1
|
Hudcovic T, Petr Hermanova P, Kozakova H, Benada O, Kofronova O, Schwarzer M, Srutkova D. Priority order of neonatal colonization by a probiotic or pathogenic Escherichia coli strain dictates the host response to experimental colitis. Front Microbiol 2024; 15:1393732. [PMID: 39206364 PMCID: PMC11349737 DOI: 10.3389/fmicb.2024.1393732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
The alarming prevalence of inflammatory bowel disease (IBD) in early childhood is associated with imbalances in the microbiome, the immune response, and environmental factors. Some pathogenic Escherichia coli (E. coli) strains have been found in IBD patients, where they may influence disease progression. Therefore, the discovery of new harmful bacterial strains that have the potential to drive the inflammatory response is of great importance. In this study, we compared the immunomodulatory properties of two E. coli strains of serotype O6: the probiotic E. coli Nissle 1917 and the uropathogenic E. coli O6:K13:H1. Using the epithelial Caco-2 cell line, we investigated the different abilities of the strains to adhere to and invade epithelial cells. We confirmed the potential of E. coli Nissle 1917 to modulate the Th1 immune response in a specific manner in an in vitro setting by stimulating mouse bone marrow-derived dendritic cells (BM-DCs). In gnotobiotic in vivo experiments, we demonstrated that neonatal colonization with E. coli Nissle 1917 achieves a stable high concentration in the intestine and protects mice from the progressive effect of E. coli O6:K13:H1 in developing ulcerative colitis in an experimental model. In contrast, a single-dose treatment with E. coli Nissle 1917 is ineffective in achieving such high concentrations and does not protect against DSS-induced ulcerative colitis in mice neonatally colonized with pathobiont E. coli O6:K13:H1. Despite the stable coexistence of both E. coli strains in the intestinal environment of the mice, we demonstrated a beneficial competitive interaction between the early colonizing E. coli Nissle 1917 and the late-arriving strain O6:K13:H1, suggesting its anti-inflammatory potential for the host. This study highlights the importance of the sequence of bacterial colonization, which influences the development of the immune response in the host gut and potentially impacts future quality of life.
Collapse
Affiliation(s)
- Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Petra Petr Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Kofronova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| |
Collapse
|
2
|
Margutti P, D’Ambrosio A, Zamboni S. Microbiota-Derived Extracellular Vesicle as Emerging Actors in Host Interactions. Int J Mol Sci 2024; 25:8722. [PMID: 39201409 PMCID: PMC11354844 DOI: 10.3390/ijms25168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The human microbiota is an intricate micro-ecosystem comprising a diverse range of dynamic microbial populations mainly consisting of bacteria, whose interactions with hosts strongly affect several physiological and pathological processes. The gut microbiota is being increasingly recognized as a critical player in maintaining homeostasis, contributing to the main functions of the intestine and distal organs such as the brain. However, gut dysbiosis, characterized by composition and function alterations of microbiota with intestinal barrier dysfunction has been linked to the development and progression of several pathologies, including intestinal inflammatory diseases, systemic autoimmune diseases, such as rheumatic arthritis, and neurodegenerative diseases, such as Alzheimer's disease. Moreover, oral microbiota research has gained significant interest in recent years due to its potential impact on overall health. Emerging evidence on the role of microbiota-host interactions in health and disease has triggered a marked interest on the functional role of bacterial extracellular vesicles (BEVs) as mediators of inter-kingdom communication. Accumulating evidence reveals that BEVs mediate host interactions by transporting and delivering into host cells effector molecules that modulate host signaling pathways and cell processes, influencing health and disease. This review discusses the critical role of BEVs from the gut, lung, skin and oral cavity in the epithelium, immune system, and CNS interactions.
Collapse
Affiliation(s)
- Paola Margutti
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.D.); (S.Z.)
| | | | | |
Collapse
|
3
|
Didriksen BJ, Eshleman EM, Alenghat T. Epithelial regulation of microbiota-immune cell dynamics. Mucosal Immunol 2024; 17:303-313. [PMID: 38428738 PMCID: PMC11412483 DOI: 10.1016/j.mucimm.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
The mammalian gastrointestinal tract hosts a diverse community of trillions of microorganisms, collectively termed the microbiota, which play a fundamental role in regulating tissue physiology and immunity. Recent studies have sought to dissect the cellular and molecular mechanisms mediating communication between the microbiota and host immune system. Epithelial cells line the intestine and form an initial barrier separating the microbiota from underlying immune cells, and disruption of epithelial function has been associated with various conditions ranging from infection to inflammatory bowel diseases and cancer. From several studies, it is now clear that epithelial cells integrate signals from commensal microbes. Importantly, these non-hematopoietic cells also direct regulatory mechanisms that instruct the recruitment and function of microbiota-sensitive immune cells. In this review, we discuss the central role that has emerged for epithelial cells in orchestrating intestinal immunity and highlight epithelial pathways through which the microbiota can calibrate tissue-intrinsic immune responses.
Collapse
Affiliation(s)
- Bailey J Didriksen
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily M Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
4
|
Ninyio N, Schmitt K, Sergon G, Nilsson C, Andersson S, Scherbak N. Stable expression of HIV-1 MPER extended epitope on the surface of the recombinant probiotic bacteria Escherichia Coli Nissle 1917 using CRISPR/Cas9. Microb Cell Fact 2024; 23:39. [PMID: 38311724 PMCID: PMC10840157 DOI: 10.1186/s12934-023-02290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Mucosal vaccines have the potential to induce protective immune responses at the sites of infection. Applying CRISPR/Cas9 editing, we aimed to develop a probiotic-based vaccine candidate expressing the HIV-1 envelope membrane-proximal external region (MPER) on the surface of E. coli Nissle 1917. RESULTS The HIV-1 MPER epitope was successfully introduced in the porin OmpF of the E. coli Nissle 1917 (EcN-MPER) and the modification was stable over 30 passages of the recombinant bacteria on the DNA and protein level. Furthermore, the introduced epitope was recognized by a human anti-HIV-1 gp41 (2F5) antibody using both live and heat-killed EcN-MPER, and this antigenicity was also retained over 30 passages. Whole-cell dot blot suggested a stronger binding of anti-HIV-1 gp41 (2F5) to heat-killed EcN-MPER than their live counterpart. An outer membrane vesicle (OMV) - rich extract from EcN-MPER culture supernatant was equally antigenic to anti-HIV-1 gp41 antibody which suggests that the MPER antigen could be harboured in EcN-MPER OMVs. Using quantitative ELISA, we determined the amount of MPER produced by the modified EcN to be 14.3 µg/108 cfu. CONCLUSIONS The CRISPR/Cas9 technology was an effective method for establishment of recombinant EcN-MPER bacteria that was stable over many passages. The developed EcN-MPER clone was devoid of extraneous plasmids and antibiotic resistance genes which eliminates the risk of plasmid transfer to animal hosts, should this clone be used as a vaccine. Also, the EcN-MPER clone was recognised by anti-HIV-1 gp41 (2F5) both as live and heat-killed bacteria making it suitable for pre-clinical evaluation. Expression of OmpF on bacterial surfaces and released OMVs identifies it as a compelling candidate for recombinant epitope modification, enabling surface epitope presentation on both bacteria and OMVs. By applying the methods described in this study, we present a potential platform for cost-effective and rational vaccine antigen expression and administration, offering promising prospects for further research in the field of vaccine development.
Collapse
Affiliation(s)
- Nathaniel Ninyio
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Katharina Schmitt
- School of Science and Technology, Life Science Center, Örebro University, Örebro, Sweden
- Institute of Virology, Saarland University Medical Center, 66421, Homburg, Germany
| | - Gladys Sergon
- School of Science and Technology, Life Science Center, Örebro University, Örebro, Sweden
| | - Charlotta Nilsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Sören Andersson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Public Health Analysis and Data Management, Unit for Vaccination Programmes, Public Health Agency of Sweden, Solna, Sweden
| | - Nikolai Scherbak
- School of Science and Technology, Life Science Center, Örebro University, Örebro, Sweden.
| |
Collapse
|
5
|
Skoufou M, Tsigalou C, Vradelis S, Bezirtzoglou E. The Networked Interaction between Probiotics and Intestine in Health and Disease: A Promising Success Story. Microorganisms 2024; 12:194. [PMID: 38258020 PMCID: PMC10818559 DOI: 10.3390/microorganisms12010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Probiotics are known to promote human health either precautionary in healthy individuals or therapeutically in patients suffering from certain ailments. Although this knowledge was empirical in past tomes, modern science has already verified it and expanded it to new limits. These microorganisms can be found in nature in various foods such as dairy products or in supplements formulated for clinical or preventive use. The current review examines the different mechanisms of action of the probiotic strains and how they interact with the organism of the host. Emphasis is put on the clinical therapeutic use of these beneficial microorganisms in various clinical conditions of the human gastrointestinal tract. Diseases of the gastrointestinal tract and particularly any malfunction and inflammation of the intestines seriously compromise the health of the whole organism. The interaction between the probiotic strains and the host's microbiota can alleviate the clinical signs and symptoms while in some cases, in due course, it can intervene in the underlying pathology. Various safety issues of the use of probiotics are also discussed.
Collapse
Affiliation(s)
- Maria Skoufou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Proctology Department, Paris Saint Joseph Hospital Paris, 75014 Paris, France
| | - Christina Tsigalou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Department of Gastrenterology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
6
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
7
|
Pahumunto N, Teanpaisan R. Anti-cancer Properties of Potential Probiotics and Their Cell-free Supernatants for the Prevention of Colorectal Cancer: an In Vitro Study. Probiotics Antimicrob Proteins 2023; 15:1137-1150. [PMID: 35895217 DOI: 10.1007/s12602-022-09972-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
This study aimed to characterize the anti-cancer properties of potential probiotics (Lacticaseibacillus paracasei SD1, Lacticaseibacillus rhamnosus SD4, Lacticaseibacillus rhamnosus SD11, and Lacticaseibacillus rhamnosus GG) and their cell-free supernatants (CFS) for the prevention of colorectal cancer (CRC), which including anti-bacterial and anti-inflammation activities against pathogens associated with CRC (Fusobacterium nucleatum, Porphyromonas gingivalis, ETEC, and Salmonella enterica). The expression of human β-defensin (2-4) and IL-10 after being stimulated with probiotics was also examined. In addition, anti-cancer activity of CFS and probiotic growth under intestinal conditions were determined. An in vitro study was conducted in the Caco-2 and HIEC-6 cells. Results showed that probiotic cells and their CFS displayed different antibacterial activity, and L. rhamnosus SD11 showed the strongest inhibition of the growth of pathogens. Additionally, both probiotic cell walls and their CFS suppressed pro-inflammatory cytokines after being stimulated with pathogens in Caco-2 and HIEC-6 cells. L. paracasei SD1 and L. rhamnosus SD11 showed significantly higher suppression levels than others and also both strains can stimulate highly expression of hBD (2-4) and IL-10. The CFS of L. paracasei SD1 and L. rhamnosus SD11 inhibited significantly high growth of Caco-2 cells but not much in HIEC-6 cells. Furthermore, all probiotics adhered to Caco-2 and HIEC-6 cells, and L. rhamnosus SD4 showed the highest adhesion to both cells. They could survive more than 70% in intestinal conditions. In conclusion, results indicate that potential probiotics tested exhibited various anti-cancer properties, which may be good candidates used as biotherapy for the prevention or to delay the progression of CRC.
Collapse
Affiliation(s)
- Nuntiya Pahumunto
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, 90112, Thailand.
- Common Oral Diseases and Epidemiology Research Center, Hat-Yai, Thailand.
| | - Rawee Teanpaisan
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, 90112, Thailand
- Common Oral Diseases and Epidemiology Research Center, Hat-Yai, Thailand
| |
Collapse
|
8
|
Jensen BAH, Heyndrickx M, Jonkers D, Mackie A, Millet S, Naghibi M, Pærregaard SI, Pot B, Saulnier D, Sina C, Sterkman LGW, Van den Abbeele P, Venlet NV, Zoetendal EG, Ouwehand AC. Small intestine vs. colon ecology and physiology: Why it matters in probiotic administration. Cell Rep Med 2023; 4:101190. [PMID: 37683651 PMCID: PMC10518632 DOI: 10.1016/j.xcrm.2023.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
Research on gut microbiota has generally focused on fecal samples, representing luminal content of the large intestine. However, nutrient uptake is restricted to the small intestine. Abundant immune cell populations at this anatomical site combined with diminished mucus secretion and looser junctions (partly to allow for more efficient fluid and nutrient absorption) also results in intimate host-microbe interactions despite more rapid transit. It is thus crucial to dissect key differences in both ecology and physiology between small and large intestine to better leverage the immense potential of human gut microbiota imprinting, including probiotic engraftment at biological sensible niches. Here, we provide a detailed review unfolding how the physiological and anatomical differences between the small and large intestine affect gut microbiota composition, function, and plasticity. This information is key to understanding how gut microbiota manipulation, including probiotic administration, may strain-dependently transform host-microbe interactions at defined locations.
Collapse
Affiliation(s)
| | - Marc Heyndrickx
- Flanders Research Institute of Agriculture, Fisheries and Food, Belgium & Ghent University, Department Pathobiology, Pharmacology and Zoological Medicine, B-9090 Melle, 9820 Merelbeke, Belgium
| | - Daisy Jonkers
- Division Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Alan Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Sam Millet
- Flanders Research Institute of Agriculture, Fisheries and Food, 9090 Melle, Belgium
| | | | - Simone Isling Pærregaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Bruno Pot
- Yakult Europe BV, 1332 Almere, the Netherlands
| | | | - Christian Sina
- Institute of Nutritional Medicine, University Medical Center of Schleswig-Holstein & University of Lübeck, 23538 Lübeck, Germany
| | | | | | - Naomi Vita Venlet
- International Life Science Institute, European Branch, Brussels, Belgium.
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | | |
Collapse
|
9
|
Wang X, Sun X, Chu J, Sun W, Yan S, Wang Y. Gut microbiota and microbiota-derived metabolites in colorectal cancer: enemy or friend. World J Microbiol Biotechnol 2023; 39:291. [PMID: 37653349 DOI: 10.1007/s11274-023-03742-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Colorectal cancer (CRC) is a highly prevalent gastrointestinal cancer worldwide. Recent research has shown that the gut microbiota plays a significant role in the development of CRC. There is mounting evidence supporting the crucial contributions of bacteria-derived toxins and metabolites to cancer-related inflammation, immune imbalances, and the response to therapy. Besides, some gut microbiota and microbiota-derived metabolites have protective effects against CRC. This review aims to summarize the current studies on the effects and mechanisms of gut microbiota and microbiota-produced metabolites in the initiation, progression, and drug sensitivity/resistance of CRC. Additionally, we explore the clinical implications and future prospects of utilizing gut microbiota as innovative approaches for preventing and treating CRC.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xicai Sun
- Department of Hospital Office, Weifang People's Hospital, Weifang, China
| | - Jinjin Chu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Wenchang Sun
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, 261053, China.
| | - Yaowen Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, 261041, China.
| |
Collapse
|
10
|
Effendi SSW, Ng IS. Prospective and challenges of live bacterial therapeutics from a superhero Escherichia coli Nissle 1917. Crit Rev Microbiol 2023; 49:611-627. [PMID: 35947523 DOI: 10.1080/1040841x.2022.2109405] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/02/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
Escherichia coli Nissle 1917 (EcN), the active component of Mutaflor(R), is a notable probiotic from Gram-negative to treat Crohn's disease and irritable bowel syndrome. Therefore, a comprehensive genomic database maximizes the systemic probiotic assessment to discover EcN's role in human health. Recently, advanced synthetic and genetic tools have opened up a rich area to execute EcN as "living medicines" with controllable functions. Incorporating unique biomarkers allows the engineered EcN to switch genes on and off in response to environmental cues. Since EcN holds promise as a safe nature vehicle, more studies are desired to fully realize a wide range of probiotic potential for disease treatment. This review aims to deliver a historical origin of EcN, discuss the recent promising genetic toolbox in the rational design of probiotics, and pinpoint the clinical translation and evaluation of engineered EcN in vitro and in vivo. The summary of safety concerns, strategies of biotherapeutics development, and the challenges and prospects of engineered EcN is also concluded.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
12
|
Abenavoli L, Scarpellini E, Paravati MR, Scarlata GGM, Boccuto L, Tilocca B, Roncada P, Luzza F. Gut Microbiota and Critically Ill Patients: Immunity and Its Modulation via Probiotics and Immunonutrition. Nutrients 2023; 15:3569. [PMID: 37630759 PMCID: PMC10459644 DOI: 10.3390/nu15163569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Critically ill patients have a hyper-inflammatory response against various offending injuries that can result in tissue damage, organ failure, and fatal prognosis. The origin of this detrimental, uncontrolled inflammatory cascade can be found also within our gut. In detail, one of the main actors is our gut microbiota with its imbalance, namely gut dysbiosis: learning about the microbiota's dysfunction and pathophysiology in the frame of critical patients is of crucial and emerging importance in the management of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Multiple pieces of evidence indicate that the bacteria that populate our gut efficiently modulate the immune response. Treatment and pretreatment with probiotics have shown promising preliminary results to attenuate systemic inflammation, especially in postoperative infections and ventilation performance. Finally, it is emerging how immunonutrition may exert a possible impact on the health status of patients in intensive care. Thus, this manuscript reviews evidence from the literature on gut microbiota composition, its derangement in critically ill patients, its pathophysiological role, and the described and emerging opportunities arising from its modulation.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Emidio Scarpellini
- Translationeel Onderzoek van Gastro-Enterologische Aandoeningen (T.A.R.G.I.D.), Gasthuisberg University 11 Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Maria Rosaria Paravati
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Giuseppe Guido Maria Scarlata
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Luigi Boccuto
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC 29634, USA;
- School of Health Research, Clemson University, Clemson, SC 29634, USA
| | - Bruno Tilocca
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Paola Roncada
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Francesco Luzza
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| |
Collapse
|
13
|
Golchin A, Ranjbarvan P, Parviz S, Shokati A, Naderi R, Rasmi Y, Kiani S, Moradi F, Heidari F, Saltanatpour Z, Alizadeh A. The role of probiotics in tissue engineering and regenerative medicine. Regen Med 2023; 18:635-657. [PMID: 37492007 DOI: 10.2217/rme-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Parviz Ranjbarvan
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Shima Parviz
- Department of Tissue Engineering & Applied cell sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Amene Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Roya Naderi
- Neurophysiology Research center & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Yousef Rasmi
- Cellular & Molecular Research Center & Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran
| | - Faezeh Moradi
- Department of Tissue engineering, Medical Sciences Faculty, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell & Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center & Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99422, Iran
| |
Collapse
|
14
|
Rebai Y, Wagner L, Gnaien M, Hammer ML, Kapitan M, Niemiec MJ, Mami W, Mosbah A, Messadi E, Mardassi H, Vylkova S, Jacobsen ID, Znaidi S. Escherichia coli Nissle 1917 Antagonizes Candida albicans Growth and Protects Intestinal Cells from C. albicans-Mediated Damage. Microorganisms 2023; 11:1929. [PMID: 37630490 PMCID: PMC10457924 DOI: 10.3390/microorganisms11081929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
Candida albicans is a pathobiont of the gastrointestinal tract. It can contribute to the diversity of the gut microbiome without causing harmful effects. When the immune system is compromised, C. albicans can damage intestinal cells and cause invasive disease. We hypothesize that a therapeutic approach against C. albicans infections can rely on the antimicrobial properties of probiotic bacteria. We investigated the impact of the probiotic strain Escherichia coli Nissle 1917 (EcN) on C. albicans growth and its ability to cause damage to intestinal cells. In co-culture kinetic assays, C. albicans abundance gradually decreased over time compared with C. albicans abundance in the absence of EcN. Quantification of C. albicans survival suggests that EcN exerts a fungicidal activity. Cell-free supernatants (CFS) collected from C. albicans-EcN co-culture mildly altered C. albicans growth, suggesting the involvement of an EcN-released compound. Using a model of co-culture in the presence of human intestinal epithelial cells, we further show that EcN prevents C. albicans from damaging enterocytes both distantly and through direct contact. Consistently, both C. albicans's filamentous growth and microcolony formation were altered by EcN. Taken together, our study proposes that probiotic-strain EcN can be exploited for future therapeutic approaches against C. albicans infections.
Collapse
Affiliation(s)
- Yasmine Rebai
- Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (Y.R.)
| | - Lysett Wagner
- Septomics Research Center, Friedrich Schiller University, 07745 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Mayssa Gnaien
- Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (Y.R.)
| | - Merle L. Hammer
- Septomics Research Center, Friedrich Schiller University, 07745 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
- Center for Sepsis Control and Care, 07747 Jena, Germany
| | - Maria Joanna Niemiec
- Septomics Research Center, Friedrich Schiller University, 07745 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Wael Mami
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Amor Mosbah
- Laboratory of Biotechnology and Bio-Geo Resources Valorization (LR11ES31), Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Tunis 2010, Tunisia
| | - Erij Messadi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Helmi Mardassi
- Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (Y.R.)
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University, 07745 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Ilse D. Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
- Center for Sepsis Control and Care, 07747 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Sadri Znaidi
- Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (Y.R.)
- Institut Pasteur, Institut National de la Recherche Agronomique (INRA), Département Mycologie, Unité Biologie et Pathogénicité Fongiques, 75015 Paris, France
| |
Collapse
|
15
|
Yang G, Yang L, Zhou X. Inhibition of bacterial swimming by heparin binding of flagellin FliC from Escherichia coli strain Nissle 1917. Arch Microbiol 2023; 205:286. [PMID: 37452842 DOI: 10.1007/s00203-023-03622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Escherichia coli Nissle1917 (EcN) is a non-pathogenic probiotic strain widely used to maintain gut health, treat gastrointestinal disorders, and modulate the gut microbiome due to its anti-inflammatory and competitive exclusion effects against pathogenic bacteria. Heparin, abundant on intestinal mucosal surfaces, is a highly sulfated glycosaminoglycan primarily produced by mast cells. Currently, the interaction between EcN surface protein and heparin has remained elusive. In this study, the flagellin FliC responsible for EcN's movement was separated and characterized as a heparin binding protein by mass spectrometry (MS) analysis. The recombinant FliC protein, expressed by plasmid pET28a( +)-fliC, was further prepared to confirm the interaction between FliC and heparin. The results showed that heparin-Sepharose's ability to bind FliC was 48-fold higher than its ability to bind the negative control, bovine serum albumin (BSA). Neither the knockout of gene fliC nor the addition of heparin affects the growth of EcN, but both significantly inhibit the swimming of EcN. Adding 10 mg/ml heparin reduced the swimming diameter of the wild type and the complemented strain to 29-41% of the original, but that did not affect the swimming ability of the knockout strains. These results demonstrate that heparin interacts with EcN flagellin FliC and inhibits bacteria swimming. Exploring this interaction could improve our understanding of the relationship between hosts and microorganisms and provide a potential basis for disease treatment.
Collapse
Affiliation(s)
- Guixia Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Lingkang Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Xianxuan Zhou
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
16
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
17
|
Kim Y, Kamada N. The role of the microbiota in myelopoiesis during homeostasis and inflammation. Int Immunol 2023; 35:267-274. [PMID: 36694400 PMCID: PMC10199171 DOI: 10.1093/intimm/dxad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
The microbiota engages in the development and maintenance of the host immune system. The microbiota affects not only mucosal tissues where it localizes but also the distal organs. Myeloid cells are essential for host defense as first responders of the host immune system. Their generation, called myelopoiesis, is regulated by environmental signals, including commensal microbiota. Hematopoietic stem and progenitor cells in bone marrow can directly or indirectly sense microbiota-derived signals, thereby giving rise to myeloid cell lineages at steady-state and during inflammation. In this review, we discuss the role of commensal microorganisms in the homeostatic regulation of myelopoiesis in the bone marrow. We also outline the effects of microbial signals on myelopoiesis during inflammation and infection, with a particular focus on the development of innate immune memory. Studying the relationship between the microbiota and myelopoiesis will help us understand how the microbiota regulates immune responses at a systemic level beyond the local mucosa.
Collapse
Affiliation(s)
- Yeji Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Laboratory of Microbiology and Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Rooney J, Cantacessi C, Sotillo J, Cortés A. Gastrointestinal worms and bacteria: From association to intervention. Parasite Immunol 2023; 45:e12955. [PMID: 36300732 DOI: 10.1111/pim.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
A plethora of studies, both experimental and epidemiological, have indicated the occurrence of associations between infections by gastrointestinal (GI) helminths and the composition and function of the host gut microbiota. Given the worldwide risk and spread of anthelmintic resistance, particularly for GI parasites of livestock, a better understanding of the mechanisms underpinning the relationships between GI helminths and the gut microbiome, and between the latter and host health, may assist the development of novel microbiome-targeting and other bacteria-based strategies for parasite control. In this article, we review current and prospective methods to manipulate the host gut microbiome, and/or to exploit the immune stimulatory and modulatory properties of gut bacteria (and their products) to counteract the negative impact of GI worm infections; we also discuss the potential applications of these intervention strategies in programmes aimed to aid the fight against helminth diseases of humans and livestock.
Collapse
Affiliation(s)
- James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Cortés
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, València, Spain
| |
Collapse
|
19
|
Dou X, Yan D, Liu S, Gao N, Ma Z, Shi Z, Dong N, Shan A. Host Defense Peptides in Nutrition and Diseases: A Contributor of Immunology Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3125-3140. [PMID: 36753427 DOI: 10.1021/acs.jafc.2c08522] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Host defense peptides (HDPs) are primary components of the innate immune system with diverse biological functions, such as antibacterial ability and immunomodulatory function. HDPs are produced and released by immune and epithelial cells against microbial invasion, which are widely distributed in humans, animals, plants, and microbes. Notably, there are great differences in endogenous HDP distribution and expression in humans and animals. Moreover, HDP expression could be regulated by exogenous substances, such as nutrients, and different physiological statuses in health and disease. In this review, we systematically assessed the regulation of expression and mechanism of endogenous HDPs from nutrition and disease perspectives, providing a basis to identify the specificity and regularity of HDP expression. Furthermore, the regulation mechanism of HDP expression was summarized systematically, and the differences in the regulation between nutrients and diseases were explored. From this review, we provide novel ideas targeted the immune regulation of HDPs for protecting host health in nutrition and practical and effective new ideas using the immune regulation theory for further research on protecting host health from pathogenic infection and excessive immunity diseases under the global challenge of the antibiotic-abuse-induced series of problems, including food security and microbial resistance.
Collapse
Affiliation(s)
- Xiujing Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Di Yan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Siqi Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Nan Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ziwen Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Zixuan Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
20
|
Srivastava P, Sondak T, Sivashanmugam K, Kim KS. A Review of Immunomodulatory Reprogramming by Probiotics in Combating Chronic and Acute Diabetic Foot Ulcers (DFUs). Pharmaceutics 2022; 14:2436. [PMID: 36365254 PMCID: PMC9699442 DOI: 10.3390/pharmaceutics14112436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 08/29/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are characterized by a lack of angiogenesis and distal limb diabetic neuropathy. This makes it possible for opportunistic pathogens to protect the biofilm-encased micro-communities, causing a delay in wound healing. The acute and chronic phases of DFU-associated infections are distinguished by the differential expression of innate proinflammatory cytokines and tumor necrosis factors (TNF-α and -β). Efforts are being made to reduce the microbial bioburden of wounds by using therapies such as debridement, hyperbaric oxygen therapy, shock wave therapy, and empirical antibiotic treatment. However, the constant evolution of pathogens limits the effectiveness of these therapies. In the wound-healing process, continuous homeostasis and remodeling processes by commensal microbes undoubtedly provide a protective barrier against diverse pathogens. Among commensal microbes, probiotics are beneficial microbes that should be administered orally or topically to regulate gut-skin interaction and to activate inflammation and proinflammatory cytokine production. The goal of this review is to bridge the gap between the role of probiotics in managing the innate immune response and the function of proinflammatory mediators in diabetic wound healing. We also highlight probiotic encapsulation or nanoformulations with prebiotics and extracellular vesicles (EVs) as innovative ways to tackle target DFUs.
Collapse
Affiliation(s)
- Prakhar Srivastava
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Tesalonika Sondak
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Karthikeyan Sivashanmugam
- School of Biosciences and Technology, High Throughput Screening Lab, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
21
|
Effect of Probiotic E. coli Nissle 1917 Supplementation on the Growth Performance, Immune Responses, Intestinal Morphology, and Gut Microbes of Campylobacter jejuni Infected Chickens. Infect Immun 2022; 90:e0033722. [PMID: 36135600 PMCID: PMC9584303 DOI: 10.1128/iai.00337-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Campylobacter jejuni is the most common cause of bacterial foodborne gastroenteritis and holds significant public health importance. The continuing increase of antibiotic-resistant Campylobacter necessitates the development of antibiotic-alternative approaches to control infections in poultry and in humans. Here, we assessed the ability of E. coli Nissle 1917 (EcN; free and chitosan-alginate microencapsulated) to reduce C. jejuni colonization in chickens and measured the effect of EcN on the immune responses, intestinal morphology, and gut microbes of chickens. Our results showed that the supplementation of 3-week-old chickens daily with free EcN in drinking water resulted in a 2.0 log reduction of C. jejuni colonization in the cecum, whereas supplementing EcN orally three times a week, either free or microencapsulated, resulted in 2.0 and 2.5 log reductions of C. jejuni colonization, respectively. Gavaged free and microencapsulated EcN did not have an impact on the evenness or the richness of the cecal microbiota, but it did increase the villous height (VH), crypt depth (CD), and VH:CD ratio in the jejunum and ileum of chickens. Further, the supplementation of EcN (all types) increased C. jejuni-specific and total IgA and IgY antibodies in chicken’s serum. Microencapsulated EcN induced the expression of several cytokines and chemokines (1.6 to 4.3-fold), which activate the Th1, Th2, and Th17 pathways. Overall, microencapsulated EcN displayed promising effects as a potential nonantibiotic strategy to control C. jejuni colonization in chickens. Future studies on testing microencapsulated EcN in the feed and water of chickens raised on built-up floor litter would facilitate the development of EcN for industrial applications to control Campylobacter infections in poultry.
Collapse
|
22
|
Marković KG, Grujović MŽ, Koraćević MG, Nikodijević DD, Milutinović MG, Semedo-Lemsaddek T, Djilas MD. Colicins and Microcins Produced by Enterobacteriaceae: Characterization, Mode of Action, and Putative Applications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11825. [PMID: 36142096 PMCID: PMC9517006 DOI: 10.3390/ijerph191811825] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Enterobacteriaceae are widely present in many environments related to humans, including the human body and the food that they consume, from both plant or animal origin. Hence, they are considered relevant members of the gastrointestinal tract microbiota. On the other hand, these bacteria are also recognized as putative pathogens, able to impair human health and, in food, they are considered indicators for the microbiological quality and hygiene status of a production process. Nevertheless, beneficial properties have also been associated with Enterobacteriaceae, such as the ability to synthesize peptides and proteins, which can have a role in the structure of microbial communities. Among these antimicrobial molecules, those with higher molecular mass are called colicins, while those with lower molecular mass are named microcins. In recent years, some studies show an emphasis on molecules that can help control the development of pathogens. However, not enough data are available on this subject, especially related to microcins. Hence, this review gathers and summarizes current knowledge on colicins and microcins, potential usage in the treatment of pathogen-associated diseases and cancer, as well as putative applications in food biotechnology.
Collapse
Affiliation(s)
- Katarina G. Marković
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Mirjana Ž. Grujović
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Maja G. Koraćević
- Innovation Center, University of Niš, 18000 Niš, Serbia
- Faculty of Medicine, Department of Pharmacy, University of Niš, 18000 Niš, Serbia
| | - Danijela D. Nikodijević
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Milena G. Milutinović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Teresa Semedo-Lemsaddek
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Milan D. Djilas
- Institute for Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
| |
Collapse
|
23
|
Age-Related NAFLD: The Use of Probiotics as a Supportive Therapeutic Intervention. Cells 2022; 11:cells11182827. [PMID: 36139402 PMCID: PMC9497179 DOI: 10.3390/cells11182827] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Human aging, a natural process characterized by structural and physiological changes, leads to alterations of homeostatic mechanisms, decline of biological functions, and subsequently, the organism becomes vulnerable to external stress or damage. In fact, the elderly population is prone to develop diseases due to deterioration of physiological and biological systems. With aging, the production of reactive oxygen species (ROS) increases, and this causes lipid, protein, and DNA damage, leading to cellular dysfunction and altered cellular processes. Indeed, oxidative stress plays a key role in the pathogenesis of several chronic disorders, including hepatic diseases, such as non-alcoholic fatty liver disease (NAFLD). NAFLD, the most common liver disorder in the Western world, is characterized by intrahepatic lipid accumulation; is highly prevalent in the aging population; and is closely associated with obesity, insulin resistance, hypertension, and dyslipidemia. Among the risk factors involved in the pathogenesis of NAFLD, the dysbiotic gut microbiota plays an essential role, leading to low-grade chronic inflammation, oxidative stress, and production of various toxic metabolites. The intestinal microbiota is a dynamic ecosystem of microbes involved in the maintenance of physiological homeostasis; the alteration of its composition and function, during aging, is implicated in different liver diseases. Therefore, gut microbiota restoration might be a complementary approach for treating NAFLD. The administration of probiotics, which can relieve oxidative stress and elicit several anti-aging properties, could be a strategy to modify the composition and restore a healthy gut microbiota. Indeed, probiotics could represent a valid supplement to prevent and/or help treating some diseases, such as NAFLD, thus improving the already available pharmacological intervention. Moreover, in aging, intervention of prebiotics and fecal microbiota transplantation, as well as probiotics, will provide novel therapeutic approaches. However, the relevant research is limited, and several scientific research works need to be done in the near future to confirm their efficacy.
Collapse
|
24
|
Park SK, Kang SB, Kim S, Kim TO, Cha JM, Im JP, Choi CH, Kim ES, Seo GS, Eun CS, Han DS, Park DI. Additive effect of probiotics (Mutaflor) on 5-aminosalicylic acid therapy in patients with ulcerative colitis. Korean J Intern Med 2022; 37:949-957. [PMID: 36068716 PMCID: PMC9449212 DOI: 10.3904/kjim.2021.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS In ulcerative colitis (UC) patients, Escherichia coli Nissle 1917 (EcN) is equivalent to mesalazine for preventing disease relapse; however, evidence of the ability of EcN to increase health-related quality of life or induce remission remains scarce. We investigated the efficacy of EcN as an add-on therapy for UC. METHODS In this multicentre, double-blind, randomised, placebo-controlled study, a total of 133 UC patients were randomly assigned to receive either EcN or placebo once daily for 8 weeks. Inflammatory bowel disease questionnaire (IBDQ) scores (primary endpoint) and clinical remission and response rates (secondary endpoints) were compared (Clinical trial registration number: NCT04969679). RESULTS In total, 118 patients (EcN, 58; placebo, 60) completed the study. The number of patients reaching the primary endpoint did not differ between the EcN and placebo groups (30 [51.7%] vs. 31 [51.7%]; per-protocol analysis, p = 1.0; intention-to-treat analysis, p = 0.86). However, significantly fewer patients in the EcN group exhibited a decreased IBDQ score (1 [1.7%] vs. 8 [13.3%]; per-protocol analysis, p = 0.03; intention- to-treat analysis, p = 0.02). Moreover, a significantly higher number of patients in the EcN group displayed clinical response at 4 weeks (23 [39.7%] vs. 13 [21.7%], p = 0.04) and endoscopic remission at 8 weeks (26 [46.4%] vs. 16 [27.1%], p = 0.03). CONCLUSION Although the number of patients reaching the primary endpoint did not differ between the EcN and placebo groups, EcN was found to be safe and effective in preventing the exacerbation of IBDQ scores and achieving clinical responses and endoscopic remission in patients with mild-to-moderate UC.
Collapse
Affiliation(s)
- Soo-Kyung Park
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Sang-Bum Kang
- Division of Gastroenterology, Department of Internal Medicine, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Daejeon,
Korea
| | - SangSoo Kim
- Department of Bioinformatics, Soongsil University, Seoul,
Korea
| | - Tae Oh Kim
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan,
Korea
| | - Jae Myung Cha
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul,
Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul,
Korea
| | - Eun Soo Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Geom Seog Seo
- Department of Internal Medicine, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan,
Korea
| | - Chang Soo Eun
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri,
Korea
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri,
Korea
| | - Dong Il Park
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| |
Collapse
|
25
|
Shao H, Min F, Huang M, Wang Z, Bai T, Lin M, Li X, Chen H. Novel perspective on the regulation of food allergy by probiotic: The potential of its structural components. Crit Rev Food Sci Nutr 2022; 64:172-186. [PMID: 35912422 DOI: 10.1080/10408398.2022.2105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food allergy (FA) is a global public health issue with growing prevalence. Increasing evidence supports the strong correlation between intestinal microbiota dysbiosis and food allergies. Probiotic intervention as a microbiota-based therapy could alleviate FA effectively. In addition to improving the intestinal microbiota disturbance and affecting microbial metabolites to regulate immune system, immune responses induced by the recognition of pattern recognition receptors to probiotic components may also be one of the mechanisms of probiotics protecting against FA. In this review, it is highlighted in detail about the regulatory effects on the immune system and anti-allergic potential of probiotic components including the flagellin, pili, peptidoglycan, lipoteichoic acid, exopolysaccharides, surface (S)-layer proteins and DNA. Probiotic components could enhance the function of intestinal epithelial barrier as well as regulate the balance of cytokines and T helper (Th) 1/Th2/regulatory T cell (Treg) responses. These evidences suggest that probiotic components could be used as nutritional or therapeutic agents for maintaining immune homeostasis to prevent FA, which will contribute to providing new insights into the resolution of FA and better guidance for the development of probiotic products.
Collapse
Affiliation(s)
- Huming Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Fangfang Min
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Meijia Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Tianliang Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Min Lin
- Department of Dermatology, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
26
|
Zhao Z, Xu S, Zhang W, Wu D, Yang G. Probiotic Escherichia coli NISSLE 1917 for inflammatory bowel disease applications. Food Funct 2022; 13:5914-5924. [PMID: 35583304 DOI: 10.1039/d2fo00226d] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Escherichia coli NISSLE 1917 (EcN) is a Gram-negative strain with many prominent probiotic properties in the treatment of intestinal diseases such as diarrhea and inflammatory bowel disease (IBD), in particular ulcerative colitis. EcN not only exhibits antagonistic effects on a variety of intestinal pathogenic bacteria, but also regulates the secretion of immune factors in vivo and enhances the ability of host immunity. In this review, the mechanisms of EcN in the remission of inflammatory bowel disease are proposed and recent advances on the functionalized EcN are compiled to provide novel therapeutic strategies for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Zejing Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Shumin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wangyang Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Danjun Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
27
|
Hare PJ, Englander HE, Mok WWK. Probiotic Escherichia coli Nissle 1917 inhibits bacterial persisters that survive fluoroquinolone treatment. J Appl Microbiol 2022; 132:4020-4032. [PMID: 35332984 PMCID: PMC9468890 DOI: 10.1111/jam.15541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
AIMS Bacterial persisters are rare phenotypic variants in clonal bacterial cultures that can endure antimicrobial therapy and potentially contribute to infection relapse. Here, we investigate the potential of leveraging microbial interactions to disrupt persisters as they resuscitate during the post-antibiotic treatment recovery period. METHODS AND RESULTS We treated stationary-phase E. coli MG1655 with a DNA-damaging fluoroquinolone and co-cultured the cells with probiotic E. coli Nissle following antibiotic removal. We found that E. coli Nissle reduced the survival of fluoroquinolone persisters and their progeny by over three orders of magnitude within 24 h. Using a bespoke H-diffusion cell apparatus that we developed, we showed that E. coli Nissle antagonized the fluoroquinolone-treated cells in a contact-dependent manner. We further demonstrated that the fluoroquinolone-treated cells can still activate the SOS response as they recover from antibiotic treatment in the presence of E. coli Nissle and that the persisters depend on TolC-associated efflux systems to defend themselves against the action of E. coli Nissle. CONCLUSION Our results demonstrate that probiotic bacteria, such as E. coli Nissle, have the potential to inhibit persisters as they resuscitate following antibiotic treatment. SIGNIFICANCE AND IMPACT OF THE STUDY Bacterial persisters are thought to underlie chronic infections and they can lead to an increase in antibiotic-resistant mutants in their progenies. Our data suggest that we can leverage the knowledge we gain on the interactions between microbial strains/species that interfere with persister resuscitation, such as those involving probiotic E. coli Nissle and E. coli MG1655 (a K-12 strain), to bolster the activity of our existing antibiotics.
Collapse
Affiliation(s)
- Patricia J. Hare
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, Connecticut, USA
- School of Dental Medicine, UCONN Health, Farmington, Connecticut, USA
| | - Hanna E. Englander
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, Connecticut, USA
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Wendy W. K. Mok
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, Connecticut, USA
| |
Collapse
|
28
|
Tiwari SK. Bacteriocin-Producing Probiotic Lactic Acid Bacteria in Controlling Dysbiosis of the Gut Microbiota. Front Cell Infect Microbiol 2022; 12:851140. [PMID: 35651753 PMCID: PMC9149203 DOI: 10.3389/fcimb.2022.851140] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
Several strains of lactic acid bacteria are potent probiotics and can cure a variety of diseases using different modes of actions. These bacteria produce antimicrobial peptides, bacteriocins, which inhibit or kill generally closely related bacterial strains and other pathogenic bacteria such as Listeria, Clostridium, and Salmonella. Bacteriocins are cationic peptides that kill the target cells by pore formation and the dissipation of cytosolic contents, leading to cell death. Bacteriocins are also known to modulate native microbiota and host immunity, affecting several health-promoting functions of the host. In this review, we have discussed the ability of bacteriocin-producing probiotic lactic acid bacteria in the modulation of gut microbiota correcting dysbiosis and treatment/maintenance of a few important human disorders such as chronic infections, inflammatory bowel diseases, obesity, and cancer.
Collapse
|
29
|
Kong Y, Du Q, Li J, Xing H. Engineering bacterial surface interactions using DNA as a programmable material. Chem Commun (Camb) 2022; 58:3086-3100. [PMID: 35077527 DOI: 10.1039/d1cc06138k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The diverse surface interactions and functions of a bacterium play an important role in cell signaling, host infection, and colony formation. To understand and synthetically control the biological functions of individual cells as well as the whole community, there is growing attention on the development of chemical and biological tools that can integrate artificial functional motifs onto the bacterial surface to replace the native interactions, enabling a variety of applications in biosynthesis, environmental protection, and human health. Among all these functional motifs, DNA emerges as a powerful tool that can precisely control bacterial interactions at the bio-interface due to its programmability and biorecognition properties. Compared with conventional chemical and genetic approaches, the sequence-specific Watson-Crick interaction enables almost unlimited programmability in DNA nanostructures, realizing one base-pair spatial control and bio-responsive properties. This highlight aims to provide an overview on this emerging research topic of DNA-engineered bacterial interactions from the aspect of synthetic chemists. We start with the introduction of native bacterial surface ligands and established synthetic approaches to install artificial ligands, including direct modification, metabolic engineering, and genetic engineering. A brief overview of DNA nanotechnology, reported DNA-bacteria conjugation chemistries, and several examples of DNA-engineered bacteria are included in this highlight. The future perspectives and challenges in this field are also discussed, including the development of dynamic bacterial surface chemistry, assembly of programmable multicellular community, and realization of bacteria-based theranostic agents and synthetic microbiota as long-term goals.
Collapse
Affiliation(s)
- Yuhan Kong
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Qi Du
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Juan Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
30
|
Wei DX, Zhang XW. Biosynthesis, Bioactivity, Biosafety and Applications of Antimicrobial Peptides for Human Health. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Probiotic Molecules That Inhibit Inflammatory Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Consumption of probiotics for health purposes has increased vastly in the past few decades, and yet the scientific evidence to support health benefits from probiotics is only beginning to emerge. As more probiotics are studied, we are beginning to understand the mechanisms of action by which they benefit human health, as well as to identify the bacterial molecules responsible for these benefits. A new era of therapeutics is on the horizon in which purified molecules from probiotics will be used to prevent and treat diseases. In this review, we summarize the active molecules from probiotic bacteria that have been shown to affect innate and adaptive immunity and have health benefits in experimental settings. We focus particularly on the cellular and molecular mechanisms of the probiotic Bacillus subtilis and its active molecule, exopolysaccharide (ESPBs).
Collapse
|
32
|
Zimmermann C, Wagner AE. Impact of Food-Derived Bioactive Compounds on Intestinal Immunity. Biomolecules 2021; 11:biom11121901. [PMID: 34944544 PMCID: PMC8699755 DOI: 10.3390/biom11121901] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal system is responsible for the digestion and the absorption of nutrients. At the same time, it is essentially involved in the maintenance of immune homeostasis. The strongest antigen contact in an organism takes place in the digestive system showing the importance of a host to develop mechanisms allowing to discriminate between harmful and harmless antigens. An efficient intestinal barrier and the presence of a large and complex part of the immune system in the gut support the host to implement this task. The continuous ingestion of harmless antigens via the diet requires an efficient immune response to reliably identify them as safe. However, in some cases the immune system accidentally identifies harmless antigens as dangerous leading to various diseases such as celiac disease, inflammatory bowel diseases and allergies. It has been shown that the intestinal immune function can be affected by bioactive compounds derived from the diet. The present review provides an overview on the mucosal immune reactions in the gut and how bioactive food ingredients including secondary plant metabolites and probiotics mediate its health promoting effects with regard to the intestinal immune homeostasis.
Collapse
|
33
|
Jastrząb R, Graczyk D, Siedlecki P. Molecular and Cellular Mechanisms Influenced by Postbiotics. Int J Mol Sci 2021; 22:ijms222413475. [PMID: 34948270 PMCID: PMC8707144 DOI: 10.3390/ijms222413475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, commensal bacteria colonizing the human body have been recognized as important determinants of health and multiple pathologic conditions. Among the most extensively studied commensal bacteria are the gut microbiota, which perform a plethora of functions, including the synthesis of bioactive products, metabolism of dietary compounds, and immunomodulation, both through attenuation and immunostimulation. An imbalance in the microbiota population, i.e., dysbiosis, has been linked to many human pathologies, including various cancer types and neurodegenerative diseases. Targeting gut microbiota and microbiome-host interactions resulting from probiotics, prebiotics, and postbiotics is a growing opportunity for the effective treatment of various diseases. As more research is being conducted, the microbiome field is shifting from simple descriptive analysis of commensal compositions to more molecular, cellular, and functional studies. Insight into these mechanisms is of paramount importance for understanding and modulating the effects that microbiota, probiotics, and their derivatives exert on host health.
Collapse
|
34
|
Ghosh S, Pramanik S. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome. Arch Microbiol 2021; 203:5281-5308. [PMID: 34405262 PMCID: PMC8370661 DOI: 10.1007/s00203-021-02516-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
The research on human gut microbiome, regarded as the black box of the human body, is still at the stage of infancy as the functional properties of the complex gut microbiome have not yet been understood. Ongoing metagenomic studies have deciphered that the predominant microbial communities belong to eubacterial phyla Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Cyanobacteria, Verrucomicrobia and archaebacterial phylum Euryarchaeota. The indigenous commensal microbial flora prevents opportunistic pathogenic infection and play undeniable roles in digestion, metabolite and signaling molecule production and controlling host's cellular health, immunity and neuropsychiatric behavior. Besides maintaining intestinal health via short-chain fatty acid (SCFA) production, gut microbes also aid in neuro-immuno-endocrine modulatory molecule production, immune cell differentiation and glucose and lipid metabolism. Interdependence of diet and intestinal microbial diversity suggests the effectiveness of pre- and pro-biotics in maintenance of gut and systemic health. Several companies worldwide have started potentially exploiting the microbial contribution to human health and have translated their use in disease management and therapeutic applications. The present review discusses the vast diversity of microorganisms playing intricate roles in human metabolism. The contribution of the intestinal microbiota to regulate systemic activities including gut-brain-immunity crosstalk has been focused. To the best of our knowledge, this review is the first of its kind to collate and discuss the companies worldwide translating the multi-therapeutic potential of human intestinal microbiota, based on the multi-omics studies, i.e. metagenomics and metabolomics, as ready solutions for several metabolic and systemic disorders.
Collapse
Affiliation(s)
- Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| |
Collapse
|
35
|
Eshleman EM, Alenghat T. Epithelial sensing of microbiota-derived signals. Genes Immun 2021; 22:237-246. [PMID: 33824498 PMCID: PMC8492766 DOI: 10.1038/s41435-021-00124-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 02/01/2023]
Abstract
The gastrointestinal tract harbors trillions of microbial species, collectively termed the microbiota, which establish a symbiotic relationship with the host. Decades of research have emphasized the necessity of microbial signals in the development, maturation, and function of host physiology. However, changes in the composition or containment of the microbiota have been linked to the development of several chronic inflammatory diseases, including inflammatory bowel diseases. Intestinal epithelial cells (IECs) are in constant contact with the microbiota and are critical for maintaining intestinal homeostasis. Signals from the microbiota are directly sensed by IECs and influence intestinal health by calibrating immune cell responses and fortifying intestinal barrier function. IECs detect commensal microbes through engagement of common pattern recognition receptors or by sensing the production of microbial-derived metabolites. Deficiencies in these microbial-detecting pathways in IECs leads to impaired epithelial barrier function and altered intestinal homeostasis. This Review aims to highlight the pathways by which IECs sense microbiota-derived signals and the necessity of these detection pathways in maintaining epithelial barrier integrity.
Collapse
Affiliation(s)
- Emily M Eshleman
- Division of Immunobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Theresa Alenghat
- Division of Immunobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
36
|
The Cooperation of Bifidobacterium longum and Active Vitamin D3 on Innate Immunity in Salmonella Colitis Mice via Vitamin D Receptor. Microorganisms 2021; 9:microorganisms9091804. [PMID: 34576700 PMCID: PMC8465383 DOI: 10.3390/microorganisms9091804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022] Open
Abstract
Salmonella spp. remains a major public health problem for the whole world. Intestinal epithelial cells serve as an essential component of the mucosal innate immune system to defend against Salmonella infection. Our in vitro studies showed probiotics and active vitamin D have similar effects on innate immunity in Salmonella-infected intestinal epithelial cells, including antimicrobial peptide and inflammatory responses, to protect the host against infection while downregulating detrimental overwhelming inflammation. Hence, we investigated the synergistic effects of probiotics and active vitamin D on Salmonella colitis and translocation to liver and spleen by in vitro and in vivo studies. The Salmonella colitis model is conducted with 6–8 w/o male C57BL/6 mice: Streptomycin (20 mg/mouse p.o.)-pretreated C57BL/6 mice are mock infected with sterile PBS or infected orally with 1 × 108 CFU of a S. Typhimurium wild-type strain SL1344 for 48 h. The mice in the treated groups received 1, 25D daily (0.2 ug/25 g/d) and/or 1 × 108 CFU of probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum (BL) by intragastric administration for 14 days. The in vivo study demonstrated the combination of probiotic Bifidobacterium longum and active vitamin D3 had the synergistic effects on reducing the severity of Salmonella colitis and body weight loss in C57BL/6 mice by reducing cecal inflammatory mIL-6, mIL-8, mTNF-α and mIL-1β mRNA responses, blocking the translocation of bacteria while enhancing the antimicrobial peptide mhBD-3 mRNA in comparison to the infection only group. However, LGG did not have the same synergistic effects. It suggests the synergistic effects of Bifidobacterium longum and active vitamin D on the antibacterial and anti-inflammatory responses in Salmonella colitis. Therefore, our in vivo studies demonstrated that the combination of probiotic Bifidobacterium longum and active vitamin D3 has the synergistic effects on reducing the severity of Salmonella colitis via the suppression of inflammatory responses, and blocking the translocation of bacteria through the enhancement of antimicrobial peptides.
Collapse
|
37
|
Tan W, Qiu Y, Chen N, Gao J, Liang J, Liu Y, Zhao D. The intervention of intestinal Wnt/β-catenin pathway alters inflammation and disease severity of CIA. Immunol Res 2021; 69:323-333. [PMID: 34037945 DOI: 10.1007/s12026-021-09190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Autoreactive T cell is one of the leading causes of immunological tolerance defects in the chronic inflammatory lesions of rheumatoid arthritis (RA). There have been several extracellular signals and intracellular pathways reported in regulating this process but largely remain unknown yet. In this study, we explored the roles of intestinal Wnt/β-catenin on disease severity during collagen-induced arthritis model (CIA), an animal model of RA. We first testified the activity pattern Wnt/β-catenin shifted by intragastric administration of LiCl and DKK-1 in the intestine by real-time PCR and WB analysis. The arthritis scores showing the disease severity in the DKK-1 group was significantly ameliorated compared with the control group at the late stage of the disease, while in the LiCl group, the scores were significantly elevated which was consistent with pathology score analysis of H&E staining. Next, ELISA was performed and showed that TNF-α and IL-17 in the LiCl group were significantly higher than that of the control group. IL-10 in the DKK-1 group was significantly higher than that in the LiCl-1 group and control group, P < 0.05. Flow cytometry of spleen T cells differentiation ratio showed that: Th1 from the DKK-1 and LiCl groups and Th17 from the LiCl group was significantly different from that of the blank model group, P < 0.05. Finally, we explored the effects of intestinal Wnt/β-catenin on T cell differentiation regulator ROR-γt and TCF1 and found that both transcription factors were up-regulated in the LiCl group. Together, these data suggested the pro-information role of Wnt/β-catenin pathway from the intestine in the CIA mouse, implying its use as a potential therapeutic target for the treatment of inflammatory diseases such as RA.
Collapse
Affiliation(s)
- Weixing Tan
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
- Air Force Health Care Center for Special Services, Hangzhou, China
| | - Yang Qiu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Chen
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jingjing Liang
- Department of Endocrinology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yu Liu
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Dongbao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
38
|
Gastric Microenvironment-A Partnership between Innate Immunity and Gastric Microbiota Tricks Helicobacter pylori. J Clin Med 2021; 10:jcm10153258. [PMID: 34362042 PMCID: PMC8347153 DOI: 10.3390/jcm10153258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) carcinogenicity depends on three major factors: bacterial virulence constituents, environmental factors and host's genetic susceptibility. The relationship between microenvironmental factors and H. pylori virulence factors are incontestable. H. pylori infection has a major impact on both gastric and colonic microbiota. The presence of non-H. pylori bacteria within the gastric ecosystem is particularly important since they might persistently act as an antigenic stimulus or establish a partnership with H. pylori in order to augment the subsequent inflammatory responses. The gastric ecosystem, i.e., microbiota composition in children with H. pylori infection is dominated by Streptoccocus, Neisseria, Rothia and Staphylococcus. The impairment of this ecosystem enhances growth and invasion of different pathogenic bacteria, further impairing the balance between the immune system and mucosal barrier. Moreover, altered microbiota due to H. pylori infection is involved in increasing the gastric T regulatory cells response in children. Since gastric homeostasis is defined by the partnership between commensal bacteria and host's immune system, this review is focused on how pathogen recognition through toll-like receptors (TLRs-an essential class of pathogen recognition receptors-PRRs) on the surface of macrophages and dendritic cells impact the immune response in the setting of H. pylori infection. Further studies are required for delineate precise role of bacterial community features and of immune system components.
Collapse
|
39
|
Zeng XY, Li M. Looking into key bacterial proteins involved in gut dysbiosis. World J Methodol 2021; 11:130-143. [PMID: 34322365 PMCID: PMC8299906 DOI: 10.5662/wjm.v11.i4.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal microbiota plays a pivotal role in health and has been linked to many diseases. With the rapid accumulation of pyrosequencing data of the bacterial composition, the causal-effect relationship between specific dysbiosis features and diseases is now being explored. The aim of this review is to describe the key functional bacterial proteins and antigens in the context of dysbiosis related-diseases. We subjectively classify the key functional proteins into two categories: Primary key proteins and secondary key proteins. The primary key proteins mainly act by themselves and include biofilm inhibitors, toxin degraders, oncogene degraders, adipose metabolism modulators, anti-inflammatory peptides, bacteriocins, host cell regulators, adhesion and invasion molecules, and intestinal barrier regulators. The secondary key proteins mainly act by eliciting host immune responses and include flagellin, outer membrane proteins, and other autoantibody-related antigens. Knowledge of key bacterial proteins is limited compared to the rich microbiome data. Understanding and focusing on these key proteins will pave the way for future mechanistic level cause-effect studies of gut dysbiosis and diseases.
Collapse
Affiliation(s)
- Xin-Yu Zeng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ming Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumors, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
40
|
Shimizu K, Ojima M, Ogura H. Gut Microbiota and Probiotics/Synbiotics for Modulation of Immunity in Critically Ill Patients. Nutrients 2021; 13:nu13072439. [PMID: 34371948 PMCID: PMC8308693 DOI: 10.3390/nu13072439] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/24/2021] [Accepted: 07/10/2021] [Indexed: 12/26/2022] Open
Abstract
Patients suffering from critical illness have host inflammatory responses against injuries, such as infection and trauma, that can lead to tissue damage, organ failure, and death. Modulation of host immune response as well as infection and damage control are detrimental factors in the management of systemic inflammation. The gut is the motor of multiple organ failure following injury, and it is recognized that gut dysfunction is one of the causative factors of disease progression. The gut microbiota has a role in maintaining host immunity, and disruption of the gut microbiota might induce an immunosuppressive condition in critically ill patients. Treatment with probiotics and synbiotics has been reported to attenuate systemic inflammation by maintaining gut microbiota and to reduce postoperative infectious complications and ventilator-associated pneumonia. The administration of prophylactic probiotics/synbiotics could be an important treatment option for preventing infectious complications and modulating immunity. Further basic and clinical research is needed to promote intestinal therapies for critically ill patients.
Collapse
|
41
|
Xia P, Wu Y, Lian S, Yan L, Meng X, Duan Q, Zhu G. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses. Appl Microbiol Biotechnol 2021; 105:5341-5355. [PMID: 34180006 PMCID: PMC8236385 DOI: 10.1007/s00253-021-11406-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022]
Abstract
When microorganisms invade a host, the innate immune system first recognizes the pathogen-associated molecular patterns of these microorganisms through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are known transmembrane PRRs existing in both invertebrates and vertebrates. Upon ligand recognition, TLRs initiate a cascade of signaling events; promote the pro-inflammatory cytokine, type I interferon, and chemokine expression; and play an essential role in the modulation of the host's innate and adaptive immunity. Therefore, it is of great significance to improve our understanding of antimicrobial immune responses by studying the role of TLRs and their signal molecules in the host's defense against invading microbes. This paper aims to summarize the specificity of TLRs in recognition of conserved microbial components, such as lipoprotein, lipopolysaccharide, flagella, endosomal nucleic acids, and other bioactive metabolites derived from microbes. This set of interactions helps to elucidate the immunomodulatory effect of TLRs and the signal transduction changes involved in the infectious process and provide a novel therapeutic strategy to combat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Xia Meng
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Qiangde Duan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
42
|
Stange EF, von Bünau R, Erhardt A. Ulcerative colitis-Maintanance of Remission With the Probiotic Escherichia coli Strain Nissle 1917. Gastroenterology 2021; 160:2632. [PMID: 33385430 DOI: 10.1053/j.gastro.2020.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Eduard F Stange
- Alfred-Nissle-Gesellschaft e. V., International Society for Microbiota Research and Microbial Drug Therapy, Herdecke, Germany
| | - Rudolf von Bünau
- Alfred-Nissle-Gesellschaft e. V., International Society for Microbiota Research and Microbial Drug Therapy, Herdecke, Germany
| | - Andreas Erhardt
- Alfred-Nissle-Gesellschaft e. V., International Society for Microbiota Research and Microbial Drug Therapy, Herdecke, Germany
| |
Collapse
|
43
|
Singh TP, Tehri N, Kaur G, Malik RK. Cell surface and extracellular proteins of potentially probiotic Lactobacillus reuteri as an effective mediator to regulate intestinal epithelial barrier function. Arch Microbiol 2021; 203:3219-3228. [PMID: 33830286 DOI: 10.1007/s00203-021-02318-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
The present study aimed to evaluate the potential of cell surface and extracellular proteins in regulation of intestinal epithelial barrier (IEB) function. Eight potentially probiotic L. reuteri strains were evaluated for presence of mapA gene and its expression on co-culturing with the Caco-2 cells. The ability of untreated (Viable), heat-inactivated, 5 M LiCL treated L. reuteri strains as well as their cell-free supernatant (CFS) to modulate expression of IEB function genes (hBD-2, hBD-3, claudin-1 and occludin) was also evaluated. Caco-2 cells were treated with cell surface and extracellular protein extracts and investigated for change in expression of targeted IEB function genes. The results showed that mapA gene is present in all the tested L. reuteri strains and expression of mapA and its receptors (anxA13 and palm) increase significantly on co-culturing of L. reuteri and Caco-2 cells. Also, up-regulated expression of IEB function genes was observed on co-culturing of L. reuteri (viable, heat-inactivated and CFS) and their protein extracts with Caco-2 cells in contrast to down-regulation observed with the pathogenic strain of Salmonella typhi. Therefore, this study concludes that the cell surface and extracellular protein from L. reuteri act as an effective mediator molecules to regulate IEB function.
Collapse
Affiliation(s)
- Tejinder P Singh
- Dairy Microbiology Department, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Science, Hisar, 125004, India.
| | - Nimisha Tehri
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001, India
| | - Gurpreet Kaur
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001, India
| | - Ravinder K Malik
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001, India
| |
Collapse
|
44
|
Lan YJ, Tan SI, Cheng SY, Ting WW, Xue C, Lin TH, Cai MZ, Chen PT, Ng IS. Development of Escherichia coli Nissle 1917 derivative by CRISPR/Cas9 and application for gamma-aminobutyric acid (GABA) production in antibiotic-free system. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Modulation of Human Beta-Defensin 2 Expression by Pathogenic Neisseria meningitidis and Commensal Lactobacilli. Antimicrob Agents Chemother 2021; 65:AAC.02002-20. [PMID: 33468461 DOI: 10.1128/aac.02002-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022] Open
Abstract
Antimicrobial peptides (AMPs) play an important role in the defense against pathogens by targeting and killing invading microbes. Some pathogenic bacteria have been shown to negatively regulate AMP expression, while several commensals may induce AMP expression. The expression of certain AMPs, such as human beta-defensin 2 (hBD2), can be induced via nuclear factor NF-κB, which, in turn, is negatively controlled by tumor necrosis factor alpha-induced protein 3 (TNFAIP3, or A20). In this work, we examined the expression of hBD1 and hBD2 during coincubation of pharyngeal epithelial cells with pathogenic Neisseria meningitidis and commensal lactobacilli. The Lactobacillus strains induced hBD2 expression in human pharyngeal cells, while the pathogen N. meningitidis did not. In coincubation experiments, meningococci were able to dampen the AMP expression induced by lactobacilli. We found that N. meningitidis induced the NF-κB inhibitor A20. Further, RNA silencing of A20 resulted in increased hBD2 expression after meningococcal infection. Since it is known that induction of A20 reduces NF-κB activity and thus hBD2 levels, meningococcal-mediated A20 induction could be a way for the pathogen to dampen AMP expression. Finally, treatment of N. meningitidis and lactobacilli with synthetic hBD2 reduced N. meningitidis viability more efficiently than Lactobacillus reuteri, explaining why maintaining low AMP levels is important for the survival of the pathogen.
Collapse
|
46
|
The consumption of milk supplemented with probiotics decreases the occurrence of caries and the salivary concentration of hβD-3 in children. Clin Oral Investig 2021; 25:3823-3830. [PMID: 33404758 DOI: 10.1007/s00784-020-03712-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES This study evaluated the effect of milk supplemented with Lactobacillus rhamnosus SP1 on the occurrence of caries and the salivary concentration of human β-defensin-3 (hβD-3) in preschool children with high caries risk. MATERIALS AND METHODS A sample of 42 children was randomly assigned to two groups; children in the intervention group were given 150 mL of milk supplemented with 107 CFU/mL of Lactobacillus rhamnosus SP1, while children in the control group were given standard milk, for 10 months. The occurrence of dental caries was assessed using the International Caries Detection and Assessment System (ICDAS), and the concentration of hβD-3 was measured in unstimulated saliva using an ELISA test at baseline and after the intervention. RESULTS There was an increase in the number of teeth with carious lesions (dICDAS2-6 mft) in the control group, and this increase was statistically significant (p = 0.0489). The concentration of hβD-3 in saliva from the intervention group decreased from 597.91 to 126.29 pg/mL (p = 0.0061), unlike in the control group, where no change in hβD-3 salivary concentration was found. CONCLUSIONS These findings showed that regular intake of probiotic-supplemented milk in preschool children with high caries risk decreased the occurrence of caries and the salivary levels of hβD-3. CLINICAL RELEVANCE Our results suggest the need for developing and implementing probiotic supplementation, as adjuvants to the conventional treatments for caries and allow to considerate the salivary levels of hβD-3 as markers of oral tissue homeostasis.
Collapse
|
47
|
Severity of Experimental Autoimmune Uveitis Is Reduced by Pretreatment with Live Probiotic Escherichia coli Nissle 1917. Cells 2020; 10:cells10010023. [PMID: 33375578 PMCID: PMC7823395 DOI: 10.3390/cells10010023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Non-infectious uveitis is considered an autoimmune disease responsible for a significant burden of blindness in developed countries and recent studies have linked its pathogenesis to dysregulation of the gut microbiota. We tested the immunomodulatory properties of two probiotics, Escherichia coli Nissle 1917 (EcN) and E. coli O83:K24:H31 (EcO), in a model of experimental autoimmune uveitis (EAU). To determine the importance of bacterial viability and treatment timing, mice were orally treated with live or autoclaved bacteria in both preventive and therapeutic schedules. Disease severity was assessed by ophthalmoscopy and histology, immune phenotypes in mesenteric and cervical lymph nodes were analyzed by flow cytometry and the gut immune environment was analyzed by RT-PCR and/or gut tissue culture. EcN, but not EcO, protected against EAU but only as a live organism and only when administered before or at the time of disease induction. Successful prevention of EAU was accompanied by a decrease in IRBP-specific T cell response in the lymph nodes draining the site of immunization as early as 7 days after the immunization and eye-draining cervical lymph nodes when the eye inflammation became apparent. Furthermore, EcN promoted an anti-inflammatory response in Peyer’s patches, increased gut antimicrobial peptide expression and decreased production of inducible nitric oxide synthase in macrophages. In summary, we show here that EcN controls inflammation in EAU and suggest that probiotics may have a role in regulating the gut–eye axis.
Collapse
|
48
|
Arulsamy A, Tan QY, Balasubramaniam V, O’Brien TJ, Shaikh MF. Gut Microbiota and Epilepsy: A Systematic Review on Their Relationship and Possible Therapeutics. ACS Chem Neurosci 2020; 11:3488-3498. [PMID: 33064448 DOI: 10.1021/acschemneuro.0c00431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dysbiosis of gut microbiota may lead to a range of diseases including neurological disorders. Thus, it is hypothesized that regulation of the intestinal microbiota may prevent or treat epilepsy. The purpose of this systematic review is to evaluate the evidence investigating the relationship between gut microbiota and epilepsy and possible interventions. A systematic review of the literature was done on four databases (PubMed, Scopus, EMBASE, and Web of Science). Study selection was restricted to original research articles while following the PRISMA guidelines. Six studies were selected. These studies cohesively support the interaction between gut microbiota and epileptic seizures. Gut microbiota analysis identified increases in Firmicutes, Proteobacteria, Verrucomicrobia, and Fusobacteria with decreases in Bacteroidetes and Actinobacteria in epileptic patients. Ketogenic diet, probiotics, and fecal microbiota transplantation (FMT) improved the dysbiosis of the gut microbiota and seizure activity. However, the studies either had a small sample size, lack of subject variability, or short study or follow-up period, which may question their reliability. Nevertheless, these limited studies conclusively suggest that gut microbiota diversity and dysbiosis may be involved in the pathology of epilepsy. Future studies providing more reliable and in depth insight into the gut microbial community will spark promising alternative therapies to current epilepsy treatment.
Collapse
Affiliation(s)
- Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| | - Qian Ying Tan
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| | - Vinod Balasubramaniam
- Infection and Immunity Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Selangor Malaysia
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004 VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004 VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, 3010 VIC, Australia
| |
Collapse
|
49
|
Mayorgas A, Dotti I, Salas A. Microbial Metabolites, Postbiotics, and Intestinal Epithelial Function. Mol Nutr Food Res 2020; 65:e2000188. [DOI: 10.1002/mnfr.202000188] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Aida Mayorgas
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| | - Isabella Dotti
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| | - Azucena Salas
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| |
Collapse
|
50
|
Walrath T, Dyamenahalli KU, Hulsebus HJ, McCullough RL, Idrovo JP, Boe DM, McMahan RH, Kovacs EJ. Age-related changes in intestinal immunity and the microbiome. J Leukoc Biol 2020; 109:1045-1061. [PMID: 33020981 DOI: 10.1002/jlb.3ri0620-405rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022] Open
Abstract
The gastrointestinal (GI) tract is a vitally important site for the adsorption of nutrients as well as the education of immune cells. Homeostasis of the gut is maintained by the interplay of the intestinal epithelium, immune cells, luminal Ags, and the intestinal microbiota. The well-being of the gut is intrinsically linked to the overall health of the host, and perturbations to this homeostasis can have severe impacts on local and systemic health. One factor that causes disruptions in gut homeostasis is age, and recent research has elucidated how critical systems within the gut are altered during the aging process. Intestinal stem cell proliferation, epithelial barrier function, the gut microbiota, and the composition of innate and adaptive immune responses are all altered in advanced age. The aging population continues to expand worldwide, a phenomenon referred to as the "Silver Tsunami," and every effort must be made to understand how best to prevent and treat age-related maladies. Here, recent research about changes observed in the intestinal epithelium, the intestinal immune system, the microbiota, and how the aging gut interacts with and influences other organs such as the liver, lung, and brain are reviewed. Better understanding of these age-related changes and their impact on multi-organ interactions will aid the development of therapies to increase the quality of life for all aged individuals.
Collapse
Affiliation(s)
- Travis Walrath
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Kiran U Dyamenahalli
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Holly J Hulsebus
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA.,Immunology Graduate Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Rebecca L McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, USA.,GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Juan-Pablo Idrovo
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Devin M Boe
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA.,Immunology Graduate Program, University of Colorado Denver, Aurora, Colorado, USA.,Medical Scientist Training Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Rachel H McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA.,Immunology Graduate Program, University of Colorado Denver, Aurora, Colorado, USA.,Medical Scientist Training Program, University of Colorado Denver, Aurora, Colorado, USA.,GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|