiosis-induced insulin resistance and the effectiveness of dietary treatment for MetS.
Collapse
Affiliation(s)
- Shuiming Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | |
Collapse
|