1
|
Marrufo AM, Flores-Mireles AL. Macrophage fate: to kill or not to kill? Infect Immun 2024; 92:e0047623. [PMID: 38829045 PMCID: PMC11385966 DOI: 10.1128/iai.00476-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Macrophages are dynamic innate immune cells that either reside in tissue, serving as sentinels, or recruited as monocytes from bone marrow into inflamed and infected tissue. In response to cues in the tissue microenvironment (TME), macrophages polarize on a continuum toward M1 or M2 with diverse roles in progression and resolution of disease. M1-like macrophages exhibit proinflammatory functions with antimicrobial and anti-tumorigenic activities, while M2-like macrophages have anti-inflammatory functions that generally resolve inflammatory responses and orchestrate a tissue healing process. Given these opposite phenotypes, proper spatiotemporal coordination of macrophage polarization in response to cues within the TME is critical to effectively resolve infectious disease and regulate wound healing. However, if this spatiotemporal coordination becomes disrupted due to persistent infection or dysregulated coagulation, macrophages' inappropriate response to these cues will result in the development of diseases with clinically unfavorable outcomes. Since plasticity and heterogeneity are hallmarks of macrophages, they are attractive targets for therapies to reprogram toward specific phenotypes that could resolve disease and favor clinical prognosis. In this review, we discuss how basic science studies have elucidated macrophage polarization mechanisms in TMEs during infections and inflammation, particularly coagulation. Therefore, understanding the dynamics of macrophage polarization within TMEs in diseases is important in further development of targeted therapies.
Collapse
Affiliation(s)
- Armando M. Marrufo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | | |
Collapse
|
2
|
Pavkova I, Bavlovic J, Kubelkova K, Stulik J, Klimentova J. Protective potential of outer membrane vesicles derived from a virulent strain of Francisella tularensis. Front Microbiol 2024; 15:1355872. [PMID: 38533334 PMCID: PMC10963506 DOI: 10.3389/fmicb.2024.1355872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/28/2024] Open
Abstract
Francisella tularensis secretes tubular outer membrane vesicles (OMVs) that contain a number of immunoreactive proteins as well as virulence factors. We have reported previously that isolated Francisella OMVs enter macrophages, cumulate inside, and induce a strong pro-inflammatory response. In the current article, we present that OMVs treatment of macrophages also enhances phagocytosis of the bacteria and suppresses their intracellular replication. On the other hand, the subsequent infection with Francisella is able to revert to some extent the strong pro-inflammatory effect induced by OMVs in macrophages. Being derived from the bacterial surface, isolated OMVs may be considered a "non-viable mixture of Francisella antigens" and as such, they present a promising protective material. Immunization of mice with OMVs isolated from a virulent F. tularensis subsp. holarctica strain FSC200 prolonged the survival time but did not fully protect against the infection with a lethal dose of the parent strain. However, the sera of the immunized animals revealed unambiguous cytokine and antibody responses and proved to recognize a set of well-known Francisella immunoreactive proteins. For these reasons, Francisella OMVs present an interesting material for future protective studies.
Collapse
Affiliation(s)
| | | | | | | | - Jana Klimentova
- Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
3
|
Fux AC, Casonato Melo C, Michelini S, Swartzwelter BJ, Neusch A, Italiani P, Himly M. Heterogeneity of Lipopolysaccharide as Source of Variability in Bioassays and LPS-Binding Proteins as Remedy. Int J Mol Sci 2023; 24:ijms24098395. [PMID: 37176105 PMCID: PMC10179214 DOI: 10.3390/ijms24098395] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Lipopolysaccharide (LPS), also referred to as endotoxin, is the major component of Gram-negative bacteria's outer cell wall. It is one of the main types of pathogen-associated molecular patterns (PAMPs) that are known to elicit severe immune reactions in the event of a pathogen trespassing the epithelial barrier and reaching the bloodstream. Associated symptoms include fever and septic shock, which in severe cases, might even lead to death. Thus, the detection of LPS in medical devices and injectable pharmaceuticals is of utmost importance. However, the term LPS does not describe one single molecule but a diverse class of molecules sharing one common feature: their characteristic chemical structure. Each bacterial species has its own pool of LPS molecules varying in their chemical composition and enabling the aggregation into different supramolecular structures upon release from the bacterial cell wall. As this heterogeneity has consequences for bioassays, we aim to examine the great variability of LPS molecules and their potential to form various supramolecular structures. Furthermore, we describe current LPS quantification methods and the LPS-dependent inflammatory pathway and show how LPS heterogeneity can affect them. With the intent of overcoming these challenges and moving towards a universal approach for targeting LPS, we review current studies concerning LPS-specific binders. Finally, we give perspectives for LPS research and the use of LPS-binding molecules.
Collapse
Affiliation(s)
- Alexandra C Fux
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Cristiane Casonato Melo
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Sara Michelini
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Benjamin J Swartzwelter
- Department of Microbiology, Immunology, and Pathology, 1601 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Andreas Neusch
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Naples, Italy
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
4
|
Bavlovic J, Pavkova I, Balonova L, Benada O, Stulik J, Klimentova J. Intact O-antigen is critical structure for the exceptional tubular shape of outer membrane vesicles in Francisella tularensis. Microbiol Res 2023; 269:127300. [PMID: 36641863 DOI: 10.1016/j.micres.2023.127300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Francisella tularensis is a highly infectious Gram-negative coccobacillus which causes the disease tularemia. The potential for its misuse as a biological weapon has led disease control and prevention centers to classify this bacterium as a category A agent. Bacterial outer membrane vesicles (OMVs) are spherical particles 20-250 nm in size produced by all Gram-negative bacteria and constitute one of the major secretory pathways. Bacteria use them in interacting with both other bacterial cells and eukaryotic (host) cells. OMVs of Francisella contain number of its so far described virulence factors and immunomodulatory proteins. Their role in host-pathogen interactions can therefore be presumed, and the possibility exists also for their potential use in a subunit vaccine. Moreover, Francisella microbes produce both usual spherical and unusual tubular OMVs. Because OMVs emerge from the outermost surface of the bacterial cell, we focused on the secretion of OMVs in several mutant Francisella strains with disrupted surface structures (namely the O-antigen). O-antigen in Francisella is not only the structural component of LPS but also forms another important virulence factor: the O-antigen polysaccharide capsule. Mutant strain phenotypes were evaluated by growth curves, vesiculation rates, their sensitivity to the complement contained in serum, and proliferation inside murine bone marrow macrophages. Morphologies of both OMVs and the bacteria were visualized by electron microscopy. The O-antigen mutant strains were considerably attenuated in serum resistance and intracellular proliferation. All the strains showed lower ability to form the tubular OMVs. Some strains formed tubular protrusions from their outer membrane but their stability was weak. Some hypervesiculating strains were revealed that will serve as source of OMVs for further studies of their protective potential. Our results suggest the presence of LPS and the O-antigen capsule on the surface of Francisella to be critical not only for its virulence but also for the exceptional tubular shape of its OMVs.
Collapse
Affiliation(s)
- Jan Bavlovic
- University of Defense, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Třebešská 1575, 500 01 Hradec Králové, Czech Republic
| | - Ivona Pavkova
- University of Defense, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Třebešská 1575, 500 01 Hradec Králové, Czech Republic
| | - Lucie Balonova
- University of Defense, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Třebešská 1575, 500 01 Hradec Králové, Czech Republic
| | - Oldrich Benada
- Czech Academy of Sciences, Institute of Microbiology, Krč, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jiri Stulik
- University of Defense, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Třebešská 1575, 500 01 Hradec Králové, Czech Republic
| | - Jana Klimentova
- University of Defense, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Třebešská 1575, 500 01 Hradec Králové, Czech Republic.
| |
Collapse
|
5
|
Gorman A, Golovanov AP. Lipopolysaccharide Structure and the Phenomenon of Low Endotoxin Recovery. Eur J Pharm Biopharm 2022; 180:289-307. [DOI: 10.1016/j.ejpb.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022]
|
6
|
Barbosa CHD, Lantier L, Reynolds J, Wang J, Re F. Critical role of IL-25-ILC2-IL-5 axis in the production of anti-Francisella LPS IgM by B1 B cells. PLoS Pathog 2021; 17:e1009905. [PMID: 34449811 PMCID: PMC8428711 DOI: 10.1371/journal.ppat.1009905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/09/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
B1 cells, a subset of B lymphocytes whose developmental origin, phenotype, and function differ from that of conventional B2 cells, are the main source of “natural” IgM but can also respond to infection by rapidly producing pathogen-specific IgM directed against T-independent antigens. Francisella tularensis (Ft) is a Gram-negative bacterium that causes tularemia. Infection with Ft Live Vaccine Strain activates B1 cells for production of IgM directed against the bacterial LPS in a process incompletely understood. Here we show that immunization with purified Ft LPS elicits production of LPS-specific IgM and IgG3 by B1 cells independently of TLR2 or MyD88. Immunization, but not infection, generated peritoneum-resident memory B1 cells that differentiated into LPS-specific antibody secreting cells (ASC) upon secondary challenge. IL-5 was rapidly induced by immunization with Ft LPS and was required for production of LPS-specific IgM. Antibody-mediated depletion of ILC2 indicated that these cells were the source of IL-5 and were required for IgM production. IL-25, an alarmin that strongly activates ILC2, was rapidly secreted in response to immunization or infection and its administration to mice significantly increased IgM production and B1 cell differentiation to ASC. Conversely, mice lacking IL-17RB, the IL-25 receptor, showed impaired IL-5 induction, IgM production, and B1 ASC differentiation in response to immunization. Administration of IL-5 to Il17rb-/- mice rescued these B1 cells-mediated responses. Il17rb-/- mice were more susceptible to infection with Ft LVS and failed to develop immunity upon secondary challenge suggesting that LPS-specific IgM is one of the protective adaptive immune mechanisms against tularemia. Our results indicated that immunization with Ft LPS triggers production of IL-25 that, through stimulation of IL-5 release by ILC2, promotes B1 cells activation and differentiation into IgM secreting cells. By revealing the existence of an IL-25-ILC2-IL-5 axis our results suggest novel strategies to improve vaccination against T-independent bacterial antigens. B1 cells are a subset of B lymphocytes that participate in the immune response to infection by producing antibodies of the IgM class. Here we investigate the mechanisms that control B1 cells activation and production of IgM directed against the lipopolysaccharide (LPS) of Francisella tularensis, a Gram-negative bacterium that causes tularemia. Using a mouse model of tularemia, our results revealed that Francisella LPS elicits production of the cytokine IL-25 that in turn activates blood cells called Innate Lymphoid Cells 2 (ILC2). Once activated, ILC2 produce the cytokine IL-5 that is required for activation of B1 cells and production of IgM. Mice unresponsive to IL-25 are more susceptible to F. tularensis infection. By revealing the existence of an IL-25-ILC2-IL-5 axis our results suggest novel strategies to improve vaccination against bacteria.
Collapse
Affiliation(s)
- Carlos Henrique D. Barbosa
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Louis Lantier
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Joseph Reynolds
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Jinyong Wang
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Fabio Re
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Zamyatina A, Heine H. Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Front Immunol 2020; 11:585146. [PMID: 33329561 PMCID: PMC7732686 DOI: 10.3389/fimmu.2020.585146] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The innate immune response to lipopolysaccharide is essential for host defense against Gram-negative bacteria. In response to bacterial infection, the TLR4/MD-2 complex that is expressed on the surface of macrophages, monocytes, dendritic, and epithelial cells senses picomolar concentrations of endotoxic LPS and triggers the production of various pro-inflammatory mediators. In addition, LPS from extracellular bacteria which is either endocytosed or transfected into the cytosol of host cells or cytosolic LPS produced by intracellular bacteria is recognized by cytosolic proteases caspase-4/11 and hosts guanylate binding proteins that are involved in the assembly and activation of the NLRP3 inflammasome. All these events result in the initiation of pro-inflammatory signaling cascades directed at bacterial eradication. However, TLR4-mediated signaling and caspase-4/11-induced pyroptosis are largely involved in the pathogenesis of chronic and acute inflammation. Both extra- and intracellular LPS receptors-TLR4/MD-2 complex and caspase-4/11, respectively-are able to directly bind the lipid A motif of LPS. Whereas the structural basis of lipid A recognition by the TLR4 complex is profoundly studied and well understood, the atomic mechanism of LPS/lipid A interaction with caspase-4/11 is largely unknown. Here we describe the LPS-induced TLR4 and caspase-4/11 mediated signaling pathways and their cross-talk and scrutinize specific structural features of the lipid A motif of diverse LPS variants that have been reported to activate caspase-4/11 or to induce caspase-4/11 mediated activation of NLRP3 inflammasome (either upon transfection of LPS in vitro or upon infection of cell cultures with intracellular bacteria or by LPS as a component of the outer membrane vesicles). Generally, inflammatory caspases show rather similar structural requirements as the TLR4/MD-2 complex, so that a "basic" hexaacylated bisphosphorylated lipid A architecture is sufficient for activation. However, caspase-4/11 can sense and respond to much broader variety of lipid A variants compared to the very "narrow" specificity of TLR4/MD-2 complex as far as the number and the length of lipid chains attached at the diglucosamine backbone of lipid A is concerned. Besides, modification of the lipid A phosphate groups with positively charged appendages such as phosphoethanolamine or aminoarabinose could be essential for the interaction of lipid A/LPS with inflammatory caspases and related proteins.
Collapse
Affiliation(s)
- Alla Zamyatina
- Institute of Organic Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Holger Heine
- Research Group Innate Immunity, Research Center Borstel—Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Disease (DZL), Borstel, Germany
| |
Collapse
|
8
|
Mazgaeen L, Gurung P. Recent Advances in Lipopolysaccharide Recognition Systems. Int J Mol Sci 2020; 21:ijms21020379. [PMID: 31936182 PMCID: PMC7013859 DOI: 10.3390/ijms21020379] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023] Open
Abstract
Lipopolysaccharide (LPS), commonly known as endotoxin, is ubiquitous and the most-studied pathogen-associated molecular pattern. A component of Gram-negative bacteria, extracellular LPS is sensed by our immune system via the toll-like receptor (TLR)-4. Given that TLR4 is membrane bound, it recognizes LPS in the extracellular milieu or within endosomes. Whether additional sensors, if any, play a role in LPS recognition within the cytoplasm remained unknown until recently. The last decade has seen an unprecedented unfolding of TLR4-independent LPS sensing pathways. First, transient receptor potential (TRP) channels have been identified as non-TLR membrane-bound sensors of LPS and, second, caspase-4/5 (and caspase-11 in mice) have been established as the cytoplasmic sensors for LPS. Here in this review, we detail the brief history of LPS discovery, followed by the discovery of TLR4, TRP as the membrane-bound sensor, and our current understanding of caspase-4/5/11 as cytoplasmic sensors.
Collapse
Affiliation(s)
- Lalita Mazgaeen
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA;
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA;
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
- Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-(319)335-4536; Fax: +1-(319)335-4194
| |
Collapse
|
9
|
García-Gil A, Lopez-Bailon LU, Ortiz-Navarrete V. Beyond the antibody: B cells as a target for bacterial infection. J Leukoc Biol 2019; 105:905-913. [PMID: 30657607 DOI: 10.1002/jlb.mr0618-225r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/15/2018] [Accepted: 12/26/2018] [Indexed: 12/16/2022] Open
Abstract
It is well established that B cells play an important role during infections beyond antibody production. B cells produce cytokines and are APCs for T cells. Recently, it has become clear that several pathogenic bacterial genera, such as Salmonella, Brucella, Mycobacterium, Listeria, Francisella, Moraxella, and Helicobacter, have evolved mechanisms such as micropinocytosis induction, inflammasome down-regulation, inhibitory molecule expression, apoptosis induction, and anti-inflammatory cytokine secretion to manipulate B cell functions influencing immune responses. In this review, we summarize our current understanding of B cells as targets of bacterial infection and the mechanisms by which B cells become a niche for bacterial survival and replication away from extracellular immune responses such as complement and antibodies.
Collapse
Affiliation(s)
- Abraham García-Gil
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Uriel Lopez-Bailon
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
10
|
Whelan AO, Flick-Smith HC, Homan J, Shen ZT, Carpenter Z, Khoshkenar P, Abraham A, Walker NJ, Levitz SM, Ostroff GR, Oyston PCF. Protection induced by a Francisella tularensis subunit vaccine delivered by glucan particles. PLoS One 2018; 13:e0200213. [PMID: 30296254 PMCID: PMC6175290 DOI: 10.1371/journal.pone.0200213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/21/2018] [Indexed: 01/21/2023] Open
Abstract
Francisella tularensis is an intracellular pathogen causing the disease tularemia, and an organism of concern to biodefence. There is no licensed vaccine available. Subunit approaches have failed to induce protection, which requires both humoral and cellular immune memory responses, and have been hampered by a lack of understanding as to which antigens are immunoprotective. We undertook a preliminary in silico analysis to identify candidate protein antigens. These antigens were then recombinantly expressed and encapsulated into glucan particles (GPs), purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Immunological profiling in the mouse was used to down-selection to seven lead antigens: FTT1043 (Mip), IglC, FTT0814, FTT0438, FTT0071 (GltA), FTT0289, FTT0890 (PilA) prior to transitioning their evaluation to a Fischer 344 rat model for efficacy evaluation. F344 rats were vaccinated with the GP protein antigens co-delivered with GP-loaded with Francisella LPS. Measurement of cell mediated immune responses and computational epitope analysis allowed down-selection to three promising candidates: FTT0438, FTT1043 and FTT0814. Of these, a GP vaccine delivering Francisella LPS and the FTT0814 protein was able to induce protection in rats against an aerosol challenge of F. tularensis SchuS4, and reduced organ colonisation and clinical signs below that which immunisation with a GP-LPS alone vaccine provided. This is the first report of a protein supplementing protection induced by LPS in a Francisella vaccine. This paves the way for developing an effective, safe subunit vaccine for the prevention of inhalational tularemia, and validates the GP platform for vaccine delivery where complex immune responses are required for prevention of infections by intracellular pathogens.
Collapse
Affiliation(s)
- Adam O. Whelan
- CBR Division, Dstl Porton Down, Salisbury, United Kingdom
| | | | - Jane Homan
- ioGenetics LLC, Madison, WI, United States of America
| | - Zu T. Shen
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Zoe Carpenter
- CBR Division, Dstl Porton Down, Salisbury, United Kingdom
| | - Payam Khoshkenar
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ambily Abraham
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | - Stuart M. Levitz
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Gary R. Ostroff
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | |
Collapse
|
11
|
Lipid A Remodeling Is a Pathoadaptive Mechanism That Impacts Lipopolysaccharide Recognition and Intracellular Survival of Burkholderia pseudomallei. Infect Immun 2018; 86:IAI.00360-18. [PMID: 30037795 PMCID: PMC6204721 DOI: 10.1128/iai.00360-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Burkholderia pseudomallei causes the severe disease melioidosis. The bacterium subverts the host immune system and replicates inside cells, and host mortality results primarily from sepsis-related complications. Burkholderia pseudomallei causes the severe disease melioidosis. The bacterium subverts the host immune system and replicates inside cells, and host mortality results primarily from sepsis-related complications. Lipopolysaccharide (LPS) is a major virulence factor and mediator of sepsis that many pathogens capable of intracellular growth modify to reduce their immunological “footprint.” The binding strength of B. pseudomallei LPS for human LPS binding protein (hLBP) was measured using surface plasmon resonance. The structures of lipid A isolated from B. pseudomallei under different temperatures were analyzed by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), and the gene expression of two lipid A remodeling genes, lpxO and pagL, was investigated. The LPS was characterized for its ability to trigger tumor necrosis factor alpha (TNF-α) release and to activate caspase-11-triggered pyroptosis by introduction of LPS into the cytosol. Lipid A from long-term chronic-infection isolates was isolated and characterized by MALDI-TOF MS and also by the ability to trigger caspase-11-mediated cell death. Lipid A from B. pseudomallei 1026b lpxO and pagL mutants were characterized by positive- and negative-mode MALDI-TOF MS to ultimately identify their role in lipid A structural modifications. Replication of lpxO and pagL mutants and their complements within macrophages showed that lipid A remodeling can effect growth in host cells and activation of caspase-11-mediated cytotoxicity.
Collapse
|
12
|
Kinkead LC, Whitmore LC, McCracken JM, Fletcher JR, Ketelsen BB, Kaufman JW, Jones BD, Weiss DS, Barker JH, Allen LAH. Bacterial lipoproteins and other factors released by Francisella tularensis modulate human neutrophil lifespan: Effects of a TLR1 SNP on apoptosis inhibition. Cell Microbiol 2017; 20. [PMID: 29063667 PMCID: PMC5764820 DOI: 10.1111/cmi.12795] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/10/2017] [Accepted: 10/15/2017] [Indexed: 12/21/2022]
Abstract
Francisella tularensis infects several cell types including neutrophils, and aberrant neutrophil accumulation contributes to tissue destruction during tularaemia. We demonstrated previously that F. tularensis strains Schu S4 and live vaccine strain markedly delay human neutrophil apoptosis and thereby prolong cell lifespan, but the bacterial factors that mediate this aspect of virulence are undefined. Herein, we demonstrate that bacterial conditioned medium (CM) can delay apoptosis in the absence of direct infection. Biochemical analyses show that CM contained F. tularensis surface factors as well as outer membrane components. Our previous studies excluded roles for lipopolysaccharide and capsule in apoptosis inhibition, and current studies of [14C] acetate‐labelled bacteria argue against a role for other bacterial lipids in this process. At the same time, studies of isogenic mutants indicate that TolC and virulence factors whose expression requires FevR or MglA were also dispensable, demonstrating that apoptosis inhibition does not require Type I or Type VI secretion. Instead, we identified bacterial lipoproteins (BLPs) as active factors in CM. Additional studies of isolated BLPs demonstrated dose‐dependent neutrophil apoptosis inhibition via a TLR2‐dependent mechanism that is significantly influenced by a common polymorphism, rs5743618, in human TLR1. These data provide fundamental new insight into pathogen manipulation of neutrophil lifespan and BLP function.
Collapse
Affiliation(s)
- Lauren C Kinkead
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Laura C Whitmore
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jenna M McCracken
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Joshua R Fletcher
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Brandi B Ketelsen
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Health Care System, Iowa City, Iowa, USA
| | - Justin W Kaufman
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Bradley D Jones
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.,Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - David S Weiss
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Jason H Barker
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lee-Ann H Allen
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Health Care System, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Abate W, Sattar AA, Liu J, Conway ME, Jackson SK. Evaluation of recombinant factor C assay for the detection of divergent lipopolysaccharide structural species and comparison with Limulus amebocyte lysate-based assays and a human monocyte activity assay. J Med Microbiol 2017; 66:888-897. [DOI: 10.1099/jmm.0.000510] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Wondwossen Abate
- Centre for Biomedical Research, School of Biomedical and Healthcare Sciences, Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, UK
| | - Anas A. Sattar
- Centre for Biomedical Research, School of Biomedical and Healthcare Sciences, Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, UK
| | - Jian Liu
- Academic Unit of Ophthalmology, University of Bristol, Bristol, UK
| | - Myra E. Conway
- Centre for Research in Biosciences, Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | - Simon K. Jackson
- Centre for Biomedical Research, School of Biomedical and Healthcare Sciences, Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, UK
| |
Collapse
|
14
|
Kinkead LC, Allen LAH. Multifaceted effects of Francisella tularensis on human neutrophil function and lifespan. Immunol Rev 2016; 273:266-81. [PMID: 27558340 PMCID: PMC5000853 DOI: 10.1111/imr.12445] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Francisella tularensis in an intracellular bacterial pathogen that causes a potentially lethal disease called tularemia. Studies performed nearly 100 years ago revealed that neutrophil accumulation in infected tissues correlates directly with the extent of necrotic damage during F. tularensis infection. However, the dynamics and details of bacteria-neutrophil interactions have only recently been studied in detail. Herein, we review current understanding regarding the mechanisms that recruit neutrophils to F. tularensis-infected lungs, opsonization and phagocytosis, evasion and inhibition of neutrophil defense mechanisms, as well as the ability of F. tularensis to prolong neutrophil lifespan. In addition, we discuss distinctive features of the bacterium, including its ability to act at a distance to alter overall neutrophil responsiveness to exogenous stimuli, and the evidence which suggests that macrophages and neutrophils play distinct roles in tularemia pathogenesis, such that macrophages are major vehicles for intracellular growth and dissemination, whereas neutrophils drive tissue destruction by dysregulation of the inflammatory response.
Collapse
Affiliation(s)
- Lauren C. Kinkead
- Inflammation Program, University of Iowa Iowa City, IA 52242
- Department of Microbiology, University of Iowa Iowa City, IA 52242
| | - Lee-Ann H. Allen
- Inflammation Program, University of Iowa Iowa City, IA 52242
- Department of Microbiology, University of Iowa Iowa City, IA 52242
- Department of Internal Medicine, University of Iowa Iowa City, IA 52242
- VA Medical Center, Iowa City, IA 52242
| |
Collapse
|
15
|
Rowe HM, Huntley JF. From the Outside-In: The Francisella tularensis Envelope and Virulence. Front Cell Infect Microbiol 2015; 5:94. [PMID: 26779445 PMCID: PMC4688374 DOI: 10.3389/fcimb.2015.00094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Francisella tularensis is a highly-infectious bacterium that causes the rapid, and often lethal disease, tularemia. Many studies have been performed to identify and characterize the virulence factors that F. tularensis uses to infect a wide variety of hosts and host cell types, evade immune defenses, and induce severe disease and death. This review focuses on the virulence factors that are present in the F. tularensis envelope, including capsule, LPS, outer membrane, periplasm, inner membrane, secretion systems, and various molecules in each of aforementioned sub-compartments. Whereas, no single bacterial molecule or molecular complex single-handedly controls F. tularensis virulence, we review here how diverse bacterial systems work in conjunction to subvert the immune system, attach to and invade host cells, alter phagosome/lysosome maturation pathways, replicate in host cells without being detected, inhibit apoptosis, and induce host cell death for bacterial release and infection of adjacent cells. Given that the F. tularensis envelope is the outermost layer of the bacterium, we highlight herein how many of these molecules directly interact with the host to promote infection and disease. These and future envelope studies are important to advance our collective understanding of F. tularensis virulence mechanisms and offer targets for future vaccine development efforts.
Collapse
Affiliation(s)
- Hannah M Rowe
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| |
Collapse
|
16
|
Structural and functional features of a developmentally regulated lipopolysaccharide-binding protein. mBio 2015; 6:e01193-15. [PMID: 26463160 PMCID: PMC4620459 DOI: 10.1128/mbio.01193-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian lipopolysaccharide (LPS) binding proteins (LBPs) occur mainly in extracellular fluids and promote LPS delivery to specific host cell receptors. The function of LBPs has been studied principally in the context of host defense; the possible role of LBPs in nonpathogenic host-microbe interactions has not been well characterized. Using the Euprymna scolopes-Vibrio fischeri model, we analyzed the structure and function of an LBP family protein, E. scolopes LBP1 (EsLBP1), and provide evidence for its role in triggering a symbiont-induced host developmental program. Previous studies showed that, during initial host colonization, the LPS of V. fischeri synergizes with peptidoglycan (PGN) monomer to induce morphogenesis of epithelial tissues of the host animal. Computationally modeled EsLBP1 shares some but not all structural features of mammalian LBPs that are thought important for LPS binding. Similar to human LBP, recombinant EsLBP1 expressed in insect cells bound V. fischeri LPS and Neisseria meningitidis lipooligosaccharide (LOS) with nanomolar or greater affinity but bound Francisella tularensis LPS only weakly and did not bind PGN monomer. Unlike human LBP, EsLBP1 did not bind N. meningitidis LOS:CD14 complexes. The eslbp1 transcript was upregulated ~22-fold by V. fischeri at 24 h postinoculation. Surprisingly, this upregulation was not induced by exposure to LPS but, rather, to the PGN monomer alone. Hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) and immunocytochemistry (ICC) localized eslbp1 transcript and protein in crypt epithelia, where V. fischeri induces morphogenesis. The data presented here provide a window into the evolution of LBPs and the scope of their roles in animal symbioses. Mammalian lipopolysaccharide (LPS)-binding protein (LBP) is implicated in conveying LPS to host cells and potentiating its signaling activity. In certain disease states, such as obesity, the overproduction of this protein has been a reliable biomarker of chronic inflammation. Here, we describe a symbiosis-induced invertebrate LBP whose tertiary structure and LPS-binding characteristics are similar to those of mammalian LBPs; however, the primary structure of this distantly related squid protein (EsLBP1) differs in key residues previously believed to be essential for LPS binding, suggesting that an alternative strategy exists. Surprisingly, symbiotic expression of eslbp1 is induced by peptidoglycan derivatives, not LPS, a pattern converse to that of RegIIIγ, an important mammalian immunity protein that binds peptidoglycan but whose gene expression is induced by LPS. Finally, EsLBP1 occurs along the apical surfaces of all the host’s epithelia, suggesting that it was recruited from a general defensive role to one that mediates specific interactions with its symbiont.
Collapse
|
17
|
Babadjanova Z, Wiedinger K, Gosselin EJ, Bitsaktsis C. Targeting of a Fixed Bacterial Immunogen to Fc Receptors Reverses the Anti-Inflammatory Properties of the Gram-Negative Bacterium, Francisella tularensis, during the Early Stages of Infection. PLoS One 2015; 10:e0129981. [PMID: 26114641 PMCID: PMC4482730 DOI: 10.1371/journal.pone.0129981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/13/2015] [Indexed: 02/02/2023] Open
Abstract
Production of pro-inflammatory cytokines by innate immune cells at the early stages of bacterial infection is important for host protection against the pathogen. Many intracellular bacteria, including Francisella tularensis, the agent of tularemia, utilize the anti-inflammatory cytokine IL-10, to evade the host immune response. It is well established that IL-10 has the ability to inhibit robust antigen presentation by dendritic cells and macrophages, thus suppressing the generation of protective immunity. The pathogenesis of F. tularensis is not fully understood, and research has failed to develop an effective vaccine to this date. In the current study, we hypothesized that F. tularensis polarizes antigen presenting cells during the early stages of infection towards an anti-inflammatory status characterized by increased synthesis of IL-10 and decreased production of IL-12p70 and TNF-α in an IFN-ɣ-dependent fashion. In addition, F. tularensis drives an alternative activation of alveolar macrophages within the first 48 hours post-infection, thus allowing the bacterium to avoid protective immunity. Furthermore, we demonstrate that targeting inactivated F. tularensis (iFt) to Fcγ receptors (FcɣRs) via intranasal immunization with mAb-iFt complexes, a proven vaccine strategy in our laboratories, reverses the anti-inflammatory effects of the bacterium on macrophages by down-regulating production of IL-10. More specifically, we observed that targeting of iFt to FcγRs enhances the classical activation of macrophages not only within the respiratory mucosa, but also systemically, at the early stages of infection. These results provide important insight for further understanding the protective immune mechanisms generated when targeting immunogens to Fc receptors.
Collapse
Affiliation(s)
- Zulfia Babadjanova
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
| | - Kari Wiedinger
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
| | - Edmund J. Gosselin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Constantine Bitsaktsis
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kabanov DS, Grachev SV, Prokhorenko IR. Role of CD11b/CD18 in priming of human leukocytes by endotoxin glycoforms from Escherichia coli. BIOCHEMISTRY (MOSCOW) 2015; 79:812-9. [PMID: 25365491 DOI: 10.1134/s0006297914080094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The primary objective of this study was to determine the role of β2 integrin α-subunit (CD11b) in the mechanism of human polymorphonuclear leukocyte (PML) priming by S or Re endotoxin glycoforms from Escherichia coli for fMLP-induced respiratory burst. Similar priming activity of S and Re endotoxin glycoforms for fMLP-induced reactive oxygen species (ROS) generation from primed PML was found. Anti-CD11b antibodies (clone ICRF 44) as well as isotype-matched immunoglobulin G1 (clone MOPC-21) do not influence the fMLP-induced ROS generation from unprimed PML. Antibodies against CD11b do not change fMLP-induced ROS generation from endotoxin-primed PML as well. The involvement of different isoforms of Fcγ receptors in fMLP-induced ROS generation from activated PML is proposed.
Collapse
Affiliation(s)
- D S Kabanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
19
|
Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV) Based Delivery System. PLoS One 2015; 10:e0130858. [PMID: 26098553 PMCID: PMC4476615 DOI: 10.1371/journal.pone.0130858] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/26/2015] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis is a facultative intracellular pathogen, and is the causative agent of a fatal human disease known as tularemia. F. tularensis is classified as a Category A Biothreat agent by the CDC based on its use in bioweapon programs by several countries in the past and its potential to be used as an agent of bioterrorism. No licensed vaccine is currently available for prevention of tularemia. In this study, we used a novel approach for development of a multivalent subunit vaccine against tularemia by using an efficient tobacco mosaic virus (TMV) based delivery platform. The multivalent subunit vaccine was formulated to contain a combination of F. tularensis protective antigens: OmpA-like protein (OmpA), chaperone protein DnaK and lipoprotein Tul4 from the highly virulent F. tularensis SchuS4 strain. Two different vaccine formulations and immunization schedules were used. The immunized mice were challenged with lethal (10xLD100) doses of F. tularensis LVS on day 28 of the primary immunization and observed daily for morbidity and mortality. Results from this study demonstrate that TMV can be used as a carrier for effective delivery of multiple F. tularensis antigens. TMV-conjugate vaccine formulations are safe and multiple doses can be administered without causing any adverse reactions in immunized mice. Immunization with TMV-conjugated F. tularensis proteins induced a strong humoral immune response and protected mice against respiratory challenges with very high doses of F. tularensis LVS. This study provides a proof-of-concept that TMV can serve as a suitable platform for simultaneous delivery of multiple protective antigens of F. tularensis. Refinement of vaccine formulations coupled with TMV-targeting strategies developed in this study will provide a platform for development of an effective tularemia subunit vaccine as well as a vaccination approach that may broadly be applicable to many other bacterial pathogens.
Collapse
|
20
|
del Barrio L, Sahoo M, Lantier L, Reynolds JM, Ceballos-Olvera I, Re F. Production of anti-LPS IgM by B1a B cells depends on IL-1β and is protective against lung infection with Francisella tularensis LVS. PLoS Pathog 2015; 11:e1004706. [PMID: 25768794 PMCID: PMC4358995 DOI: 10.1371/journal.ppat.1004706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/26/2015] [Indexed: 01/28/2023] Open
Abstract
The role of IL-1β and IL-18 during lung infection with the gram-negative bacterium Francisella tularensis LVS has not been characterized in detail. Here, using a mouse model of pneumonic tularemia, we show that both cytokines are protective, but through different mechanisms. Il-18-/- mice quickly succumb to the infection and showed higher bacterial burden in organs and lower level of IFNγ in BALF and serum compared to wild type C57BL/6J mice. Administration of IFNγ rescued the survival of Il-18-/- mice, suggesting that their decreased resistance to tularemia is due to inability to produce IFNγ. In contrast, mice lacking IL-1 receptor or IL-1β, but not IL-1α, appeared to control the infection in its early stages, but eventually succumbed. IFNγ administration had no effect on Il-1r1-/- mice survival. Rather, Il-1r1-/- mice were found to have significantly reduced titer of Ft LPS-specific IgM. The anti-Ft LPS IgM was generated in a IL-1β-, TLR2-, and ASC-dependent fashion, promoted bacteria agglutination and phagocytosis, and was protective in passive immunization experiments. B1a B cells produced the anti-Ft LPS IgM and these cells were significantly decreased in the spleen and peritoneal cavity of infected Il-1b-/- mice, compared to C57BL/6J mice. Collectively, our results show that IL-1β and IL-18 activate non-redundant protective responses against tularemia and identify an essential role for IL-1β in the rapid generation of pathogen-specific IgM by B1a B cells.
Collapse
Affiliation(s)
- Laura del Barrio
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Manoranjan Sahoo
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Louis Lantier
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Joseph M. Reynolds
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Ivonne Ceballos-Olvera
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Fabio Re
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
21
|
Bandyopadhyay S, Long ME, Allen LAH. Differential expression of microRNAs in Francisella tularensis-infected human macrophages: miR-155-dependent downregulation of MyD88 inhibits the inflammatory response. PLoS One 2014; 9:e109525. [PMID: 25295729 PMCID: PMC4190180 DOI: 10.1371/journal.pone.0109525] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022] Open
Abstract
Francisella tularensis is a Gram-negative, facultative intracellular pathogen that replicates in the cytosol of macrophages and is the causative agent of the potentially fatal disease tularemia. A characteristic feature of F. tularensis is its limited proinflammatory capacity, but the mechanisms that underlie the diminished host response to this organism are only partially defined. Recently, microRNAs have emerged as important regulators of immunity and inflammation. In the present study we investigated the microRNA response of primary human monocyte-derived macrophages (MDMs) to F. tularensis and identified 10 microRNAs that were significantly differentially expressed after infection with the live vaccine strain (LVS), as judged by Taqman Low Density Array profiling. Among the microRNAs identified, miR-155 is of particular interest as its established direct targets include components of the Toll-like receptor (TLR) pathway, which is essential for innate defense and proinflammatory cytokine production. Additional studies demonstrated that miR-155 acted by translational repression to downregulate the TLR adapter protein MyD88 and the inositol 5′-phosphatase SHIP-1 in MDMs infected with F. tularensis LVS or the fully virulent strain Schu S4. Kinetic analyses indicated that miR-155 increased progressively 3-18 hours after infection with LVS or Schu S4, and target proteins disappeared after 12–18 hours. Dynamic modulation of MyD88 and SHIP-1 was confirmed using specific pre-miRs and anti-miRs to increase and decrease miR-155 levels, respectively. Of note, miR-155 did not contribute to the attenuated cytokine response triggered by F. tularensis phagocytosis. Instead, this microRNA was required for the ability of LVS-infected cells to inhibit endotoxin-stimulated TNFα secretion 18–24 hours after infection. Thus, our data are consistent with the ability of miR-155 to act as a global negative regulator of the inflammatory response in F. tularensis-infected human macrophages.
Collapse
Affiliation(s)
- Sarmistha Bandyopadhyay
- Inflammation Program, University of Iowa, Coralville, Iowa, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Veteran's Administration Medical Center, Iowa City, Iowa, United States of America
| | - Matthew E. Long
- Inflammation Program, University of Iowa, Coralville, Iowa, United States of America
- Graduate Training Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Lee-Ann H. Allen
- Inflammation Program, University of Iowa, Coralville, Iowa, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Graduate Training Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
- Veteran's Administration Medical Center, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
22
|
Baum D, Kosma P, Zamyatina A. Synthesis of zwitterionic 1,1'-glycosylphosphodiester: a partial structure of galactosamine-modified Francisella lipid A. Org Lett 2014; 16:3772-5. [PMID: 25003818 PMCID: PMC4106266 DOI: 10.1021/ol501639c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Indexed: 02/08/2023]
Abstract
Synthesis of a "double glycosidic" phosphodiester comprising anomeric centers of two 2-amino-2-deoxy-sugars is reported. The carbohydrate epitope of Francisella lipid A modified with α-d-galactosamine at the anomerically linked phosphate has been stereoselectively prepared and coupled to maleimide-activated bovine serum albumin via an amide-linked thiol-terminated spacer group. H-Phosphonate and phosphoramidite approaches have been explored for the coupling of 4,6-DTBS-2-azido-protected GalN lactol and peracetylated spacer-equipped reducing βGlcN(1→6)GlcN disaccharide via phosphodiester linkage. Deprotection conditions preserving the integrity of the labile glycosidic zwitterionic phosphodiester were elaborated.
Collapse
Affiliation(s)
- David Baum
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
| | - Paul Kosma
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
| | - Alla Zamyatina
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
| |
Collapse
|
23
|
Malachowa N, Kobayashi SD, Freedman B, Dorward DW, DeLeo FR. Staphylococcus aureus leukotoxin GH promotes formation of neutrophil extracellular traps. THE JOURNAL OF IMMUNOLOGY 2013; 191:6022-9. [PMID: 24190656 DOI: 10.4049/jimmunol.1301821] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus secretes numerous virulence factors that facilitate evasion of the host immune system. Among these molecules are pore-forming cytolytic toxins, including Panton-Valentine leukocidin (PVL), leukotoxin GH (LukGH; also known as LukAB), leukotoxin DE, and γ-hemolysin. PVL and LukGH have potent cytolytic activity in vitro, and both toxins are proinflammatory in vivo. Although progress has been made toward elucidating the role of these toxins in S. aureus virulence, our understanding of the mechanisms that underlie the proinflammatory capacity of these toxins, as well as the associated host response toward them, is incomplete. To address this deficiency in knowledge, we assessed the ability of LukGH to prime human PMNs for enhanced bactericidal activity and further investigated the impact of the toxin on neutrophil function. We found that, unlike PVL, LukGH did not prime human neutrophils for increased production of reactive oxygen species nor did it enhance binding and/or uptake of S. aureus. Unexpectedly, LukGH promoted the release of neutrophil extracellular traps (NETs), which, in turn, ensnared but did not kill S. aureus. Furthermore, we found that electropermeabilization of human neutrophils, used as a separate means to create pores in the neutrophil plasma membrane, similarly induced formation of NETs, a finding consistent with the notion that NETs can form during nonspecific cytolysis. We propose that the ability of LukGH to promote formation of NETs contributes to the inflammatory response and host defense against S. aureus infection.
Collapse
Affiliation(s)
- Natalia Malachowa
- Laboratory of Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | | | | | | | | |
Collapse
|
24
|
Barker JH, Kaufman JW, Zhang DS, Weiss JP. Metabolic labeling to characterize the overall composition of Francisella lipid A and LPS grown in broth and in human phagocytes. Innate Immun 2013; 20:88-103. [PMID: 23729477 DOI: 10.1177/1753425913485308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A hallmark of Francisella tularensis, a highly virulent Gram-negative bacterium, is an unusual LPS that possesses both structural heterogeneity and characteristics that may contribute to innate immune evasion. However, none of the methods yet employed has been sufficient to determine the overall LPS composition of Francisella. We now demonstrate that metabolic labeling of francisellae with [(14)C]acetate, combined with fractionation of [(14)C]acetate-labeled lipids by ethanol precipitation rather than hot phenol-water extraction, permits a more sensitive and quantitative appraisal of overall compositional heterogeneity in lipid A and LPS. The majority of lipid A of different francisellae strains grown in diverse bacteriologic media and within human phagocytes accumulated as very hydrophobic species, including free lipid A, with <10% of the lipid A molecules substituted with O-Ag polysaccharides. The spectrum of lipid A and LPS species varied in a medium- and strain-dependent fashion, and growth in THP-1 cells yielded lipid A species that were not present in the same bacteria grown in brain heart infusion broth. In summary, metabolic labeling with [(14)C]acetate greatly facilitates assessment of the effect of genotypic and/or environmental variables on the synthesis and accumulation of lipid A and LPS by Francisella, including during growth within the cytosol of infected host cells.
Collapse
Affiliation(s)
- Jason H Barker
- 1Inflammation Program and Department of Medicine, University of Iowa and Veterans Affairs Medical Center, IA, USA
| | | | | | | |
Collapse
|
25
|
Eisele NA, Anderson DM. Host Defense and the Airway Epithelium: Frontline Responses That Protect against Bacterial Invasion and Pneumonia. J Pathog 2011; 2011:249802. [PMID: 22567325 PMCID: PMC3335569 DOI: 10.4061/2011/249802] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 07/18/2011] [Accepted: 07/21/2011] [Indexed: 01/31/2023] Open
Abstract
Airway epithelial cells are the first line of defense against invading microbes, and they protect themselves through the production of carbohydrate and protein matrices concentrated with antimicrobial products. In addition, they act as sentinels, expressing pattern recognition receptors that become activated upon sensing bacterial products and stimulate downstream recruitment and activation of immune cells which clear invading microbes. Bacterial pathogens that successfully colonize the lungs must resist these mechanisms or inhibit their production, penetrate the epithelial barrier, and be prepared to resist a barrage of inflammation. Despite the enormous task at hand, relatively few virulence factors coordinate the battle with the epithelium while simultaneously providing resistance to inflammatory cells and causing injury to the lung. Here we review mechanisms whereby airway epithelial cells recognize pathogens and activate a program of antibacterial pathways to prevent colonization of the lung, along with a few examples of how bacteria disrupt these responses to cause pneumonia.
Collapse
Affiliation(s)
- Nicholas A. Eisele
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA
- The Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- The Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
26
|
Pierson T, Matrakas D, Taylor YU, Manyam G, Morozov VN, Zhou W, van Hoek ML. Proteomic Characterization and Functional Analysis of Outer Membrane Vesicles of Francisella novicida Suggests Possible Role in Virulence and Use as a Vaccine. J Proteome Res 2011; 10:954-67. [DOI: 10.1021/pr1009756] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tony Pierson
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, United States
| | - Demetrios Matrakas
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, United States
| | - Yuka U. Taylor
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, United States
| | - Ganiraju Manyam
- Department of Bioinformatics & Computational Biology, The UT MD Anderson Cancer Center, Houston, Texas, United States
| | - Victor N. Morozov
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110, United States
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Monique L. van Hoek
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, United States
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110, United States
| |
Collapse
|
27
|
Jones JW, Broz P, Monack DM. Innate immune recognition of francisella tularensis: activation of type-I interferons and the inflammasome. Front Microbiol 2011; 2:16. [PMID: 21687410 PMCID: PMC3109290 DOI: 10.3389/fmicb.2011.00016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/20/2011] [Indexed: 01/21/2023] Open
Abstract
Francisella tularensis is an intracellular pathogen that can cause severe disease in a wide range of mammalian hosts. Primarily residing in host macrophages, F. tularensis escapes phagosomal degradation, and replicates in the macrophage cytosol. The macrophage uses a series of pattern recognition receptors to detect conserved microbial molecules from invading pathogens, and initiates an appropriate host response. In the cytosol, F. tularensis is recognized by the inflammasome, a multiprotein complex responsible for the activation of the cysteine protease caspase-1. Caspase-1 activation leads to processing and release of proinflammatory cytokines and host cell death. Here we review recent work on the molecular mechanisms of inflammasome activation by F. tularensis, and its consequences both in vitro and in vivo. Finally, we discuss the coordination between the inflammasome and other cytosolic host responses, and the evidence for F. tularensis virulence factors that suppress inflammasome activation.
Collapse
Affiliation(s)
- Jonathan Wiley Jones
- Department of Microbiology and Immunology, School of Medicine, Stanford University Stanford, CA, USA
| | | | | |
Collapse
|
28
|
Francisella tularensis Schu S4 O-antigen and capsule biosynthesis gene mutants induce early cell death in human macrophages. Infect Immun 2010; 79:581-94. [PMID: 21078861 DOI: 10.1128/iai.00863-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Francisella tularensis is capable of rampant intracellular growth and causes a potentially fatal disease in humans. Whereas many mutational studies have been performed with avirulent strains of Francisella, relatively little has been done with strains that cause human disease. We generated a near-saturating transposon library in the virulent strain Schu S4, which was subjected to high-throughput screening by transposon site hybridization through primary human macrophages, negatively selecting 202 genes. Of special note were genes in a locus of the Francisella chromosome, FTT1236, FTT1237, and FTT1238. Mutants with mutations in these genes demonstrated significant sensitivity to complement-mediated lysis compared with wild-type Schu S4 and exhibited marked defects in O-antigen and capsular polysaccharide biosynthesis. In the absence of complement, these mutants were phagocytosed more efficiently by macrophages than wild-type Schu S4 and were capable of phagosomal escape but exhibited reduced intracellular growth. Microscopic and quantitative analyses of macrophages infected with mutant bacteria revealed that these macrophages exhibited signs of cell death much earlier than those infected with Schu S4. These data suggest that FTT1236, FTT1237, and FTT1238 are important for polysaccharide biosynthesis and that the Francisella O antigen, capsule, or both are important for avoiding the early induction of macrophage death and the destruction of the replicative niche.
Collapse
|
29
|
Kabanov DS, Prokhorenko IR. Structural analysis of lipopolysaccharides from Gram-negative bacteria. BIOCHEMISTRY (MOSCOW) 2010; 75:383-404. [PMID: 20618127 DOI: 10.1134/s0006297910040012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review covers data on composition and structure of lipid A, core, and O-polysaccharide of the known lipopolysaccharides from Gram-negative bacteria. The relationship between the structure and biological activity of lipid A is discussed. The data on roles of core and O-polysaccharide in biological activities of lipopolysaccharides are presented. The structural homology of some oligosaccharide sequences of lipopolysaccharides to gangliosides of human cell membranes is considered.
Collapse
Affiliation(s)
- D S Kabanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
30
|
Bublitz DC, Noah CE, Benach JL, Furie MB. Francisella tularensis suppresses the proinflammatory response of endothelial cells via the endothelial protein C receptor. THE JOURNAL OF IMMUNOLOGY 2010; 185:1124-31. [PMID: 20543103 DOI: 10.4049/jimmunol.0902429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Various bacterial pathogens activate the endothelium to secrete proinflammatory cytokines and recruit circulating leukocytes. In contrast, there is a distinct lack of activation of these cells by Francisella tularensis, the causative agent of tularemia. Given the importance of endothelial cells in facilitating innate immunity, we investigated the ability of the attenuated live vaccine strain and virulent Schu S4 strain of F. tularensis to inhibit the proinflammatory response of HUVECs. Living F. tularensis live vaccine strain and Schu S4 did not stimulate secretion of the chemokine CCL2 by HUVECs, whereas material released from heat-killed bacteria did. Furthermore, the living bacteria suppressed secretion in response to heat-killed F. tularensis. This phenomenon was dose and contact dependent, and it occurred rapidly upon infection. The living bacteria did not inhibit the activation of HUVECs by Escherichia coli LPS, highlighting the specificity of this suppression. The endothelial protein C receptor (EPCR) confers anti-inflammatory properties when bound by activated protein C. When the EPCR was blocked, F. tularensis lost the ability to suppress activation of HUVECs. To our knowledge, this is the first report that a bacterial pathogen inhibits the host immune response via the EPCR. Endothelial cells are a critical component of the innate immune response to infection, and suppression of their activation by F. tularensis is likely a mechanism that aids in bacterial dissemination and evasion of host defenses.
Collapse
Affiliation(s)
- DeAnna C Bublitz
- Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
31
|
GroEL and lipopolysaccharide from Francisella tularensis live vaccine strain synergistically activate human macrophages. Infect Immun 2010; 78:1797-806. [PMID: 20123721 DOI: 10.1128/iai.01135-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, interacts with host cells of innate immunity in an atypical manner. For most Gram-negative bacteria, the release of lipopolysaccharide (LPS) from their outer membranes stimulates an inflammatory response. When LPS from the attenuated live vaccine strain (LVS) or the highly virulent Schu S4 strain of F. tularensis was incubated with human umbilical vein endothelial cells, neither species of LPS induced expression of the adhesion molecule E-selectin or secretion of the chemokine CCL2. Moreover, a high concentration (10 microg/ml) of LVS or Schu S4 LPS was required to stimulate production of CCL2 by human monocyte-derived macrophages (huMDM). A screen for alternative proinflammatory factors of F. tularensis LVS identified the heat shock protein GroEL as a potential candidate. Recombinant LVS GroEL at a concentration of 10 microg/ml elicited secretion of CXCL8 and CCL2 by huMDM through a TLR4-dependent mechanism. When 1 microg of LVS GroEL/ml was added to an equivalent amount of LVS LPS, the two components synergistically activated the huMDM to produce CXCL8. Schu S4 GroEL was less stimulatory than LVS GroEL and showed a lesser degree of synergy when combined with Schu S4 LPS. These findings suggest that the intrinsically low proinflammatory activity of F. tularensis LPS may be increased in the infected human host through interactions with other components of the bacterium.
Collapse
|
32
|
Holická M, Novosad J, Loudová M, Kudlová M, Krejsek J. The effect of interferon-gamma and lipopolysaccharide on the growth of Francisella tularensis LVS in murine macrophage-like cell line J774. ACTA MEDICA (HRADEC KRÁLOVÉ) 2010; 52:101-6. [PMID: 20073421 DOI: 10.14712/18059694.2016.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Francisella tularensis, a causative agent of human tularemia, displaying the ability to proliferate inside the human cells. AIMS To evaluate the growth potential of F. tularensis LVS strain in macrophage-like cell line J774 modulated by recombinant interferon gamma and E. coli derived lipopolysaccharide. RESULTS Stimulation of J774 cells either by interferon-gamma or lipopolysaccharide alone, or especially in combination before infection F. tularensis, revealed protective effects. Higher concentrations of stimulating agents were needed to inhibit ongoing F. tularensis infection. CONCLUSIONS Stimulation of J774 cell line by combination of interferon-gamma with lipopolysaccharide inhibits the intracellular growth of F. tularensis.
Collapse
Affiliation(s)
- Monika Holická
- Department of Clinical Immunology and Allergology, Charles University in Prague, Faculty of Medicine and University Hospital, Hradec Králové, Czech Republic
| | | | | | | | | |
Collapse
|
33
|
A tolC mutant of Francisella tularensis is hypercytotoxic compared to the wild type and elicits increased proinflammatory responses from host cells. Infect Immun 2009; 78:1022-31. [PMID: 20028804 DOI: 10.1128/iai.00992-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The highly infectious bacterium Francisella tularensis is a facultative intracellular pathogen and the causative agent of tularemia. TolC, which is an outer membrane protein involved in drug efflux and type I protein secretion, is required for the virulence of the F. tularensis live vaccine strain (LVS) in mice. Here, we show that an LVS DeltatolC mutant colonizes livers, spleens, and lungs of mice infected intradermally or intranasally, but it is present at lower numbers in these organs than in those infected with the parental LVS. For both routes of infection, colonization by the DeltatolC mutant is most severely affected in the lungs, suggesting that TolC function is particularly important in this organ. The DeltatolC mutant is hypercytotoxic to murine and human macrophages compared to the wild-type LVS, and it elicits the increased secretion of proinflammatory chemokines from human macrophages and endothelial cells. Taken together, these data suggest that TolC function is required for F. tularensis to inhibit host cell death and dampen host immune responses. We propose that, in the absence of TolC, F. tularensis induces excessive host cell death, causing the bacterium to lose its intracellular replicative niche. This results in lower bacterial numbers, which then are cleared by the increased innate immune response of the host.
Collapse
|
34
|
Development of real-time PCR assays for the specific detection of Francisella tularensis ssp. tularensis, holarctica and mediaasiatica. Mol Cell Probes 2009; 24:72-6. [PMID: 19833196 DOI: 10.1016/j.mcp.2009.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 10/01/2009] [Accepted: 10/06/2009] [Indexed: 11/23/2022]
Abstract
Real-time polymerase chain reaction (PCR) assays were developed to detect Francisella tularensis (Ft), the causative agent of tularaemia in humans. Two real-time PCRs (FTT0376 and FTT0523) were designed in genetic sequences identified by the Insignia genome comparison tool (http://insignia.cbcb.umd.edu/) as being unique to pathogenic subspecies of F. tularensis. Both PCRs identified all pathogenic F. tularensis subspecies but did not cross react with avirulent Francisella philomiragia or F. tularensis ssp. novicida or other environmental bacteria. Limits of detection from DNA purified from pure culture (FTT0376 approximately 80 Ft genome equivalents (GEs) per PCR; FTT0523 approximately 20 Ft GEs per PCR;) and DNA purified from spiked blood samples (4 x 10(4) to 4 x 10(3) cfu ml(-1), both assays) were determined.
Collapse
|
35
|
Francisella tularensis infection-derived monoclonal antibodies provide detection, protection, and therapy. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:414-22. [PMID: 19176692 DOI: 10.1128/cvi.00362-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Francisella tularensis is the causative agent of tularemia and a potential agent of biowarfare. As an easily transmissible infectious agent, rapid detection and treatment are necessary to provide a positive clinical outcome. As an agent of biowarfare, there is an additional need to prevent infection. We made monoclonal antibodies to the F. tularensis subsp. holarctica live vaccine strain (F. tularensis LVS) by infecting mice with a sublethal dose of bacteria and, following recovery, by boosting the mice with sonicated organisms. The response to the initial and primary infection was restricted to immunoglobulin M antibody directed solely against lipopolysaccharide (LPS). After boosting with sonicated organisms, the specificity repertoire broadened against protein antigens, including DnaK, LpnA, FopA, bacterioferritin, the 50S ribosomal protein L7/L12, and metabolic enzymes. These monoclonal antibodies detect F. tularensis LVS by routine immunoassays, including enzyme-linked immunosorbent assay, Western blot analysis, and immunofluorescence. The ability of the antibodies to protect mice from intradermal infection, both prophylactically and therapeutically, was examined. An antibody to LPS which provides complete protection from infection with F. tularensis LVS and partial protection from infection with F. tularensis subsp. tularensis strain SchuS4 was identified. There was no bacteremia and reduced organ burden within the first 24 h when mice were protected from F. tularensis LVS infection with the anti-LPS antibody. No antibody that provided complete protection when administered therapeutically was identified; however, passive transfer of antibodies against LPS, FopA, and LpnA resulted in 40 to 50% survival of mice infected with F. tularensis LVS.
Collapse
|
36
|
Oyston PCF. Francisella tularensis: unravelling the secrets of an intracellular pathogen. J Med Microbiol 2008; 57:921-930. [PMID: 18628490 DOI: 10.1099/jmm.0.2008/000653-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis has been recognized as the causative agent of tularaemia for almost a century. Since its discovery in 1911, it has been shown to infect a wide range of hosts, including humans. As early as the 1920s it was suggested to be an intracellular pathogen, but it has proven to be an enigmatic organism, whose interaction with the host has been difficult to elucidate, and we still have a very limited understanding of the molecular mechanisms of virulence. However, the recent availability of genome sequence data and molecular tools has allowed us to start to understand the molecular basis of F. tularensis pathogenicity, and will facilitate the development of a vaccine to protect against infection.
Collapse
Affiliation(s)
- Petra C F Oyston
- Biomedical Sciences, DSTL Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
37
|
Lembo A, Pelletier M, Iyer R, Timko M, Dudda JC, West TE, Wilson CB, Hajjar AM, Skerrett SJ. Administration of a synthetic TLR4 agonist protects mice from pneumonic tularemia. THE JOURNAL OF IMMUNOLOGY 2008; 180:7574-81. [PMID: 18490759 DOI: 10.4049/jimmunol.180.11.7574] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Francisella tularensis is a Gram-negative intracellular pathogen that causes the zoonosis tularemia. Because F. tularensis LPS causes weak TLR4 activation, we hypothesized that administration of a synthetic TLR4 agonist, aminoalkyl glucosaminide phosphate (AGP), would boost the innate immune system and compensate for reduced TLR4 stimulation. Intranasal administration of AGPs induced intrapulmonary production of proinflammatory cytokines and chemokines. Mice treated with AGPs before and after inhalation of Francisella novicida exhibited augmented cytokine and inflammatory responses to infection; reduced bacterial replication in lung, liver, and spleen; and increased survival, whereas all PBS-treated control mice died within 4 days of infection, all AGP-treated mice showed prolonged time-to-death, and 30-60% of AGP-treated mice survived. The protective effect of AGP was lost in mice lacking IFN-gamma. Long-term survivors developed specific Th1 splenocyte responses and specific Abs dominated by IgG2 isotypes. Survivors were fully protected from rechallenge with aerosolized F. novicida. Thus, preventive administration of AGP successfully modulated innate immune responses to aerosolized F. novicida, leading to protective immunity to pneumonic tularemia. This is the first report of the protective effect of a TLR ligand on resistance to F. novicida-induced pneumonic tularemia.
Collapse
Affiliation(s)
- Annalisa Lembo
- Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Native outer membrane proteins protect mice against pulmonary challenge with virulent type A Francisella tularensis. Infect Immun 2008; 76:3664-71. [PMID: 18505805 DOI: 10.1128/iai.00374-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Francisella tularensis is a gram-negative intracellular bacterium and the causative agent of the zoonotic disease tularemia. F. tularensis is a category A select agent and thus a potential agent of bioterrorism. Whereas an F. tularensis live, attenuated vaccine strain (LVS) is the basis of an investigational vaccine, this vaccine is not licensed for human use because of efficacy and safety concerns. In the present study, we immunized mice with isolated native outer membrane proteins (OMPs), ethanol-inactivated LVS (iLVS), or purified LVS lipopolysaccharide (LPS) and assessed the ability of each vaccine preparation to protect mice against pulmonary challenge with the virulent type A F. tularensis strain SchuS4. Antibody isotyping indicated that both Th1 and Th2 antibody responses were generated in mice after immunization with OMPs or iLVS, whereas LPS immunization resulted in only immunoglobulin A production. In survival studies, OMP immunization provided the greatest level of protection (50% survival at 20 days after infection with SchuS4), and there were associated 3-log reductions in the spleen and liver bacterial burdens (compared to nonvaccinated mice). Cytokine quantitation for the sera of SchuS4-challenged mice indicated that OMP and iLVS immunizations induced high levels of tumor necrosis factor alpha and interleukin-2 (IL-2) production, whereas only OMP immunization induced high levels of IL-10 production. By comparison, high levels of proinflammatory cytokines, including RANTES, granulocyte colony-stimulating factor, IL-6, IL-1alpha, IL-12p40, and KC, in nonvaccinated mice indicated that these cytokines may facilitate disease progression. Taken together, the results of this study demonstrate the potential utility of an OMP subunit (acellular) vaccine for protecting mammals against type A F. tularensis.
Collapse
|
39
|
Allen LAH, McCaffrey RL. To activate or not to activate: distinct strategies used by Helicobacter pylori and Francisella tularensis to modulate the NADPH oxidase and survive in human neutrophils. Immunol Rev 2007; 219:103-17. [PMID: 17850485 DOI: 10.1111/j.1600-065x.2007.00544.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neutrophils accumulate rapidly at sites of infection, and the ability of these cells to phagocytose and kill microorganisms is an essential component of the innate immune response. Relatively few microbial pathogens are able to evade neutrophil killing. Herein, we describe the novel strategies used by Helicobacter pylori and Francisella tularensis to disrupt neutrophil function, with a focus on assembly and activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Inflammation Program, Department of Internal Medicine, University of Iowa, VA Medical Center, Iowa City, IA 52241, USA.
| | | |
Collapse
|
40
|
McLendon MK, Schilling B, Hunt JR, Apicella MA, Gibson BW. Identification of LpxL, a late acyltransferase of Francisella tularensis. Infect Immun 2007; 75:5518-31. [PMID: 17724076 PMCID: PMC2168286 DOI: 10.1128/iai.01288-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major component of the outer membrane of gram-negative bacteria, and the lipid A region of LPS mediates stimulation of the immune system in a structure-dependent manner. Unlike the LPS of many other gram-negative bacteria, the LPS of Francisella tularensis isolated from in vitro cultures is not proinflammatory. This observed lack of proinflammatory prowess may reflect structural features of the lipid A, such as the number and length of the acyl chains and the single-phosphate group. To better understand this phenotype, we have begun to elucidate LPS biosynthesis in F. tularensis. We present complementation, mutational, and chemical data demonstrating that F. tularensis FTT0232c encodes a functional late acyltransferase enzyme with specificity similar to that of the Escherichia coli LpxL ortholog. Expression of this late acyltransferase complemented the temperature-sensitive and hypoacylated lipid A phenotypes of an E. coli lpxL mutant, expression of FTT0232c is increased during intracellular growth relative to that during in vitro growth, and finally, LPS obtained from a mutant of F. tularensis lacking FTT0232c showed an abundant triacyl lipid A species after mass spectrometric analysis, consistent with the loss of an LpxL late acyltransferase.
Collapse
Affiliation(s)
- Molly K McLendon
- Department of Microbiology and Inflammation Program, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
41
|
Gioannini TL, Weiss JP. Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells. Immunol Res 2007; 39:249-60. [DOI: 10.1007/s12026-007-0069-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/22/2022]
|
42
|
Transcriptome analysis of human immune responses following live vaccine strain (LVS) Francisella tularensis vaccination. Mol Immunol 2007; 44:3173-84. [PMID: 17349694 DOI: 10.1016/j.molimm.2007.01.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 01/24/2007] [Accepted: 01/25/2007] [Indexed: 10/23/2022]
Abstract
The live vaccine strain (LVS) of Francisella tularensis is the only vaccine against tularemia available for humans, yet its mechanism of protection remains unclear. We probed human immunological responses to LVS vaccination with transcriptome analysis using PBMC samples from volunteers at time points pre- and post-vaccination. Gene modulation was highly uniform across all time points, implying commonality of vaccine responses. Principal components analysis revealed three highly distinct principal groupings: pre-vaccination (-144 h), early (+18 and +48 h), and late post-vaccination (+192 and +336 h). The most significant changes in gene expression occurred at early post-vaccination time points (<or=48 h), specifically in the induction of pro-inflammatory and innate immunity-related genes. Evidence supporting modulation of innate effector function, specifically antigen processing and presentation by dendritic cells, was especially apparent. Our data indicate that the LVS strain of F. tularensis invokes a strong early response upon vaccination. This pattern of gene regulation may provide insightful information regarding both vaccine efficacy and immunopathogenesis that may provide insight into infection with virulent strains of F. tularensis. Additionally, we obtained valuable information that should prove useful in evaluation of vaccine lots as well as efficacy testing of new anti-F. tularensis vaccines.
Collapse
|
43
|
Malik M, Bakshi CS, McCabe K, Catlett SV, Shah A, Singh R, Jackson PL, Gaggar A, Metzger DW, Melendez JA, Blalock JE, Sellati TJ. Matrix metalloproteinase 9 activity enhances host susceptibility to pulmonary infection with type A and B strains of Francisella tularensis. THE JOURNAL OF IMMUNOLOGY 2007; 178:1013-20. [PMID: 17202364 DOI: 10.4049/jimmunol.178.2.1013] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A striking feature of pulmonary infection with the Gram-negative intracellular bacterium Francisella tularensis, a category A biological threat agent, is an intense accumulation of inflammatory cells, particularly neutrophils and macrophages, at sites of bacterial replication. Given the essential role played by host matrix metalloproteinases (MMPs) in modulating leukocyte recruitment and the potentially indiscriminate destructive capacity of these cells, we investigated whether MMP-9, an important member of this protease family released by neutrophils and activated macrophages, plays a role in the pathogenesis of respiratory tularemia. We found that F. tularensis induced expression of MMP-9 in FVB/NJ mice and that the action of this protease is associated with higher bacterial burdens in pulmonary and extrapulmonary tissues, development of more extensive histopathology predominated by neutrophils, and increased morbidity and mortality compared with mice lacking MMP-9 (MMP-9(-/-)). Moreover, MMP-9(-/-) mice were able to resolve infection with either the virulence-attenuated type B (live vaccine strain) or the highly virulent type A (SchuS4) strain of F. tularensis. Disease resolution was accompanied by diminished leukocyte recruitment and reductions in both bacterial burden and proinflammatory cytokine production. Notably, neutrophilic infiltrates were significantly reduced in MMP-9(-/-) mice, owing perhaps to limited release of Pro-Gly-Pro, a potent neutrophil chemotactic tripeptide released from extracellular matrix through the action of MMP-9. Collectively, these results suggest that MMP-9 activity plays a central role in modulating the clinical course and severity of respiratory tularemia and identifies MMPs as novel targets for therapeutic intervention as a means of modulating neutrophil recruitment.
Collapse
Affiliation(s)
- Meenakshi Malik
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gallagher LA, Ramage E, Jacobs MA, Kaul R, Brittnacher M, Manoil C. A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate. Proc Natl Acad Sci U S A 2007; 104:1009-14. [PMID: 17215359 PMCID: PMC1783355 DOI: 10.1073/pnas.0606713104] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is one of the most infectious bacterial pathogens known and is a category A select agent. We created a sequence-defined, near-saturation transposon mutant library of F. tularensis novicida, a subspecies that causes a tularemia-like disease in rodents. The library consists of 16,508 unique insertions, an average of >9 insertions per gene, which is a coverage nearly twice that of the greatest previously achieved for any bacterial species. Insertions were recovered in 84% (1,490) of the predicted genes. To achieve high coverage, it was necessary to construct transposons carrying an endogenous Francisella promoter to drive expression of antibiotic resistance. An analysis of genes lacking (or with few) insertions identified nearly 400 candidate essential genes, most of which are likely to be required for growth on rich medium and which represent potential therapeutic targets. To facilitate genome-scale screening using the mutant collection, we assembled a sublibrary made up of two purified mutants per gene. The library provides a resource for virtually complete identification of genes involved in virulence and other nonessential processes.
Collapse
Affiliation(s)
- Larry A. Gallagher
- *Department of Genome Sciences, University of Washington, Campus Box 355065, 1705 NE Pacific Street, Seattle, WA 98195; and
| | - Elizabeth Ramage
- *Department of Genome Sciences, University of Washington, Campus Box 355065, 1705 NE Pacific Street, Seattle, WA 98195; and
| | - Michael A. Jacobs
- Department of Medicine, University of Washington, Campus Box 352145, 1705 NE Pacific Street, Seattle, WA 98195
| | - Rajinder Kaul
- Department of Medicine, University of Washington, Campus Box 352145, 1705 NE Pacific Street, Seattle, WA 98195
| | - Mitchell Brittnacher
- *Department of Genome Sciences, University of Washington, Campus Box 355065, 1705 NE Pacific Street, Seattle, WA 98195; and
| | - Colin Manoil
- *Department of Genome Sciences, University of Washington, Campus Box 355065, 1705 NE Pacific Street, Seattle, WA 98195; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Hajjar AM, Harvey MD, Shaffer SA, Goodlett DR, Sjöstedt A, Edebro H, Forsman M, Byström M, Pelletier M, Wilson CB, Miller SI, Skerrett SJ, Ernst RK. Lack of in vitro and in vivo recognition of Francisella tularensis subspecies lipopolysaccharide by Toll-like receptors. Infect Immun 2006; 74:6730-8. [PMID: 16982824 PMCID: PMC1698081 DOI: 10.1128/iai.00934-06] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Francisella tularensis is an intracellular gram-negative bacterium that is highly infectious and potentially lethal. Several subspecies exist of varying pathogenicity. Infection by only a few organisms is sufficient to cause disease depending on the model system. Lipopolysaccharide (LPS) of gram-negative bacteria is generally recognized by Toll-like receptor 4 (TLR4)/MD-2 and induces a strong proinflammatory response. Examination of human clinical F. tularensis isolates revealed that human virulent type A and type B strains produced lipid A of similar structure to the nonhuman model pathogen of mice, Francisella novicida. F. novicida LPS or lipid A is neither stimulatory nor an antagonist for human and murine cells through TLR4 or TLR2. It does not appear to interact with TLR4 or MD-2, as it is not an antagonist to other stimulatory LPS. Consistent with these observations, aerosolization of F. novicida LPS or whole bacteria induced no inflammatory response in mice. These results suggest that poor innate recognition of F. tularensis allows the bacterium to evade early recognition by the host innate immune system to promote its pathogenesis for mammals.
Collapse
Affiliation(s)
- Adeline M Hajjar
- Department of Medicine, University of Washington, Health Sciences Building, Box 357710, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|