1
|
Serology- and Blood-PCR-Based Screening for Schistosomiasis in Pregnant Women in Madagascar-A Cross-Sectional Study and Test Comparison Approach. Pathogens 2021; 10:pathogens10060722. [PMID: 34201231 PMCID: PMC8229283 DOI: 10.3390/pathogens10060722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 12/17/2022] Open
Abstract
This work was conducted as a cross sectional study to define the disease burden of schistosomiasis in pregnant Madagascan women and to evaluate serological and molecular diagnostic assays. A total of 1154 residual EDTA blood samples from pregnant Madagascan women were assessed. The nucleic acid extractions were subjected to in-house real-time PCRs specifically targeting S. mansoni complex, S. haematobium complex, and African Schistosoma spp. on genus level, while the EDTA plasma samples were analyzed using Schistosoma-specific IgG and IgM commercial ELISA and immunofluorescence assays. The analyses indicated an overall prevalence of schistosomiasis in Madagascan pregnant women of 40.4%, with only minor regional differences and differences between serology- and blood PCR-based surveillance. The S. mansoni specific real-time PCR showed superior sensitivity of 74% (specificity 80%) compared with the genus-specific real-time PCR (sensitivity 13%, specificity 100%) in blood. The laborious immunofluorescence (sensitivity IgM 49%, IgG 87%, specificity IgM 85%, IgG 96%) scored only slightly better than the automatable ELISA (sensitivity IgM 38%, IgG 88%, specificity IgM 78%, IgG 91%). Infections with S. mansoni were detected only. The high prevalence of schistosomiasis recorded here among pregnant women in Madagascar calls for actions in order to reduce the disease burden.
Collapse
|
2
|
Tokplonou L, Nouatin O, Sonon P, M'po G, Glitho S, Agniwo P, Gonzalez-Ortiz D, Tchégninougbo T, Ayitchédji A, Favier B, Donadi EA, Milet J, Luty AJF, Massougbodji A, Garcia A, Ibikounlé M, Courtin D. Schistosoma haematobium infection modulates Plasmodium falciparum parasite density and antimalarial antibody responses. Parasite Immunol 2020; 42:e12702. [PMID: 32020650 DOI: 10.1111/pim.12702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
AIMS Schistosomiasis and malaria are endemic in sub-Saharan Africa where Schistosoma haematobium (Sh) and Plasmodium falciparum (Pf) coinfections are thus frequent. We explored the effect of Sh infection on antibody responses directed to Pf merozoite antigens and on malaria susceptibility in Beninese children. METHODS AND RESULTS A total of 268 children were followed during a malaria transmission season. Detection of Pf infection was performed by microscopy and rapid diagnostic tests. Sh infection was determined in urine by microscopy. Antimalarial antibody, cytokine and HLA-G concentrations were quantified by ELISA. The expression of HLA-G receptors by immune cells was assessed by flow cytometry. Children infected by Sh had higher concentrations of IgG1 directed to MSP3 and GLURPR0 , IgG2 directed to GLURPR0 and IgG3 directed to MSP3, GLURPR0 and GLURPR2 and have lower Pf densities than those uninfected by Sh. No difference in cytokine and HLA-G concentrations was observed between Sh egg carriers and non-carriers. CONCLUSION Schistosoma haematobium modulates host immune responses directed to Pf antigens. The absence of immune downregulation usually observed during helminth infections is surprising in our study. We hypothesize that the stage of Sh development could partly explain the immune pathways leading to increased antibody levels that favour better control of Pf parasitemia.
Collapse
Affiliation(s)
- Léonidas Tokplonou
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin.,UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France.,Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Odilon Nouatin
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin
| | - Paulin Sonon
- Laboratory of Clinical Immunology, Ribeirão Preto Medicine School, University of São Paulo, São Paulo, Brazil
| | - Grace M'po
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin.,Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Sonya Glitho
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin.,Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Privat Agniwo
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin.,Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Daniel Gonzalez-Ortiz
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| | | | | | - Benoit Favier
- CEA-Université Paris Sud INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Eduardo A Donadi
- Laboratory of Clinical Immunology, Ribeirão Preto Medicine School, University of São Paulo, São Paulo, Brazil
| | - Jacqueline Milet
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Adrian J F Luty
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin
| | - André Garcia
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Moudachirou Ibikounlé
- Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin.,Laboratory of Clinical Immunology, Ribeirão Preto Medicine School, University of São Paulo, São Paulo, Brazil
| | - David Courtin
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| |
Collapse
|
3
|
Silveira ELV, Dominguez MR, Soares IS. To B or Not to B: Understanding B Cell Responses in the Development of Malaria Infection. Front Immunol 2018; 9:2961. [PMID: 30619319 PMCID: PMC6302011 DOI: 10.3389/fimmu.2018.02961] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Malaria is a widespread disease caused mainly by the Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) protozoan parasites. Depending on the parasite responsible for the infection, high morbidity and mortality can be triggered. To escape the host immune responses, Plasmodium parasites disturb the functionality of B cell subsets among other cell types. However, some antibodies elicited during a malaria infection have the potential to block pathogen invasion and dissemination into the host. Thus, the question remains, why is protection not developed and maintained after the primary parasite exposure? In this review, we discuss different aspects of B cell responses against Plasmodium antigens during malaria infection. Since most studies have focused on the quantification of serum antibody titers, those B cell responses have not been fully characterized. However, to secrete antibodies, a complex cellular response is set up, including not only the activation and differentiation of B cells into antibody-secreting cells, but also the participation of other cell subsets in the germinal center reactions. Therefore, a better understanding of how B cell subsets are stimulated during malaria infection will provide essential insights toward the design of potent interventions.
Collapse
Affiliation(s)
- Eduardo L V Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana R Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Moriyasu T, Nakamura R, Deloer S, Senba M, Kubo M, Inoue M, Culleton R, Hamano S. Schistosoma mansoni infection suppresses the growth of Plasmodium yoelii parasites in the liver and reduces gametocyte infectivity to mosquitoes. PLoS Negl Trop Dis 2018; 12:e0006197. [PMID: 29373600 PMCID: PMC5802944 DOI: 10.1371/journal.pntd.0006197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/07/2018] [Accepted: 12/28/2017] [Indexed: 11/19/2022] Open
Abstract
Malaria and schistosomiasis are major parasitic diseases causing morbidity and mortality in the tropics. Epidemiological surveys have revealed coinfection rates of up to 30% among children in Sub-Saharan Africa. To investigate the impact of coinfection of these two parasites on disease epidemiology and pathology, we carried out coinfection studies using Plasmodium yoelii and Schistosoma mansoni in mice. Malaria parasite growth in the liver following sporozoite inoculation is significantly inhibited in mice infected with S. mansoni, so that when low numbers of sporozoites are inoculated, there is a large reduction in the percentage of mice that go on to develop blood stage malaria. Furthermore, gametocyte infectivity is much reduced in mice with S. mansoni infections. These results have profound implications for understanding the interactions between Plasmodium and Schistosoma species, and have implications for the control of malaria in schistosome endemic areas. Malaria and schistosomiasis are parasitic infectious diseases that cause severe morbidity and mortality in the tropics. Chronic schistosomiasis causes malnutrition and impaired intellectual development to children while malaria can cause fatal acute infections. Since coinfection of these two parasites is common in the tropics, many studies of both epidemiology and coinfection in animal models have been performed in order to reveal interactions between them. Previous animal studies on the interactions between Plasmodium and Schistosoma parasites have focused on the blood stage pathology of the malaria infection, and have consistently shown that parasitaemia can be enhanced in the presence of the helminth. In contrast, we focused on liver immunopathology in mice during coinfection between with Schistosoma and Plasmodium. We show that S. mansoni infection inhibits Plasmodium parasite growth in the liver resulting in a large reduction in the percentage of mice that go on to develop blood stage malaria following inoculation of low numbers of sporozoites. We also demonstrate that gametocyte infectivity is much reduced in mice with S. mansoni infections. Our results imply that S. mansoni infection can reduce malaria transmission both from mosquitoes to mice, and from mice to mosquitoes.
Collapse
Affiliation(s)
- Taeko Moriyasu
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Risa Nakamura
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Sharmina Deloer
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Masachika Senba
- Pathology Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan
| | - Megumi Inoue
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Richard Culleton
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- * E-mail: (RC); (SH)
| | - Shinjiro Hamano
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- * E-mail: (RC); (SH)
| |
Collapse
|
5
|
Chitsanoor S, Somsri S, Panburana P, Mungthin M, Ubalee R, Emyeam M, Jongwutiwes S, Sattabongkot J, Udomsangpetch R. A novel in vitro model reveals distinctive modulatory roles of Plasmodium falciparum and Plasmodium vivax on naïve cell-mediated immunity. Malar J 2017; 16:131. [PMID: 28347310 PMCID: PMC5368906 DOI: 10.1186/s12936-017-1781-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/17/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To date, human peripheral blood mononuclear cells (PBMCs) have been used mainly in immune stimulation assays and the interpretation of data can be influenced by the previous immunological history of donors and cross reactivity with other infectious agents. Resolving these limitations requires an alternative in vitro model to uncover the primary response profiles. METHODS A novel in vitro model of mononuclear cells (MNCs) generated from haematopoietic stem cells (HSCs) was developed and these cells were then co-cultured with various antigens from Plasmodium falciparum and Plasmodium vivax to investigate the response of naïve immune cells to malaria antigens by flow cytometry. RESULTS In vitro stimulation of naïve lymphocytes showed that CD4+ and CD8+ T lymphocytes were significantly reduced (P < 0.01) by exposure to lysates of infected erythrocytes or intact erythrocytes infected with P. falciparum. The depletion was associated with the expression of CD95 (Fas receptor) on the surface of T lymphocytes. Maturation of T lymphocytes was affected differently, showing elevated CD3+CD4+CD8+ and CD3+CD4-CD8- T lymphocytes after stimulation with cell lysates of P. falciparum and P. vivax, respectively. In addition, antigen presenting monocytes and dendritic cells derived from haematopoietic stem cells showed impaired HLA-DR expression as a consequence of exposure to different species of malaria parasites. CONCLUSION These results suggest that naïve mononuclear cells differentiated in vitro from HSCs could provide a valid model for the assessment of immunity. P. falciparum and P. vivax malaria parasites could modulate various populations of immune cells starting from newly differentiated mononuclear cells.
Collapse
Affiliation(s)
- Setthakit Chitsanoor
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sangdao Somsri
- Graduate Programme in Biomedical Science, Faculty of Allied Health Sciences, Thammasart University, Pathumthani, Thailand
| | - Panyu Panburana
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodhi Hospital, Mahidol University, Bangkok, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400 Thailand
| | - Ratawan Ubalee
- Department of Entomology, USAMC Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Maliwan Emyeam
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rachanee Udomsangpetch
- Centers for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
- Centers for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
6
|
Increased exposure to Plasmodium chabaudi antigens sustains cross-reactivity and avidity of antibodies binding Nippostrongylus brasiliensis: dissecting cross-phylum cross-reactivity in a rodent model. Parasitology 2015; 142:1703-14. [DOI: 10.1017/s0031182015001390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYMounting an antibody response capable of discriminating amongst and appropriately targeting different parasites is crucial in host defence. However, cross-reactive antibodies that recognize (bind to) multiple parasite species are well documented. We aimed to determine if a higher inoculating dose of one species, and thus exposure to larger amounts of antigen over a longer period of time, would fine-tune responses to that species and reduce cross-reactivity. Using the Plasmodium chabaudi chabaudi (Pcc)–Nippostrongylus brasiliensis (Nb) co-infection model in BALB/c mice, in which we previously documented cross-reactive antibodies, we manipulated the inoculating dose of Pcc across 4 orders of magnitude. We investigated antigen-specific and cross-reactive antibody responses against crude and defined recombinant antigens by enzyme linked immunosorbent assay, Western blot and antibody depletion assays. Contrary to our hypothesis that increasing exposure to Pcc would reduce cross-reactivity to Nb, we found evidence for increased avidity of a subpopulation of antibodies that recognized shared antigens. Western blot indicated proteins of apparent monomer molecular mass 28 and 98 kDa in both Nb and Pcc antigen preparations and also an Nb protein of similar size to recombinant Pcc antigen, merozoite surface protein-119. The implications of antibodies binding antigen from such phylogenetically distinct parasites are discussed.
Collapse
|
7
|
Coomes SM, Pelly VS, Kannan Y, Okoye IS, Czieso S, Entwistle LJ, Perez-Lloret J, Nikolov N, Potocnik AJ, Biró J, Langhorne J, Wilson MS. IFNγ and IL-12 Restrict Th2 Responses during Helminth/Plasmodium Co-Infection and Promote IFNγ from Th2 Cells. PLoS Pathog 2015; 11:e1004994. [PMID: 26147567 PMCID: PMC4493106 DOI: 10.1371/journal.ppat.1004994] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
Parasitic helminths establish chronic infections in mammalian hosts. Helminth/Plasmodium co-infections occur frequently in endemic areas. However, it is unclear whether Plasmodium infections compromise anti-helminth immunity, contributing to the chronicity of infection. Immunity to Plasmodium or helminths requires divergent CD4+ T cell-driven responses, dominated by IFNγ or IL-4, respectively. Recent literature has indicated that Th cells, including Th2 cells, have phenotypic plasticity with the ability to produce non-lineage associated cytokines. Whether such plasticity occurs during co-infection is unclear. In this study, we observed reduced anti-helminth Th2 cell responses and compromised anti-helminth immunity during Heligmosomoides polygyrus and Plasmodium chabaudi co-infection. Using newly established triple cytokine reporter mice (Il4gfpIfngyfpIl17aFP635), we demonstrated that Il4gfp+ Th2 cells purified from in vitro cultures or isolated ex vivo from helminth-infected mice up-regulated IFNγ following adoptive transfer into Rag1–/– mice infected with P. chabaudi. Functionally, Th2 cells that up-regulated IFNγ were transcriptionally re-wired and protected recipient mice from high parasitemia. Mechanistically, TCR stimulation and responsiveness to IL-12 and IFNγ, but not type I IFN, was required for optimal IFNγ production by Th2 cells. Finally, blockade of IL-12 and IFNγ during co-infection partially preserved anti-helminth Th2 responses. In summary, this study demonstrates that Th2 cells retain substantial plasticity with the ability to produce IFNγ during Plasmodium infection. Consequently, co-infection with Plasmodium spp. may contribute to the chronicity of helminth infection by reducing anti-helminth Th2 cells and converting them into IFNγ-secreting cells. Approximately a third of the world’s population is burdened with chronic intestinal parasitic helminth infections, causing significant morbidities. Identifying the factors that contribute to the chronicity of infection is therefore essential. Co-infection with other pathogens, which is extremely common in helminth endemic areas, may contribute to the chronicity of helminth infections. In this study, we used a mouse model to test whether the immune responses to an intestinal helminth were impaired following malaria co-infection. These two pathogens induce very different immune responses, which, until recently, were thought to be opposing and non-interchangeable. This study identified that the immune cells required for anti-helminth responses are capable of changing their phenotype and providing protection against malaria. By identifying and blocking the factors that drive this change in phenotype, we can preserve anti-helminth immune responses during co-infection. Our studies provide fresh insight into how immune responses are altered during helminth and malaria co-infection.
Collapse
Affiliation(s)
- Stephanie M. Coomes
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Victoria S. Pelly
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Yashaswini Kannan
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Isobel S. Okoye
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Stephanie Czieso
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Lewis J. Entwistle
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Jimena Perez-Lloret
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Nikolay Nikolov
- Division of Systems Biology, The Francis Crick Institute, London, United Kingdom
| | - Alexandre J. Potocnik
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Judit Biró
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Jean Langhorne
- Division of Parasitology, Mill Hill Laboratories, London, United Kingdom
| | - Mark S. Wilson
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Chu KB, Kim SS, Lee SH, Lee HS, Joo KH, Lee JH, Lee YS, Zheng S, Quan FS. Enhanced protection against Clonorchis sinensis induced by co-infection with Trichinella spiralis in rats. Parasite Immunol 2014; 36:522-30. [PMID: 24958325 DOI: 10.1111/pim.12125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/18/2014] [Indexed: 12/16/2022]
Abstract
Although co-infection with multiple parasites is a frequent occurrence, changes in the humoral immune response against a pre-existing parasite induced as a result of a subsequent parasitic infection remain undetermined. Here, we utilized enzyme-linked immunosorbent assay (ELISA) to investigate antibody responses, cytokine production and enhanced resistance in Clonorchis sinensis-infected rats (Sprague-Dawley) upon Trichinella spiralis infection. Higher levels of C. sinensis-specific IgG and IgA were elicited upon T. spiralis infection, and these levels remained higher than in rats infected with C. sinensis alone. Upon subsequent infection with T. spiralis, IgG antibodies against C. sinensis appeared to be rapidly boosted at day 3, and IgA antibodies were boosted at day 7. Challenge infection of C. sinensis-infected rats with T. spiralis induced substantial mucosal IgG and IgA responses in the liver and intestine and increases in antibody-secreting plasma cells in the spleen and bone marrow. Subsequent infection also appeared to confer effective control of liver C. sinensis loads, resulting in enhanced resistance. Memory B cells generated in response to C. sinensis infection were rapidly amplified into antibody-secreting cells upon T. spiralis infection. These results indicate that enhanced C. sinensis clearance induced by co-infection is associated with systemic and mucosal IgG and IgA responses.
Collapse
Affiliation(s)
- K-B Chu
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Human schistosomiasis--or bilharzia--is a parasitic disease caused by trematode flukes of the genus Schistosoma. By conservative estimates, at least 230 million people worldwide are infected with Schistosoma spp. Adult schistosome worms colonise human blood vessels for years, successfully evading the immune system while excreting hundreds to thousands of eggs daily, which must either leave the body in excreta or become trapped in nearby tissues. Trapped eggs induce a distinct immune-mediated granulomatous response that causes local and systemic pathological effects ranging from anaemia, growth stunting, impaired cognition, and decreased physical fitness, to organ-specific effects such as severe hepatosplenism, periportal fibrosis with portal hypertension, and urogenital inflammation and scarring. At present, preventive public health measures in endemic regions consist of treatment once every 1 or 2 years with the isoquinolinone drug, praziquantel, to suppress morbidity. In some locations, elimination of transmission is now the goal; however, more sensitive diagnostics are needed in both the field and clinics, and integrated environmental and health-care management will be needed to ensure elimination.
Collapse
Affiliation(s)
- Daniel G Colley
- Center for Tropical and Emerging Global Disease & Department of Microbiology, University of Georgia, Athens, GA, USA.
| | - Amaya L Bustinduy
- Liverpool School of Tropical Medicine, Department of Parasitology, Liverpool, UK
| | - W Evan Secor
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Charles H King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. Lancet 2014. [PMID: 24698483 DOI: 10.1016/s0140-6736(13)619492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Human schistosomiasis--or bilharzia--is a parasitic disease caused by trematode flukes of the genus Schistosoma. By conservative estimates, at least 230 million people worldwide are infected with Schistosoma spp. Adult schistosome worms colonise human blood vessels for years, successfully evading the immune system while excreting hundreds to thousands of eggs daily, which must either leave the body in excreta or become trapped in nearby tissues. Trapped eggs induce a distinct immune-mediated granulomatous response that causes local and systemic pathological effects ranging from anaemia, growth stunting, impaired cognition, and decreased physical fitness, to organ-specific effects such as severe hepatosplenism, periportal fibrosis with portal hypertension, and urogenital inflammation and scarring. At present, preventive public health measures in endemic regions consist of treatment once every 1 or 2 years with the isoquinolinone drug, praziquantel, to suppress morbidity. In some locations, elimination of transmission is now the goal; however, more sensitive diagnostics are needed in both the field and clinics, and integrated environmental and health-care management will be needed to ensure elimination.
Collapse
Affiliation(s)
- Daniel G Colley
- Center for Tropical and Emerging Global Disease & Department of Microbiology, University of Georgia, Athens, GA, USA.
| | - Amaya L Bustinduy
- Liverpool School of Tropical Medicine, Department of Parasitology, Liverpool, UK
| | - W Evan Secor
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Charles H King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
11
|
Wang ML, Feng YH, Pang W, Qi ZM, Zhang Y, Guo YJ, Luo EJ, Cao YM. Parasite densities modulate susceptibility of mice to cerebral malaria during co-infection with Schistosoma japonicum and Plasmodium berghei. Malar J 2014; 13:116. [PMID: 24670210 PMCID: PMC3986926 DOI: 10.1186/1475-2875-13-116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background Malaria and schistosomiasis are endemic and co-exist in the same geographic areas, even co-infecting the same host. Previous studies have reported that concomitant infection with Schistosoma japonicum could offer protection against experimental cerebral malaria (ECM) in mice. This study was performed to evaluate whether alterations in parasite density could alter this protective effect. Methods Mice were inoculated with 100 or 200 S. japonicum cercariae followed by infection with high or low density of Plasmodium berghei ANKA strain eight weeks after the first infection. Then, parasitaemia, survival rate and blood–brain-barrier (BBB) damage were assessed. Interferon-gamma (IFN-γ), interleukin (IL)-4, IL-5, IL-13, IL-10, and TGF-β levels were determined in splenocyte supernatants using enzyme-linked immunosorbent assay (ELISA). Cell surface/intracellular staining and flow cytometry were used to analyse the level of CD4+/CD8+ T cells, CD4+CD25+Foxp3+ Tregs, IL-10-secreting Tregs, and IL-10+Foxp3-CD4+ T cells in the spleen, and CD4+/CD8+ T cells infiltrating the brain. Results Co-infection with low density P. berghei and increased S. japonicum cercariae significantly increased the levels of IL-4, IL-5, IL-13, TGF-β and Tregs, but significantly decreased the levels of IFN-γ and the percentage of CD4+ T cells and CD8+ T cells in the spleen and CD8+ T cell infiltration in the brain. Increased worm loads also significantly decreased mortality and BBB impairment during ECM. When challenged with higher numbers of P. berghei and increased cercariae, the observed cytokine changes were not statistically significant. The corresponding ECM mortality and BBB impairment also remained unchanged. Conclusions This study demonstrates that protection for ECM depends on the numbers of the parasites, S. japonicum and P. berghei, during co-infection. Alterations in the regulatory response appear to play a key role in this adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ya-ming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No 92 Beier Road, Heping District, Shenyang 110001, China.
| |
Collapse
|
12
|
Kinung'hi SM, Magnussen P, Kaatano GM, Kishamawe C, Vennervald BJ. Malaria and helminth co-infections in school and preschool children: a cross-sectional study in Magu district, north-western Tanzania. PLoS One 2014; 9:e86510. [PMID: 24489732 PMCID: PMC3906044 DOI: 10.1371/journal.pone.0086510] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Malaria, schistosomiasis and soil transmitted helminth infections (STH) are important parasitic infections in Sub-Saharan Africa where a significant proportion of people are exposed to co-infections of more than one parasite. In Tanzania, these infections are a major public health problem particularly in school and pre-school children. The current study investigated malaria and helminth co-infections and anaemia in school and pre-school children in Magu district, Tanzania. METHODOLOGY School and pre-school children were enrolled in a cross-sectional study. Stool samples were examined for Schistosoma mansoni and STH infections using Kato Katz technique. Urine samples were examined for Schistosoma haematobium using the urine filtration method. Blood samples were examined for malaria parasites and haemoglobin concentrations using the Giemsa stain and Haemoque methods, respectively. PRINCIPAL FINDINGS Out of 1,546 children examined, 1,079 (69.8%) were infected with one or more parasites. Malaria-helminth co-infections were observed in 276 children (60% of all children with P. falciparum infection). Malaria parasites were significantly more prevalent in hookworm infected children than in hookworm free children (p = 0.046). However, this association was non-significant on multivariate logistic regression analysis (OR = 1.320, p = 0.064). Malaria parasite density decreased with increasing infection intensity of S. mansoni and with increasing number of co-infecting helminth species. Anaemia prevalence was 34.4% and was significantly associated with malaria infection, S. haematobium infection and with multiple parasite infections. Whereas S. mansoni infection was a significant predictor of malaria parasite density, P. falciparum and S. haematobium infections were significant predictors of anaemia. CONCLUSIONS/SIGNIFICANCE These findings suggest that multiple parasite infections are common in school and pre-school children in Magu district. Concurrent P. falciparum, S. mansoni and S. haematobium infections increase the risk of lower Hb levels and anaemia, which in turn calls for integrated disease control interventions. The associations between malaria and helminth infections detected in this study need further investigation.
Collapse
Affiliation(s)
- Safari M. Kinung'hi
- National Institute for Medical Research (NIMR), Mwanza Centre, Mwanza, Tanzania
| | - Pascal Magnussen
- DBL-Centre for Health Research and Development, Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Godfrey M. Kaatano
- National Institute for Medical Research (NIMR), Mwanza Centre, Mwanza, Tanzania
| | - Coleman Kishamawe
- National Institute for Medical Research (NIMR), Mwanza Centre, Mwanza, Tanzania
| | - Birgitte J. Vennervald
- DBL-Centre for Health Research and Development, Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Lemaitre M, Watier L, Briand V, Garcia A, Le Hesran JY, Cot M. Coinfection with Plasmodium falciparum and Schistosoma haematobium: additional evidence of the protective effect of Schistosomiasis on malaria in Senegalese children. Am J Trop Med Hyg 2013; 90:329-34. [PMID: 24323515 DOI: 10.4269/ajtmh.12-0431] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Parasitic infections are associated with high morbidity and mortality in developing countries. Several studies focused on the influence of helminth infections on malaria but the nature of the biological interaction is under debate. Our objective was to undertake a study to explore the influence of the measure of excreted egg load caused by Schistosoma haematobium on Plasmodium falciparum parasite densities. Ten measures of malaria parasite density and two measures of schistosomiasis egg urinary excretion over a 2-year follow-up period on 178 Senegalese children were considered. A linear mixed-effect model was developed to take data dependence into account. This work showed that children with a light S. haematobium infection (1-9 eggs/mL of urine) presented lower P. falciparum parasite densities than children not infected by S. haematobium (P < 0.04). Possible changes caused by parasite coinfections should be considered in the anti-helminth treatment of children and in malaria vaccination development.
Collapse
Affiliation(s)
- Magali Lemaitre
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland; Institut de Recherche pour le Développement (UMR216), Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France; Faculté de pharmacie, Université Paris Descartes, Paris, France; Inserm, U657, Paris, F-75015, France; Institut Pasteur, PhEMI, Paris, F-75015, France; Univ. Versailles Saint Quentin, Faculté de Médecine Paris Ile de France Ouest, EA 4499, F-78035, France
| | | | | | | | | | | |
Collapse
|
14
|
Wang ML, Cao YM, Luo EJ, Zhang Y, Guo YJ. Pre-existing Schistosoma japonicum infection alters the immune response to Plasmodium berghei infection in C57BL/6 mice. Malar J 2013; 12:322. [PMID: 24034228 PMCID: PMC3848616 DOI: 10.1186/1475-2875-12-322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/18/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Since helminths and malaria parasites are often co-endemic, it is important to clarify the immunoregulatory mechanism that occurs during the process of co-infection. A previous study confirmed that dendritic cells (DCs) are involved in the establishment and regulation of the T-cell-mediated immune response to malaria infection. In the current study, distinct response profiles for splenic DCs and regulatory T cell (Treg) responses were assessed to evaluate the effects of a pre-existing Schistosoma japonicum infection on malaria infection. METHODS Malaria parasitaemia, survival rate, brain histopathology and clinical experimental cerebral malaria (ECM) were assessed in both Plasmodium berghei ANKA-mono-infected and S. japonicum-P. berghei ANKA-co-infected mice. Cell surface/intracellular staining and flow cytometry were used to analyse the level of splenic DC subpopulations, toll-like receptors (TLRs), DC surface molecules, Tregs (CD4⁺CD25⁺Foxp3⁺), IFN-γ/IL-10-secreting Tregs, and IFN-γ⁺/IL-10⁺-Foxp3⁻CD4⁺ T cells. IFN-γ, IL-4, IL-5, IL-10 and IL-13 levels were determined in splenocyte supernatants using enzyme-linked immunosorbent assay (ELISA). RESULTS The co-infected mice had significantly higher malaria parasitaemia, compared with the mono-infected mice, on days 2, 3, 7 and 8 after P. berghei ANKA infection. Mono-infected mice had a slightly lower survival rate, while clinical ECM symptoms, and brain pathology, were significantly more severe during the period of susceptibility to ECM. On days 5 and 8 post P. berghei ANKA infection, co-infected mice had significantly lower levels of CD11c⁺CD11b⁺, CD11c⁺CD45R/B220⁺, CD11c⁺TLR4⁺, CD11c⁺TLR9⁺, CD11c⁺MHCII⁺, CD11c⁺CD86⁺, IFN-γ-secreting Tregs, and IFN-γ⁺Foxp3⁻CD4⁺ T cells in single-cell suspensions of splenocytes when compared with P. berghei ANKA-mono-infected mice. Co-infected mice also had significantly lower levels of IFN-γ and higher levels of IL-4, IL-5, and IL-13 in splenocyte supernatants compared to mono-infected mice. There were no differences in the levels of IL-10-secreting Tregs or IL-10⁺Foxp3⁻CD4⁺ T cells between co-infected and mono-infected mice. CONCLUSIONS A Tregs-associated Th2 response plays an important role in protecting against ECM pathology. Pre-existing S. japonicum infection suppressed TLR ligand-induced DC maturation and had an anti-inflammatory effect during malaria infection not only by virtue of its ability to induce Th2 responses, but also by directly suppressing the ability of DC to produce pro-inflammatory mediators.
Collapse
Affiliation(s)
- Mei-lian Wang
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, No. 92 Beier Road, Heping District, Shenyang 110001, China
| | - Ya-ming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No. 92 Beier Road, Heping District, Shenyang 110001, China
| | - En-jie Luo
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, No. 92 Beier Road, Heping District, Shenyang 110001, China
| | - Ying Zhang
- Department of Sonography, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Ya-jun Guo
- Department of Sonography, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China
| |
Collapse
|
15
|
Advances in our understanding of the epidemiology of Plasmodium and schistosome infection: informing coinfection studies. Curr Opin HIV AIDS 2012; 7:225-30. [PMID: 22327411 DOI: 10.1097/coh.0b013e328351b9fb] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Schistosomes and Plasmodium parasites have complex patterns of transmission, leading to differing dynamics of host-parasite interactions across study sites and a bias of studying differing age groups in monoinfection studies. Combined, these infections lead to difficulties in conducting and interpreting human coinfection studies. RECENT FINDINGS Interactions between the two parasites may affect morbidity associated with either infection; both by influencing mechanisms directly associated with the development of those morbidities and by influencing mechanisms associated with resistance or susceptibility to the other infection. However, conflicting results are reported due to inherent difficulties in studying coinfections. More studies with stringent designs are required to clarify interactions between the two parasites. Recent monoinfection studies indicate that further coinfection studies may need to have a wider age range than previously studied. These studies also need to harness new techniques, both for data collection and analysis that are being developed for modern epidemiological studies. These techniques will allow an essential multidisciplinary approach to be taken. SUMMARY Coinfection with Plasmodium and schistosome infection has implications for the health of children of all ages in sub-Saharan Africa. It is important to gain further understanding of the interactions between the two parasites in all age groups.
Collapse
|
16
|
Vaccine potential of hemocyanin from Oncomelania hupensis against Schistosoma Japonicum. Parasitol Int 2011; 60:242-6. [DOI: 10.1016/j.parint.2011.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 02/21/2011] [Accepted: 03/19/2011] [Indexed: 11/24/2022]
|
17
|
Daher W, Pierrot C, Kalamou H, Pinder JC, Margos G, Dive D, Franke-Fayard B, Janse CJ, Khalife J. Plasmodium falciparum dynein light chain 1 interacts with actin/myosin during blood stage development. J Biol Chem 2010; 285:20180-91. [PMID: 20421304 DOI: 10.1074/jbc.m110.102806] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Dynein light chain 1 (LC1), a member of the leucine-rich repeat protein family, has been shown to be engaged in controlling flagellar motility in Chlamydomonas reinhardtii and Trypanosoma brucei via its interaction with the dynein gamma heavy chain. In Plasmodium falciparum, we have identified the LC1 ortholog, designated Pfdlc1. Negative attempts to disrupt the dlc1 gene by reverse genetic approaches in both P. falciparum and P. berghei suggest either its essentiality for parasite survival or the inaccessibility of its locus. Expression studies revealed high levels of DLC1 protein in late trophozoites and schizonts, pointing to an unexpected role of this protein in blood-stage parasites as they do not have flagella. Interactions studies and co-immunoprecipitation experiments revealed that PfDLC1 was able to bind to P. falciparum myosin A and actin 1. The PfDLC1 interacting domains present in P. falciparum myosin A and actin 1 were mapped to sequences containing SDIE and/or EEMKT motifs present in the upper 50-kDa segment of the myosin A head domain and in the subdomain IV of actin 1, respectively. Detection of PfDLC1 by fluorescence tagging and immunofluorescence staining using specific antibodies showed a cytoplasmic location similar to actin and immunofluorescence studies showed a co-localization of PfDLC1 and myosin A. Taken together, these findings suggest that PfDLC1 might play an important role in P. falciparum erythrocytic stages by its interaction with myosin A and actin 1, known to be essential for parasite development.
Collapse
Affiliation(s)
- Wassim Daher
- Unité INSERM 547 and Center for Infection and Immunity of Lille INSERM U1019, CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, 1 rue du Prof. Calmette, 59019 Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fairlie-Clarke KJ, Lamb TJ, Langhorne J, Graham AL, Allen JE. Antibody isotype analysis of malaria-nematode co-infection: problems and solutions associated with cross-reactivity. BMC Immunol 2010; 11:6. [PMID: 20163714 PMCID: PMC2838755 DOI: 10.1186/1471-2172-11-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 02/17/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Antibody isotype responses can be useful as indicators of immune bias during infection. In studies of parasite co-infection however, interpretation of immune bias is complicated by the occurrence of cross-reactive antibodies. To confidently attribute shifts in immune bias to the presence of a co-infecting parasite, we suggest practical approaches to account for antibody cross-reactivity. The potential for cross-reactive antibodies to influence disease outcome is also discussed. RESULTS Utilising two murine models of malaria-helminth co-infection we analysed antibody responses of mice singly- or co-infected with Plasmodium chabaudi chabaudi and Nippostrongylus brasiliensis or Litomosoides sigmodontis. We observed cross-reactive antibody responses that recognised antigens from both pathogens irrespective of whether crude parasite antigen preparations or purified recombinant proteins were used in ELISA. These responses were not apparent in control mice. The relative strength of cross-reactive versus antigen-specific responses was determined by calculating antibody titre. In addition, we analysed antibody binding to periodate-treated antigens, to distinguish responses targeted to protein versus carbohydrate moieties. Periodate treatment affected both antigen-specific and cross-reactive responses. For example, malaria-induced cross-reactive IgG1 responses were found to target the carbohydrate component of the helminth antigen, as they were not detected following periodate treatment. Interestingly, periodate treatment of recombinant malaria antigen Merozoite Surface Protein-119 (MSP-119) resulted in increased detection of antigen-specific IgG2a responses in malaria-infected mice. This suggests that glycosylation may have been masking protein epitopes and that periodate-treated MSP-119 may more closely reflect the natural non-glycosylated antigen seen during infection. CONCLUSIONS In order to utilize antibody isotypes as a measure of immune bias during co-infection studies, it is important to dissect antigen-specific from cross-reactive antibody responses. Calculating antibody titre, rather than using a single dilution of serum, as a measure of the relative strength of the response, largely accomplished this. Elimination of the carbohydrate moiety of an antigen that can often be the target of cross-reactive antibodies also proved useful.
Collapse
Affiliation(s)
- Karen J Fairlie-Clarke
- Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, King's Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| | - Tracey J Lamb
- Current address: School of Biological Sciences, The University of Reading, Reading, Berks RG6 6UB, UK
| | - Jean Langhorne
- Division of Parasitology, National Institute for Medical Research, The Ridgeway Mill Hill, NW7 1AA, UK
| | - Andrea L Graham
- Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, King's Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Judith E Allen
- Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, King's Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| |
Collapse
|
19
|
Waknine-Grinberg JH, Gold D, Ohayon A, Flescher E, Heyfets A, Doenhoff MJ, Schramm G, Haas H, Golenser J. Schistosoma mansoni infection reduces the incidence of murine cerebral malaria. Malar J 2010; 9:5. [PMID: 20051114 PMCID: PMC2822789 DOI: 10.1186/1475-2875-9-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 01/05/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Plasmodium and Schistosoma are two of the most common parasites in tropical areas. Deregulation of the immune response to Plasmodium falciparum, characterized by a Th1 response, leads to cerebral malaria (CM), while a Th2 response accompanies chronic schistosomiasis. METHODS The development of CM was examined in mice with concomitant Schistosoma mansoni and Plasmodium berghei ANKA infections. The effect of S. mansoni egg antigen injection on disease development and survival was also determined. Cytokine serum levels were estimated using ELISA. Statistical analysis was performed using t-test. RESULTS The results demonstrate that concomitant S. mansoni and P. berghei ANKA infection leads to a reduction in CM. This effect is dependent on infection schedule and infecting cercariae number, and is correlated with a Th2 response. Schistosomal egg antigen injection delays the death of Plasmodium-infected mice, indicating immune involvement. CONCLUSIONS This research supports previous claims of a protective effect of helminth infection on CM development. The presence of multiple parasitic infections in patients from endemic areas should therefore be carefully noted in clinical trials, and in the development of standard treatment protocols for malaria. Defined helminth antigens may be considered for alleviation of immunopathological symptoms.
Collapse
Affiliation(s)
- Judith H Waknine-Grinberg
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Characterization and binding affinities of SmLANP: a new Schistosoma mansoni member of the ANP32 family of regulatory proteins. Mol Biochem Parasitol 2009; 165:95-102. [PMID: 19428656 DOI: 10.1016/j.molbiopara.2009.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/15/2009] [Accepted: 01/16/2009] [Indexed: 11/20/2022]
Abstract
Members of the leucine-rich repeat protein family are involved in diverse functions including protein phosphatase 2-inhibition, cell cycle regulation, gene regulation and signalling pathways. A novel Schistosoma mansoni gene, called SmLANP, presenting homology to various genes coding for proteins that belong to the super family of leucine-rich repeat proteins, was characterized here. SmLANP was 1184bp in length as determined from cDNA and genomic sequences and encoded a 296 amino acid open reading frame that spanning from 6 to 894bp. The predicted amino acid sequence had a calculated molecular weight of 32kDa. Analysis of the predicted sequence indicated the presence of 3 leucine-rich domains (LRR) located in the N-terminal region and an aspartic acid rich region in the C-terminal end. SmLANP transcript is expressed in all stages of the S. mansoni life cycle analyzed, exhibiting the highest expression level in males. The SmLANP protein was expressed in a GST expression system and antibodies raised in mice against the recombinant protein. By immunolocalization assay, using adult worms, it was shown that the protein is mainly present in the cell nucleus through the whole body and strongly expressed along the tegument cell body nuclei of adult worms. As members of this family are usually involved in protein-protein interaction, a yeast two hybrid assay was conducted to identify putative binding partners for SmLANP. Thirty-six possible partners were identified, and a protein ATP synthase subunit alpha was confirmed by pull down assays, as a binding partner of the SmLANP protein.
Collapse
|
21
|
Muok EMO, Mwinzi PNM, Black CL, Carter JM, Ng’ang’a ZW, Gicheru MM, Secor WE, Karanja DMS, Colley DG. Short report: Childhood coinfections with Plasmodium falciparum and Schistosoma mansoni result in lower percentages of activated T cells and T regulatory memory cells than schistosomiasis only. Am J Trop Med Hyg 2009; 80:475-478. [PMID: 19270301 PMCID: PMC2821587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Flow cytometric analyses were performed to evaluate HLA-DR (+) activated T lymphocytes (Tact; CD3 (+)/CD4 (+)/CD25(medium)) and T regulatory cells (Treg; CD3 (+)/CD4(+)/CD25(high)) in the circulation of children 8-10 years of age living in an area endemic for both Plasmodium falciparum and Schistosoma mansoni in western Kenya. Those children with only S. mansoni had a higher mean percentage of HLA-DR (+) Tact than those who were co-infected with these two intravascular parasites. The proportion of circulating Treg was comparable in children with only schistosomiasis and both schistosomiasis and malaria. However, the mean level of memory Treg (Treg expressing CD45RO (+)) in those with dual infections was lower than in children with schistosomiasis alone. These imbalances in Tact and Treg memory subsets in children infected with both schistosomiasis and malaria may be related to the differential morbidity or course of infection attributed to coinfections with these parasites.
Collapse
Affiliation(s)
- Erick M. O. Muok
- Address correspondence to Erick M. O. Muok, Centre for Global Health Research, Kenya Medical Research Institute, PO Box 1578, Kisumu, Kenya. E-mail:
| | - Pauline N. M. Mwinzi
- Centre for Global Health Research, Kenya Medical Research Institute, PO Box 1578, Kisumu, Kenya, E-mail:
| | - Carla L. Black
- Center for Tropical and Emerging Global Diseases, Room 145 Coverdell Center, University of Georgia, Athens, GA 30602-7399, E-mail:
| | - Jennifer M. Carter
- Center for Tropical and Emerging Global Diseases, Room 145 Coverdell Center, University of Georgia, Athens, GA 30602-7399, E-mail:
| | - Zipporah W. Ng’ang’a
- Department of Medical Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya, E-mail:
| | - Michael M. Gicheru
- Department of Zoological Sciences, Kenyatta University, Nairobi, Kenya, E-mail:
| | - W. Evan Secor
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, 4770 Buford Highway, N.E., Mail-stop F-13, Atlanta, GA 30341, E-mail:
| | - Diana M. S. Karanja
- Centre for Global Health Research, Kenya Medical Research Institute, PO Box 1578, Kisumu, Kenya, E-mail:
| | - Daniel G. Colley
- Center for Tropical and Emerging Global Diseases, Room 145 Coverdell Center, University of Georgia, Athens, GA 30602-7399, E-mail:
| |
Collapse
|
22
|
|
23
|
Fernández Ruiz D, Dubben B, Saeftel M, Endl E, Deininger S, Hoerauf A, Specht S. Filarial infection induces protection against P. berghei liver stages in mice. Microbes Infect 2008; 11:172-80. [PMID: 19049828 DOI: 10.1016/j.micinf.2008.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 10/08/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
Chronic helminth infections such as filariasis in human hosts can be life long, since parasites are equipped with a repertoire of immune evasion strategies. In many areas where helminths are prevalent, other infections such as malaria are co-endemic. It is still an ongoing debate, how one parasite alters immune responses against another. To dissect the relationships between two different parasites residing in the same host, we established a murine model of co-infection with the filarial nematode Litomosoides sigmodontis and the malaria parasite Plasmodium berghei (ANKA strain). We found that filarial infection of BALB/c mice leads to protection against a subsequent P. berghei sporozoite infection in one-third of co-infected mice, which did not develop blood-stage malaria. This finding did not correlate with adult worm loads, however it did correlate with the presence of microfilariae in blood. Interestingly, protection was abrogated in IL-10-deficient mice. Thus, murine filariasis, in particular when it is a patent infection, is able to modify the immunological balance to induce protection against an otherwise deadly Plasmodium infection and is therefore able to influence the course of malaria in favour of the host.
Collapse
Affiliation(s)
- Daniel Fernández Ruiz
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund Freud Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Immune interactions in malaria co-infections with other endemic infectious diseases: implications for the development of improved disease interventions. Microbes Infect 2008; 10:948-52. [DOI: 10.1016/j.micinf.2008.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Willaert B, Vo Mai MP, Caldani C. French Haemovigilance Data on Platelet Transfusion. Transfus Med Hemother 2008; 35:118-121. [PMID: 21512639 PMCID: PMC3076346 DOI: 10.1159/000118887] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/13/2007] [Indexed: 11/19/2022] Open
Abstract
SUMMARY: The Agence Française de Securite Sanitaire des Produits de Santé (Afssaps; French Health Products Safety Agency) is responsible, through its hemovigilance unit, for the organization and the functioning of the national hemovigilance network. In accordance with the French law, it receives all data on adverse transfusion reactions regardless of their severity. With the aim of evaluating the tolerance of two kinds of labile blood products (LBP), pooled platelet concentrates (PP) and apheresis platelet concentrates (APC), we screened the French national database from January 1, 2000 to December 31, 2006. We observed that the number of transfusion incident reports is more than twice as high with APC (8.61:1,000 LBP) than with PP (4.21:1,000 LBP). The difference between these two ratios is statistically significant as shown by chi-square test (e = 21.00 with α = 5%). The risk to suffer adverse reactions of any type, except for alloimmunization, is higher with APC, and the major type of diagnosis related to APC is allergic reaction (1:200 APC issued) even if those allergic reactions are rarely serious. The new French National Hemovigilance Commission should impel a working group evaluating this topic and above all the impact of additive solutions which have been used since 2005 to put forward preventives measures.
Collapse
Affiliation(s)
- Béatrice Willaert
- Agence Française de Sécurité Sanitaire des Produits de Santé (Afssaps), Saint Denis, France
| | | | | |
Collapse
|
26
|
Blümel J, Burger R, Drosten C, Gröner A, Gürtler L, Heiden M, Jansen B, Klamm H, Ludwig WD, Montag-Lessing T, Offergeld R, Pauli G, Seitz R, Schlenkrich U, Schottstedt V, Willkommen H, von König KHW. Malaria. Transfus Med Hemother 2008; 35:122-134. [PMID: 21512640 PMCID: PMC3076347 DOI: 10.1159/000118667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 02/01/2008] [Indexed: 11/19/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rainer Seitz
- Arbeitskreis Blut, Untergruppe «Bewertung Blutassoziierter Krankheitserreger»
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Schistosomiasis, caused by trematode blood flukes of the genus Schistosoma, is recognized as the most important human helminth infection in terms of morbidity and mortality. Infection follows direct contact with freshwater harboring free-swimming larval (cercaria) forms of the parasite. Despite the existence of the highly effective antischistosome drug praziquantel (PZQ), schistosomiasis is spreading into new areas, and although it is the cornerstone of current control programs, PZQ chemotherapy does have limitations. In particular, mass treatment does not prevent reinfection. Furthermore, there is increasing concern about the development of parasite resistance to PZQ. Consequently, vaccine strategies represent an essential component for the future control of schistosomiasis as an adjunct to chemotherapy. An improved understanding of the immune response to schistosome infection, both in animal models and in humans, suggests that development of a vaccine may be possible. This review considers aspects of antischistosome protective immunity that are important in the context of vaccine development. The current status in the development of vaccines against the African (Schistosoma mansoni and S. haematobium) and Asian (S. japonicum) schistosomes is then discussed, as are new approaches that may improve the efficacy of available vaccines and aid in the identification of new targets for immune attack.
Collapse
|
28
|
[Malaria. Statements of the Blood Work Group of the Federal Health Ministry]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2008; 51:236-49. [PMID: 18259716 PMCID: PMC7095887 DOI: 10.1007/s00103-008-0453-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Wilson S, Booth M, Jones FM, Mwatha JK, Kimani G, Kariuki HC, Vennervald BJ, Ouma JH, Muchiri E, Dunne DW. Age-adjusted Plasmodium falciparum antibody levels in school-aged children are a stable marker of microgeographical variations in exposure to Plasmodium infection. BMC Infect Dis 2007; 7:67. [PMID: 17603885 PMCID: PMC1947991 DOI: 10.1186/1471-2334-7-67] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 06/29/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amongst school-aged children living in malaria endemic areas, chronic morbidity and exacerbation of morbidity associated with other infections are often not coincident with the presence or levels of Plasmodium parasitaemia, but may result from long-term exposure to the parasite. Studies of hepatosplenomegaly associated with Schistosoma mansoni infection and exposure to Plasmodium infection indicate that differences that occur over 1-2 km in levels of Plasmodium transmission are related to the degree of exacerbation of hepatosplenomegaly and that Plasmodium falciparum schizont antigen (Pfs)-IgG3 levels may be a marker for the differing levels of exposure. METHODS To investigate the validity of Pfs-IgG3 measurements as a tool to assess these comparative exposure levels on a microgeographical scale, cross-sectional community surveys were conducted over a 10 x 6 km study site in Makueni District, Kenya, during low and high malaria transmission seasons. During both high and low malaria transmission seasons, thick blood smears were examined microscopically and circulating Pfs-IgG3 levels measured from dried blood spot elute. GIS techniques were used to map prevalence of parasitaemia and Pfs-IgG3 levels. RESULTS Microgeographical variations in prevalence of parasitaemia were observed during the high but not the low transmission season. Pfs-IgG3 levels were stable between high and low transmission seasons, but increased with age throughout childhood before reaching a plateau in adults. Adjusting Pfs-IgG3 levels of school-aged children for age prior to mapping resulted in spatial patterns that reflected the microgeographical variations observed for high season prevalence of parasitaemia, however, Pfs-IgG3 levels of adults did not. The distances over which age-adjusted Pfs-IgG3 of school-aged children fluctuated were comparable with those distances over which chronic morbidity has previous been shown to vary. CONCLUSION Age-adjusted Pfs-IgG3 levels of school-aged children are stable and when mapped can provide a tool sensitive enough to detect microgeographical variations in malaria exposure, that would be useful for studying the aetiology of morbidities associated with long-term exposure and co-infections.
Collapse
Affiliation(s)
- Shona Wilson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Mark Booth
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Frances M Jones
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | | | - H Curtis Kariuki
- Division of Vector Borne Diseases, Kenyan Ministry of Health, PO Box 54840, Nairobi, Kenya
| | - Birgitte J Vennervald
- DBL – Institute for Health Research and Development, Jægersborg Alle 1D, 2920 Charlottenlund, Denmark
| | | | - Eric Muchiri
- Division of Vector Borne Diseases, Kenyan Ministry of Health, PO Box 54840, Nairobi, Kenya
| | - David W Dunne
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
30
|
Helmby H. Schistosomiasis and malaria: another piece of the crossreactivity puzzle. Trends Parasitol 2007; 23:88-90. [PMID: 17229591 DOI: 10.1016/j.pt.2007.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/09/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
The recent discovery that individuals living in endemic areas have antibodies in their sera that are crossreactive for both helminth and malaria parasites raises important questions both of the interpretation of existing immunoepidemiological data and of the basic biology of the host and the parasites. One such shared antigen (SmLRR) has now been cloned and has, therefore, opened up an intriguing and exciting field of research for immunologists and parasitologists.
Collapse
Affiliation(s)
- Helena Helmby
- Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|