1
|
Chen CW, Ho CH. Substitutions in the nonactive site of the passenger domain on the activity of Haemophilus influenzae immunoglobulin A1 protease. Infect Immun 2024; 92:e0019324. [PMID: 38990045 PMCID: PMC11320935 DOI: 10.1128/iai.00193-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024] Open
Abstract
Immunoglobulin A1 (IgA1) protease is a critical virulence factor of Haemophilus influenzae that facilitates bacterial mucosal infection. This study investigates the effect of iga gene polymorphism on the enzymatic activity of H. influenzae IgA1 protease. The IgA1 protease activity was examined in the H. influenzae Rd KW20 strain and 51 isolates. Genetic variations in iga and deduced amino acid substitutions affecting IgA1 protease activity were assessed. Machine learning tools and functional complementation assays were used to analyze the effects of identified substitutions on the stability and activity of IgA1 protease, respectively. All 51 isolates exhibited similar iga expression levels. No igaB expression was detected. According to comparisons with the reference Rd KW20 strain, four substitutions in the protease domain, 26 in the nonprotease passenger domain, and two in the β-barrel domain were associated with the change in IgA1 protease activity. No substitutions in the catalytic site of IgA1 protease were observed. Logistic regression, receiver operating characteristic curves, Venn diagrams, and protein stability analyses revealed that the substitutions Asn352Lys, Pro353Ala, Lys356Asn, Gln916Lys, and Gly917Ser, which were located in the nonactive site of the passenger domain, were associated with decreases in IgA1 protease activity and stability, whereas Asn914Lys was associated with an increase in these events. Functional complementation assays revealed that the Asn914Lys substitution increased IgA1 protease activity in the Rd KW20 strain. This study identified substitutions in the nonactive site of the passenger domain that affect both the activity and stability of H. influenzae IgA1 protease.
Collapse
Affiliation(s)
- Chi-Wei Chen
- Graduate Degree Program of Smart Healthcare & Bioinformatics, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
- Department of Biomedical Engineering, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Hsun Ho
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Dao DT, Le HY, Nguyen MH, Thi TD, Nguyen XD, Bui TT, Tran THT, Pham VL, Do HN, Horng JT, Le HS, Nguyen DT. Spectrum and antimicrobial resistance in acute exacerbation of chronic obstructive pulmonary disease with pneumonia: a cross-sectional prospective study from Vietnam. BMC Infect Dis 2024; 24:622. [PMID: 38910264 PMCID: PMC11194910 DOI: 10.1186/s12879-024-09515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Respiratory infections have long been recognized as a primary cause of acute exacerbation of chronic obstructive pulmonary disease (AE-COPD). Additionally, the emergence of antimicrobial resistance has led to an urgent and critical situation in developing countries, including Vietnam. This study aimed to investigate the distribution and antimicrobial resistance of bacteria in patients with AE-COPD using both conventional culture and multiplex real-time PCR. Additionally, associations between clinical characteristics and indicators of pneumonia in these patients were examined. METHODS This cross-sectional prospective study included 92 AE-COPD patients with pneumonia and 46 without pneumonia. Sputum specimens were cultured and examined for bacterial identification, and antimicrobial susceptibility was determined for each isolate. Multiplex real-time PCR was also performed to detect ten bacteria and seven viruses. RESULTS The detection rates of pathogens in AE-COPD patients with pneumonia were 92.39%, compared to 86.96% in those without pneumonia. A total of 26 pathogenic species were identified, showing no significant difference in distribution between the two groups. The predominant bacteria included Klebsiella pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae, followed by Acinetobacter baumannii and Streptococcus mitis. There was a slight difference in antibiotic resistance between bacteria isolated from two groups. The frequency of H. influenzae was notably greater in AE-COPD patients who experienced respiratory failure (21.92%) than in those who did not (9.23%). S. pneumoniae was more common in patients with stage I (44.44%) or IV (36.36%) COPD than in patients with stage II (17.39%) or III (9.72%) disease. ROC curve analysis revealed that C-reactive protein (CRP) levels could distinguish patients with AE-COPD with and without pneumonia (AUC = 0.78). CONCLUSION Gram-negative bacteria still play a key role in the etiology of AE-COPD patients, regardless of the presence of pneumonia. This study provides updated evidence for the epidemiology of AE-COPD pathogens and the appropriate selection of antimicrobial agents in Vietnam.
Collapse
Affiliation(s)
- Duy Tuyen Dao
- Department of Respiratory Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Huu Y Le
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Faculty of Respiratory Medicine, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Minh Hai Nguyen
- Department of Respiratory Diseases, 108 Military Central Hospital, Hanoi, Vietnam
- Faculty of Respiratory Medicine, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Thi Duyen Thi
- Department of Respiratory Diseases, 108 Military Central Hospital, Hanoi, Vietnam
- Faculty of Respiratory Medicine, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Xuan Dung Nguyen
- Department of Respiratory Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Thanh Thuyet Bui
- Vietnamese-German Center for Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, Vietnam
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Thi Huyen Trang Tran
- Vietnamese-German Center for Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, Vietnam
- Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Van Luan Pham
- Department of Respiratory Diseases, 108 Military Central Hospital, Hanoi, Vietnam
- Faculty of Respiratory Medicine, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Hang Nga Do
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jim-Tong Horng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Huu Song Le
- Vietnamese-German Center for Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, Vietnam.
- Faculty of Infectious Diseases, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam.
| | - Dinh Tien Nguyen
- Department of Respiratory Diseases, 108 Military Central Hospital, Hanoi, Vietnam.
- Faculty of Respiratory Medicine, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam.
| |
Collapse
|
3
|
Fluit AC, Bayjanov JR, Benaissa-Trouw BJ, Rogers MRC, Díez-Aguilar M, Cantón R, Tunney MM, Elborn JS, Ekkelenkamp MB. Whole-genome analysis of Haemophilus influenzae strains isolated from persons with cystic fibrosis. J Med Microbiol 2022; 71. [PMID: 36006824 DOI: 10.1099/jmm.0.001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Haemophilus influenzae is a commensal of the respiratory tract that is frequently present in cystic fibrosis (CF) patients and may cause infection. Antibiotic resistance is well described for CF strains, and virulence factors have been proposed.Hypothesis/Gap. The genetic diversity of H. influenzae strains present in the lungs of persons with CF is largely unknown despite the fact that this organism is considered to be a pathogen in this condition. The aim was to establish the genetic diversity and susceptibility of H. influenzae strains from persons with CF, and to screen the whole genomes of these strains for the presence of antibiotic resistance determinants and proposed virulence factors.Methods. A total of 67 strains, recovered from respiratory samples from persons with CF from the UK (n=1), Poland (n=2), Spain (n=24) and the Netherlands (n=40), were subjected to whole-genome sequencing using Illumina technology and tested for antibiotic susceptibility. Forty-nine of these strains (one per different sequence type) were analysed for encoded virulence factors and resistance determinants.Results. The 67 strains represented 49 different sequence types. Susceptibility testing showed that all strains were susceptible to aztreonam, ciprofloxacin, imipenem and tetracycline. Susceptibility to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanic acid, cefuroxime, cefixime, ceftriaxone, cefepime, meropenem, clarithromycin, co-trimoxazole and levofloxacin ranged from 70.2-98.5%. Only 6/49 strains (12.2%) harboured acquired resistance genes. Mutations associated with a ß-lactamase-negative ampicillin-resistant phenotype were present in four strains (8.2 %). The potential virulence factors, urease, haemoglobin- and haptoglobin-binding protein/carbamate kinase, and OmpP5 (OmpA), were encoded in more than half of the strains. The genes for HMW1, HMW2, H. influenzae adhesin, a IgA-specific serine endopeptidase autotransporter precursor, a TonB-dependent siderophore, an ABC-transporter ATP-binding protein, a methyltransferase, a BolA-family transcriptional regulator, glycosyltransferase Lic2B, a helix-turn-helix protein, an aspartate semialdehyde dehydrogenase and another glycosyltransferase were present in less than half of the strains.Conclusion. The H. influenzae strains showed limited levels of resistance, with the highest being against co-trimoxazole. Sequences encoding a carbamate kinase and a haemoglobin- and haemoglobin-haptoglobin-binding-like protein, a glycosyl transferase and an urease may aid the colonization of the CF lung. The adhesins and other identified putative virulence factors did not seem to be necessary for colonization.
Collapse
Affiliation(s)
- Ad C Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Barry J Benaissa-Trouw
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - María Díez-Aguilar
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Michael M Tunney
- Department of Pulmonology, Queen's University Belfast, Belfast, UK
| | - J Stuart Elborn
- Department of Pulmonology, Queen's University Belfast, Belfast, UK
| | - Miquel B Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
4
|
Love ME, Proud D. Respiratory Viral and Bacterial Exacerbations of COPD—The Role of the Airway Epithelium. Cells 2022; 11:cells11091416. [PMID: 35563722 PMCID: PMC9099594 DOI: 10.3390/cells11091416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
COPD is a leading cause of death worldwide, with acute exacerbations being a major contributor to disease morbidity and mortality. Indeed, exacerbations are associated with loss of lung function, and exacerbation frequency predicts poor prognosis. Respiratory infections are important triggers of acute exacerbations of COPD. This review examines the role of bacterial and viral infections, along with co-infections, in the pathogenesis of COPD exacerbations. Because the airway epithelium is the initial site of exposure both to cigarette smoke (or other pollutants) and to inhaled pathogens, we will focus on the role of airway epithelial cell responses in regulating the pathophysiology of exacerbations of COPD. This will include an examination of the interactions of cigarette smoke alone, and in combination with viral and bacterial exposures in modulating epithelial function and inflammatory and host defense pathways in the airways during COPD. Finally, we will briefly examine current and potential medication approaches to treat acute exacerbations of COPD triggered by respiratory infections.
Collapse
|
5
|
Liu J, Ran Z, Wang F, Xin C, Xiong B, Song Z. Role of pulmonary microorganisms in the development of chronic obstructive pulmonary disease. Crit Rev Microbiol 2020; 47:1-12. [PMID: 33040638 DOI: 10.1080/1040841x.2020.1830748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic obstructive respiratory disease characterized by irreversible airway limitation and persistent respiratory symptoms. The main clinical symptoms of COPD are dyspnoea, chronic cough, and sputum. COPD is often accompanied by other respiratory diseases, which can cause worsening of the disease. COPD patients with dyspnoea and aggravation of cough and sputum symptoms represent acute exacerbations of COPD (AECOPD). There is mounting evidence suggesting that dysbiosis of pulmonary microbiota participates in the disease. However, investigations of dysbiosis of pulmonary microbiota and the disease are still in initial phases. To screen, diagnose, and treat this respiratory disease, integrating data from different studies can improve our understanding of the occurrence and development of COPD and AECOPD. In this review, COPD epidemiology and the primary triggering mechanism are explored. Emerging knowledge regarding the association of inflammation, caused by pulmonary microbiome imbalance, and changes in lung microbiome flora species involved in the development of the disease are also highlighted. These data will further our understanding of the pathogenesis of COPD and AECOPD and may yield novel strategies for the use of pulmonary microbiota as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Jiexing Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Zhuonan Ran
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Fen Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, PR China
| | - Caiyan Xin
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, PR China
| | - Bin Xiong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, PR China.,Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, PR China
| |
Collapse
|
6
|
Kc R, Leong KWC, Harkness NM, Lachowicz J, Gautam SS, Cooley LA, McEwan B, Petrovski S, Karupiah G, O'Toole RF. Whole-genome analyses reveal gene content differences between nontypeable Haemophilus influenzae isolates from chronic obstructive pulmonary disease compared to other clinical phenotypes. Microb Genom 2020; 6. [PMID: 32706329 PMCID: PMC7641420 DOI: 10.1099/mgen.0.000405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) colonizes human upper respiratory airways and plays a key role in the course and pathogenesis of acute exacerbations of chronic obstructive pulmonary disease (COPD). Currently, it is not possible to distinguish COPD isolates of NTHi from other clinical isolates of NTHi using conventional genotyping methods. Here, we analysed the core and accessory genome of 568 NTHi isolates, including 40 newly sequenced isolates, to look for genetic distinctions between NTHi isolates from COPD with respect to other illnesses, including otitis media, meningitis and pneumonia. Phylogenies based on polymorphic sites in the core-genome did not show discrimination between NTHi strains collected from different clinical phenotypes. However, pan-genome-wide association studies identified 79 unique NTHi accessory genes that were significantly associated with COPD. Furthermore, many of the COPD-related NTHi genes have known or predicted roles in virulence, transmembrane transport of metal ions and nutrients, cellular respiration and maintenance of redox homeostasis. This indicates that specific genes may be required by NTHi for its survival or virulence in the COPD lung. These results advance our understanding of the pathogenesis of NTHi infection in COPD lungs.
Collapse
Affiliation(s)
- Rajendra Kc
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - Kelvin W C Leong
- Department of Pharmacy and Biomedical Sciences, School of Molecular Sciences, College of Science, Health and Engineering, La Trobe University, Victoria, Australia
| | - Nicholas M Harkness
- Department of Respiratory and Sleep Medicine, Royal Hobart Hospital, Tasmania, Australia
| | - Julia Lachowicz
- Department of Respiratory and Sleep Medicine, Royal Hobart Hospital, Tasmania, Australia
| | - Sanjay S Gautam
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - Louise A Cooley
- Department of Microbiology and Infectious Diseases, Royal Hobart Hospital, Tasmania, Australia
| | - Belinda McEwan
- Department of Microbiology and Infectious Diseases, Royal Hobart Hospital, Tasmania, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Victoria, Australia
| | - Gunasegaran Karupiah
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - Ronan F O'Toole
- Department of Pharmacy and Biomedical Sciences, School of Molecular Sciences, College of Science, Health and Engineering, La Trobe University, Victoria, Australia
| |
Collapse
|
7
|
Non-typeable Haemophilus influenzae isolates from patients with chronic obstructive pulmonary disease contain new phase-variable modA methyltransferase alleles controlling phasevarions. Sci Rep 2019; 9:15963. [PMID: 31685916 PMCID: PMC6828955 DOI: 10.1038/s41598-019-52429-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
Phasevarions (phase-variable regulons) are emerging as an important area of bacterial gene regulation. Many bacterial pathogens contain phasevarions, with gene expression controlled by the phase-variable expression of DNA methyltransferases via epigenetic mechanisms. Non-typeable Haemophilus influenzae (NTHi) contains the phase-variable methyltransferase modA, of which multiple allelic variants exist (modA1-21). We have previously demonstrated 5 of 21 these modA alleles are overrepresented in NTHi strains isolated from children with middle ear infections. In this study we investigated the modA allele distribution in NTHi strains isolated from patients with chronic obstructive pulmonary disease, COPD. We demonstrate that the distribution of modA alleles in a large panel of COPD isolates is different to the distribution seen in middle ear infections, suggesting different modA alleles may provide distinct advantages in the differing niches of the middle ear and COPD airways. We also identified two new phase-variable modA alleles – modA15 and modA18 – and demonstrate that these alleles methylate distinct DNA sequences and control unique phasevarions. The modA15 and modA18 alleles have only been observed in COPD isolates, indicating that these two alleles may be markers for isolates likely to cause exacerbations of COPD.
Collapse
|
8
|
Shehaj L, Choudary SK, Makwana KM, Gallo MC, Murphy TF, Kritzer JA. Small-Molecule Inhibitors of Haemophilus influenzae IgA1 Protease. ACS Infect Dis 2019; 5:1129-1138. [PMID: 31016966 PMCID: PMC6625846 DOI: 10.1021/acsinfecdis.9b00004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Newly identified, nontypable Haemophilus influenzae (H. influenza) strains represent a serious threat to global health. Due to the increasing prevalence of antibiotic resistance, virulence factors have emerged as potential therapeutic targets that would be less likely to promote resistance. IgA1 proteases are secreted virulence factors of many Gram-negative human pathogens. These enzymes play important roles in tissue invasion as well as evasion of the immune response, yet there has been limited work on pharmacological inhibitors. Here, we report the discovery of the first small molecule, nonpeptidic inhibitors of H. influenzae IgA1 proteases. We screened over 47 000 compounds in a biochemical assay using recombinant protease and identified a hit compound with micromolar potency. Preliminary structure-activity relationships produced additional inhibitors, two of which showed improved inhibition and selectivity for IgA protease over other serine proteases. We further showed dose-dependent inhibition against four different IgA1 protease variants collected from clinical isolates. These data support further development of IgA protease inhibitors as potential therapeutics for antibiotic-resistant H. influenza strains. The newly discovered inhibitors also represent valuable probes for exploring the roles of these proteases in bacterial colonization, invasion, and infection of mucosal tissues.
Collapse
Affiliation(s)
- Livia Shehaj
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, Massachusetts 02155, United States
| | - Santosh K. Choudary
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, Massachusetts 02155, United States
| | - Kamlesh M. Makwana
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, Massachusetts 02155, United States
| | - Mary C. Gallo
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 3435 Main St., Buffalo, NY 14203, United States
- Clinical and Translational Research Center, 875 Ellicott St., University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, United States
| | - Timothy F. Murphy
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 3435 Main St., Buffalo, NY 14203, United States
- Clinical and Translational Research Center, 875 Ellicott St., University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, United States
- Division of Infectious Disease, Department of Medicine, 875 Ellicott St., University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, United States
| | - Joshua A. Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, Massachusetts 02155, United States
| |
Collapse
|
9
|
Yu N, Sun YT, Su XM, He M, Dai B, Kang J. Eucalyptol protects lungs against bacterial invasion through attenuating ciliated cell damage and suppressing MUC5AC expression. J Cell Physiol 2018; 234:5842-5850. [PMID: 29215731 DOI: 10.1002/jcp.26359] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/02/2017] [Indexed: 01/22/2023]
Abstract
This study was conducted to investigate whether eucalyptol plays a role in influencing bacterial growth in cigarette smoke-exposed lungs. Rats were exposed to air (control) and cigarette smoke (smoking) in the presence and absence of eucalyptol (260 mg/day). Morphological analysis of lung structures and status of airway mucous production were observed under microscope. Pathological changes of ciliated columnar epithelium in airways were examined using transmission electron microscopy. MUC5AC protein and messenger RNA (mRNA) expression in bronchoalveolar lavage fluid (BALF) and lungs were determined. Application of eucalyptol reduced pulmonary bullae formation and airway mucus overproduction in the smoke-exposed lungs. Treatment with eucalyptol attenuated ciliated cell damage in cigarette smoke-exposed lungs. Bacterial colonies of lungs were obviously lower in the eucalyptol-treated rats than that in the smoking rats (p < 0.01). Treatment with eucalyptol reduced the counts of bacterial colonization residing in the challenged lungs (p < 0.01). Application of eucalyptol not only decreased MUC5AC protein expression in BALF and tobacco-exposed lungs but also suppressed its mRNA expression in the lungs (all p < 0.05). Intervention of eucalyptol benefits elimination of bacterial organisms from tobacco-exposed lungs through attenuating ciliated cell damage and suppressing MUC5AC expression in the lungs.
Collapse
Affiliation(s)
- Na Yu
- Department of Respiratory Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi-Tian Sun
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin-Ming Su
- Department of Respiratory Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao He
- Environment and Health Research Center, China Medical University, Shenyang, Liaoning, China
| | - Bing Dai
- Department of Respiratory Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Kang
- Department of Respiratory Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Resman F, Manat G, Lindh V, Murphy TF, Riesbeck K. Differential distribution of IgA-protease genotypes in mucosal and invasive isolates of Haemophilus influenzae in Sweden. BMC Infect Dis 2018; 18:592. [PMID: 30466407 PMCID: PMC6249890 DOI: 10.1186/s12879-018-3464-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several different IgA-proteases exist in Haemophilus influenzae. The variants have been suggested to play differential roles in pathogenesis, but there is limited information on their distribution in clinical isolates. The objective of this study was to investigate the distribution of IgA-protease genotypes in H. influenzae and assess the association between IgA-protease genotype and type of clinical infection. METHODS We performed PCR-screening of the IgA-protease gene variants in two cohorts of clinical H. influenzae. The first cohort consisted of 177 isolates from individuals with respiratory tract infection in January 2010, 2011 and 2012. Information on age, gender and clinical infection was available in this cohort. The second cohort comprised 53 isolates, including NTHi from bloodstream, cerebrospinal fluid (CSF) and urogenital origin as well as encapsulated isolates respresenting all capsule types. We assessed associations between IgA protease genotype and clinical predictors using basic statistical tests of association as well as regression analysis. RESULTS The igaB gene was found in 46% of isolates in the respiratory tract cohort, and no evident trend could be seen during the study years. However, the igaB gene was significantly less common among invasive isolates (19%), p = 0.003 (Fischer's exact test), even when encapsulated isolates were excluded (21%), p = 0.012. A significantly negative association between bacteraemia and igaB genotype remained after adjusting for covariates. We did not identify a significant association between IgA-protease gene variants and type of respiratory tract infection, but isolates with an igaA2 genotype were overrepresented in pre-school children. CONCLUSIONS The distribution of IgA-protease gene variants in Swedish H. influenzae highlighted the widespread abundance of the igaB in isolates from cases of respiratory tract infection, but the igaB gene variant was significantly less common in invasive (bloodstream and CSF) isolates of H. influenzae compared with respiratory tract isolates.
Collapse
Affiliation(s)
- Fredrik Resman
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden.,Riesbeck Lab, Clinical Microbiology, Department of Translational Medicine, Lund University, Jan Waldenströms gata 59, SE20502, Malmö, Sweden
| | - Guillaume Manat
- Riesbeck Lab, Clinical Microbiology, Department of Translational Medicine, Lund University, Jan Waldenströms gata 59, SE20502, Malmö, Sweden
| | - Victor Lindh
- Riesbeck Lab, Clinical Microbiology, Department of Translational Medicine, Lund University, Jan Waldenströms gata 59, SE20502, Malmö, Sweden
| | - Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, New York, USA
| | - Kristian Riesbeck
- Riesbeck Lab, Clinical Microbiology, Department of Translational Medicine, Lund University, Jan Waldenströms gata 59, SE20502, Malmö, Sweden.
| |
Collapse
|
11
|
Antagonistic Pleiotropy in the Bifunctional Surface Protein FadL (OmpP1) during Adaptation of Haemophilus influenzae to Chronic Lung Infection Associated with Chronic Obstructive Pulmonary Disease. mBio 2018; 9:mBio.01176-18. [PMID: 30254117 PMCID: PMC6156194 DOI: 10.1128/mbio.01176-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tracking bacterial evolution during chronic infection provides insights into how host selection pressures shape bacterial genomes. The human-restricted opportunistic pathogen nontypeable Haemophilus influenzae (NTHi) infects the lower airways of patients suffering chronic obstructive pulmonary disease (COPD) and contributes to disease progression. To identify bacterial genetic variation associated with bacterial adaptation to the COPD lung, we sequenced the genomes of 92 isolates collected from the sputum of 13 COPD patients over 1 to 9 years. Individuals were colonized by distinct clonal types (CTs) over time, but the same CT was often reisolated at a later time or found in different patients. Although genomes from the same CT were nearly identical, intra-CT variation due to mutation and recombination occurred. Recurrent mutations in several genes were likely involved in COPD lung adaptation. Notably, nearly a third of CTs were polymorphic for null alleles of ompP1 (also called fadL), which encodes a bifunctional membrane protein that both binds the human carcinoembryonic antigen-related cell adhesion molecule 1 (hCEACAM1) receptor and imports long-chain fatty acids (LCFAs). Our computational studies provide plausible three-dimensional models for FadL's interaction with hCEACAM1 and LCFA binding. We show that recurrent fadL mutations are likely a case of antagonistic pleiotropy, since loss of FadL reduces NTHi's ability to infect epithelia but also increases its resistance to bactericidal LCFAs enriched within the COPD lung. Supporting this interpretation, truncated fadL alleles are common in publicly available NTHi genomes isolated from the lower airway tract but rare in others. These results shed light on molecular mechanisms of bacterial pathoadaptation and guide future research toward developing novel COPD therapeutics.IMPORTANCE Nontypeable Haemophilus influenzae is an important pathogen in patients with chronic obstructive pulmonary disease (COPD). To elucidate the bacterial pathways undergoing in vivo evolutionary adaptation, we compared bacterial genomes collected over time from 13 COPD patients and identified recurrent genetic changes arising in independent bacterial lineages colonizing different patients. Besides finding changes in phase-variable genes, we found recurrent loss-of-function mutations in the ompP1 (fadL) gene. We show that loss of OmpP1/FadL function reduces this bacterium's ability to infect cells via the hCEACAM1 epithelial receptor but also increases its resistance to bactericidal fatty acids enriched within the COPD lung, suggesting a case of antagonistic pleiotropy that restricts ΔfadL strains' niche. These results show how H. influenzae adapts to host-generated inflammatory mediators in the COPD airways.
Collapse
|
12
|
Rohde GGU, Welte T. Pseudomonas-aeruginosa-Infektion bei chronisch obstruktiver Lungenerkrankung. Internist (Berl) 2017; 58:1142-1149. [DOI: 10.1007/s00108-017-0332-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Clarke C, Bakaletz LO, Ruiz-Guiñazú J, Borys D, Mrkvan T. Impact of protein D-containing pneumococcal conjugate vaccines on non-typeable Haemophilus influenzae acute otitis media and carriage. Expert Rev Vaccines 2017; 16:1-14. [PMID: 28571504 DOI: 10.1080/14760584.2017.1333905] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Protein D-containing vaccines may decrease acute otitis media (AOM) burden and nasopharyngeal carriage of non-typeable Haemophilus influenzae (NTHi). Protein D-containing pneumococcal conjugate vaccine PHiD-CV (Synflorix, GSK Vaccines) elicits robust immune responses against protein D. However, the phase III Clinical Otitis Media and PneumoniA Study (COMPAS), assessing PHiD-CV efficacy against various pneumococcal diseases, was not powered to demonstrate efficacy against NTHi; only trends of protective efficacy against NTHi AOM in children were shown. Areas covered: This review aims to consider all evidence available to date from pre-clinical and clinical phase III studies together with further evidence emerging from post-marketing studies since PHiD-CV has been introduced into routine clinical practice worldwide, to better describe the clinical utility of protein D in preventing AOM due to NTHi and its impact on NTHi nasopharyngeal carriage. Expert commentary: Protein D is an effective carrier protein in conjugate vaccines and evidence gathered from pre-clinical, clinical and observational studies suggest that it also elicits immune response that can help to reduce the burden of AOM due to NTHi. There remains a need to develop improved vaccines for prevention of NTHi disease, which could be achieved by combining protein D with other antigens.
Collapse
Affiliation(s)
- Christopher Clarke
- a Department of Vaccine Research and Development, GSK Vaccines , Wavre , Belgium
| | - Lauren O Bakaletz
- b Center for Microbial Pathogenesis , The Research Institute at Nationwide Children's Hospital , Columbus , OH , USA.,c The Ohio State University College of Medicine , Columbus , OH , USA
| | - Javier Ruiz-Guiñazú
- a Department of Vaccine Research and Development, GSK Vaccines , Wavre , Belgium
| | - Dorota Borys
- a Department of Vaccine Research and Development, GSK Vaccines , Wavre , Belgium
| | - Tomas Mrkvan
- a Department of Vaccine Research and Development, GSK Vaccines , Wavre , Belgium
| |
Collapse
|
14
|
Ahearn CP, Gallo MC, Murphy TF. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Pathog Dis 2017; 75:3753446. [PMID: 28449098 PMCID: PMC5437125 DOI: 10.1093/femspd/ftx042] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is the most common bacterial cause of infection of the lower airways in adults with chronic obstructive pulmonary disease (COPD). Infection of the COPD airways causes acute exacerbations, resulting in substantial morbidity and mortality. NTHi has evolved multiple mechanisms to establish infection in the hostile environment of the COPD airways, allowing the pathogen to persist in the airways for months to years. Persistent infection of the COPD airways contributes to chronic airway inflammation that increases symptoms and accelerates the progressive loss of pulmonary function, which is a hallmark of the disease. Persistence mechanisms of NTHi include the expression of multiple redundant adhesins that mediate binding to host cellular and extracellular matrix components. NTHi evades host immune recognition and clearance by invading host epithelial cells, forming biofilms, altering gene expression and displaying surface antigenic variation. NTHi also binds host serum factors that confer serum resistance. Here we discuss the burden of COPD and the role of NTHi infections in the course of the disease. We provide an overview of NTHi mechanisms of persistence that allow the pathogen to establish a niche in the hostile COPD airways.
Collapse
Affiliation(s)
- Christian P. Ahearn
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Mary C. Gallo
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Timothy F. Murphy
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Division of Infectious Disease, Department of Medicine, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
15
|
Sriram KB, Cox AJ, Clancy RL, Slack MPE, Cripps AW. Nontypeable Haemophilus influenzae and chronic obstructive pulmonary disease: a review for clinicians. Crit Rev Microbiol 2017; 44:125-142. [PMID: 28539074 DOI: 10.1080/1040841x.2017.1329274] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of morbidity and mortality worldwide. In the lower airways of COPD patients, bacterial infection is a common phenomenon and Haemophilus influenzae is the most commonly identified bacteria. Haemophilus influenzae is divided into typeable and nontypeable (NTHi) strains based on the presence or absence of a polysaccharide capsule. While NTHi is a common commensal in the human nasopharynx, it is associated with considerable inflammation when it is present in the lower airways of COPD patients, resulting in morbidity due to worsening symptoms and increased frequency of COPD exacerbations. Treatment of lower airway NTHi infection with antibiotics, though successful in the short term, does not offer long-term protection against reinfection, nor does it change the course of the disease. Hence, there has been much interest in the development of an effective NTHi vaccine. This review will summarize the current literature concerning the role of NTHi infections in COPD patients and the consequences of using prophylactic antibiotics in patients with COPD. There is particular focus on the rationale, findings of clinical studies and possible future directions of NTHi vaccines in patients with COPD.
Collapse
Affiliation(s)
- Krishna Bajee Sriram
- a Department of Respiratory Medicine , Gold Coast University Hospital, Gold Coast Health , Southport , Australia.,b Griffith University School of Medicine , Southport , Australia
| | - Amanda J Cox
- c Menzies Health Institute , Griffith University School of Medical Science , Gold Coast , Australia
| | - Robert L Clancy
- d Faculty of Health and Medicine , University of Newcastle , Callaghan , Australia
| | - Mary P E Slack
- b Griffith University School of Medicine , Southport , Australia
| | - Allan W Cripps
- b Griffith University School of Medicine , Southport , Australia
| |
Collapse
|
16
|
Murphy TF, Kirkham C, Jones MM, Sethi S, Kong Y, Pettigrew MM. Expression of IgA Proteases by Haemophilus influenzae in the Respiratory Tract of Adults With Chronic Obstructive Pulmonary Disease. J Infect Dis 2015; 212:1798-805. [PMID: 25995193 DOI: 10.1093/infdis/jiv299] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/13/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Immunoglobulin (Ig)A proteases of Haemophilus influenzae are highly specific endopeptidases that cleave the hinge region of human IgA1 and also mediate invasion and trafficking in human respiratory epithelial cells, facilitating persistence of H. influenzae. Little is known about the expression of IgA proteases in clinical settings of H. influenzae infection. METHODS We identified and characterized IgA protease genes in H. influenzae and studied their expression and proteolytic specificity, in vitro and in vivo in 169 independent strains of H. influenzae collected longitudinally over 10 years from adults with chronic obstructive pulmonary disease. RESULTS The H. influenzae pangenome has 2 alleles of IgA protease genes; all strains have igaA, and 40% of strains have igaB. Each allele has 2 variants with differing proteolytic specificities for human IgA1. A total of 88% of 169 strains express IgA protease activity. Expression of the 4 forms of IgA protease varies among strains. Based on the presence of IgA1 fragments in sputum samples, each of the different forms of IgA protease is selectively expressed in the human airways during infection. CONCLUSIONS Four variants of IgA proteases are variably expressed by H. influenzae during infection of the human airways.
Collapse
Affiliation(s)
- Timothy F Murphy
- Division of Infectious Diseases Department of Microbiology and Immunology Clinical and Translational Research Center, University at Buffalo, State University of New York
| | - Charmaine Kirkham
- Division of Infectious Diseases Clinical and Translational Research Center, University at Buffalo, State University of New York
| | - Megan M Jones
- Department of Microbiology and Immunology Clinical and Translational Research Center, University at Buffalo, State University of New York
| | - Sanjay Sethi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine Veterans Affairs Western New York Healthcare System, Buffalo, New York
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W.M. Keck Biotechnology Resource Laboratory
| | - Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
| |
Collapse
|
17
|
Finney LJ, Ritchie A, Pollard E, Johnston SL, Mallia P. Lower airway colonization and inflammatory response in COPD: a focus on Haemophilus influenzae. Int J Chron Obstruct Pulmon Dis 2014; 9:1119-32. [PMID: 25342897 DOI: 10.2147/copd.s54477] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial infection of the lower respiratory tract in chronic obstructive pulmonary disease (COPD) patients is common both in stable patients and during acute exacerbations. The most frequent bacteria detected in COPD patients is Haemophilus influenzae, and it appears this organism is uniquely adapted to exploit immune deficiencies associated with COPD and to establish persistent infection in the lower respiratory tract. The presence of bacteria in the lower respiratory tract in stable COPD is termed colonization; however, there is increasing evidence that this is not an innocuous phenomenon but is associated with airway inflammation, increased symptoms, and increased risk for exacerbations. In this review, we discuss host immunity that offers protection against H. influenzae and how disturbance of these mechanisms, combined with pathogen mechanisms of immune evasion, promote persistence of H. influenzae in the lower airways in COPD. In addition, we examine the role of H. influenzae in COPD exacerbations, as well as interactions between H. influenzae and respiratory virus infections, and review the role of treatments and their effect on COPD outcomes. This review focuses predominantly on data derived from human studies but will refer to animal studies where they contribute to understanding the disease in humans.
Collapse
Affiliation(s)
- Lydia J Finney
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Andrew Ritchie
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Patrick Mallia
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
18
|
Genome sequencing of disease and carriage isolates of nontypeable Haemophilus influenzae identifies discrete population structure. Proc Natl Acad Sci U S A 2014; 111:5439-44. [PMID: 24706866 DOI: 10.1073/pnas.1403353111] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the main hurdles for the development of an effective and broadly protective vaccine against nonencapsulated isolates of Haemophilus influenzae (NTHi) lies in the genetic diversity of the species, which renders extremely difficult the identification of cross-protective candidate antigens. To assess whether a population structure of NTHi could be defined, we performed genome sequencing of a collection of diverse clinical isolates representative of both carriage and disease and of the diversity of the natural population. Analysis of the distribution of polymorphic sites in the core genome and of the composition of the accessory genome defined distinct evolutionary clades and supported a predominantly clonal evolution of NTHi, with the majority of genetic information transmitted vertically within lineages. A correlation between the population structure and the presence of selected surface-associated proteins and lipooligosaccharide structure, known to contribute to virulence, was found. This high-resolution, genome-based population structure of NTHi provides the foundation to obtain a better understanding, of NTHi adaptation to the host as well as its commensal and virulence behavior, that could facilitate intervention strategies against disease caused by this important human pathogen.
Collapse
|
19
|
Su YC, Resman F, Hörhold F, Riesbeck K. Comparative genomic analysis reveals distinct genotypic features of the emerging pathogen Haemophilus influenzae type f. BMC Genomics 2014; 15:38. [PMID: 24438474 PMCID: PMC3928620 DOI: 10.1186/1471-2164-15-38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of invasive disease caused by encapsulated Haemophilus influenzae type f (Hif) has increased in the post-H. influenzae type b (Hib) vaccine era. We previously annotated the first complete Hif genome from a clinical isolate (KR494) that caused septic shock and necrotizing myositis. Here, the full genome of Hif KR494 was compared to sequenced reference strains Hib 10810, capsule type d (Hid) Rd Kw20, and finally nontypeable H. influenzae 3655. The goal was to identify possible genomic characteristics that may shed light upon the pathogenesis of Hif. RESULTS The Hif KR494 genome exhibited large regions of synteny with other H. influenzae, but also distinct genome rearrangements. A predicted Hif core genome of 1390 genes was shared with the reference strains, and 6 unique genomic regions comprising half of the 191 unique coding sequences were revealed. The majority of these regions were inserted genetic fragments, most likely derived from the closely-related Haemophilus spp. including H. aegyptius, H. haemolyticus and H. parainfluenzae. Importantly, the KR494 genome possessed several putative virulence genes that were distinct from non-type f strains. These included the sap2 operon, aef3 fimbriae, and genes for kanamycin nucleotidyltranserase, iron-utilization proteins, and putative YadA-like trimeric autotransporters that may increase the bacterial virulence. Furthermore, Hif KR494 lacked a hisABCDEFGH operon for de novo histidine biosynthesis, hmg locus for lipooligosaccharide biosynthesis and biofilm formation, the Haemophilus antibiotic resistance island and a Haemophilus secondary molybdate transport system. We confirmed the histidine auxotrophy and kanamycin resistance in Hif by functional experiments. Moreover, the pattern of unique or missing genes of Hif KR494 was similar in 20 Hif clinical isolates obtained from different years and geographical areas. A cross-species comparison revealed that the Hif genome shared more characteristics with H. aegyptius than Hid and NTHi. CONCLUSIONS The genomic comparative analyses facilitated identification of genotypic characteristics that may be related to the specific virulence of Hif. In relation to non-type f H. influenzae strains, the Hif genome contains differences in components involved in metabolism and survival that may contribute to its invasiveness.
Collapse
Affiliation(s)
| | | | | | - Kristian Riesbeck
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Jan Waldenströms gata 59, SE-205 02 Malmö, Sweden.
| |
Collapse
|
20
|
Ouanes I, Hammouda Z, Ben Abdallah S, Dachraoui F, Ouanes-Besbes L, Abroug F. Corticothérapie systémique et antibiothérapie lors des exacerbations aiguës d’une bronchopneumopathie chronique obstructive nécessitant une assistance ventilatoire. MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-013-0732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Internalization and trafficking of nontypeable Haemophilus influenzae in human respiratory epithelial cells and roles of IgA1 proteases for optimal invasion and persistence. Infect Immun 2013; 82:433-44. [PMID: 24218477 DOI: 10.1128/iai.00864-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is a leading cause of opportunistic infections of the respiratory tract in children and adults. Although considered an extracellular pathogen, NTHI has been observed repeatedly within and between cells of the human respiratory tract, and these observations have been correlated to symptomatic infection. These findings are intriguing in light of the knowledge that NTHI persists in the respiratory tract despite antibiotic therapy and the development of bactericidal antibodies. We hypothesized that intracellular NTHI avoids, escapes, or neutralizes the endolysosomal pathway and persists within human respiratory epithelial cells and that human IgA1 proteases are required for optimal internalization and persistence of NTHI. Virtually all strains encode a human IgA1 protease gene, igaA, and we previously characterized a novel human IgA1 protease gene, igaB, that is associated with disease-causing strains and is homologous to the IgA1 protease that is unique to pathogenic Neisseria spp. Here, we show that NTHI invades human bronchial epithelial cells in vitro in a lipid raft-independent manner, is subsequently trafficked via the endolysosomal pathway, and is killed in lysosomes after variable durations of persistence. IgaA is required for optimal invasion. IgaB appears to play little or no role in adherence or invasion but is required for optimal intracellular persistence of NTHI. IgaB cleaves lysosome-associated membrane protein 1 (LAMP1) at pHs characteristic of the plasma membrane, early endosome, late endosome, and lysosome. However, neither IgA1 protease inhibits acidification of intracellular vesicles containing NTHI. NTHI IgA1 proteases play important but different roles in NTHI invasion and trafficking in respiratory epithelial cells.
Collapse
|
22
|
Geelen TH, Gaajetaan GR, Wouters EF, Rohde GG, Franssen FM, Grauls GE, Stobberingh EE, Bruggeman CA, Stassen FR. The host immune response contributes to Haemophilus influenzae virulence. Respir Med 2013; 108:144-52. [PMID: 24011804 DOI: 10.1016/j.rmed.2013.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/25/2013] [Accepted: 08/07/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND There is compelling evidence that infections with non-typeable Haemophilus influenzae (NTHi) are associated with exacerbations in COPD patients. However, NTHi has also been isolated frequently during clinically stable disease. In this study we tested the hypothesis that genetically distinct NTHi isolates obtained from COPD patients differ in virulence which could account for dissimilarities in the final outcome of an infection (stable vs. exacerbation). RESULTS NTHi isolates (n = 32) were obtained from stable COPD patients, or during exacerbations. Genetically divergent NTHi isolates were selected and induction of inflammation was assessed as an indicator of virulence using different in vitro models. Despite marked genomic differences among NTHi isolates, in vitro studies could not distinguish between NTHi isolates based on their inflammatory capacities. Alternatively, when using a whole blood assay results demonstrated marked inter-, but not intra-individual differences in cytokine release between healthy volunteers irrespective of the origin of the NTHi isolate used. CONCLUSION Results suggest that the individual immune reactivity might be an important predictor for the clinical outcome (exacerbation vs. no exacerbation) following NTHi infection.
Collapse
Affiliation(s)
- Tanja H Geelen
- Department of Medical Microbiology, NUTRIM, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Giel R Gaajetaan
- Department of Medical Microbiology, NUTRIM, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Emiel F Wouters
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Centre, Maastricht, The Netherlands; Program Development Centre, CIRO+, Horn, The Netherlands.
| | - Gernot G Rohde
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | | - Gert E Grauls
- Department of Medical Microbiology, NUTRIM, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Ellen E Stobberingh
- Department of Medical Microbiology, NUTRIM, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Cathrien A Bruggeman
- Department of Medical Microbiology, NUTRIM, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Frank R Stassen
- Department of Medical Microbiology, NUTRIM, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| |
Collapse
|
23
|
Tunney MM, Einarsson GG, Wei L, Drain M, Klem ER, Cardwell C, Ennis M, Boucher RC, Wolfgang MC, Elborn JS. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am J Respir Crit Care Med 2013; 187:1118-26. [PMID: 23348972 PMCID: PMC3734618 DOI: 10.1164/rccm.201210-1937oc] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/17/2013] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Characterization of bacterial populations in infectious respiratory diseases will provide improved understanding of the relationship between the lung microbiota, disease pathogenesis, and treatment outcomes. OBJECTIVES To comprehensively define lung microbiota composition during stable disease and exacerbation in patients with bronchiectasis. METHODS Sputum was collected from patients when clinically stable and before and after completion of antibiotic treatment of exacerbations. Bacterial abundance and community composition were analyzed using anaerobic culture and 16S rDNA pyrosequencing. MEASUREMENTS AND MAIN RESULTS In clinically stable patients, aerobic and anaerobic bacteria were detected in 40 of 40 (100%) and 33 of 40 (83%) sputum samples, respectively. The dominant organisms cultured were Pseudomonas aeruginosa (n = 10 patients), Haemophilus influenzae (n = 12), Prevotella (n = 18), and Veillonella (n = 13). Pyrosequencing generated more than 150,000 sequences, representing 113 distinct microbial taxa; the majority of observed community richness resulted from taxa present in low abundance with similar patterns of phyla distribution in clinically stable patients and patients at the onset of exacerbation. After treatment of exacerbation, there was no change in total (P = 0.925), aerobic (P = 0.917), or anaerobic (P = 0.683) load and only a limited shift in community composition. Agreement for detection of bacteria by culture and pyrosequencing was good for aerobic bacteria such as P. aeruginosa (κ = 0.84) but poorer for other genera including anaerobes. Lack of agreement was largely due to bacteria being detected by pyrosequencing but not by culture. CONCLUSIONS A complex microbiota is present in the lungs of patients with bronchiectasis and remains stable through treatment of exacerbations, suggesting that changes in microbiota composition do not account for exacerbations.
Collapse
Affiliation(s)
- Michael M Tunney
- Cystic Fibrosis and Airways Microbiology Research Group, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
COPD (chronic obstructive pulmonary disease) is a heterogeneous disease associated with significant morbidity and mortality. Current diagnostic criteria based on the presence of fixed airflow obstruction and symptoms do not integrate the complex pathological changes occurring within lung, do not define different airway inflammatory patterns, nor do they define different physiological changes or differences in structure as can be defined by imaging. Over recent years, there has been interest in describing this heterogeneity and using this information to subgroup patients into COPD phenotypes. Most approaches to phenotyping have considered disease at a single scale and have not integrated information from different scales (e.g. organ-whole person, tissue-organ, cell-tissue and gene-cell) of disease to provide multi-dimensional phenotypes. Integration of disease biology with clinical expression is critical to improve understanding of this disease. When combined with biostatistical modelling, this information may lead to identification of new drug targets, new end points for clinical trials and targeted treatment for subgroups of COPD patients. It is hoped this will ultimately improve COPD outcomes and represent a move towards personalised medicine. In the present review, we will consider these aspects of multi-dimensional phenotyping in more detail.
Collapse
|
25
|
Millares L, Marin A, Garcia-Aymerich J, Sauleda J, Belda J, Monsó E. Specific IgA and metalloproteinase activity in bronchial secretions from stable chronic obstructive pulmonary disease patients colonized by Haemophilus influenzae. Respir Res 2012; 13:113. [PMID: 23228114 PMCID: PMC3546904 DOI: 10.1186/1465-9921-13-113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/05/2012] [Indexed: 12/23/2022] Open
Abstract
Background Haemophilus influenzae is the most common colonizing bacteria of the bronchial tree in chronic obstructive pulmonary disease (COPD), and positive cultures for this potentially pathogenic microorganism (PPM) has been associated with local inflammation changes that may influence the relationships between H. influenzae and the bronchial mucosa. Methods A cross-sectional analysis of stable COPD patients enrolled in the Phenotype and Course of Chronic Obstructive Pulmonary Disease (PAC-COPD) Study, focusing on bronchial colonization by H. influenzae, was performed. Specific IgA against the PPM was measured by optical density, and metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) using ELISA in sputum samples. Levels in patients colonized by H. influenzae and non-colonized patients were compared. Results Sputum supernatant for the measurement of specific IgA against H. influenzae was available from 54 stable COPD patients, who showed levels of specific IgA significantly lower in colonized (n=21) than in non-colonized patients (n=33) (15 [4-37] versus 31 [10-75], p=0.033, Mann-Whitney U test). Proenzyme MMP-9 was measured in 44 patients, and it was higher in colonized (n=12, 1903 [1488-6699] ng/ml) than in non-colonized patients (n=32, 639 [373-972] ng/ml) (p<0.001, Mann-Whitney U test). Active form of MMP-9 was also higher in colonized (126 [25-277] ng/ml) than in non-colonized patients (39 [14-68] ng/ml) (p=0.021, Mann-Whitney U test), and the molar ratio between proenzyme MMP-9 and TIMP-1 was above 1 (2.1 [0.1-12.5]) in colonized patients, significantly higher than the ratio found in non-colonized patients (0.2 [0.08-0.5]) (p=0.030, Mann-Whitney U test). Conclusions Clinically stable COPD patients colonized by H. influenzae had lower levels of specific IgA against the microorganism and higher values of the active form of MMP-9 in their sputum supernatant than non-colonized patients. Bronchial colonization by H. influenzae may cause structural changes in the extracellular matrix through a defective defense and the production of active metalloproteinases.
Collapse
|
26
|
Zhang L, Xie J, Patel M, Bakhtyar A, Ehrlich GD, Ahmed A, Earl J, Marrs CF, Clemans D, Murphy TF, Gilsdorf JR. Nontypeable Haemophilus influenzae genetic islands associated with chronic pulmonary infection. PLoS One 2012; 7:e44730. [PMID: 22970300 PMCID: PMC3435294 DOI: 10.1371/journal.pone.0044730] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/07/2012] [Indexed: 11/19/2022] Open
Abstract
Background Haemophilus influenzae (Hi) colonizes the human respiratory tract and is an important pathogen associated with chronic obstructive pulmonary disease (COPD). Bacterial factors that interact with the human host may be important in the pathogenesis of COPD. These factors, however, have not been well defined. The overall goal of this study was to identify bacterial genetic elements with increased prevalence among H. influenzae strains isolated from patients with COPD compared to those isolated from the pharynges of healthy individuals. Methodology/Principal Findings Four nontypeable H. influenzae (NTHi) strains, two isolated from the airways of patients with COPD and two from a healthy individual, were subjected to whole genome sequencing using 454 FLX Titanium technology. COPD strain-specific genetic islands greater than 500 bp in size were identified by in silico subtraction. Open reading frames residing within these islands include known Hi virulence genes such as lic2b, hgbA, iga, hmw1 and hmw2, as well as genes encoding urease and other enzymes involving metabolic pathways. The distributions of seven selected genetic islands were assessed among a panel of 421 NTHi strains of both disease and commensal origins using a Library-on-a-Slide high throughput dot blot DNA hybridization procedure. Four of the seven islands screened, containing genes that encode a methyltransferase, a dehydrogenase, a urease synthesis enzyme, and a set of unknown short ORFs, respectively, were more prevalent in COPD strains than in colonizing strains with prevalence ratios ranging from 1.21 to 2.85 (p≤0.0002). Surprisingly, none of these sequences show increased prevalence among NTHi isolated from the airways of patients with cystic fibrosis. Conclusions/Significance Our data suggest that specific bacterial genes, many involved in metabolic functions, are associated with the ability of NTHi strains to survive in the lower airways of patients with COPD.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Clementi CF, Murphy TF. Non-typeable Haemophilus influenzae invasion and persistence in the human respiratory tract. Front Cell Infect Microbiol 2011; 1:1. [PMID: 22919570 PMCID: PMC3417339 DOI: 10.3389/fcimb.2011.00001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/04/2011] [Indexed: 12/21/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHI) is an opportunistic bacterial pathogen of the human respiratory tract and is a leading cause of respiratory infections in children and adults. NTHI is considered to be an extracellular pathogen, but has consistently been observed within and between human respiratory epithelial cells and macrophages, in vitro and ex vivo. Until recently, few studies have examined the internalization, trafficking, and fate of NTHI in host cells. It is important to clarify this interaction because of a possible correlation between intracellular NTHI and symptomatic infection, and because NTHI infections frequently persist and recur despite antibiotic therapy and the development of bactericidal antibodies, suggesting a possible intracellular state or reservoir for NTHI. How does NTHI enter host cells? Can NTHI survive intracellularly and, if so, for how long? Strides have been made in the identification of host receptors, signaling, endocytosis, and trafficking pathways involved in the entry and persistence of NTHI in the respiratory tract.
Collapse
Affiliation(s)
- Cara F Clementi
- Department of Microbiology and Immunology, University at Buffalo, State University of New York Buffalo, NY, USA
| | | |
Collapse
|
28
|
A clonal group of nontypeable Haemophilus influenzae with two IgA proteases is adapted to infection in chronic obstructive pulmonary disease. PLoS One 2011; 6:e25923. [PMID: 21998721 PMCID: PMC3187821 DOI: 10.1371/journal.pone.0025923] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/13/2011] [Indexed: 11/19/2022] Open
Abstract
Strains of nontypeable Haemophilus influenzae show enormous genetic heterogeneity and display differential virulence potential in different clinical settings. The igaB gene, which encodes a newly identified IgA protease, is more likely to be present in the genome of COPD strains of H. influenzae than in otitis media strains. Analysis of igaB and surrounding sequences in the present study showed that H. influenzae likely acquired igaB from Neisseria meningitidis and that the acquisition was accompanied by a ~20 kb genomic inversion that is present only in strains that have igaB. As part of a long running prospective study of COPD, molecular typing of H. influenzae strains identified a clonally related group of strains, a surprising observation given the genetic heterogeneity that characterizes strains of nontypeable H. influenzae. Analysis of strains by 5 independent methods (polyacrylamide gel electrophoresis, multilocus sequence typing, igaB gene sequences, P2 gene sequences, pulsed field gel electrophoresis) established the clonal relationship among the strains. Analysis of 134 independent strains collected prospectively from a cohort of adults with COPD demonstrated that ~10% belonged to the clonal group. We conclude that a clonally related group of strains of nontypeable H. influenzae that has two IgA1 protease genes (iga and igaB) is adapted for colonization and infection in COPD. This observation has important implications in understanding population dynamics of H. influenzae in human infection and in understanding virulence mechanisms specifically in the setting of COPD.
Collapse
|
29
|
Martí-Lliteras P, López-Gómez A, Mauro S, Hood DW, Viadas C, Calatayud L, Morey P, Servin A, Liñares J, Oliver A, Bengoechea JA, Garmendia J. Nontypable Haemophilus influenzae displays a prevalent surface structure molecular pattern in clinical isolates. PLoS One 2011; 6:e21133. [PMID: 21698169 PMCID: PMC3116884 DOI: 10.1371/journal.pone.0021133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/20/2011] [Indexed: 11/22/2022] Open
Abstract
Non-typable Haemophilus influenzae (NTHi) is a Gram negative pathogen that causes acute respiratory infections and is associated with the progression of chronic respiratory diseases. Previous studies have established the existence of a remarkable genetic variability among NTHi strains. In this study we show that, in spite of a high level of genetic heterogeneity, NTHi clinical isolates display a prevalent molecular feature, which could confer fitness during infectious processes. A total of 111 non-isogenic NTHi strains from an identical number of patients, isolated in two distinct geographical locations in the same period of time, were used to analyse nine genes encoding bacterial surface molecules, and revealed the existence of one highly prevalent molecular pattern (lgtF+, lic2A+, lic1D+, lic3A+, lic3B+, siaA−, lic2C+, ompP5+, oapA+) displayed by 94.6% of isolates. Such a genetic profile was associated with a higher bacterial resistance to serum mediated killing and enhanced adherence to human respiratory epithelial cells.
Collapse
Affiliation(s)
- Pau Martí-Lliteras
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
| | - Antonio López-Gómez
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
| | - Silvia Mauro
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
| | - Derek W. Hood
- Molecular Infectious Diseases Group, Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom
| | - Cristina Viadas
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
| | - Laura Calatayud
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
- Servicio de Microbiología, Hospital Universitario Bellvitge, Barcelona, Spain
- Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
- Universidad de Barcelona, Barcelona, Spain
| | - Pau Morey
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
| | - Alain Servin
- INSERM, UMR 756, Signalisation and Physiopathology of Epithelial cells, Paris, France
| | - Josefina Liñares
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
- Servicio de Microbiología, Hospital Universitario Bellvitge, Barcelona, Spain
- Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
- Universidad de Barcelona, Barcelona, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Palma Mallorca, Spain
| | - José Antonio Bengoechea
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
- Consejo Superior de Investigaciones Científicas-CSIC, Madrid, Spain
| | - Junkal Garmendia
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
- Instituto de Agrobiotecnología, CSIC-Universidad Pública de Navarra-Gobierno de Navarra, Mutilva, Spain
- * E-mail:
| |
Collapse
|
30
|
Otczyk DC, Clancy RL, Cripps AW. Haemophilus influenzae and smoking-related obstructive airways disease. Int J Chron Obstruct Pulmon Dis 2011; 6:345-51. [PMID: 21760721 PMCID: PMC3133506 DOI: 10.2147/copd.s19359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Intralumenal bacteria play a critical role in the pathogenesis of acute infective episodes and airway inflammation. Antigens from colonizing bacteria such as nontypeable Haemophilus influenzae (NTHi) may contribute to chronic lung disease through an immediate hypersensitivity response. The objective of this study was to determine the presence of specific NTHi-IgE antibodies in subjects with chronic bronchitis (CB) and COPD who had smoked. Methods Serum, sputum, and saliva samples were collected from subjects with CB and moderate–severe COPD and healthy aged-matched controls. Total IgE and specific NTHi IgE were measured by enzyme linked immmunosorbent assay. Throat swabs were examined for the presence of NTHi. Results The results demonstrate that: i) specific NTHi IgE antibodies occur at a low level in healthy subjects; ii) those with both CB and moderate–severe COPD have elevated specific NTHi IgE antibody compared with healthy controls, with higher levels in those with most severe disease; iii) IgE levels are greater in those with moderate–severe COPD than in those with CB. They demonstrate specific NTHi IgE antibody is regularly found at higher than normal levels in COPD. Conclusion The detection of IgE antibody to colonizing bacteria in all subjects with CB or moderate–severe COPD identifies a possible mechanism of bronchospasm in these subjects amenable to specific intervention therapy.
Collapse
Affiliation(s)
- Diana C Otczyk
- School of Medicine, Griffith Health Institute, Griffith Health, Griffith University, Gold Coast, Queensland, Australia
| | | | | |
Collapse
|
31
|
Tracing phylogenomic events leading to diversity of Haemophilus influenzae and the emergence of Brazilian Purpuric Fever (BPF)-associated clones. Genomics 2010; 96:290-302. [PMID: 20654709 DOI: 10.1016/j.ygeno.2010.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 07/12/2010] [Accepted: 07/14/2010] [Indexed: 11/22/2022]
Abstract
Here we report the use of a multi-genome DNA microarray to elucidate the genomic events associated with the emergence of the clonal variants of Haemophilus influenzae biogroup aegyptius causing Brazilian Purpuric Fever (BPF), an important pediatric disease with a high mortality rate. We performed directed genome sequencing of strain HK1212 unique loci to construct a species DNA microarray. Comparative genome hybridization using this microarray enabled us to determine and compare gene complements, and infer reliable phylogenomic relationships among members of the species. The higher genomic variability observed in the genomes of BPF-related strains (clones) and their close relatives may be characterized by significant gene flux related to a subset of functional role categories. We found that the acquisition of a large number of virulence determinants featuring numerous cell membrane proteins coupled to the loss of genes involved in transport, central biosynthetic pathways and in particular, energy production pathways to be characteristics of the BPF genomic variants.
Collapse
|
32
|
Teng F, Slavik V, Duffy KE, San Mateo L, Goldschmidt R. Toll-like receptor 3 is involved in airway epithelial cell response to nontypeable Haemophilus influenzae. Cell Immunol 2010; 260:98-104. [PMID: 19878930 DOI: 10.1016/j.cellimm.2009.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is the etiological agent most frequently associated with bacterial exacerbations of chronic obstructive pulmonary disease (COPD). The present work shows that NTHi strains induced in primary normal human bronchial epithelial cells (NHBE) a cytokine/chemokine response in which CCL-5 and CXCL-10 were predominant. Production of both cytokines was inhibited by an anti-TLR3 monoclonal antibody (mAb) in a dose-dependent manner, but not by control human IgG4 antibodies, thus suggesting a TLR3-dependency of the NTHi stimulation. BEAS-2B, an immortalized human bronchial epithelial cell line, also showed a similar NTHi-induced response that was inhibited by the anti-TLR3 mAb. A BEAS-2B cell line stably expressing TLR3 siRNA showed significantly reduced cytokine/chemokine responses to NTHi stimulation, confirming the role of TLR3 in the response. These results indicate that TLR3 is a key component in the response of human bronchial epithelial cells to NTHi, and suggest that cognate neutralizing mAbs might be a useful therapeutic tool to regulate the inflammatory response.
Collapse
Affiliation(s)
- Fang Teng
- Department of Immunology, Centocor R&D Inc., Radnor, PA, United States.
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Sanjay Sethi
- Division of Pulmonary and Critical Medicine, Department of Medicine, University at Buffalo, State University of New York, and Department of Veterans Affairs Western New York Healthcare System, Buffalo 14215, USA.
| | | |
Collapse
|
34
|
Erwin AL, Sandstedt SA, Bonthuis PJ, Geelhood JL, Nelson KL, Unrath WCT, Diggle MA, Theodore MJ, Pleatman CR, Mothershed EA, Sacchi CT, Mayer LW, Gilsdorf JR, Smith AL. Analysis of genetic relatedness of Haemophilus influenzae isolates by multilocus sequence typing. J Bacteriol 2008; 190:1473-83. [PMID: 18065541 PMCID: PMC2238191 DOI: 10.1128/jb.01207-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 11/26/2007] [Indexed: 12/13/2022] Open
Abstract
The gram-negative bacterium Haemophilus influenzae is a human-restricted commensal of the nasopharynx that can also be associated with disease. The majority of H. influenzae respiratory isolates lack the genes for capsule production and are nontypeable (NTHI). Whereas encapsulated strains are known to belong to serotype-specific phylogenetic groups, the structure of the NTHI population has not been previously described. A total of 656 H. influenzae strains, including 322 NTHI strains, have been typed by multilocus sequence typing and found to have 359 sequence types (ST). We performed maximum-parsimony analysis of the 359 sequences and calculated the majority-rule consensus of 4,545 resulting equally most parsimonious trees. Eleven clades were identified, consisting of six or more ST on a branch that was present in 100% of trees. Two additional clades were defined by branches present in 91% and 82% of trees, respectively. Of these 13 clades, 8 consisted predominantly of NTHI strains, three were serotype specific, and 2 contained distinct NTHI-specific and serotype-specific clusters of strains. Sixty percent of NTHI strains have ST within one of the 13 clades, and eBURST analysis identified an additional phylogenetic group that contained 20% of NTHI strains. There was concordant clustering of certain metabolic reactions and putative virulence loci but not of disease source or geographic origin. We conclude that well-defined phylogenetic groups of NTHI strains exist and that these groups differ in genetic content. These observations will provide a framework for further study of the effect of genetic diversity on the interaction of NTHI with the host.
Collapse
Affiliation(s)
- Alice L Erwin
- Microbial Pathogens Program, Seattle Biomedical Research Institute, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Erwin AL, Smith AL. Nontypeable Haemophilus influenzae: understanding virulence and commensal behavior. Trends Microbiol 2007; 15:355-62. [PMID: 17600718 DOI: 10.1016/j.tim.2007.06.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/11/2007] [Accepted: 06/13/2007] [Indexed: 11/22/2022]
Abstract
Haemophilus influenzae is genetically diverse and exists as a near-ubiquitous human commensal or as a pathogen. Invasive type b disease has been almost eliminated in developed countries; however, unencapsulated strains - nontypeable H. influenzae (NTHi) - remain important as causes of respiratory infections. Respiratory tract disease occurs when NTHi adhere to or invade respiratory epithelial cells, initiating one or more of several proinflammatory pathways. Biofilm formation explains many of the observations seen in chronic otitis media and chronic bronchitis. However, NTHi biofilms seem to lack a biofilm-specific polysaccharide in the extracellular matrix, a source of controversy regarding their relevance. Successful commensalism requires dampening of the inflammatory response and evasion of host defenses, accomplished in part through phase variation.
Collapse
Affiliation(s)
- Alice L Erwin
- Microbial Pathogens Program, Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109-5219, USA
| | | |
Collapse
|
36
|
Virulence phenotypes of low-passage clinical isolates of nontypeable Haemophilus influenzae assessed using the chinchilla laniger model of otitis media. BMC Microbiol 2007; 7:56. [PMID: 17570853 PMCID: PMC1914350 DOI: 10.1186/1471-2180-7-56] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 06/14/2007] [Indexed: 01/26/2023] Open
Abstract
Background The nontypeable Haemophilus influenzae (NTHi) are associated with a spectrum of respiratory mucosal infections including: acute otitis media (AOM); chronic otitis media with effusion (COME); otorrhea; locally invasive diseases such as mastoiditis; as well as a range of systemic disease states, suggesting a wide range of virulence phenotypes. Genomic studies have demonstrated that each clinical strain contains a unique genic distribution from a population-based supragenome, the distributed genome hypothesis. These diverse clinical and genotypic findings suggest that each NTHi strain possesses a unique set of virulence factors that contributes to the course of the disease. Results The local and systemic virulence patterns of ten genomically characterized low-passage clinical NTHi strains (PittAA – PittJJ) obtained from children with COME or otorrhea were stratified using the chinchilla model of otitis media (OM). Each isolate was used to bilaterally inoculate six animals and thereafter clinical assessments were carried out daily for 8 days by blinded observers. There was no statistical difference in the time it took for any of the 10 NTHi strains to induce otologic (local) disease with respect to any or all of the other strains, however the differences in time to maximal local disease and the severity of local disease were both significant between the strains. Parameters of systemic disease indicated that the strains were not all equivalent: time to development of the systemic disease, maximal systemic scores and mortality were all statistically different among the strains. PittGG induced 100% mortality while PittBB, PittCC, and PittEE produced no mortality. Overall Pitt GG, PittII, and Pitt FF produced the most rapid and most severe local and systemic disease. A post hoc determination of the clinical origins of the 10 NTHi strains revealed that these three strains were of otorrheic origin, whereas the other 7 were from patients with COME. Conclusion Collectively these data suggest that the chinchilla OM model is useful for discriminating between otorrheic and COME NTHi strains as to their disease-producing potential in humans, and combined with whole genome analyses, point the way towards identifying classes of virulence genes.
Collapse
|
37
|
Claus H, Vogel U, Swiderek H, Frosch M, Schoen C. Microarray analyses of meningococcal genome composition and gene regulation: a review of the recent literature: Table 1. FEMS Microbiol Rev 2007; 31:43-51. [PMID: 17096662 DOI: 10.1111/j.1574-6976.2006.00047.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The development of microarrays for genome comparison and transcriptional profiling along with the public availability of several meningococcal genome sequences has promoted studies elucidating (i) intraspecific and interspecific genomic differences of members of the genus Neisseria, and (ii) the transcriptional response of meningococci to a variety of environmental stresses such as heat shock, iron starvation, serum treatment, and contact with eukaryotic cells. Furthermore, microarray-based finetyping of meningococci is in development. It will remain a difficult, but important, goal to identify sets of genes determining the virulence potential of hypervirulent meningococcal lineages in comparison with apathogenic ones. The recent identification of the meningococcal disease-associated island through the application of microarray analyses has been a step towards this aim. Transcriptional profiling of meningococci has brought about the compilation of large datasets, which also provide information about several regulons. Meningococcal microarray analysis has established a basis for studies clarifying the function of previously unknown genes, and has supported the identification of interesting vaccine candidates. However, harmonization of protocols and tools, as well as central databases are needed to foster the comparability of studies and the integration of knowledge.
Collapse
Affiliation(s)
- Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Fernaays MM, Lesse AJ, Cai X, Murphy TF. Characterization of igaB, a second immunoglobulin A1 protease gene in nontypeable Haemophilus influenzae. Infect Immun 2006; 74:5860-70. [PMID: 16988265 PMCID: PMC1594874 DOI: 10.1128/iai.00796-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 06/27/2006] [Accepted: 07/18/2006] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae is an important respiratory pathogen, causing otitis media in children and lower respiratory tract infection in adults with chronic obstructive pulmonary disease (COPD). Immunoglobulin A1 (IgA1) protease is a well-described protein and potential virulence factor in this organism as well as other respiratory pathogens. IgA1 proteases cleave human IgA1, are involved in invasion, and display immunomodulatory effects. We have identified a second IgA1 protease gene, igaB, in H. influenzae that is present in addition to the previously described IgA1 protease gene, iga. Reverse transcriptase PCR and IgA1 protease assays indicated that the gene is transcribed, expressed, and enzymatically active in H. influenzae. The product of this gene is a type 2 IgA1 protease with homology to the iga gene of Neisseria species. Mutants that were deficient in iga, igaB, and both genes were constructed in H. influenzae strain 11P6H, a strain isolated from a patient with COPD who was experiencing an exacerbation. Analysis of these mutants indicated that igaB is the primary mediator of IgA1 protease activity in this strain. IgA1 protease activity assays on 20 clinical isolates indicated that the igaB gene is associated with increased levels of IgA1 protease activity. Approximately one-third of 297 strains of H. influenzae of diverse clinical and geographic origin contained igaB. Significant differences in the prevalence of igaB were observed among isolates from different sites of isolation (sputum > middle ear > nasopharynx). These data support the hypothesis that the newly discovered igaB gene is a potential virulence factor in nontypeable H. influenzae.
Collapse
Affiliation(s)
- Matthew M Fernaays
- Department of Microbiology, University at Buffalo, State University of New York, Buffalo, NY 14215, USA
| | | | | | | |
Collapse
|