1
|
Bankar N, Latta L, Loretz B, Reda B, Dudek J, Hähl H, Hannig M, Lehr CM. Antimicrobial and antibiotic-potentiating effect of calcium peroxide nanoparticles on oral bacterial biofilms. NPJ Biofilms Microbiomes 2024; 10:106. [PMID: 39406727 PMCID: PMC11480382 DOI: 10.1038/s41522-024-00569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/15/2024] [Indexed: 10/18/2024] Open
Abstract
Bacterial biofilms represent a prominent biological barrier against physical and chemical attacks. Disturbing the anaerobic microenvironment within biofilms by co-delivery of oxygen appears as a promising strategy to enhance the activity of an antibiotic. Here, we report the effect of oxygen-producing calcium peroxide nanoparticles (CaO2 NP) in combination with tobramycin sulfate (Tob). On Pseudomonas aeruginosa PAO1 biofilms in vitro, the additive effect of CaO2 NP towards Tob activity enhanced biofilm eradication by 2 log compared to Tob alone. For natural biofilms grown in the oral cavity of human volunteers in situ, treatment by CaO2 NP alone slightly increased the fraction of dead bacteria from 44% in various controls, including Tob alone, to 57%. However, the combination of CaO2 NP with Tob further increased the fraction of dead bacteria to 69%. These data confirm the intrinsic antimicrobial and antibiotic-potentiating effect of CaO2 NP also in a clinically relevant setting.
Collapse
Affiliation(s)
- Neha Bankar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Lorenz Latta
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany.
| | - Bashar Reda
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg/Saar, Germany
- Department of Periodontology, School of Dentistry, Al- Shahbaa Private University, 66123, Aleppo, Syria
| | - Johanna Dudek
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg/Saar, Germany
| | - Hendrik Hähl
- Experimental Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg/Saar, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
2
|
O’Brien C, Spencer S, Jafari N, Huang AJ, Scott AJ, Cheng Z, Leung BM. Modeling Cystic Fibrosis Chronic Infection Using Engineered Mucus-like Hydrogels. ACS Biomater Sci Eng 2024; 10:6558-6568. [PMID: 39297972 PMCID: PMC11483100 DOI: 10.1021/acsbiomaterials.4c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
The airway mucus of patients with cystic fibrosis has altered properties, which create a microenvironment primed for chronic infections that are difficult to treat. These complex polymicrobial airway infections and corresponding mammalian-microbe interactions are challenging to model in vitro. Here, we report the development of mucus-like hydrogels with varied compositions and viscoelastic properties reflecting differences between healthy and cystic fibrosis airway mucus. Models of cystic fibrosis and healthy airway microenvironments were created by combining the hydrogels with relevant pathogens, human bronchial epithelial cells, and an antibiotic. Notably, pathogen antibiotic resistance was not solely dependent on the altered properties of the mucus-like hydrogels but was also influenced by culture conditions including microbe species, monomicrobial or polymicrobial culture, and the presence of epithelial cells. Additionally, the cystic fibrosis airway model showed the ability to mimic features characteristic of chronic cystic fibrosis airway infections including sustained polymicrobial growth and increased antibiotic tolerance.
Collapse
Affiliation(s)
- Courtney
L. O’Brien
- School
of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sarah Spencer
- School
of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Naeimeh Jafari
- Department
of Applied Oral Science, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Andy J. Huang
- School
of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Alison J. Scott
- Department
of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Zhenyu Cheng
- Department
of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Brendan M. Leung
- School
of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Applied Oral Science, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Pathology, Faculty of Medicine, Dalhousie
University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
3
|
Fakhoury NE, Mansour S, Abdel-Halim M, Hamed MM, Empting M, Boese A, Loretz B, Lehr CM, Tammam SN. Nanoparticles in liposomes: a platform for increased antibiotic selectivity in multidrug resistant bacteria in respiratory tract infections. Drug Deliv Transl Res 2024:10.1007/s13346-024-01662-2. [PMID: 39048783 DOI: 10.1007/s13346-024-01662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Antibiotic resistance is a cause of serious illness and death, originating often from insufficient permeability into gram-negative bacteria. Nanoparticles (NP) can increase antibiotic delivery in bacterial cells, however, may as well increase internalization in mammalian cells and toxicity. In this work, NP in liposome (NP-Lip) formulations were used to enhance the selectivity of the antibiotics (3C and tobramycin) and quorum sensing inhibitor (HIPS-1635) towards Pseudomonas aeruginosa by fusing with bacterial outer membranes and reducing uptake in mammalian cells due to their larger size. Poly (lactic-co-glycolic) acid NPs were prepared using emulsion solvent evaporation and incorporated in larger liposomes. Cytotoxicity and uptake studies were conducted on two lung cell lines, Calu-3 and H460. NP-Lip showed lower toxicity and uptake in both cell lines. Then formulations were investigated for suitability for oral inhalation. The deposition of NP and NP-Lip in the lungs was assessed by next generation impactor and corresponded to 75% and 45% deposition in the terminal bronchi and the alveoli respectively. Colloidal stability and mucus-interaction studies were conducted. NP-Lip showed higher diffusion through mucus compared to NPs with the use of nanoparticle tracking analyzer. Moreover, the permeation of delivery systems across a liquid-liquid interface epithelial barrier model of Calu-3 cells indicated that NP-Lip could cause less systemic toxicity upon in-vivo like administration by aerosol deposition. Monoculture and Pseudomonas aeruginosa biofilm with Calu-3 cells co-culture experiments were conducted, NP-Lip achieved highest toxicity towards bacterial biofilms and least toxicity % of the Calu-3 cells. Therefore, the NP- liposomal platform offers a promising approach for enhancing antibiotic selectivity and treating pulmonary infections.
Collapse
Affiliation(s)
- Nathalie E Fakhoury
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Cairo, Egypt.
| | - Samar Mansour
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Cairo, Egypt
| | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Annette Boese
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Cairo, Egypt
| |
Collapse
|
4
|
Cholon DM, Greenwald MA, Higgs MG, Quinney NL, Boyles SE, Meinig SL, Minges JT, Chaubal A, Tarran R, Ribeiro CMP, Wolfgang MC, Gentzsch M. A Novel Co-Culture Model Reveals Enhanced CFTR Rescue in Primary Cystic Fibrosis Airway Epithelial Cultures with Persistent Pseudomonas aeruginosa Infection. Cells 2023; 12:2618. [PMID: 37998353 PMCID: PMC10670530 DOI: 10.3390/cells12222618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
People with cystic fibrosis (pwCF) suffer from chronic and recurring bacterial lung infections that begin very early in life and contribute to progressive lung failure. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes an ion channel important for maintaining the proper hydration of pulmonary surfaces. When CFTR function is ablated or impaired, airways develop thickened, adherent mucus that contributes to a vicious cycle of infection and inflammation. Therapeutics for pwCF, called CFTR modulators, target the CFTR defect directly, restoring airway surface hydration and mucociliary clearance. However, even with CFTR modulator therapy, bacterial infections persist. To develop a relevant model of diseased airway epithelium, we established a primary human airway epithelium culture system with persistent Pseudomonas aeruginosa infection. We used this model to examine the effects of CFTR modulators on CFTR maturation, CFTR function, and bacterial persistence. We found that the presence of P. aeruginosa increased CFTR mRNA, protein, and function. We also found that CFTR modulators caused a decrease in P. aeruginosa burden. These results demonstrate the importance of including live bacteria to accurately model the CF lung, and that understanding the effects of infection on CFTR rescue by CFTR modulators is critical to evaluating and optimizing drug therapies for all pwCF.
Collapse
Affiliation(s)
- Deborah M. Cholon
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Matthew A. Greenwald
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew G. Higgs
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy L. Quinney
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Susan E. Boyles
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Suzanne L. Meinig
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Pharmaceutical Product Development (PPD), Thermo Fisher Scientific, Morrisville, NC 27560, USA
| | - John T. Minges
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Ashlesha Chaubal
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Robert Tarran
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Division of Genetic, Department of Internal Medicine, Environmental and Inhalational Disease, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Carla M. P. Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Division of Pulmonary Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew C. Wolfgang
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Pediatric Pulmonology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Hirsch MJ, Matthews EL, Bollenbecker S, Easter M, Kiedrowski MR, Barnes JW, Krick S. Fibroblast Growth Factor 23 Signaling Does Not Increase Inflammation from Pseudomonas aeruginosa Infection in the Cystic Fibrosis Bronchial Epithelium. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1635. [PMID: 37763754 PMCID: PMC10538042 DOI: 10.3390/medicina59091635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: Chronic inflammation due to Pseudomonas aeruginosa (PA) infection in people with cystic fibrosis (CF) remains a concerning issue in the wake of modulator therapy initiation. Given the perpetuating cycle of colonization, infection, chronic inflammation, and recurrent injury to the lung, there are increases in the risk for mortality in the CF population. We have previously shown that fibroblast growth factor (FGF) 23 can exaggerate transforming growth factor (TGF) beta-mediated bronchial inflammation in CF. Our study aims to shed light on whether FGF23 signaling also plays a role in PA infection of the CF bronchial epithelium. Materials and Methods: CF bronchial epithelial cells were pretreated with FGF23 or inhibitors for FGF receptors (FGFR) and then infected with different PA isolates. After infection, immunoblot analyses were performed on these samples to assess the levels of phosphorylated phospholipase C gamma (PLCγ), total PLCγ, phosphorylated extracellular signal-regulated kinase (ERK), and total ERK. Additionally, the expression of FGFRs and interleukins at the transcript level (RT-qPCR), as well as production of interleukin (IL)-6 and IL-8 at the protein level (ELISA) were determined. Results: Although there were decreases in isoform-specific FGFRs with increases in interleukins at the mRNA level as well as phosphorylated PLCγ and the production of IL-8 protein with PA infection, treatment with FGF23 or FGFR blockade did not alter downstream targets such as IL-6 and IL-8. Conclusions: FGF23 signaling does not seem to modulate the PA-mediated inflammatory response of the CF bronchial epithelium.
Collapse
Affiliation(s)
- Meghan June Hirsch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.J.H.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Emma Lea Matthews
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.J.H.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.J.H.)
| | - Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.J.H.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Megan R. Kiedrowski
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.J.H.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.J.H.)
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.J.H.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
6
|
Charpentier LA, Dolben EF, Hendricks MR, Hogan DA, Bomberger JM, Stanton BA. Bacterial Outer Membrane Vesicles and Immune Modulation of the Host. MEMBRANES 2023; 13:752. [PMID: 37755174 PMCID: PMC10536716 DOI: 10.3390/membranes13090752] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
This article reviews the role of outer membrane vesicles (OMVs) in mediating the interaction between Gram-negative bacteria and their human hosts. OMVs are produced by a diverse range of Gram-negative bacteria during infection and play a critical role in facilitating host-pathogen interactions without requiring direct cell-to-cell contact. This article describes the mechanisms by which OMVs are formed and subsequently interact with host cells, leading to the transport of microbial protein virulence factors and short interfering RNAs (sRNA) to their host targets, exerting their immunomodulatory effects by targeting specific host signaling pathways. Specifically, this review highlights mechanisms by which OMVs facilitate chronic infection through epigenetic modification of the host immune response. Finally, this review identifies critical knowledge gaps in the field and offers potential avenues for future OMV research, specifically regarding rigor and reproducibility in OMV isolation and characterization methods.
Collapse
Affiliation(s)
- Lily A. Charpentier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Emily F. Dolben
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Matthew R. Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| |
Collapse
|
7
|
Gür M, Erdmann J, Will A, Liang Z, Andersen JB, Tolker-Nielsen T, Häussler S. Challenges in using transcriptome data to study the c-di-GMP signaling network in Pseudomonas aeruginosa clinical isolates. FEMS MICROBES 2023; 4:xtad012. [PMID: 37564278 PMCID: PMC10411656 DOI: 10.1093/femsmc/xtad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
In the Pseudomonas aeruginosa type strain PA14, 40 genes are known to encode for diguanylate cyclases (DGCs) and/or phosphodiesterases (PDEs), which modulate the intracellular pool of the nucleotide second messenger c-di-GMP. While in general, high levels of c-di-GMP drive the switch from highly motile phenotypes towards a sessile lifestyle, the different c-di-GMP modulating enzymes are responsible for smaller and in parts nonoverlapping phenotypes. In this study, we sought to utilize previously recorded P. aeruginosa gene expression datasets on 414 clinical isolates to uncover transcriptional changes as a result of a high expression of genes encoding DGCs. This approach might provide a unique opportunity to bypass the problem that for many c-di-GMP modulating enzymes it is not known under which conditions their expression is activated. However, while we demonstrate that the selection of subgroups of clinical isolates with high versus low expression of sigma factor encoding genes served the identification of their downstream regulons, we were unable to confirm the predicted DGC regulons, because the high c-di-GMP associated phenotypes were rapidly lost in the clinical isolates,. Further studies are needed to determine the specific mechanisms underlying the loss of cyclase activity upon prolonged cultivation of clinical P. aeruginosa isolates.
Collapse
Affiliation(s)
- Melisa Gür
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Strasse 7, 30265 Hannover, Germany
| | - Jelena Erdmann
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Strasse 7, 30265 Hannover, Germany
| | - Anke Will
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Strasse 7, 30265 Hannover, Germany
| | - Ziwei Liang
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B 24.1, 2100 Copenhagen, Denmark
| | - Jens Bo Andersen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B 24.1, 2100 Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B 24.1, 2100 Copenhagen, Denmark
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Strasse 7, 30265 Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital – Rigshospitalet, Ole Maaloes Vej 26, 2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Hirsch MJ, Hughes EM, Easter MM, Bollenbecker SE, Howze IV PH, Birket SE, Barnes JW, Kiedrowski MR, Krick S. A novel in vitro model to study prolonged Pseudomonas aeruginosa infection in the cystic fibrosis bronchial epithelium. PLoS One 2023; 18:e0288002. [PMID: 37432929 PMCID: PMC10335692 DOI: 10.1371/journal.pone.0288002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/16/2023] [Indexed: 07/13/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is known to chronically infect airways of people with cystic fibrosis (CF) by early adulthood. PA infections can lead to increased airway inflammation and lung tissue damage, ultimately contributing to decreased lung function and quality of life. Existing models of PA infection in vitro commonly utilize 1-6-hour time courses. However, these relatively early time points may not encompass downstream airway cell signaling in response to the chronic PA infections observed in people with cystic fibrosis. To fill this gap in knowledge, the aim of this study was to establish an in vitro model that allows for PA infection of CF bronchial epithelial cells, cultured at the air liquid interface, for 24 hours. Our model shows with an inoculum of 2 x 102 CFUs of PA for 24 hours pro-inflammatory markers such as interleukin 6 and interleukin 8 are upregulated with little decrease in CF bronchial epithelial cell survival or monolayer confluency. Additionally, immunoblotting for phosphorylated phospholipase C gamma, a well-known downstream protein of fibroblast growth factor receptor signaling, showed significantly elevated levels after 24 hours with PA infection that were not seen at earlier timepoints. Finally, inhibition of phospholipase C shows significant downregulation of interleukin 8. Our data suggest that this newly developed in vitro "prolonged PA infection model" recapitulates the elevated inflammatory markers observed in CF, without compromising cell survival. This extended period of PA growth on CF bronchial epithelial cells will have impact on further studies of cell signaling and microbiological studies that were not possible in previous models using shorter PA exposures.
Collapse
Affiliation(s)
- Meghan J. Hirsch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Emily M. Hughes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Molly M. Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Seth E. Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Patrick H. Howze IV
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Susan E. Birket
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Megan R. Kiedrowski
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
9
|
Alatawneh N, Meijler MM. Unraveling the Antibacterial and Iron Chelating Activity of
N
‐Oxide Hydroxy‐Phenazine natural Products and Synthetic Analogs against
Staphylococcus Aureus. Isr J Chem 2023. [DOI: 10.1002/ijch.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Nadeem Alatawneh
- Department of Chemistry and The National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev Be'er Sheva 84105 Israel
| | - Michael M. Meijler
- Department of Chemistry and The National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev Be'er Sheva 84105 Israel
| |
Collapse
|
10
|
Öztürk FY, Darcan C, Kariptaş E. The Determination, Monitoring, Molecular Mechanisms and Formation of Biofilm in E. coli. Braz J Microbiol 2023; 54:259-277. [PMID: 36577889 PMCID: PMC9943865 DOI: 10.1007/s42770-022-00895-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Biofilms are cell assemblies embedded in an exopolysaccharide matrix formed by microorganisms of a single or many different species. This matrix in which they are embedded protects the bacteria from external influences and antimicrobial effects. The biofilm structure that microorganisms form to protect themselves from harsh environmental conditions and survive is found in nature in many different environments. These environments where biofilm formation occurs have in common that they are in contact with fluids. The gene expression of bacteria in complex biofilm differs from that of bacteria in the planktonic state. The differences in biofilm cell expression are one of the effects of community life. Means of quorum sensing, bacteria can act in coordination with each other. At the same time, while biofilm formation provides many benefits to bacteria, it has positive and negative effects in many different areas. Depending on where they occur, biofilms can cause serious health problems, contamination risks, corrosion, and heat and efficiency losses. However, they can also be used in water treatment plants, bioremediation, and energy production with microbial fuel cells. In this review, the basic steps of biofilm formation and biofilm regulation in the model organism Escherichia coli were discussed. Finally, the methods by which biofilm formation can be detected and monitored were briefly discussed.
Collapse
Affiliation(s)
- Fırat Yavuz Öztürk
- Department of Molecular Biology and Genetic, Faculty of Arts and Science, Bilecik Seyh Edebali University, Bilecik, Turkey.
| | - Cihan Darcan
- Department of Molecular Biology and Genetic, Faculty of Arts and Science, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Ergin Kariptaş
- Department of Medical Microbiology, Faculty of Medicine, Samsun University, Samsun, Turkey
| |
Collapse
|
11
|
Al-Wrafy FA, Alariqi R, Noman EA, Al-Gheethi AA, Mutahar M. Pseudomonas aeruginosa behaviour in polymicrobial communities: The competitive and cooperative interactions conducting to the exacerbation of infections. Microbiol Res 2023; 268:127298. [PMID: 36610273 DOI: 10.1016/j.micres.2022.127298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa is mostly associated with persistent infections and antibiotic resistance as a result of several factors, biofilms one of them. Microorganisms within the polymicrobial biofilm (PMB) reveal various transcriptional profiles and affect each other which might influence their pathogenicity and antibiotic tolerance and subsequent worsening of the biofilm infection. P. aeruginosa within PMB exhibits various behaviours toward other microorganisms, which may enhance or repress the virulence of these microbes. Microbial neighbours, in turn, may affect P. aeruginosa's virulence either positively or negatively. Such interactions among microorganisms lead to emerging persistent and antibiotic-resistant infections. This review highlights the relationship between P. aeruginosa and its microbial neighbours within the PMB in an attempt to better understand the mechanisms of polymicrobial interaction and the correlation between increased exacerbations of infection and the P. aeruginosa-microbe interaction. Researching in the literature that was carried out in vitro either in co-cultures or in the models to simulate the environment at the site of infection suggested that the interplay between P. aeruginosa and other microorganisms is one main reason for the worsening of the infection and which in turn requires a treatment approach different from that followed with P. aeruginosa mono-infection.
Collapse
Affiliation(s)
- Fairoz Ali Al-Wrafy
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350 Taiz, Yemen.
| | - Reem Alariqi
- Microbiology Department, Faculty of Medicine and Health Sciences, Sana'a University, 1247 Sana'a, Yemen
| | - Efaq Ali Noman
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350 Taiz, Yemen
| | - Adel Ali Al-Gheethi
- Civil Department, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
| | - Mahdi Mutahar
- Faculty of Science & Health, University of Portsmouth Dental Academy, PO1 2QG Portsmouth, United Kingdom
| |
Collapse
|
12
|
Temporal Hierarchy and Context-Dependence of Quorum Sensing Signal in Pseudomonas aeruginosa. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121953. [PMID: 36556318 PMCID: PMC9781131 DOI: 10.3390/life12121953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa can cause infections in a broad range of hosts including plants, invertebrates and mammals and is an important source of nosocomial infections in humans. We were interested in how differences in the bacteria's nutritional environment impact bacterial communication and virulence factor production. We grew P. aeruginosa in 96 different conditions in BIOLOG Gen III plates and assayed quorum sensing (QS) signaling over the course of growth. We also quantified pyocyanin and biofilm production and the impact of sub-inhibitory exposure to tobramycin. We found that while 3-oxo-C12 homoserine lactone remained the dominant QS signal to be produced, timing of PQS production differed between media types. Further, whether cells grew predominantly as biofilms or planktonic cells was highly context dependent. Our data suggest that understanding the impact of the nutritional environment on the bacterium can lead to valuable insights into the link between bacterial physiology and pathology.
Collapse
|
13
|
Navarro S, Sherman E, Colmer-Hamood JA, Nelius T, Myntti M, Hamood AN. Urinary Catheters Coated with a Novel Biofilm Preventative Agent Inhibit Biofilm Development by Diverse Bacterial Uropathogens. Antibiotics (Basel) 2022; 11:1514. [PMID: 36358169 PMCID: PMC9686518 DOI: 10.3390/antibiotics11111514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 08/03/2023] Open
Abstract
Despite the implementation of stringent guidelines for the prevention of catheter-associated (CA) urinary tract infection (UTI), CAUTI remains one of the most common health care-related infections. We previously showed that an antimicrobial/antibiofilm agent inhibited biofilm development by Gram-positive and Gram-negative bacterial pathogens isolated from human infections. In this study, we examined the ability of a novel biofilm preventative agent (BPA) coating on silicone urinary catheters to inhibit biofilm formation on the catheters by six different bacterial pathogens isolated from UTIs: three Escherichia coli strains, representative of the most common bacterium isolated from UTI; one Enterobacter cloacae, a multidrug-resistant isolate; one Pseudomonas aeruginosa, common among patients with long-term catheterization; and one isolate of methicillin-resistant Staphylococcus aureus, as both a Gram-positive and a resistant organism. First, we tested the ability of these strains to form biofilms on urinary catheters made of red rubber, polyvinyl chloride (PVC), and silicone using the microtiter plate biofilm assay. When grown in artificial urine medium, which closely mimics human urine, all tested isolates formed considerable biofilms on all three catheter materials. As the biofilm biomass formed on silicone catheters was 0.5 to 1.6 logs less than that formed on rubber or PVC, respectively, we then coated the silicone catheters with BPA (benzalkonium chloride, polyacrylic acid, and glutaraldehyde), and tested the ability of the coated catheters to further inhibit biofilm development by these uropathogens. Compared with the uncoated silicone catheters, BPA-coated catheters completely prevented biofilm development by all the uropathogens, except P. aeruginosa, which showed no reduction in biofilm biomass. To explore the reason for P. aeruginosa resistance to the BPA coating, we utilized two specific lipopolysaccharide (LPS) mutants. In contrast to their parent strain, the two mutants failed to form biofilms on the BPA-coated catheters, which suggests that the composition of P. aeruginosa LPS plays a role in the resistance of wild-type P. aeruginosa to the BPA coating. Together, our results suggest that, except for P. aeruginosa, BPA-coated silicone catheters may prevent biofilm formation by both Gram-negative and Gram-positive uropathogens.
Collapse
Affiliation(s)
- Stephany Navarro
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Jane A. Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Thomas Nelius
- Department of Urology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
14
|
Oyardi O, Savage PB, Guzel CB. Effects of Ceragenins and Antimicrobial Peptides on the A549 Cell Line and an In Vitro Co-Culture Model of A549 Cells and Pseudomonas aeruginosa. Pathogens 2022; 11:pathogens11091044. [PMID: 36145476 PMCID: PMC9503685 DOI: 10.3390/pathogens11091044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa is an important pathogen that can adhere to host tissues and epithelial surfaces, especially during chronic infections such as cystic fibrosis (CF) lung infections. The effect of ceragenins and antimicrobial peptides (AMP) on this colonization was investigated in a co-culture infection model. After determining the antimicrobial effects of the substances on P. aeruginosa planktonic cells, their cytotoxicity on the A549 cell line was also determined. After the A549 cell line was infected with P. aeruginosa, the effect of antimicrobials on intracellular bacteria as well as the effects in inhibiting the adhesion of P. aeruginosa were investigated. In addition, LDH release from cells was determined by performing an LDH experiment to understand the cytotoxicity of bacterial infection and antimicrobial treatment on cells. CSA-131 was determined as the antimicrobial agent with the highest antimicrobial activity, while the antimicrobial effects of AMPs were found to be much lower than those of ceragenins. The antimicrobial with the lowest IC50 value was determined as the combination of CSA-131 with Pluronic F127. CSA-13 has been determined to be the most effective antimicrobial with its effectiveness to both intracellular bacteria and bacterial adhesion. Nevertheless, further safety, efficacy, toxicity, and pharmacological studies of ceragenins are needed to evaluate clinical utility.
Collapse
Affiliation(s)
- Ozlem Oyardi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, 34116 Istanbul, Turkey
- Correspondence:
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 86001, USA
| | - Cagla Bozkurt Guzel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
| |
Collapse
|
15
|
Ernst S, Volkov AN, Stark M, Hölscher L, Steinert K, Fetzner S, Hennecke U, Drees SL. Azetidomonamide and Diazetidomonapyridone Metabolites Control Biofilm Formation and Pigment Synthesis in Pseudomonas aeruginosa. J Am Chem Soc 2022; 144:7676-7685. [PMID: 35451837 DOI: 10.1021/jacs.1c13653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthesis of azetidine-derived natural products by the opportunistic pathogen Pseudomonas aeruginosa is controlled by quorum sensing, a process involving the production and sensing of diffusible signal molecules that is decisive for virulence regulation. In this study, we engineered P. aeruginosa for the titratable expression of the biosynthetic aze gene cluster, which allowed the purification and identification of two new products, azetidomonamide C and diazetidomonapyridone. Diazetidomonapyridone was shown to have a highly unusual structure with two azetidine rings and an open-chain diimide moiety. Expression of aze genes strongly increased biofilm formation and production of phenazine and alkyl quinolone virulence factors. Further physiological studies revealed that all effects were mainly mediated by azetidomonamide A and diazetidomonapyridone, whereas azetidomonamides B and C had little or no phenotypic impact. The P450 monooxygenase AzeF which catalyzes a challenging, stereoselective hydroxylation of the azetidine ring converting azetidomonamide C into azetidomonamide A is therefore crucial for biological activity. Based on our findings, we propose this group of metabolites to constitute a new class of diffusible regulatory molecules with community-related effects in P. aeruginosa.
Collapse
Affiliation(s)
- Simon Ernst
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| | - Alexander N Volkov
- VIB Centre for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, Brussels 1050, Belgium.,Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050 Belgium
| | - Melina Stark
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| | - Lea Hölscher
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| | - Katharina Steinert
- Institute for Food Chemistry, University of Münster, Corrensstr. 45, Münster 48149, Germany
| | - Susanne Fetzner
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| | - Ulrich Hennecke
- Organic Chemistry Research Group, Department of Chemistry and Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Steffen Lorenz Drees
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| |
Collapse
|
16
|
Alhandal H, Almesaileikh E, Bhardwaj RG, Al Khabbaz A, Karched M. The Effect of Benzyl Isothiocyanate on the Expression of Genes Encoding NADH Oxidase and Fibronectin-Binding Protein in Oral Streptococcal Biofilms. FRONTIERS IN ORAL HEALTH 2022; 3:863723. [PMID: 35478497 PMCID: PMC9035700 DOI: 10.3389/froh.2022.863723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Recent studies have shown that antimicrobial treatment results in up- or down regulation of several virulence-associated genes in bacterial biofilms. The genes encoding NADH oxidase (nox) and fibronectin-binding protein (fbp) are known to play important roles in biofilm growth of some oral bacterial species. The objective was to study the effect of benzyl isothiocyanate (BITC), an antimicrobial agent from Miswak plant, on the expression of nox and fbp genes in some oral streptococci. The biofilms were treated with BITC and mRNA expression of nox and fbp genes was measured by comparative ΔΔCt method. The highest amount of biofilm mass was produced by A. defectiva, followed by S. gordonii, S. mutans, G. elegans and G. adiacens. Upon treatment with BITC, S. gordonii biofilms showed highest folds change in mRNA expression for both fbp and nox genes followed by S. mutans, A. defectiva, and G. adiacens. G. elegans mRNA levels for nox were extremely low. In conclusion, BITC treatment of the biofilms caused an upregulation of biofilm-associated genes fbp and nox genes in most of the tested species suggesting the significance of these genes in biofilm lifestyle of these oral bacteria and needs further investigation to understand if it contributes to antimicrobial resistance.
Collapse
Affiliation(s)
- Hawraa Alhandal
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Esraa Almesaileikh
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Radhika G. Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Areej Al Khabbaz
- Department of Surgical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
- *Correspondence: Maribasappa Karched
| |
Collapse
|
17
|
Horstmann JC, Laric A, Boese A, Yildiz D, Röhrig T, Empting M, Frank N, Krug D, Müller R, Schneider-Daum N, de Souza Carvalho-Wodarz C, Lehr CM. Transferring Microclusters of P. aeruginosa Biofilms to the Air-Liquid Interface of Bronchial Epithelial Cells for Repeated Deposition of Aerosolized Tobramycin. ACS Infect Dis 2022; 8:137-149. [PMID: 34919390 DOI: 10.1021/acsinfecdis.1c00444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As an alternative to technically demanding and ethically debatable animal models, the use of organotypic and disease-relevant human cell culture models may improve the throughput, speed, and success rate for the translation of novel anti-infectives into the clinic. Besides bacterial killing, host cell viability and barrier function appear as relevant but seldomly measured readouts. Moreover, bacterial virulence factors and signaling molecules are typically not addressed in current cell culture models. Here, we describe a reproducible protocol for cultivating barrier-forming human bronchial epithelial cell monolayers on Transwell inserts and infecting them with microclusters of pre-grown mature Pseudomonas aeruginosa PAO1 biofilms under the air-liquid interface conditions. Bacterial growth and quorum sensing molecules were determined upon tobramycin treatment. The host cell response was simultaneously assessed through cell viability, epithelial barrier function, and cytokine release. By repeated deposition of aerosolized tobramycin after 1, 24, and 48 h, bacterial growth was controlled (reduction from 10 to 4 log10 CFU/mL), which leads to epithelial cell survival for up to 72 h. E-cadherin's cell-cell adhesion protein expression was preserved with the consecutive treatment, and quorum sensing molecules were reduced. However, the bacteria could not be eradicated and epithelial barrier function was impaired, similar to the currently observed situation in the clinic in lack of more efficient anti-infective therapies. Such a human-based in vitro approach has the potential for the preclinical development of novel anti-infectives and nanoscale delivery systems for oral inhalation.
Collapse
Affiliation(s)
- Justus C. Horstmann
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Annabelle Laric
- Center for Molecular Signaling, Saarland University, Kirrbergerstr./Geb. 46, 66421 Homburg, Germany
| | - Annette Boese
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Daniela Yildiz
- Center for Molecular Signaling, Saarland University, Kirrbergerstr./Geb. 46, 66421 Homburg, Germany
| | - Teresa Röhrig
- Department of Drug Design and Optimization (DDOP), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Martin Empting
- Department of Drug Design and Optimization (DDOP), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Nicolas Frank
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Daniel Krug
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | | | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
18
|
Nolan C, Behrends V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111393. [PMID: 34827331 PMCID: PMC8615142 DOI: 10.3390/antibiotics10111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a prime opportunistic pathogen, one of the most important causes of hospital-acquired infections and the major cause of morbidity and mortality in cystic fibrosis lung infections. One reason for the bacterium's pathogenic success is the large array of virulence factors that it can employ. Another is its high degree of intrinsic and acquired resistance to antibiotics. In this review, we first summarise the current knowledge about the regulation of virulence factor expression and production. We then look at the impact of sub-MIC antibiotic exposure and find that the virulence-antibiotic interaction for P. aeruginosa is antibiotic-specific, multifaceted, and complex. Most studies undertaken to date have been in vitro assays in batch culture systems, involving short-term (<24 h) antibiotic exposure. Therefore, we discuss the importance of long-term, in vivo-mimicking models for future work, particularly highlighting the need to account for bacterial physiology, which by extension governs both virulence factor expression and antibiotic tolerance/resistance.
Collapse
|
19
|
Model Systems to Study the Chronic, Polymicrobial Infections in Cystic Fibrosis: Current Approaches and Exploring Future Directions. mBio 2021; 12:e0176321. [PMID: 34544277 PMCID: PMC8546538 DOI: 10.1128/mbio.01763-21] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recent workshop titled “Developing Models to Study Polymicrobial Infections,” sponsored by the Dartmouth Cystic Fibrosis Center (DartCF), explored the development of new models to study the polymicrobial infections associated with the airways of persons with cystic fibrosis (CF). The workshop gathered 35+ investigators over two virtual sessions. Here, we present the findings of this workshop, summarize some of the challenges involved with developing such models, and suggest three frameworks to tackle this complex problem. The frameworks proposed here, we believe, could be generally useful in developing new model systems for other infectious diseases. Developing and validating new approaches to study the complex polymicrobial communities in the CF airway could open windows to new therapeutics to treat these recalcitrant infections, as well as uncovering organizing principles applicable to chronic polymicrobial infections more generally.
Collapse
|
20
|
Oz Y, Nabawy A, Fedeli S, Gupta A, Huang R, Sanyal A, Rotello VM. Biodegradable Poly(lactic acid) Stabilized Nanoemulsions for the Treatment of Multidrug-Resistant Bacterial Biofilms. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40325-40331. [PMID: 34416106 PMCID: PMC8573728 DOI: 10.1021/acsami.1c11265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biofilm infections caused by multidrug-resistant (MDR) bacteria are an urgent global health threat. Incorporation of natural essential oils into biodegradable oil-in-water cross-linked polymeric nanoemulsions (X-NEs) provides effective eradication of MDR bacterial biofilms. The X-NE platform combines the degradability of functionalized poly(lactic acid) polymers with the antimicrobial activity of carvacrol (from oregano oil). These X-NEs exhibited effective penetration and killing of biofilms formed by pathogenic bacteria. Biofilm-fibroblast coculture models demonstrate that X-NEs selectively eliminate bacteria without harming mammalian cells, making them promising candidates for antibiofilm therapeutics.
Collapse
Affiliation(s)
- Yavuz Oz
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
21
|
Evaluation of Antibiotic Tolerance in Pseudomonas aeruginosa for Aminoglycosides and Its Predicted Gene Regulations through In-Silico Transcriptomic Analysis. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa causes chronic infections, such as cystic fibrosis, endocarditis, bacteremia, and sepsis, which are life-threatening and difficult to treat. The lack of antibiotic response in P. aeruginosa is due to adaptive resistance mechanism, which prevents the entry of antibiotics into the cytosol of the cell to achieve tolerance. Among the different groups of antibiotics, aminoglycosides are used as a parenteral antibiotic for the treatment of P. aeruginosa. This study aimed to determine the kinetics of antibiotic tolerance and gene expression changes in P. aeruginosa exposed to amikacin, gentamicin, and tobramycin. These antibiotics were exposed to P. aeruginosa at their MICs and the experimental setup was monitored for 72 h, followed by the measurement of optical density every 12 h. The growth of P. aeruginosa in the MICs of antibiotics represented the kinetics of antibiotic tolerance in amikacin, gentamicin, and tobramycin. The transcriptomic profile of antibiotic exposed P. aeruginosa PA14 was taken from the Gene Expression Omnibus (GEO), NCBI as microarray datasets. The gene expressions of two datasets were compared by test versus control. Tobramycin-exposed P. aeruginosa failed to develop tolerance in MICs of 0.5 µg/mL, 1 µg/mL, and 1.5 µg/mL, whereas amikacin- and gentamicin-treated P. aeruginosa developed tolerance. This illustrated the superior in vitro response of tobramycin over gentamicin and amikacin. Further, in silico transcriptomic analysis of tobramycin-treated P. aeruginosa resulted in differentially expressed genes (DEGs), enriched in 16s rRNA methyltransferase E, B, and L, alginate biosynthesis genes, and several proteins of the type II secretion system (T2SS) and type III secretion system (T3SS). The regulation of mucA in alginate biosynthesis, and gidB in RNA methyltransferases, suggested an increased antibiotic response and a low probability of developing resistance during tobramycin treatment. The use of tobramycin as a parenteral antibiotic with its synergistic combination might combat P. aeruginosa with increased response.
Collapse
|
22
|
Let-7b-5p in vesicles secreted by human airway cells reduces biofilm formation and increases antibiotic sensitivity of P. aeruginosa. Proc Natl Acad Sci U S A 2021; 118:2105370118. [PMID: 34260396 DOI: 10.1073/pnas.2105370118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that forms antibiotic-resistant biofilms, which facilitate chronic infections in immunocompromised hosts. We have previously shown that P. aeruginosa secretes outer-membrane vesicles that deliver a small RNA to human airway epithelial cells (AECs), in which it suppresses the innate immune response. Here, we demonstrate that interdomain communication through small RNA-containing membrane vesicles is bidirectional and that microRNAs (miRNAs) in extracellular vesicles (EVs) secreted by human AECs regulate protein expression, antibiotic sensitivity, and biofilm formation by P. aeruginosa Specifically, human EVs deliver miRNA let-7b-5p to P. aeruginosa, which systematically decreases the abundance of proteins essential for biofilm formation, including PpkA and ClpV1-3, and increases the ability of beta-lactam antibiotics to reduce biofilm formation by targeting the beta-lactamase AmpC. Let-7b-5p is bioinformatically predicted to target not only PpkA, ClpV1, and AmpC in P. aeruginosa but also the corresponding orthologs in Burkholderia cenocepacia, another notorious opportunistic lung pathogen, suggesting that the ability of let-7b-5p to reduce biofilm formation and increase beta-lactam sensitivity is not limited to P. aeruginosa Here, we provide direct evidence for transfer of miRNAs in EVs secreted by eukaryotic cells to a prokaryote, resulting in subsequent phenotypic alterations in the prokaryote as a result of this interdomain communication. Since let-7-family miRNAs are in clinical trials to reduce inflammation and because chronic P. aeruginosa lung infections are associated with a hyperinflammatory state, treatment with let-7b-5p and a beta-lactam antibiotic in nanoparticles or EVs may benefit patients with antibiotic-resistant P. aeruginosa infections.
Collapse
|
23
|
Testing of aerosolized ciprofloxacin nanocarriers on cystic fibrosis airway cells infected with P. aeruginosa biofilms. Drug Deliv Transl Res 2021; 11:1752-1765. [PMID: 34047967 PMCID: PMC8236054 DOI: 10.1007/s13346-021-01002-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/22/2023]
Abstract
The major pathogen found in the lungs of adult cystic fibrosis (CF) patients is Pseudomonas aeruginosa, which builds antibiotic-resistant biofilms. Pulmonary delivery of antibiotics by inhalation has already been proved advantageous in the clinic, but the development of novel anti-infective aerosol medicines is complex and could benefit from adequate in vitro test systems. This work describes the first in vitro model of human bronchial epithelial cells cultivated at the air-liquid interface (ALI) and infected with P. aeruginosa biofilm and its application to demonstrate the safety and efficacy of aerosolized anti-infective nanocarriers. Such a model may facilitate the translation of novel therapeutic modalities into the clinic, reducing animal experiments and the associated problems of species differences. A preformed biofilm of P. aeruginosa PAO1 was transferred to filter-grown monolayers of the human CF cell line (CFBE41o-) at ALI and additionally supplemented with human tracheobronchial mucus. This experimental protocol provides an appropriate time window to deposit aerosolized ciprofloxacin-loaded nanocarriers at the ALI. When applied 1 h post-infection, the nanocarriers eradicated all planktonic bacteria and reduced the biofilm fraction of the pathogen by log 6, while CFBE41o- viability and barrier properties were maintained. The here described complex in vitro model approach may open new avenues for preclinical safety and efficacy testing of aerosol medicines against P. aeruginosa lung infection.
Collapse
|
24
|
Dehbashi S, Alikhani MY, Tahmasebi H, Arabestani MR. The inhibitory effects of Staphylococcus aureus on the antibiotic susceptibility and virulence factors of Pseudomonas aeruginosa: A549 cell line model. AMB Express 2021; 11:50. [PMID: 33786713 PMCID: PMC8010066 DOI: 10.1186/s13568-021-01210-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus often lead to serious lung infections. This study aimed to investigate the role of S. aureus in the expression of the β-lactamase enzymes and virulence factors of P. aeruginosa in the polymicrobial infections of the respiratory tract. Biofilm and planktonic co-culture of P. aeruginosa and S. aureus were performed in the A549 cell line. Then, antibiotic resistance and virulence factors of P. aeruginosa were examined, and the expression of lasR, lasI, algD, mexR, and KPC genes were determined using qPCR. S.aureus decreased β-lactam resistance but increased resistance to tobramycin in the biofilm condition. Furthermore, S.aureus showed a positive effect on reducing resistance to meropenem, doripenem, and tobramycin (except PA-2). Altough it was demonstrated that S.aureus reduced the viability of P. aeruginosa, particularly in the biofilm state, the pathogenicity of the recovered strains of P.aeruginosa increased. Moreover, the gene expression levels for lasR/I and algD were increased in biofilm conditions. The levels of lasI were more prominent in the virulent strain than the β-lactamase producing strain. Furthermore, the expression of KPC was increased in all strains of P. aeruginosa. According to the findings of this study, S. aureus has an inhibitory effect in polymicrobial infections by suppressing the β-lactamase genes and viability of P. aeruginosa. Also, it cooperates with the biofilm-producing P. aeruginosa strains to increase pathogenicity and resistance to tobramycin.
Collapse
|
25
|
Carius P, Horstmann JC, de Souza Carvalho-Wodarz C, Lehr CM. Disease Models: Lung Models for Testing Drugs Against Inflammation and Infection. Handb Exp Pharmacol 2021; 265:157-186. [PMID: 33095300 DOI: 10.1007/164_2020_366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lung diseases have increasingly attracted interest in the past years. The all-known fear of failing treatments against severe pulmonary infections and plans of the pharmaceutical industry to limit research on anti-infectives to a minimum due to cost reasons makes infections of the lung nowadays a "hot topic." Inhalable antibiotics show promising efficacy while limiting adverse systemic effects to a minimum. Moreover, in times of increased life expectancy in developed countries, the treatment of chronic maladies implicating inflammatory diseases, like bronchial asthma or chronic obstructive pulmonary disease, becomes more and more exigent and still lacks proper treatment.In this chapter, we address in vitro models as well as necessary in vivo models to help develop new drugs for the treatment of various severe pulmonary diseases with a strong focus on infectious diseases. By first presenting the essential hands-on techniques for the setup of in vitro models, we intend to combine these with already successful and interesting model approaches to serve as some guideline for the development of future models. The overall goal is to maximize time and cost-efficacy and to minimize attrition as well as animal trials when developing novel anti-infective therapeutics.
Collapse
Affiliation(s)
- Patrick Carius
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Justus C Horstmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Cristiane de Souza Carvalho-Wodarz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany. .,Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
26
|
Hemoglobin Induces Early and Robust Biofilm Development in Streptococcus pneumoniae by a Pathway That Involves comC but Not the Cognate comDE Two-Component System. Infect Immun 2021; 89:IAI.00779-20. [PMID: 33397818 DOI: 10.1128/iai.00779-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae grows in biofilms during both asymptomatic colonization and infection. Pneumococcal biofilms on abiotic surfaces exhibit delayed growth and lower biomass and lack the structures seen on epithelial cells or during nasopharyngeal carriage. We show here that adding hemoglobin to the medium activated unusually early and vigorous biofilm growth in multiple S. pneumoniae serotypes grown in batch cultures on abiotic surfaces. Human blood (but not serum, heme, or iron) also stimulated biofilms, and the pore-forming pneumolysin, ply, was required for this induction. S. pneumoniae transitioning from planktonic into sessile growth in the presence of hemoglobin displayed an extensive transcriptome remodeling within 1 and 2 h. Differentially expressed genes included those involved in the metabolism of carbohydrates, nucleotides, amino acid, and lipids. The switch into adherent states also influenced the expression of several regulatory systems, including the comCDE genes. Inactivation of comC resulted in 67% reduction in biofilm formation, while the deletion of comD or comE had limited or no effect, respectively. These observations suggest a novel route for CSP-1 signaling independent of the cognate ComDE two-component system. Biofilm induction and the associated transcriptome remodeling suggest hemoglobin serves as a signal for host colonization in pneumococcus.
Collapse
|
27
|
Doroudian M, O'Neill A, O'Reilly C, Tynan A, Mawhinney L, McElroy A, Webster SS, MacLoughlin R, Volkov Y, E Armstrong M, A O'Toole G, Prina-Mello A, C Donnelly S. Aerosolized drug-loaded nanoparticles targeting migration inhibitory factors inhibit Pseudomonas aeruginosa-induced inflammation and biofilm formation. Nanomedicine (Lond) 2020; 15:2933-2953. [PMID: 33241979 DOI: 10.2217/nnm-2020-0344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine, which has been shown to promote disease severity in cystic fibrosis. Methods: In this study, aerosolized drug-loaded nanoparticles containing SCD-19, an inhibitor of MIF's tautomerase enzymatic activity, were developed and characterized. Results: The aerosolized nanoparticles had an optimal droplet size distribution for deep lung deposition, with a high degree of biocompatibility and significant cellular uptake. Conclusion: For the first time, we have developed an aerosolized nano-formulation against MIF's enzymatic activity that achieved a significant reduction in the inflammatory response of macrophages, and inhibited Pseudomonas aeruginosa biofilm formation on airway epithelial cells. This represents a potential novel adjunctive therapy for the treatment of P. aeruginosa infection in cystic fibrosis.
Collapse
Affiliation(s)
- Mohammad Doroudian
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew O'Neill
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Ciaran O'Reilly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Aisling Tynan
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Leona Mawhinney
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Aoife McElroy
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Shanice S Webster
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, NH 03755, USA
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland.,School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Yuri Volkov
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Department of Medicine, Trinity College Dublin, Ireland.,Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland.,Department of Histology, Cytology & Embryology, First Moscow State Sechenov Medical University, Russian Federation
| | - Michelle E Armstrong
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - George A O'Toole
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, NH 03755, USA
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Department of Medicine, Trinity College Dublin, Ireland.,Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland.,CRANN Institute & AMBER Centre, Trinity College Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Ireland
| |
Collapse
|
28
|
Abstract
During chronic lung infections, Pseudomonas aeruginosa grows in highly antibiotic-tolerant communities called biofilms that are difficult for the host to clear. We have developed models for studying P. aeruginosa biofilm dispersal in environments that replicate key features of the airway. We found that mechanisms of biofilm dispersal in these models may employ alternative or additional signaling mechanisms, highlighting the importance of the growth environment in dispersal events. We have adapted the models to accommodate apical fluid flow, bacterial clinical isolates, antibiotics, and primary human airway epithelial cells, all of which are relevant to understanding bacterial behaviors in the context of human disease. We also examined dispersal agents in combination with commonly used antipseudomonal antibiotics and saw improved clearance when nitrite was combined with the antibiotic aztreonam. Pseudomonas aeruginosa grows in highly antibiotic-tolerant biofilms during chronic airway infections. Dispersal of bacteria from biofilms may restore antibiotic susceptibility or improve host clearance. We describe models to study biofilm dispersal in the nutritionally complex environment of the human airway. P. aeruginosa was cocultured in the apical surface of airway epithelial cells (AECs) in a perfusion chamber. Dispersal, triggered by sodium nitrite, a nitric oxide (NO) donor, was tracked by live cell microscopy. Next, a static model was developed in which biofilms were grown on polarized AECs without flow. We observed that NO-triggered biofilm dispersal was an energy-dependent process. From the existing literature, NO-mediated biofilm dispersal is regulated by DipA, NbdA, RbdA, and MucR. Interestingly, altered signaling pathways appear to be used in this model, as deletion of these genes failed to block NO-induced biofilm dispersal. Similar results were observed using biofilms grown in an abiotic model on glass with iron-supplemented cell culture medium. In cystic fibrosis, airway mucus contributes to the growth environment, and a wide range of bacterial phenotypes are observed; therefore, we tested biofilm dispersal in a panel of late cystic fibrosis clinical isolates cocultured in the mucus overlying primary human AECs. Finally, we examined dispersal in combination with the clinically used antibiotics ciprofloxacin, aztreonam and tobramycin. In summary, we have validated models to study biofilm dispersal in environments that recapitulate key features of the airway and identified combinations of currently used antibiotics that may enhance the therapeutic effect of biofilm dispersal. IMPORTANCE During chronic lung infections, Pseudomonas aeruginosa grows in highly antibiotic-tolerant communities called biofilms that are difficult for the host to clear. We have developed models for studying P. aeruginosa biofilm dispersal in environments that replicate key features of the airway. We found that mechanisms of biofilm dispersal in these models may employ alternative or additional signaling mechanisms, highlighting the importance of the growth environment in dispersal events. We have adapted the models to accommodate apical fluid flow, bacterial clinical isolates, antibiotics, and primary human airway epithelial cells, all of which are relevant to understanding bacterial behaviors in the context of human disease. We also examined dispersal agents in combination with commonly used antipseudomonal antibiotics and saw improved clearance when nitrite was combined with the antibiotic aztreonam.
Collapse
|
29
|
whISOBAX TM Inhibits Bacterial Pathogenesis and Enhances the Effect of Antibiotics. Antibiotics (Basel) 2020; 9:antibiotics9050264. [PMID: 32438609 PMCID: PMC7277200 DOI: 10.3390/antibiotics9050264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
As bacteria are becoming more resistant to commonly used antibiotics, alternative therapies are being sought. whISOBAX (WH) is a witch hazel extract that is highly stable (tested up to 2 months in 37 °C) and contains a high phenolic content, where 75% of it is hamamelitannin and traces of gallic acid. Phenolic compounds like gallic acid are known to inhibit bacterial growth, while hamamelitannin is known to inhibit staphylococcal pathogenesis (biofilm formation and toxin production). WH was tested in vitro for its antibacterial activity against clinically relevant Gram-positive and Gram-negative bacteria, and its synergy with antibiotics determined using checkerboard assays followed by isobologram analysis. WH was also tested for its ability to suppress staphylococcal pathogenesis, which is the cause of a myriad of resistant infections. Here we show that WH inhibits the growth of all bacteria tested, with variable efficacy levels. The most WH-sensitive bacteria tested were Staphylococcus epidermidis,Staphylococcus aureus, Enterococcus faecium and Enterococcus faecalis, followed by Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli,Pseudomonas aeruginosa, Streptococcus agalactiae and Streptococcus pneumoniae. Furthermore, WH was shown on S. aureus to be synergistic to linezolid and chloramphenicol and cumulative to vancomycin and amikacin. The effect of WH was tested on staphylococcal pathogenesis and shown here to inhibit biofilm formation (tested on S. epidermidis) and toxin production (tested on S. aureus Enterotoxin A (SEA)). Toxin inhibition was also evident in the presence of subinhibitory concentrations of ciprofloxacin that induces pathogenesis. Put together, our study indicates that WH is very effective in inhibiting the growth of multiple types of bacteria, is synergistic to antibiotics, and is also effective against staphylococcal pathogenesis, often the cause of persistent infections. Our study thus suggests the benefits of using WH to combat various types of bacterial infections, especially those that involve resistant persistent bacterial pathogens.
Collapse
|
30
|
Availability of Zinc Impacts Interactions between Streptococcus sanguinis and Pseudomonas aeruginosa in Coculture. J Bacteriol 2020; 202:JB.00618-19. [PMID: 31685535 DOI: 10.1128/jb.00618-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Airway infections associated with cystic fibrosis (CF) are polymicrobial. We reported previously that clinical isolates of Pseudomonas aeruginosa promote the growth of a variety of streptococcal species. To explore the mechanistic basis of this interaction, we performed a genetic screen to identify mutants of Streptococcus sanginuis SK36 whose growth was no longer enhanced by P. aeruginosa PAO1. Mutations in the zinc uptake systems of S. sanguinis SK36 reduced growth of these strains by 1 to 3 logs compared to that of wild-type S. sanguinis SK36 when grown in coculture with P. aeruginosa PAO1, and exogenous zinc (0.1 to 10 μM) rescued the coculture defect of zinc uptake mutants of S. sanguinis SK36. Zinc uptake mutants of S. sanguinis SK36 had no obvious growth defect in monoculture. Consistent with competition for zinc driving coculture dynamics, S. sanguinis SK36 grown in coculture with P. aeruginosa showed increased expression of zinc uptake genes compared to that of S. sanguinis grown alone. Strains of P. aeruginosa PAO1 defective in zinc transport also supported ∼2-fold more growth by S. sanguinis compared to that in coculture with wild-type P. aeruginosa PAO1. An analysis of 118 CF sputum samples revealed that total zinc levels varied from ∼5 to 145 μM. At relatively low zinc levels, Pseudomonas and Streptococcus spp. were found in approximately equal abundance; at higher zinc levels, we observed a decline in relative abundance of Streptococcus spp., perhaps as a result of increasing zinc toxicity. Together, our data indicate that the relative abundances of these microbes in the CF airway may be impacted by zinc levels.IMPORTANCE Polymicrobial infections in CF cases likely impact patient health, but the mechanism(s) underlying such interactions is poorly understood. Here, we show using an in vitro model system that interactions between Pseudomonas and Streptococcus are modulated by zinc availability, and clinical data are consistent with this model. Together with previous studies, our work supports a role for metal homeostasis as a key factor driving microbial interactions.
Collapse
|
31
|
Ramos-Hegazy L, Chakravarty S, Anderson GG. Phosphoglycerate mutase affects Stenotrophomonas maltophilia attachment to biotic and abiotic surfaces. Microbes Infect 2019; 22:60-64. [PMID: 31430538 DOI: 10.1016/j.micinf.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 10/26/2022]
Abstract
Stenotrophomonas maltophilia biofilm formation is of increasing medical concern, particularly for lung infections. However, the molecular mechanisms facilitating the biofilm lifestyle in S. maltophilia are poorly understood. We generated and screened a transposon mutant library for mutations that lead to altered biofilm formation compared to wild type. One of these mutations, in the gene for glycolytic enzyme phosphoglycerate mutase (gpmA), resulted in impaired attachment on abiotic and biotic surfaces. As adherence to a surface is the initial step in biofilm developmental processes, our results reveal a unique factor that could affect S. maltophilia biofilm initiation and, possibly, subsequent development.
Collapse
Affiliation(s)
- Layla Ramos-Hegazy
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | | | - Gregory G Anderson
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
32
|
Rogers GB, Taylor SL, Hoffman LR, Burr LD. The impact of CFTR modulator therapies on CF airway microbiology. J Cyst Fibros 2019; 19:359-364. [PMID: 31416774 DOI: 10.1016/j.jcf.2019.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
Major historical advances in cystic fibrosis (CF) respiratory clinical care, including mechanical airway clearance and inhaled medications, have aimed to address the consequences of cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. In contrast, CFTR modulator therapies instead target the underlying protein defect that leads to CF lung disease. The extent to which these therapies might reduce susceptibility to chronic lung infections remains to be seen. However, by improving airway clearance, reducing the requirement for antibiotics, and in some cases, through direct antimicrobial effects, CFTR modulators are likely to result in substantial changes in CF airway microbiology. These changes could contribute substantially to the clinical benefit associated with modulator therapies, as well as providing an important indicator of treatment efficacy and residual pathophysiology. Indeed, the widespread introduction of modulator therapies might require us to re-consider our models of CF airway microbiology.
Collapse
Affiliation(s)
- Geraint B Rogers
- Infection and Immunity Theme, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia; SAHMRI Microbiome Research Laboratory, Flinders University School of Medicine, Adelaide, SA, Australia.
| | - Steven L Taylor
- Infection and Immunity Theme, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia; SAHMRI Microbiome Research Laboratory, Flinders University School of Medicine, Adelaide, SA, Australia
| | - Lucas R Hoffman
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, USA; Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Lucy D Burr
- Department of Respiratory Medicine, Mater Health Services, South Brisbane, QLD, Australia; Mater Research - University of Queensland, Aubigny Place, South Brisbane, QLD, Australia
| |
Collapse
|
33
|
Sturge CR, Felder-Scott CF, Pifer R, Pybus C, Jain R, Geller BL, Greenberg DE. AcrAB-TolC Inhibition by Peptide-Conjugated Phosphorodiamidate Morpholino Oligomers Restores Antibiotic Activity in Vitro and in Vivo. ACS Infect Dis 2019; 5:1446-1455. [PMID: 31119935 DOI: 10.1021/acsinfecdis.9b00123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overexpression of bacterial efflux pumps is a driver of increasing antibiotic resistance in Gram-negative pathogens. The AcrAB-TolC efflux pump has been implicated in resistance to a number of important antibiotic classes including fluoroquinolones, macrolides, and β-lactams. Antisense technology, such as peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs), can be utilized to inhibit expression of efflux pumps and restore susceptibility to antibiotics. Targeting of the AcrAB-TolC components with PPMOs revealed a sequence for acrA, which was the most effective at reducing antibiotic efflux. This acrA-PPMO enhances the antimicrobial effects of the levofloxacin and azithromycin in a panel of clinical Enterobacteriaceae strains. Additionally, acrA-PPMO enhanced azithromycin in vivo in a K. pneumoniae septicemia model. PPMOs targeting the homologous resistance-nodulation-division (RND)-efflux system in P. aeruginosa, MexAB-OprM, also enhanced potency to several classes of antibiotics in a panel of strains and in a cell culture infection model. These data suggest that PPMOs can be used as an adjuvant in antibiotic therapy to increase the efficacy or extend the spectrum of useful antibiotics against a variety of Gram-negative infections.
Collapse
Affiliation(s)
- Carolyn R. Sturge
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Christina F. Felder-Scott
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Reed Pifer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Christine Pybus
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Raksha Jain
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bruce L. Geller
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, United States
| | - David E. Greenberg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
34
|
Bordetella bronchiseptica Diguanylate Cyclase BdcA Regulates Motility and Is Important for the Establishment of Respiratory Infection in Mice. J Bacteriol 2019; 201:JB.00011-19. [PMID: 31209073 DOI: 10.1128/jb.00011-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/11/2019] [Indexed: 11/20/2022] Open
Abstract
Bacteria can be motile and planktonic or, alternatively, sessile and participating in the biofilm mode of growth. The transition between these lifestyles can be regulated by a second messenger, cyclic dimeric GMP (c-di-GMP). High intracellular c-di-GMP concentration correlates with biofilm formation and motility inhibition in most bacteria, including Bordetella bronchiseptica, which causes respiratory tract infections in mammals and forms biofilms in infected mice. We previously described the diguanylate cyclase BdcA as involved in c-di-GMP synthesis and motility regulation in B. bronchiseptica; here, we further describe the mechanism whereby BdcA is able to regulate motility and biofilm formation. Amino acid replacement of GGDEF with GGAAF in BdcA is consistent with the conclusion that diguanylate cyclase activity is necessary for biofilm formation and motility regulation, although we were unable to confirm the stability of the mutant protein. In the absence of the bdcA gene, B. bronchiseptica showed enhanced motility, strengthening the hypothesis that BdcA regulates motility in B. bronchiseptica We showed that c-di-GMP-mediated motility inhibition involved regulation of flagellin expression, as high c-di-GMP levels achieved by expressing BdcA significantly reduced the level of flagellin protein. We also demonstrated that protein BB2109 is necessary for BdcA activity, motility inhibition, and biofilm formation. Finally, absence of the bdcA gene affected bacterial infection, implicating BdcA-regulated functions as important for bacterium-host interactions. This work supports the role of c-di-GMP in biofilm formation and motility regulation in B. bronchiseptica, as well as its impact on pathogenesis.IMPORTANCE Pathogenesis of Bordetella spp., like that of a number of other pathogens, involves biofilm formation. Biofilms increase tolerance to biotic and abiotic factors and are proposed as reservoirs of microbes for transmission to other organs (trachea, lungs) or other hosts. Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is a second messenger that regulates transition between biofilm and planktonic lifestyles. In Bordetella bronchiseptica, high c-di-GMP levels inhibit motility and favor biofilm formation. In the present work, we characterized a B. bronchiseptica diguanylate cyclase, BdcA, which regulates motility and biofilm formation and affects the ability of B. bronchiseptica to colonize the murine respiratory tract. These results provide us with a better understanding of how B. bronchiseptica can infect a host.
Collapse
|
35
|
Efficacy of Aerosolized Rifaximin versus Tobramycin for Treatment of Pseudomonas aeruginosa Pneumonia in Mice. Antimicrob Agents Chemother 2019; 63:AAC.02341-18. [PMID: 31010865 DOI: 10.1128/aac.02341-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/16/2019] [Indexed: 02/08/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that can cause chronic lung infections in patients with cystic fibrosis (CF). The current preferred treatment for CF lung infections includes inhaled tobramycin (TOB); however, studies suggest TOB cannot effectively inhibit biofilm formation. Using an NIH small compounds drug library approved for safe use in humans, we identified rifaximin (RFX), a semisynthetic, rifamycin family, nonsystemic antibiotic that inhibits alginate production and growth in P. aeruginosa Inhibition of alginate production was further analyzed using the uronic acid carbazole assay and a promoter reporter assay that measures the transcription of the alginate biosynthetic operon. Compared to TOB, RFX significantly reduced alginate production in laboratory and CF sputum isolates of P. aeruginosa In addition, RFX showed a narrow range of MICs when measured with multidrug-resistant bacterial species of clinical relevance, synergistic activities with TOB or amikacin against clinical isolates, as well as reduction toward in vitro preformed biofilms. In C57BL/6 mice, penetration of nebulized TOB into the lungs was shown at a higher level than that of RFX. Further, in vivo assessment using a DBA/2 mouse lung infection model found increased survival rates with a single-dose treatment of nebulized RFX and decreased P. aeruginosa PAO1 bioburden with a multiple-dose treatment of RFX plus TOB. In addition, mice treated with a single exposure to dimethyl sulfoxide (DMSO), a solvent that dissolves RFX, showed no apparent toxicity. In summary, RFX may be used to supplement TOB inhalation therapy to increase efficacy against P. aeruginosa biofilm infections.
Collapse
|
36
|
An SQ, Murtagh J, Twomey KB, Gupta MK, O'Sullivan TP, Ingram R, Valvano MA, Tang JL. Modulation of antibiotic sensitivity and biofilm formation in Pseudomonas aeruginosa by interspecies signal analogues. Nat Commun 2019; 10:2334. [PMID: 31133642 PMCID: PMC6536496 DOI: 10.1038/s41467-019-10271-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 04/24/2019] [Indexed: 11/15/2022] Open
Abstract
Pseudomonas aeruginosa, a significant opportunistic pathogen, can participate in inter-species communication through signaling by cis-2-unsaturated fatty acids of the diffusible signal factor (DSF) family. Sensing these signals leads to altered biofilm formation and increased tolerance to various antibiotics, and requires the histidine kinase PA1396. Here, we show that the membrane-associated sensory input domain of PA1396 has five transmembrane helices, two of which are required for DSF sensing. DSF binding is associated with enhanced auto-phosphorylation of PA1396 incorporated into liposomes. Further, we examined the ability of synthetic DSF analogues to modulate or inhibit PA1396 activity. Several of these analogues block the ability of DSF to trigger auto-phosphorylation and gene expression, whereas others act as inverse agonists reducing biofilm formation and antibiotic tolerance, both in vitro and in murine infection models. These analogues may thus represent lead compounds to develop novel adjuvants improving the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Shi-Qi An
- National Biofilms Innovation Centers, Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, BT9 7BL, UK.
| | - Julie Murtagh
- School of Microbiology, Biosciences Institute, University College Cork, Cork, T12, Ireland
| | - Kate B Twomey
- School of Microbiology, Biosciences Institute, University College Cork, Cork, T12, Ireland
| | - Manoj K Gupta
- School of Chemistry, University College Cork, Cork, T12, Ireland
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123029, Haryana, India
| | - Timothy P O'Sullivan
- School of Chemistry, University College Cork, Cork, T12, Ireland
- School of Pharmacy, University College Cork, Cork, T12, Ireland
| | - Rebecca Ingram
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, BT9 7BL, UK
| | - Miguel A Valvano
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, BT9 7BL, UK.
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| |
Collapse
|
37
|
Marine Bacteria, A Source for Alginolytic Enzyme to Disrupt Pseudomonas aeruginosa Biofilms. Mar Drugs 2019; 17:md17050307. [PMID: 31137680 PMCID: PMC6562671 DOI: 10.3390/md17050307] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa biofilms are typically associated with the chronic lung infection of cystic fibrosis (CF) patients and represent a major challenge for treatment. This opportunistic bacterial pathogen secretes alginate, a polysaccharide that is one of the main components of its biofilm. Targeting this major biofilm component has emerged as a tempting therapeutic strategy for tackling biofilm-associated bacterial infections. The enormous potential in genetic diversity of the marine microbial community make it a valuable resource for mining activities responsible for a broad range of metabolic processes, including the alginolytic activity responsible for degrading alginate. A collection of 36 bacterial isolates were purified from marine water based on their alginolytic activity. These isolates were identified based on their 16S rRNA gene sequences. Pseudoalteromonas sp. 1400 showed the highest alginolytic activity and was further confirmed to produce the enzyme alginate lyase. The purified alginate lyase (AlyP1400) produced by Pseudoalteromonas sp. 1400 showed a band of 23 KDa on a protein electrophoresis gel and exhibited a bifunctional lyase activity for both poly-mannuronic acid and poly-glucuronic acid degradation. A tryptic digestion of this gel band analyzed by liquid chromatography-tandem mass spectrometry confirmed high similarity to the alginate lyases in polysaccharide lyase family 18. The purified alginate lyase showed a maximum relative activity at 30 °C at a slightly acidic condition. It decreased the sodium alginate viscosity by over 90% and reduced the P. aeruginosa (strain PA14) biofilms by 69% after 24 h of incubation. The combined activity of AlyP1400 with carbenicillin or ciprofloxacin reduced the P. aeruginosa biofilm thickness, biovolume and surface area in a flow cell system. The present data revealed that AlyP1400 combined with conventional antibiotics helped to disrupt the biofilms produced by P. aeruginosa and can be used as a promising combinational therapeutic strategy.
Collapse
|
38
|
Crabbé A, Ostyn L, Staelens S, Rigauts C, Risseeuw M, Dhaenens M, Daled S, Van Acker H, Deforce D, Van Calenbergh S, Coenye T. Host metabolites stimulate the bacterial proton motive force to enhance the activity of aminoglycoside antibiotics. PLoS Pathog 2019; 15:e1007697. [PMID: 31034512 PMCID: PMC6508747 DOI: 10.1371/journal.ppat.1007697] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/09/2019] [Accepted: 03/11/2019] [Indexed: 11/27/2022] Open
Abstract
Antibiotic susceptibility of bacterial pathogens is typically evaluated using in vitro assays that do not consider the complex host microenvironment. This may help explaining a significant discrepancy between antibiotic efficacy in vitro and in vivo, with some antibiotics being effective in vitro but not in vivo or vice versa. Nevertheless, it is well-known that antibiotic susceptibility of bacteria is driven by environmental factors. Lung epithelial cells enhance the activity of aminoglycoside antibiotics against the opportunistic pathogen Pseudomonas aeruginosa, yet the mechanism behind is unknown. The present study addresses this gap and provides mechanistic understanding on how lung epithelial cells stimulate aminoglycoside activity. To investigate the influence of the local host microenvironment on antibiotic activity, an in vivo-like three-dimensional (3-D) lung epithelial cell model was used. We report that conditioned medium of 3-D lung cells, containing secreted but not cellular components, potentiated the bactericidal activity of aminoglycosides against P. aeruginosa, including resistant clinical isolates, and several other pathogens. In contrast, conditioned medium obtained from the same cell type, but grown as conventional (2-D) monolayers did not influence antibiotic efficacy. We found that 3-D lung cells secreted endogenous metabolites (including succinate and glutamate) that enhanced aminoglycoside activity, and provide evidence that bacterial pyruvate metabolism is linked to the observed potentiation of antimicrobial activity. Biochemical and phenotypic assays indicated that 3-D cell conditioned medium stimulated the proton motive force (PMF), resulting in increased bacterial intracellular pH. The latter stimulated antibiotic uptake, as determined using fluorescently labelled tobramycin in combination with flow cytometry analysis. Our findings reveal a cross-talk between host and bacterial metabolic pathways, that influence downstream activity of antibiotics. Understanding the underlying basis of the discrepancy between the activity of antibiotics in vitro and in vivo may lead to improved diagnostic approaches and pave the way towards novel means to stimulate antibiotic activity. There is a poor correlation between the activity of antibiotics in the laboratory and in patients, including in several infectious diseases of the respiratory tract. What may help explaining differences between antibiotic activity in vitro and in vivo is that current antibiotic susceptibility tests do not consider the in vivo lung environment. The lung environment contains many factors that may influence bacterial susceptibility to antibiotics. This includes lung epithelial cells, which have been shown to improve the activity of aminoglycoside antibiotics. Yet, how lung epithelial cells increase aminoglycoside activity is currently unknown. Here, we cultured lung epithelial cells in an in vivo-like model and found that they secrete metabolites that enhance the activity of aminoglycoside antibiotics. We found that host cell secretions increased antibiotic uptake through stimulation of bacterial metabolism, which in turn resulted in enhanced activity. Our findings highlight that cross-talk between host and bacterial metabolisms contributes to the efficacy of antibiotic treatment. Understanding how the host metabolism influences antibiotic activity may open up therapeutic avenues to exploit host metabolism for improving antibiotic activity and help explaining discrepancies between antibiotic efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- * E-mail:
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Sorien Staelens
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Charlotte Rigauts
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Martijn Risseeuw
- Laboratory for Medicinal Chemistry, Ghent University, Ghent, Belgium
| | - Maarten Dhaenens
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Simon Daled
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | | | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Scott JE, Li K, Filkins LM, Zhu B, Kuchma SL, Schwartzman JD, O'Toole GA. Pseudomonas aeruginosa Can Inhibit Growth of Streptococcal Species via Siderophore Production. J Bacteriol 2019; 201:e00014-19. [PMID: 30718303 PMCID: PMC6436353 DOI: 10.1128/jb.00014-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 12/30/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that causes patients to accumulate thick, dehydrated mucus in the lung and develop chronic, polymicrobial infections due to reduced mucociliary clearance. These chronic polymicrobial infections and subsequent decline in lung function are significant factors in the morbidity and mortality of CF. Pseudomonas aeruginosa and Streptococcus spp. are among the most prevalent organisms in the CF lung; the presence of P. aeruginosa correlates with lung function decline, and the Streptococcus milleri group (SMG), a subgroup of the viridans streptococci, is associated with exacerbations in patients with CF. Here we characterized the interspecies interactions that occur between these two genera. We demonstrated that multiple P. aeruginosa laboratory strains and clinical CF isolates promote the growth of multiple SMG strains and oral streptococci in an in vitro coculture system. We investigated the mechanism by which P. aeruginosa enhances growth of streptococci by screening for mutants of P. aeruginosa PA14 that are unable to enhance Streptococcus growth, and we identified the P. aeruginosapqsL::TnM mutant, which failed to promote growth of Streptococcus constellatus and S. sanguinis Characterization of the P. aeruginosa ΔpqsL mutant revealed that this strain cannot promote Streptococcus growth. Our genetic data and growth studies support a model whereby the P. aeruginosa ΔpqsL mutant overproduces siderophores and thus likely outcompetes Streptococcus sanguinis for limited iron. We propose a model whereby competition for iron represents one important means of interaction between P. aeruginosa and Streptococcus spp.IMPORTANCE Cystic fibrosis (CF) lung infections are increasingly recognized for their polymicrobial nature. These polymicrobial infections may alter the biology of the organisms involved in CF-related infections, leading to changes in growth, virulence, and/or antibiotic tolerance, and could thereby affect patient health and response to treatment. In this study, we demonstrate interactions between P. aeruginosa and streptococci using a coculture model and show that one interaction between these microbes is likely competition for iron. Thus, these data indicate that one CF pathogen may influence the growth of another, and they add to our limited knowledge of polymicrobial interactions in the CF airway.
Collapse
Affiliation(s)
- Jessie E Scott
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Kewei Li
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Laura M Filkins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bin Zhu
- VCU Philips Institute for Oral Health Research, Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sherry L Kuchma
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joseph D Schwartzman
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
40
|
Araújo CL, Alves J, Nogueira W, Pereira LC, Gomide AC, Ramos R, Azevedo V, Silva A, Folador A. Prediction of new vaccine targets in the core genome of Corynebacterium pseudotuberculosis through omics approaches and reverse vaccinology. Gene 2019; 702:36-45. [PMID: 30928361 DOI: 10.1016/j.gene.2019.03.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022]
Abstract
Corynebacterium pseudotuberculosis is the etiologic agent of veterinary relevance diseases, such as caseous lymphadenitis, affecting different animal species causing damage to the global agribusiness. So far, there are no completely effective treatment methods to overcome the impacts caused by this pathogen. Several genomes of the species are deposited on public databases, allowing the execution of studies related to the pan-genomic approach. In this study, we used an integrated in silico workflow to prospect novel putative targets using the core genome, a set of shared genes among 65 C. pseudotuberculosis strains. Subsequently, through RNA-Seq data of the same abiotic stresses in two strains, we selected only induced genes to compose the reverse vaccinology workflow based in two different strategies. Our results predicted six probable antigens in both analysis, which indicates that they have a strong potential to be used in further studies as vaccine targets against this bacterium.
Collapse
Affiliation(s)
- Carlos Leonardo Araújo
- Laboratory of Genomics and Bioinformatics, Center of Genomics and System Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Jorianne Alves
- Laboratory of Genomics and Bioinformatics, Center of Genomics and System Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Wylerson Nogueira
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lino César Pereira
- Laboratory of Genomics and Bioinformatics, Center of Genomics and System Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Anne Cybelle Gomide
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rommel Ramos
- Laboratory of Genomics and Bioinformatics, Center of Genomics and System Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Vasco Azevedo
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and System Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Adriana Folador
- Laboratory of Genomics and Bioinformatics, Center of Genomics and System Biology, Federal University of Pará, Belém, Pará, Brazil.
| |
Collapse
|
41
|
Ngernpimai S, Geng Y, Makabenta JM, Landis RF, Keshri P, Gupta A, Li CH, Chompoosor A, Rotello VM. Rapid Identification of Biofilms Using a Robust Multichannel Polymer Sensor Array. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11202-11208. [PMID: 30830743 PMCID: PMC6537895 DOI: 10.1021/acsami.9b00839] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Infections caused by bacterial biofilms are challenging to diagnose because of the complexity of both the bacteria and the heterogeneous biofilm matrix. We report here a robust polymer-based sensor array that uses selective interactions between polymer sensor elements and the biofilm matrix to identify bacteria species. In this array, an appropriate choice of fluorophore enabled excimer formation and interpolymer FRET, generating six output channels from three polymers. Selective multivalent interactions of these polymers with the biofilm matrices caused differential changes in fluorescent patterns, providing a species-based signature of the biofilm. The real-world potential of the platform was further validated through identification of mixed-species bacterial biofilms and discrimination of biofilms in a mammalian cell-biofilm co-culture wound model.
Collapse
Affiliation(s)
- Sawinee Ngernpimai
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
- Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yingying Geng
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Jessa Marie Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Ryan F. Landis
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Akash Gupta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Cheng-Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Apiwat Chompoosor
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
42
|
Dai X, Yu Y, Wei X, Dai X, Duan X, Yu C, Zhang X, Li C. Peptide-Conjugated CuS Nanocomposites for NIR-Triggered Ablation of Pseudomonas aeruginosa Biofilm. ACS APPLIED BIO MATERIALS 2019; 2:1614-1622. [DOI: 10.1021/acsabm.9b00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiaomei Dai
- The Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yunjian Yu
- The Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Xiaosong Wei
- The Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Xijuan Dai
- The Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Xiaozhuang Duan
- The Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Cong Yu
- The Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Xinge Zhang
- The Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Chaoxing Li
- The Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| |
Collapse
|
43
|
Grassi L, Batoni G, Ostyn L, Rigole P, Van den Bossche S, Rinaldi AC, Maisetta G, Esin S, Coenye T, Crabbé A. The Antimicrobial Peptide lin-SB056-1 and Its Dendrimeric Derivative Prevent Pseudomonas aeruginosa Biofilm Formation in Physiologically Relevant Models of Chronic Infections. Front Microbiol 2019; 10:198. [PMID: 30800115 PMCID: PMC6376900 DOI: 10.3389/fmicb.2019.00198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising templates for the development of novel antibiofilm drugs. Despite the large number of studies on screening and optimization of AMPs, only a few of these evaluated the antibiofilm activity in physiologically relevant model systems. Potent in vitro activity of AMPs often does not translate into in vivo effectiveness due to the interference of the host microenvironment with peptide stability/availability. Hence, mimicking the complex environment found in biofilm-associated infections is essential to predict the clinical potential of novel AMP-based antimicrobials. In the present study, we examined the antibiofilm activity of the semi-synthetic peptide lin-SB056-1 and its dendrimeric derivative (lin-SB056-1)2-K against Pseudomonas aeruginosa in an in vivo-like three-dimensional (3-D) lung epithelial cell model and an in vitro wound model (consisting of an artificial dermis and blood components at physiological levels). Although moderately active when tested alone, lin-SB056-1 was effective in reducing P. aeruginosa biofilm formation in association with 3-D lung epithelial cells in combination with the chelating agent EDTA. The dimeric derivative (lin-SB056-1)2-K demonstrated an enhanced biofilm-inhibitory activity as compared to both lin-SB056-1 and the lin-SB056-1/EDTA combination, reducing the number of biofilm-associated bacteria up to 3-Log units at concentrations causing less than 20% cell death. Biofilm inhibition by (lin-SB056-1)2-K was reported both for the reference strain PAO1 and cystic fibrosis lung isolates of P. aeruginosa. In addition, using fluorescence microscopy, a significant decrease in biofilm-like structures associated with 3-D cells was observed after peptide exposure. Interestingly, effectiveness of (lin-SB056-1)2-K was also demonstrated in the wound model with a reduction of up to 1-Log unit in biofilm formation by P. aeruginosa PAO1 and wound isolates. Overall, combination treatment and peptide dendrimerization emerged as promising strategies to improve the efficacy of AMPs, especially under challenging host-mimicking conditions. Furthermore, the results of the present study underlined the importance of evaluating the biological properties of novel AMPs in in vivo-like model systems representative of specific infectious sites in order to make a more realistic prediction of their therapeutic success, and avoid the inclusion of unpromising peptides in animal studies and clinical trials.
Collapse
Affiliation(s)
- Lucia Grassi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | - Andrea C Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
44
|
Chen C, Zhang X, Lin Q, Remlinger NT, Gilbert TW, Di YP. Urinary Bladder Matrix Protects Host in a Murine Model of Bacterial-Induced Lung Infection. Tissue Eng Part A 2019; 25:257-270. [DOI: 10.1089/ten.tea.2018.0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chen Chen
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaoping Zhang
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qiao Lin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Thomas W. Gilbert
- ACell, Inc., Columbia, Maryland
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Koeppen K, Barnaby R, Jackson AA, Gerber SA, Hogan DA, Stanton BA. Tobramycin reduces key virulence determinants in the proteome of Pseudomonas aeruginosa outer membrane vesicles. PLoS One 2019; 14:e0211290. [PMID: 30682135 PMCID: PMC6347270 DOI: 10.1371/journal.pone.0211290] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Tobramycin is commonly used to treat Pseudomonas aeruginosa lung infections in patients with Cystic Fibrosis (CF). Tobramycin treatment leads to increased lung function and fewer clinical exacerbations in CF patients, and modestly reduces the density of P. aeruginosa in the lungs. P. aeruginosa resides primarily in the mucus overlying lung epithelial cells and secretes outer membrane vesicles (OMVs) that diffuse through the mucus and fuse with airway epithelial cells, thus delivering virulence factors into the cytoplasm that modify the innate immune response. The goal of this study was to test the hypothesis that Tobramycin reduces the abundance of virulence factors in OMVs secreted by P. aeruginosa. Characterization of the proteome of OMVs isolated from control or Tobramycin-exposed P. aeruginosa strain PAO1 revealed that Tobramycin reduced several OMV-associated virulence determinants, including AprA, an alkaline protease that enhances P. aeruginosa survival in the lung, and is predicted to contribute to the inhibitory effect of P. aeruginosa on Phe508del-CFTR Cl- secretion by primary human bronchial epithelial cells. Deletion of the gene encoding AprA reduced the inhibitory effect of P. aeruginosa on Phe508del-CFTR Cl- secretion. Moreover, as predicted by our proteomic analysis, OMVs isolated from Tobramycin treated P. aeruginosa had a diminished inhibitory effect on Phe508del-CFTR Cl- secretion compared to OMVs isolated from control P. aeruginosa. Taken together, our proteomic analysis of OMVs and biological validation suggest that Tobramycin may improve lung function in CF patients infected with P. aeruginosa by reducing several key virulence factors in OMVs that reduce CFTR Cl- secretion, which is essential for bacterial clearance from the lungs.
Collapse
Affiliation(s)
- Katja Koeppen
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Angelyca A. Jackson
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Scott A. Gerber
- Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
46
|
Refining the Application of Microbial Lipids as Tracers of Staphylococcus aureus Growth Rates in Cystic Fibrosis Sputum. J Bacteriol 2018; 200:JB.00365-18. [PMID: 30249710 DOI: 10.1128/jb.00365-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/19/2018] [Indexed: 02/04/2023] Open
Abstract
Chronic lung infections in cystic fibrosis (CF) could be treated more effectively if the effects of antimicrobials on pathogens in situ were known. Here, we compared changes in the microbial community composition and pathogen growth rates in longitudinal studies of seven pediatric CF patients undergoing intravenous antibiotic administration during pulmonary exacerbations. The microbial community composition was determined by counting rRNA with NanoString DNA analysis, and growth rates were obtained by incubating CF sputum with heavy water and tracing incorporation of deuterium into two branched-chain ("anteiso") fatty acids (a-C15:0 and a-C17:0) using gas chromatography-mass spectrometry (GC/MS). Prior to this study, both lipids were thought to be specific for Staphylococcaceae; hence, their isotopic enrichment was interpreted as a growth proxy for Staphylococcus aureus Our experiments revealed, however, that Prevotella is also a relevant microbial producer of a-C17:0 fatty acid in some CF patients; thus, deuterium incorporation into these lipids is better interpreted as a more general pathogen growth rate proxy. Even accounting for a small nonmicrobial background source detected in some patient samples, a-C15:0 fatty acid still appears to be a relatively robust proxy for CF pathogens, revealing a median generation time of ∼1.5 days, similar to prior observations. Contrary to our expectation, pathogen growth rates remained relatively stable throughout exacerbation treatment. We suggest two straightforward "best practices" for application of stable-isotope probing to CF sputum metabolites: (i) parallel determination of microbial community composition in CF sputum using culture-independent tools and (ii) assessing background levels of the diagnostic metabolite.IMPORTANCE In chronic lung infections, populations of microbial pathogens change and mature in ways that are often unknown, which makes it challenging to identify appropriate treatment options. A promising tool to better understand the physiology of microorganisms in a patient is stable-isotope probing, which we previously developed to estimate the growth rates of S. aureus in cystic fibrosis (CF) sputum. Here, we tracked microbial communities in a cohort of CF patients and found that anteiso fatty acids can also originate from other sources in CF sputum. This awareness led us to develop a new workflow for the application of stable-isotope probing in this context, improving our ability to estimate pathogen generation times in clinical samples.
Collapse
|
47
|
Barnaby R, Koeppen K, Stanton BA. Cyclodextrins reduce the ability of Pseudomonas aeruginosa outer-membrane vesicles to reduce CFTR Cl - secretion. Am J Physiol Lung Cell Mol Physiol 2018; 316:L206-L215. [PMID: 30358440 DOI: 10.1152/ajplung.00316.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa secretes outer-membrane vesicles (OMVs) that fuse with cholesterol-rich lipid rafts in the apical membrane of airway epithelial cells and decrease wt-CFTR Cl- secretion. Herein, we tested the hypothesis that a reduction of the cholesterol content of CF human airway epithelial cells by cyclodextrins reduces the inhibitory effect of OMVs on VX-809 (lumacaftor)-stimulated Phe508del CFTR Cl- secretion. Primary CF bronchial epithelial cells and CFBE cells were treated with vehicle, hydroxypropyl-β-cyclodextrin (HPβCD), or methyl-β-cyclodextrin (MβCD), and the effects of OMVs secreted by P. aeruginosa on VX-809 stimulated Phe508del CFTR Cl- secretion were measured in Ussing chambers. Neither HPβCD nor MβCD were cytotoxic, and neither altered Phe508del CFTR Cl- secretion. Both cyclodextrins reduced OMV inhibition of VX-809-stimulated Phe508del-CFTR Cl- secretion when added to the apical side of CF monolayers. Both cyclodextrins also reduced the ability of P. aeruginosa to form biofilms and suppressed planktonic growth of P. aeruginosa. Our data suggest that HPβCD, which is in clinical trials for Niemann-Pick Type C disease, and MβCD, which has been approved by the U.S. Food and Drug Administration for use in solubilizing lipophilic drugs, may enhance the clinical efficacy of VX-809 in CF patients when added to the apical side of airway epithelial cells, and reduce planktonic growth and biofilm formation by P. aeruginosa. Both effects would be beneficial to CF patients.
Collapse
Affiliation(s)
- Roxanna Barnaby
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Katja Koeppen
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Bruce A Stanton
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
48
|
Rodríguez-Sevilla G, Rigauts C, Vandeplassche E, Ostyn L, Mahíllo-Fernández I, Esteban J, Peremarch CPJ, Coenye T, Crabbé A. Influence of three-dimensional lung epithelial cells and interspecies interactions on antibiotic efficacy against Mycobacterium abscessus and Pseudomonas aeruginosa. Pathog Dis 2018; 76:4966983. [PMID: 29648588 DOI: 10.1093/femspd/fty034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium abscessus lung infection is a major health problem for cystic fibrosis (CF) patients. Understanding the in vivo factors that influence the outcome of therapy may help addressing the poor correlation between in vitro and in vivo antibiotic efficacy. We evaluated the influence of interspecies interactions and lung epithelial cells on antibiotic efficacy. Therefore, single and dual-species biofilms of M. abscessus and a major CF pathogen (Pseudomonas aeruginosa) were cultured on a plastic surface or on in vivo-like three-dimensional (3-D) lung epithelial cells, and the activity of antibiotics (colistin, amikacin, clarithromycin, ceftazidime) in inhibiting biofilm formation was evaluated. Using the most physiologically relevant model (dual-species biofilms on 3-D cells), we observed that treatment with antibiotics during biofilm development inhibited P. aeruginosa but not M. abscessus biofilms, resulting in a competitive advantage for the latter. Clarithromycin efficacy against P. aeruginosa was inhibited by 3-D lung cells. In addition, biofilm induction of M. abscessus was observed by certain antibiotics on plastic but not on 3-D cells. Pseudomonas aeruginosa influenced the efficacy of certain antibiotics against M. abscessus, but not vice versa. In conclusion, these results suggest a role of host cells and interspecies interactions in bacterial responses to antimicrobials.
Collapse
Affiliation(s)
| | - Charlotte Rigauts
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Eva Vandeplassche
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| | | | - Jaime Esteban
- Department of Clinical Microbiology, IIS- Fundación Jiménez Díaz, UAM, Madrid, 28040 Madrid, Spain
| | | | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
49
|
Gupta A, Landis RF, Li CH, Schnurr M, Das R, Lee YW, Yazdani M, Liu Y, Kozlova A, Rotello VM. Engineered Polymer Nanoparticles with Unprecedented Antimicrobial Efficacy and Therapeutic Indices against Multidrug-Resistant Bacteria and Biofilms. J Am Chem Soc 2018; 140:12137-12143. [PMID: 30169023 DOI: 10.1021/jacs.8b06961] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The rapid emergence of antibiotic-resistant bacterial "superbugs" with concomitant treatment failure and high mortality rates presents a severe threat to global health. The superbug risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that render them refractory to available treatments. We hypothesized that efficient antimicrobial agents could be generated through careful engineering of hydrophobic and cationic domains in a synthetic semirigid polymer scaffold, mirroring and amplifying attributes of antimicrobial peptides. We report the creation of polymeric nanoparticles with highly efficient antimicrobial properties. These nanoparticles eradicate biofilms with low toxicity to mammalian cells and feature unprecedented therapeutic indices against red blood cells. Most notably, bacterial resistance toward these nanoparticles was not observed after 20 serial passages, in stark contrast to clinically relevant antibiotics where significant resistance occurred after only a few passages.
Collapse
Affiliation(s)
- Akash Gupta
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Ryan F Landis
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Cheng-Hsuan Li
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Martin Schnurr
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States.,Faculty of Chemistry and Geoscience , Ruprecht-Karls-University , Im Neuenheimer Feld 234 , 69120 Heidelberg , Germany
| | - Riddha Das
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Yi-Wei Lee
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Mahdieh Yazdani
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Yuanchang Liu
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Anastasia Kozlova
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Vincent M Rotello
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
50
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|