1
|
Wang LT, Idris AH, Kisalu NK, Crompton PD, Seder RA. Monoclonal antibodies to the circumsporozoite proteins as an emerging tool for malaria prevention. Nat Immunol 2024; 25:1530-1545. [PMID: 39198635 DOI: 10.1038/s41590-024-01938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Despite various public health strategies, malaria caused by Plasmodium falciparum parasites remains a major global health challenge that requires development of new interventions. Extended half-life human monoclonal antibodies targeting the P. falciparum circumsporozoite protein on sporozoites, the infective form of malaria parasites, prevent malaria in rodents and humans and have been advanced into clinical development. The protective epitopes on the circumsporozoite protein targeted by monoclonal antibodies have been defined. Cryogenic electron and multiphoton microscopy have enabled mechanistic structural and functional investigations of how antibodies bind to the circumsporozoite protein and neutralize sporozoites. Moreover, innovations in bioinformatics and antibody engineering have facilitated enhancement of antibody potency and durability. Here, we summarize the latest scientific advances in understanding how monoclonal antibodies to the circumsporozoite protein prevent malaria and highlight existing clinical data and future plans for how this emerging intervention can be used alone or alongside existing antimalarial interventions to control malaria across at-risk populations.
Collapse
Affiliation(s)
- Lawrence T Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| | - Neville K Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- PATH's Center for Vaccine Innovation and Access, Washington, DC, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Stump WH, Klingenberg HJ, Ott AC, Gonzales DM, Burns JM. Design and Evaluation of Chimeric Plasmodium falciparum Circumsporozoite Protein-Based Malaria Vaccines. Vaccines (Basel) 2024; 12:351. [PMID: 38675734 PMCID: PMC11053680 DOI: 10.3390/vaccines12040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Efficacy data on two malaria vaccines, RTS,S and R21, targeting Plasmodium falciparum circumsporozoite protein (PfCSP), are encouraging. Efficacy may be improved by induction of additional antibodies to neutralizing epitopes outside of the central immunodominant repeat domain of PfCSP. We designed four rPfCSP-based vaccines in an effort to improve the diversity of the antibody response. We also evaluated P. falciparum merozoite surface protein 8 (PfMSP8) as a malaria-specific carrier protein as an alternative to hepatitis B surface antigen. We measured the magnitude, specificity, subclass, avidity, durability, and efficacy of vaccine-induced antibodies in outbred CD1 mice. In comparison to N-terminal- or C-terminal-focused constructs, immunization with near full-length vaccines, rPfCSP (#1) or the chimeric rPfCSP/8 (#2), markedly increased the breadth of B cell epitopes recognized covering the N-terminal domain, junctional region, and central repeat. Both rPfCSP (#1) and rPfCSP/8 (#2) also elicited a high proportion of antibodies to conformation-dependent epitopes in the C-terminus of PfCSP. Fusion of PfCSP to PfMSP8 shifted the specificity of the T cell response away from PfCSP toward PfMSP8 epitopes. Challenge studies with transgenic Plasmodium yoelii sporozoites expressing PfCSP demonstrated high and consistent sterile protection following rPfCSP/8 (#2) immunization. Of note, antibodies to conformational C-terminal epitopes were not required for protection. These results indicate that inclusion of the N-terminal domain of PfCSP can drive responses to protective, repeat, and non-repeat B cell epitopes and that PfMSP8 is an effective carrier for induction of high-titer, durable anti-PfCSP antibodies.
Collapse
Affiliation(s)
| | | | | | | | - James M. Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA; (W.H.S.); (H.J.K.); (A.C.O.); (D.M.G.)
| |
Collapse
|
3
|
Jairoce C, Macià D, Torres-Yaguana JP, Mayer L, Vidal M, Santano R, Hurtado-Guerrero R, Reiter K, Narum DL, Lopez-Gutierrez B, Hamerly T, Sacarlal J, Aguilar R, Dinglasan RR, Moncunill G, Izquierdo L, Dobaño C. RTS,S/AS02A Malaria Vaccine-Induced IgG Responses Equally Recognize Native-Like Fucosylated and Nonfucosylated Plasmodium falciparum Circumsporozoite Proteins. J Infect Dis 2024; 229:795-799. [PMID: 37889513 PMCID: PMC11491836 DOI: 10.1093/infdis/jiad471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/01/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023] Open
Abstract
The RTS,S/AS02A malaria vaccine is based on the Plasmodium falciparum circumsporozoite protein (PfCSP), which is O-fucosylated on the sporozoite surface. We determined whether RTS,S/AS02A-induced immunoglobulin G (IgG) antibodies recognize vaccine-like nonfucosylated PfCSP better than native-like fucosylated PfCSP. Similar to previous vaccine trials, RTS,S/AS02A vaccination induced high anti-PfCSP IgG levels associated with malaria protection. IgG recognition of nonfucosylated and fucosylated PfCSP was equivalent, suggesting that PfCSP fucosylation does not affect antibody recognition. Clinical Trials Registration. NCT00197041.
Collapse
Affiliation(s)
- Chenjerai Jairoce
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Dídac Macià
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Jorge P Torres-Yaguana
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Leonie Mayer
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Marta Vidal
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Rebeca Santano
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Borja Lopez-Gutierrez
- Emerging Pathogens Institute, Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Timothy Hamerly
- Emerging Pathogens Institute, Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Jahit Sacarlal
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Ruth Aguilar
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Rhoel R Dinglasan
- Emerging Pathogens Institute, Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Gemma Moncunill
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Carlota Dobaño
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
4
|
Naghizadeh M, Singh SK, Plieskatt J, Ofori EA, Theisen M. Production and Purification of Plasmodium Circumsporozoite Protein in Lactococcus lactis. Methods Mol Biol 2024; 2762:109-121. [PMID: 38315362 DOI: 10.1007/978-1-0716-3666-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Malaria is a vector-borne disease caused by Plasmodium parasites of which Plasmodium falciparum contributed to an estimated 247 million cases worldwide in 2021 (WHO malaria report 2022). The P. falciparum Circumsporozoite protein (PfCSP) covers the surface of the sporozoite which is critical to cell invasion in the human host. PfCSP is the leading pre-erythrocytic vaccine candidate and forms the basis of the RTS'S (Mosquirix®) malaria vaccine. However, high-yield production of full-length PfCSP with proper folding has been challenging. Here, we describe expression and purification of full-length PfCSP (containing 4 NVDP and 38 NANP repeats) with proper conformation by a simple three-step procedure in the Lactococcus lactis expression system.
Collapse
Affiliation(s)
- Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Susheel K Singh
- Biotherapeutic and Vaccine Research Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Jordan Plieskatt
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Ebenezer Addo Ofori
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Thai E, Murugan R, Binter Š, Burn Aschner C, Prieto K, Kassardjian A, Obraztsova AS, Kang RW, Flores-Garcia Y, Mathis-Torres S, Li K, Horn GQ, Huntwork RHC, Bolscher JM, de Bruijni MHC, Sauerwein R, Dennison SM, Tomaras GD, Zavala F, Kellam P, Wardemann H, Julien JP. Molecular determinants of cross-reactivity and potency by VH3-33 antibodies against the Plasmodium falciparum circumsporozoite protein. Cell Rep 2023; 42:113330. [PMID: 38007690 PMCID: PMC10720262 DOI: 10.1016/j.celrep.2023.113330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/27/2023] Open
Abstract
IGHV3-33-encoded antibodies are prevalent in the human humoral response against the Plasmodium falciparum circumsporozoite protein (PfCSP). Among VH3-33 antibodies, cross-reactivity between PfCSP major repeat (NANP), minor (NVDP), and junctional (NPDP) motifs is associated with high affinity and potent parasite inhibition. However, the molecular basis of antibody cross-reactivity and the relationship with efficacy remain unresolved. Here, we perform an extensive structure-function characterization of 12 VH3-33 anti-PfCSP monoclonal antibodies (mAbs) with varying degrees of cross-reactivity induced by immunization of mice expressing a human immunoglobulin gene repertoire. We identify residues in the antibody paratope that mediate cross-reactive binding and delineate four distinct epitope conformations induced by antibody binding, with one consistently associated with high protective efficacy and another that confers comparably potent inhibition of parasite liver invasion. Our data show a link between molecular features of cross-reactive VH3-33 mAb binding to PfCSP and mAb potency, relevant for the development of antibody-based interventions against malaria.
Collapse
Affiliation(s)
- Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Špela Binter
- Kymab Ltd./Sanofi, The Bennet Building (B930), Babraham Research Campus, Cambridge CB22 3AT, UK; RQ Biotechnology Limited, 7th Floor Lynton House, 7-12 Tavistock Square, London WC1H 9LT, UK
| | - Clare Burn Aschner
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Audrey Kassardjian
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anna S Obraztsova
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Biosciences Faculty, University of Heidelberg, 69117 Heidelberg, Germany
| | - Ryu Won Kang
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kan Li
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Gillian Q Horn
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Richard H C Huntwork
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | | | | | | | - S Moses Dennison
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Paul Kellam
- Kymab Ltd./Sanofi, The Bennet Building (B930), Babraham Research Campus, Cambridge CB22 3AT, UK; RQ Biotechnology Limited, 7th Floor Lynton House, 7-12 Tavistock Square, London WC1H 9LT, UK; Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
Furtado R, Paul M, Zhang J, Sung J, Karell P, Kim RS, Caillat-Zucman S, Liang L, Felgner P, Bauleni A, Gama S, Buchwald A, Taylor T, Seydel K, Laufer M, Delahaye F, Daily JP, Lauvau G. Cytolytic circumsporozoite-specific memory CD4 + T cell clones are expanded during Plasmodium falciparum infection. Nat Commun 2023; 14:7726. [PMID: 38001069 PMCID: PMC10673885 DOI: 10.1038/s41467-023-43376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Clinical immunity against Plasmodium falciparum infection develops in residents of malaria endemic regions, manifesting in reduced clinical symptoms during infection and in protection against severe disease but the mechanisms are not fully understood. Here, we compare the cellular and humoral immune response of clinically immune (0-1 episode over 18 months) and susceptible (at least 3 episodes) during a mild episode of Pf malaria infection in a malaria endemic region of Malawi, by analysing peripheral blood samples using high dimensional mass cytometry (CyTOF), spectral flow cytometry and single-cell transcriptomic analyses. In the clinically immune, we find increased proportions of circulating follicular helper T cells and classical monocytes, while the humoral immune response shows characteristic age-related differences in the protected. Presence of memory CD4+ T cell clones with a strong cytolytic ZEB2+ T helper 1 effector signature, sharing identical T cell receptor clonotypes and recognizing the Pf-derived circumsporozoite protein (CSP) antigen are found in the blood of the Pf-infected participants gaining protection. Moreover, in clinically protected participants, ZEB2+ memory CD4+ T cells express lower level of inhibitory and chemotactic receptors. We thus propose that clonally expanded ZEB2+ CSP-specific cytolytic memory CD4+ Th1 cells may contribute to clinical immunity against the sporozoite and liver-stage Pf malaria.
Collapse
Affiliation(s)
- Raquel Furtado
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- RF: BioNTech US, 40 Erie Street, Cambridge, MA, 02139, USA
| | - Mahinder Paul
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Joowhan Sung
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Paul Karell
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Sophie Caillat-Zucman
- Université de Paris, AP-HP, Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatiblité, INSERM UMR976, 75010, Paris, France
| | - Li Liang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Philip Felgner
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Andy Bauleni
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Syze Gama
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Andrea Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Terrie Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, 48824, USA
| | - Karl Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, 48824, USA
| | - Miriam Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Fabien Delahaye
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- FD: Precision Oncology, Sanofi, Vitry sur Seine, France
| | - Johanna P Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
| | - Grégoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
| |
Collapse
|
7
|
Hayashi CTH, Cao Y, Zavala F, Simonyan H, Young CN, Kumar N. Antibodies elicited by Plasmodium falciparum circumsporozoite proteins lacking sequentially deleted C-terminal amino acids reveal mouse strain and epitopes specific differences. Vaccine 2023; 41:6824-6833. [PMID: 37827967 PMCID: PMC11004087 DOI: 10.1016/j.vaccine.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Malaria affects ∼ ¼ billion people globally and requires the development of additional tools to aid in elimination efforts. The recently approved RTS,S/AS01 vaccine represents a positive step, however, the moderate efficacy necessitates the development of more efficacious vaccines. PfCSP is a key target antigen for pre-erythrocytic vaccines aimed at preventing Plasmodium falciparum malaria infections. Epitopes within the central repeat region and at the junction of the repeat and N-terminal domain are well documented as major protective B cell epitopes. On the other hand, a majority of antibodies against the epitopes in the C-terminal domain, have been shown to be non-protective against sporozoite challenge. The C-terminal domain, however, contains CD4+ and CD8+ T cell epitopes previously shown to be important for regulating immune responses. The present study was designed to further explore the immunomodulatory potential of the C-terminal domain using DNA vaccines encoding PfCSP with sequential C-terminal truncations following known T cell epitopes. Five DNA vaccines encoding different truncations of PfCSP within the C-terminal domain were administered via intramuscular route and in vivo electroporation for effective immunogenicity. Protection in mice was evaluated by challenge with transgenic P. berghei expressing PfCSP. In Balb/c mice, antibody responses and protective efficacy were both affected progressively with sequential deletion of C-terminal amino acid residues. Similar studies in C57Bl/6 mice revealed that immunizations with plasmids encoding truncated PfCSP showed partial protection from sporozoite challenge with no significant differences in antibody titers observed compared to full-length PfCSP DNA immunized mice. Further analysis revealed murine strain-specific differences in the recognition of specific epitopes.
Collapse
MESH Headings
- Animals
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Malaria Vaccines/immunology
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/genetics
- Mice
- Plasmodium falciparum/immunology
- Plasmodium falciparum/genetics
- Antibodies, Protozoan/immunology
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/immunology
- Mice, Inbred BALB C
- Female
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes/immunology
- Epitopes/genetics
- Sporozoites/immunology
Collapse
Affiliation(s)
- Clifford T H Hayashi
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington DC 20052, USA
| | - Yi Cao
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington DC 20052, USA
| | - Fidel Zavala
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21215, USA
| | - Hayk Simonyan
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington DC 20052, USA
| | - Colin N Young
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington DC 20052, USA
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington DC 20052, USA.
| |
Collapse
|
8
|
Oludada OE, Costa G, Burn Aschner C, Obraztsova AS, Prieto K, Canetta C, Hoffman SL, Kremsner PG, Mordmüller B, Murugan R, Julien JP, Levashina EA, Wardemann H. Molecular and functional properties of human Plasmodium falciparum CSP C-terminus antibodies. EMBO Mol Med 2023:e17454. [PMID: 37082831 DOI: 10.15252/emmm.202317454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Human monoclonal antibodies (mAbs) against the central repeat and junction domain of Plasmodium falciparum circumsporozoite protein (PfCSP) have been studied extensively to guide malaria vaccine design compared to antibodies against the PfCSP C terminus. Here, we describe the molecular characteristics and protective potential of 73 germline and mutated human mAbs against the highly immunogenic PfCSP C-terminal domain. Two mAbs recognized linear epitopes in the C-terminal linker with sequence similarity to repeat and junction motifs, whereas all others targeted conformational epitopes in the α-thrombospondin repeat (α-TSR) domain. Specificity for the polymorphic Th2R/Th3R but not the conserved RII+/CS.T3 region in the α-TSR was associated with IGHV3-21/IGVL3-21 or IGLV3-1 gene usage. Although the C terminus specific mAbs showed signs of more efficient affinity maturation and class-switching compared to anti-repeat mAbs, live sporozoite binding and inhibitory activity was limited to a single C-linker reactive mAb with cross-reactivity to the central repeat and junction. The data provide novel insights in the human anti-C-linker and anti-α-TSR antibody response that support exclusion of the PfCSP C terminus from malaria vaccine designs.
Collapse
Affiliation(s)
- Opeyemi Ernest Oludada
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
- Biosciences Faculty, University of Heidelberg, Germany
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Anna S Obraztsova
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
- Biosciences Faculty, University of Heidelberg, Germany
| | - Katherine Prieto
- The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Caterina Canetta
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | - Peter G Kremsner
- Institute of Tropical Medicine, Tübingen, Germany
- Centre de Recherches de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, Tübingen, Germany
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Jean-Philippe Julien
- The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON, Canada
| | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
9
|
MacDonald NJ, Singh K, Reiter K, Nguyen V, Shimp R, Gittis AG, Chen B, Burkhardt M, Zhang B, Wang Z, Herrera R, Moler M, Lee DY, Orr-Gonzalez S, Herrod J, Lambert LE, Rausch KM, Muratova O, Jones DS, Wu Y, Jin AJ, Garboczi DN, Duffy PE, Narum DL. Structural and immunological differences in Plasmodium falciparum sexual stage transmission-blocking vaccines comprised of Pfs25-EPA nanoparticles. NPJ Vaccines 2023; 8:56. [PMID: 37061547 PMCID: PMC10105769 DOI: 10.1038/s41541-023-00655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 03/29/2023] [Indexed: 04/17/2023] Open
Abstract
Development of a malaria vaccine that blocks transmission of different parasite stages to humans and mosquitoes is considered critical for elimination efforts. A vaccine using Pfs25, a protein on the surface of zygotes and ookinetes, is under investigation as a transmission-blocking vaccine (TBV) that would interrupt parasite passage from mosquitoes to humans. The most extensively studied Pfs25 TBVs use Pichia pastoris-produced recombinant forms of Pfs25, chemically conjugated to a recombinant carrier protein, ExoProtein A (EPA). The recombinant form of Pfs25 first used in humans was identified as Pfs25H, which contained a total of 14 heterologous amino acid residues located at the amino- and carboxyl-termini including a His6 affinity tag. A second recombinant Pfs25, identified as Pfs25M, was produced to remove the heterologous amino acid residues and conjugated to EPA (Pfs25M-EPA). Here, monomeric Pfs25M was characterized biochemically and biophysically for identity, purity, and integrity including protein structure to assess its comparability with Pfs25H. Although the biological activities of Pfs25H and Pfs25M, whether generated by monomeric forms or conjugated nanoparticles, appeared similar, fine-mapping studies with two transmission-blocking monoclonal antibodies detected structural and immunological differences. In addition, evaluation of antisera generated against conjugated Pfs25H or Pfs25M nanoparticles in nonhuman primates identified polyclonal IgG that recognized these structural differences.
Collapse
Affiliation(s)
- Nicholas J MacDonald
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Kavita Singh
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Vu Nguyen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Richard Shimp
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Apostolos G Gittis
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Beth Chen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Martin Burkhardt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Zhixiong Wang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Raul Herrera
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Mackenzie Moler
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Duck-Yeon Lee
- National Heart, Lung, and Blood Institute, Bethesda, MD, 20814, USA
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Jessica Herrod
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Olga Muratova
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - David S Jones
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Albert J Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - David N Garboczi
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Ngulube P. Humoral Immune Responses to P. falciparum Circumsporozoite Protein (Pfcsp) Induced by the RTS, S Vaccine - Current Update. Infect Drug Resist 2023; 16:2147-2157. [PMID: 37077252 PMCID: PMC10106824 DOI: 10.2147/idr.s401247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
Malaria vaccines targeting the circumsporozoite protein (CSP) of the P. falciparum parasite have been overall relatively promising. RTS, S is a pre-erythrocytic recombinant protein-based malaria vaccine that targets CSP. RTS, S effectiveness shows some limited success regardless of its 58% efficacy for severe disease. P. falciparum circumsporozoite protein (Pfcsp) has stood to be the main candidate protein for most pre-erythrocytic stage vaccines. Studies on the structural and biophysical characteristics of antibodies specific to CSP (anti-CSP) are underway to achieve fine specificity with the CSP polymorphic regions. More recent studies have proposed the use of different kinds of monoclonal antibodies, the use of appropriate adjuvants, ideal vaccination dose and frequency, and improved targeting of particular epitopes for the robust production of functional antibodies and high complement-fixing activity as other potential methods for achieving long-lasting RTS, S. This review highlights recent findings regarding humoral immune responses to CSP elicited by RTS, S vaccine.
Collapse
Affiliation(s)
- Peter Ngulube
- Department of Biological Sciences, Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
- Correspondence: Peter Ngulube, Email
| |
Collapse
|
11
|
Duffy PE. Current approaches to malaria vaccines. Curr Opin Microbiol 2022; 70:102227. [PMID: 36343566 PMCID: PMC11127243 DOI: 10.1016/j.mib.2022.102227] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The complex Plasmodium life cycle offers different vaccine approaches with distinct parasitological and clinical effects. The approaches and their rationales were established decades ago: vaccines targeting pre-erythrocytic (sporozoite and liver-stage) parasites prevent infection, those to blood-stage parasites reduce disease, and those to sexual-stage parasites or mosquito vector reduce transmission and eliminate malaria through herd immunity. The pre-erythrocytic RTS,S vaccine (Mosquirix, GlaskoSmithKline (GSK)), recommended by WHO in 2021, reduces clinical malaria in children. Knowledge of parasite biology, host-parasite interactions, and immune mechanisms is informing new concepts to improve on RTS,S and to target other parasite stages. This review emphasizes vaccine approaches and candidates currently in the clinic or likely to enter clinical testing soon.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
The impact of human complement on the clinical outcome of malaria infection. Mol Immunol 2022; 151:19-28. [PMID: 36063583 DOI: 10.1016/j.molimm.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022]
Abstract
The tropical disease malaria remains a major cause of global morbidity. Once transmitted to the human by a blood-feeding mosquito, the unicellular malaria parasite comes into contact with the complement system and continues to interact with human complement during its intraerythrocytic replication cycles. In the course of infection, both the classical and the alternative pathway of complement are activated, leading to parasite opsonization and lysis as well as the induction of complement-binding antibodies. While complement activity can be linked to the severity of malaria, it remains to date unclear, whether human complement is beneficial for protective immunity or if extensive complement reactions may rather enhance pathogenesis. In addition, the parasite has evolved molecular strategies to circumvent attack by human complement and has even developed means to utilize complement factors as mediators of host cell infection. In this review, we highlight current knowledge on the role of human complement for the progression of malaria infection. We discuss the various types of interactions between malaria parasites and complement factors with regard to immunity and infection outcome and set a special emphasis on the dual role of complement in the context of parasite fitness.
Collapse
|
13
|
Paoletta MS, Wilkowsky SE. Thrombospondin Related Anonymous Protein Superfamily in Vector-Borne Apicomplexans: The Parasite’s Toolkit for Cell Invasion. Front Cell Infect Microbiol 2022; 12:831592. [PMID: 35463644 PMCID: PMC9019593 DOI: 10.3389/fcimb.2022.831592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Apicomplexan parasites transmitted by vectors, including Babesia spp. and Plasmodium spp., cause severe disease in both humans and animals. These parasites have a complex life cycle during which they migrate, invade, and replicate in contrasting hosts such as the mammal and the invertebrate vector. The interaction of parasites with the host cell is mediated by adhesive proteins which play a key role in the different cellular processes regarding successful progression of the life cycle. Thrombospondin related anonymous protein (TRAP) is a superfamily of adhesins that are involved in motility, invasion and egress of the parasite. These proteins are stored and released from apical organelles and have either one or two types of adhesive domains, namely thrombospondin type 1 repeat and von Willebrand factor type A, that upon secretion are located in the extracellular portion of the molecule. Proteins from the TRAP superfamily have been intensively studied in Plasmodium species and to a lesser extent in Babesia spp., where they have proven to be functionally relevant throughout the entire parasite’s journey both in the arthropod vector and in the mammalian host. In recent years new findings provided answers to the role of TRAP proteins and in some cases the function of these adhesins during the parasite’s life cycle was redefined. In this review we will discuss the current knowledge of the diverse roles of the TRAP superfamily in vector-borne parasites from Class Aconoidasida. We will focus on the varied approaches that allowed the understanding of protein function and the relevance of TRAP- superfamily throughout the entire parasite’s cell cycle.
Collapse
|
14
|
Wahl I, Wardemann H. How to induce protective humoral immunity against Plasmodium falciparum circumsporozoite protein. J Exp Med 2022; 219:212951. [PMID: 35006242 PMCID: PMC8754000 DOI: 10.1084/jem.20201313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
The induction of protective humoral immune responses against sporozoite surface proteins of the human parasite Plasmodium falciparum (Pf) is a prime goal in the development of a preerythrocytic malaria vaccine. The most promising antibody target is circumsporozoite protein (CSP). Although PfCSP induces strong humoral immune responses upon vaccination, vaccine efficacy is overall limited and not durable. Here, we review recent efforts to gain a better molecular and cellular understanding of anti-PfCSP B cell responses in humans and discuss ways to overcome limitations in the induction of stable titers of high-affinity antibodies that might help to increase vaccine efficacy and promote long-lived protection.
Collapse
Affiliation(s)
- Ilka Wahl
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
15
|
Wang LT, Pereira LS, Kiyuka PK, Schön A, Kisalu NK, Vistein R, Dillon M, Bonilla BG, Molina-Cruz A, Barillas-Mury C, Tan J, Idris AH, Francica JR, Seder RA. Protective effects of combining monoclonal antibodies and vaccines against the Plasmodium falciparum circumsporozoite protein. PLoS Pathog 2021; 17:e1010133. [PMID: 34871332 PMCID: PMC8675929 DOI: 10.1371/journal.ppat.1010133] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/16/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Combinations of monoclonal antibodies (mAbs) against different epitopes on the same antigen synergistically neutralize many viruses. However, there are limited studies assessing whether combining human mAbs against distinct regions of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) enhances in vivo protection against malaria compared to each mAb alone or whether passive transfer of PfCSP mAbs would improve protection following vaccination against PfCSP. Here, we isolated a panel of human mAbs against the subdominant C-terminal domain of PfCSP (C-CSP) from a volunteer immunized with radiation-attenuated Pf sporozoites. These C-CSP-specific mAbs had limited binding to sporozoites in vitro that was increased by combination with neutralizing human "repeat" mAbs against the NPDP/NVDP/NANP tetrapeptides in the central repeat region of PfCSP. Nevertheless, passive transfer of repeat- and C-CSP-specific mAb combinations did not provide enhanced protection against in vivo sporozoite challenge compared to repeat mAbs alone. Furthermore, combining potent repeat-specific mAbs (CIS43, L9, and 317) that respectively target the three tetrapeptides (NPDP/NVDP/NANP) did not provide additional protection against in vivo sporozoite challenge. However, administration of either CIS43, L9, or 317 (but not C-CSP-specific mAbs) to mice that had been immunized with R21, a PfCSP-based virus-like particle vaccine that induces polyclonal antibodies against the repeat region and C-CSP, provided enhanced protection against sporozoite challenge when compared to vaccine or mAbs alone. Collectively, this study shows that while combining mAbs against the repeat and C-terminal regions of PfCSP provide no additional protection in vivo, repeat mAbs do provide increased protection when combined with vaccine-induced polyclonal antibodies. These data should inform the implementation of PfCSP human mAbs alone or following vaccination to prevent malaria infection.
Collapse
Affiliation(s)
- Lawrence T. Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lais S. Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patience K. Kiyuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Neville K. Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rachel Vistein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian G. Bonilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Azza H. Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - Joseph R. Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
16
|
Reeder SM, Bah MA, Tursi NJ, Brooks RC, Patel A, Esquivel R, Eaton A, Jhun H, Chu J, Kim K, Xu Z, Zavala F, Weiner DB. Strategic Variants of CSP Delivered as SynDNA Vaccines Demonstrate Heterogeneity of Immunogenicity and Protection from Plasmodium Infection in a Murine Model. Infect Immun 2021; 89:e0072820. [PMID: 34152830 PMCID: PMC8445182 DOI: 10.1128/iai.00728-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
Malaria infects millions of people every year, and despite recent advances in controlling disease spread, such as vaccination, it remains a global health concern. The circumsporozoite protein (CSP) has long been acknowledged as a key target in antimalarial immunity. Leveraging the DNA vaccine platform against this formidable pathogen, the following five synthetic DNA vaccines encoding variations of CSP were designed and studied: 3D7, GPI1, ΔGPI, TM, and DD2. Among the single CSP antigen constructs, a range of immunogenicity was observed with ΔGPI generating the most robust immunity. In an intravenous (i.v.) sporozoite challenge, the best protection among vaccinated mice was achieved by ΔGPI, which performed almost as well as the monoclonal antibody 311 (MAb 311) antibody control. Further analyses revealed that ΔGPI develops high-molecular-weight multimers in addition to monomeric CSP. We then compared the immunity generated by ΔGPI versus synDNA mimics for the antimalaria vaccines RTS,S and R21. The anti-CSP antibody responses induced were similar among these three immunogens. T cell responses demonstrated that ΔGPI induced a more focused anti-CSP response. In an infectious mosquito challenge, all three of these constructs generated inhibition of liver-stage infection as well as immunity from blood-stage parasitemia. This study demonstrates that synDNA mimics of complex malaria immunogens can provide substantial protection as can a novel synDNA vaccine ΔGPI.
Collapse
Affiliation(s)
- Sophia M. Reeder
- The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Vaccine Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Mamadou A. Bah
- The Vaccine Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Nicholas J. Tursi
- The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Vaccine Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Rebekah C. Brooks
- The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Vaccine Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ami Patel
- The Vaccine Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Rianne Esquivel
- The Vaccine Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Alison Eaton
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hugo Jhun
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jacqueline Chu
- The Vaccine Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kevin Kim
- The Vaccine Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ziyang Xu
- The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Vaccine Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - David B. Weiner
- The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Vaccine Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Vijayan K, Visweswaran GRR, Chandrasekaran R, Trakhimets O, Brown SL, Watson A, Zuck M, Dambrauskas N, Raappana A, Carbonetti S, Kelnhofer-Millevolte L, Glennon EKK, Postiglione R, Sather DN, Kaushansky A. Antibody interference by a non-neutralizing antibody abrogates humoral protection against Plasmodium yoelii liver stage. Cell Rep 2021; 36:109489. [PMID: 34348141 DOI: 10.1016/j.celrep.2021.109489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/14/2021] [Accepted: 07/14/2021] [Indexed: 01/23/2023] Open
Abstract
Both subunit and attenuated whole-sporozoite vaccination strategies against Plasmodium infection have shown promising initial results in malaria-naive westerners but less efficacy in malaria-exposed individuals in endemic areas. Here, we demonstrate proof of concept by using a rodent malaria model in which non-neutralizing antibodies (nNAbs) can directly interfere with protective anti-circumsporozoite protein (CSP) humoral responses. We characterize a monoclonal antibody, RAM1, against Plasmodium yoelii sporozoite major surface antigen CSP. Unlike the canonical PyCSP repeat domain binding and neutralizing antibody (NAb) 2F6, RAM1 does not inhibit sporozoite traversal or entry of hepatocytes in vitro or infection in vivo. Although 2F6 and RAM1 bind non-overlapping regions of the CSP-repeat domain, pre-treatment with RAM1 abrogates the capacity of NAb to block sporozoite traversal and invasion in vitro. Importantly, RAM1 reduces the efficacy of the polyclonal humoral response against PyCSP in vivo. Collectively, our data provide a proof of concept that nNAbs can alter the efficacy of malaria vaccination.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meghan Zuck
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | | | | | | | | | - D Noah Sather
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Alexis Kaushansky
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Brotman Baty Research Institute, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA.
| |
Collapse
|
18
|
Tan J, Cho H, Pholcharee T, Pereira LS, Doumbo S, Doumtabe D, Flynn BJ, Schön A, Kanatani S, Aylor SO, Oyen D, Vistein R, Wang L, Dillon M, Skinner J, Peterson M, Li S, Idris AH, Molina-Cruz A, Zhao M, Olano LR, Lee PJ, Roth A, Sinnis P, Barillas-Mury C, Kayentao K, Ongoiba A, Francica JR, Traore B, Wilson IA, Seder RA, Crompton PD. Functional human IgA targets a conserved site on malaria sporozoites. Sci Transl Med 2021; 13:eabg2344. [PMID: 34162751 PMCID: PMC7611206 DOI: 10.1126/scitranslmed.abg2344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/21/2021] [Indexed: 12/27/2022]
Abstract
Immunoglobulin (Ig)A antibodies play a critical role in protection against mucosal pathogens. However, the role of serum IgA in immunity to nonmucosal pathogens, such as Plasmodium falciparum, is poorly characterized, despite being the second most abundant isotype in blood after IgG. Here, we investigated the circulating IgA response in humans to P. falciparum sporozoites that are injected into the skin by mosquitoes and migrate to the liver via the bloodstream to initiate malaria infection. We found that circulating IgA was induced in three independent sporozoite-exposed cohorts: individuals living in an endemic region in Mali, malaria-naïve individuals immunized intravenously with three large doses of irradiated sporozoites, and malaria-naïve individuals exposed to a single controlled mosquito bite infection. Mechanistically, we found evidence in an animal model that IgA responses were induced by sporozoites at dermal inoculation sites. From malaria-resistant individuals, we isolated several IgA monoclonal antibodies that reduced liver parasite burden in mice. One antibody, MAD2-6, bound to a conserved epitope in the amino terminus of the P. falciparum circumsporozoite protein, the dominant protein on the sporozoite surface. Crystal structures of this antibody revealed a unique mode of binding whereby two Fabs simultaneously bound either side of the target peptide. This study reveals a role for circulating IgA in malaria and identifies the amino terminus of the circumsporozoite protein as a target of functional antibodies.
Collapse
Affiliation(s)
- Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD 20852, USA.
| | - Hyeseon Cho
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lais S Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sachie Kanatani
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Samantha O Aylor
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - David Oyen
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rachel Vistein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Mary Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Lisa Renee Olano
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Patricia J Lee
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
19
|
Loubens M, Vincensini L, Fernandes P, Briquet S, Marinach C, Silvie O. Plasmodium sporozoites on the move: Switching from cell traversal to productive invasion of hepatocytes. Mol Microbiol 2021; 115:870-881. [PMID: 33191548 PMCID: PMC8247013 DOI: 10.1111/mmi.14645] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
Parasites of the genus Plasmodium, the etiological agent of malaria, are transmitted through the bite of anopheline mosquitoes, which deposit sporozoites into the host skin. Sporozoites migrate through the dermis, enter the bloodstream, and rapidly traffic to the liver. They cross the liver sinusoidal barrier and traverse several hepatocytes before switching to productive invasion of a final one for replication inside a parasitophorous vacuole. Cell traversal and productive invasion are functionally independent processes that require proteins secreted from specialized secretory organelles known as micronemes. In this review, we summarize the current understanding of how sporozoites traverse through cells and productively invade hepatocytes, and discuss the role of environmental sensing in switching from a migratory to an invasive state. We propose that timely controlled secretion of distinct microneme subsets could play a key role in successful migration and infection of hepatocytes. A better understanding of these essential biological features of the Plasmodium sporozoite may contribute to the development of new strategies to fight against the very first and asymptomatic stage of malaria.
Collapse
Affiliation(s)
- Manon Loubens
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Laetitia Vincensini
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Priyanka Fernandes
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Sylvie Briquet
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Carine Marinach
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Olivier Silvie
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| |
Collapse
|
20
|
Thai E, Costa G, Weyrich A, Murugan R, Oyen D, Flores-Garcia Y, Prieto K, Bosch A, Valleriani A, Wu NC, Pholcharee T, Scally SW, Wilson IA, Wardemann H, Julien JP, Levashina EA. A high-affinity antibody against the CSP N-terminal domain lacks Plasmodium falciparum inhibitory activity. J Exp Med 2021; 217:152019. [PMID: 32790871 PMCID: PMC7596816 DOI: 10.1084/jem.20200061] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/21/2020] [Accepted: 07/01/2020] [Indexed: 11/04/2022] Open
Abstract
Malaria is a global health concern, and research efforts are ongoing to develop a superior vaccine to RTS,S/AS01. To guide immunogen design, we seek a comprehensive understanding of the protective humoral response against Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP). In contrast to the well-studied responses to the repeat region and the C-terminus, the antibody response against the N-terminal domain of PfCSP (N-CSP) remains obscure. Here, we characterized the molecular recognition and functional efficacy of the N-CSP-specific monoclonal antibody 5D5. The crystal structure at 1.85-Å resolution revealed that 5D5 binds an α-helical epitope in N-CSP with high affinity through extensive shape and charge complementarity and the unusual utilization of an antibody N-linked glycan. Nevertheless, functional studies indicated low 5D5 binding to live Pf sporozoites and lack of sporozoite inhibition in vitro and in vivo. Overall, our data do not support the inclusion of the 5D5 N-CSP epitope into the next generation of CSP-based vaccines.
Collapse
Affiliation(s)
- Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anna Weyrich
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Institute, Heidelberg, Germany
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Alexandre Bosch
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Angelo Valleriani
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Stephen W Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Institute, Heidelberg, Germany
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
21
|
Breadth of humoral immune responses to the C-terminus of the circumsporozoite protein is associated with protective efficacy induced by the RTS,S malaria vaccine. Vaccine 2021; 39:968-975. [PMID: 33431225 DOI: 10.1016/j.vaccine.2020.12.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 01/15/2023]
Abstract
The circumsporozoite protein (CSP) is the main surface antigen of malaria sporozoites, a prime vaccine target, and is known to have polymorphisms in the C-terminal region. Vaccines using a single allele may have lower efficacy against genotypic variants. Recent studies have found evidence suggesting the efficacy of the CSP-based RTS,S malaria vaccine may be limited against P. falciparum CSP alleles that diverge from the 3D7 vaccine allele, particularly in this polymorphic C-terminal region. In order to assess the breadth of the RTS,S-induced antibody responses against CSP C-terminal antigenic variants, we used a novel multiplex assay to measure reactivity of serum samples from a recent RTS,S study against C-terminal peptides from 3D7 and seven additional CSP alleles that broadly represent the genetic diversity found in circulating P. falciparum field isolates. We found that responses to the variants showed, on average, a ~ 30-fold reduction in reactivity relative to the vaccine-matched 3D7 allele. The extent of this reduction, ranging from 21 to 69-fold, correlated with the number of polymorphisms between the variants and 3D7. We calculated antibody breadth of each sample as the median relative reactivity to the seven CSP variants compared to 3D7. Surprisingly, protection from 3D7 challenge in the RTS,S study was associated with higher C-terminal antibody breadth. These findings suggest CSP C-terminal-specific avidity or fine-specificity may play a role in RTS,S-mediated protection and that breadth of C-terminal CSP-specific antibody responses may be a marker of protection.
Collapse
|
22
|
Kucharska I, Thai E, Srivastava A, Rubinstein JL, Pomès R, Julien JP. Structural ordering of the Plasmodium berghei circumsporozoite protein repeats by inhibitory antibody 3D11. eLife 2020; 9:e59018. [PMID: 33253113 PMCID: PMC7704109 DOI: 10.7554/elife.59018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Plasmodium sporozoites express circumsporozoite protein (CSP) on their surface, an essential protein that contains central repeating motifs. Antibodies targeting this region can neutralize infection, and the partial efficacy of RTS,S/AS01 - the leading malaria vaccine against P. falciparum (Pf) - has been associated with the humoral response against the repeats. Although structural details of antibody recognition of PfCSP have recently emerged, the molecular basis of antibody-mediated inhibition of other Plasmodium species via CSP binding remains unclear. Here, we analyze the structure and molecular interactions of potent monoclonal antibody (mAb) 3D11 binding to P. berghei CSP (PbCSP) using molecular dynamics simulations, X-ray crystallography, and cryoEM. We reveal that mAb 3D11 can accommodate all subtle variances of the PbCSP repeating motifs, and, upon binding, induces structural ordering of PbCSP through homotypic interactions. Together, our findings uncover common mechanisms of antibody evolution in mammals against the CSP repeats of Plasmodium sporozoites.
Collapse
Affiliation(s)
- Iga Kucharska
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Ananya Srivastava
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
| | - Régis Pomès
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Immunology, University of TorontoTorontoCanada
| |
Collapse
|
23
|
Chaudhury S, Macgill RS, Early AM, Bolton JS, King CR, Locke E, Pierson T, Wirth DF, Neafsey DE, Bergmann-leitner ES. Breadth of humoral immune responses to the C-terminus of the circumsporozoite protein is associated with protective efficacy induced by the RTS,S malaria vaccine.. [DOI: 10.1101/2020.11.15.20232033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractThe circumsporozoite protein (CSP) is the main surface antigen of malaria sporozoites and a prime vaccine target. Responses induced by the CSP-based RTS,S vaccine towards the polymorphic C-terminal region of P.falciparum-CSP raise concerns that vaccines using single alleles may have lower efficacy against genotypic variants. We characterized the extent of C-terminal cross-reactivity of antibodies induced by RTS,S (based on the 3D7 allele) with variants representing seven circulating field isolates through a novel HTS-multiplex assay for screening closely related peptides. Reactivity to variants showed approximately 30-fold reduction in recognition relative to 3D7. The degree of reduced cross-reactivity,ranging from 21 to 69-fold, directly correlated with the number of polymorphisms between variants and 3D7. Surprisingly, protection assessed by challenge with 3D7 parasites was strongly associated with higher C-terminal antibody breadth suggesting that C-terminal specific avidity or fine-specificity may play a role in RTS,S/AS01B-mediated protection and that breadth of C-terminal CSP-specific antibody responses may be a marker of protection.
Collapse
|
24
|
Singh K, Burkhardt M, Nakuchima S, Herrera R, Muratova O, Gittis AG, Kelnhofer E, Reiter K, Smelkinson M, Veltri D, Swihart BJ, Shimp R, Nguyen V, Zhang B, MacDonald NJ, Duffy PE, Garboczi DN, Narum DL. Structure and function of a malaria transmission blocking vaccine targeting Pfs230 and Pfs230-Pfs48/45 proteins. Commun Biol 2020; 3:395. [PMID: 32709983 PMCID: PMC7381611 DOI: 10.1038/s42003-020-01123-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
Proteins Pfs230 and Pfs48/45 are Plasmodium falciparum transmission-blocking (TB) vaccine candidates that form a membrane-bound protein complex on gametes. The biological role of Pfs230 or the Pfs230-Pfs48/45 complex remains poorly understood. Here, we present the crystal structure of recombinant Pfs230 domain 1 (Pfs230D1M), a 6-cysteine domain, in complex with the Fab fragment of a TB monoclonal antibody (mAb) 4F12. We observed the arrangement of Pfs230 on the surface of macrogametes differed from that on microgametes, and that Pfs230, with no known membrane anchor, may exist on the membrane surface in the absence of Pfs48/45. 4F12 appears to sterically interfere with Pfs230 function. Combining mAbs against different epitopes of Pfs230D1 or of Pfs230D1 and Pfs48/45, significantly increased TB activity. These studies elucidate a mechanism of action of the Pfs230D1 vaccine, model the functional activity induced by a polyclonal antibody response and support the development of TB vaccines targeting Pfs230D1 and Pfs230D1-Pfs48/45. With the aim to advance the development of a P. falciparum transmission blocking vaccine, Singh et al. determine the crystal structure of Pfs230D1 in complex with the Fab fragment of TB mAb 4F12. They further study the cellular localization of Pfs230 on the surface of sexual stages of parasites and the effect of combining TB mAbs against Pfs230 and Pfs48/45.
Collapse
Affiliation(s)
- Kavita Singh
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Martin Burkhardt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Sofia Nakuchima
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Raul Herrera
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Olga Muratova
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Apostolos G Gittis
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Emily Kelnhofer
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Margery Smelkinson
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Drive, Bethesda, MD, 20814, USA
| | - Daniel Veltri
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Rockville, MD, 20852, USA
| | - Bruce J Swihart
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Rockville, MD, 20852, USA
| | - Richard Shimp
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Vu Nguyen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Nicholas J MacDonald
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - David N Garboczi
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Eisenhut M. The Identification of Native Epitopes Eliciting a Protective High-Affinity Immunoglobulin Subclass Response to Blood Stages of Plasmodium falciparum: Protocol for Observational Studies. JMIR Res Protoc 2020; 9:e15690. [PMID: 32706743 PMCID: PMC7395252 DOI: 10.2196/15690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/20/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Background Antibodies to blood stages protective against complications of Plasmodium falciparum infection were found to be of immunoglobulin G 1 (IgG1) and IgG3 subclasses and of high affinity to the target epitopes. These target epitopes cannot be characterized using recombinant antigens because of a lack of appropriate glycosylation, phosphorylation, methylation, and bisulfide bond formation, which determine the structure of conformational and nonlinear epitopes within the tertiary and quaternary structures of native P. falciparum antigens. Objective This study aims to develop a method for the comprehensive detection of all P. falciparum schizont antigens, eliciting a protective immune response. Methods Purified parasitophorous vacuole membrane–enclosed merozoite structures (PEMSs) containing native schizont antigens are initially generated, separated by two-dimensional (2D) gel electrophoresis and blotted onto nitrocellulose. Antigens eliciting a protective antibody response are visualized by incubation with sera from patients with clinical immunity. This is followed by the elution of low-affinity antibodies with urea and detection of protective antibody responses by incubation with anti-IgG1 and anti-IgG3 antibodies, which were conjugated to horseradish peroxidase. This is followed by visualization with a color reaction. Blot signals are normalized by relating to the intensity of blot staining with a reference antibody and housekeeping antigens. Results are corrected for intensity of exposure by the relation of antibody responses to global P. falciparum antibody titers. Antigens eliciting the protective responses are identified as immunorelevant from the comparison of spot positions, indicating high-affinity IgG1 or IgG3 responses on the western blot, which is unique to or consistently more intensive in clinically immune individuals compared with nonimmune individuals. The results obtained are validated by using affinity chromatography. Results Another group previously applied 2D western blotting to analyze antibody responses to P. falciparum. The sera of patients allowed the detection of 42 antigenic spots on the 2D immunoblot. The spots detected were excised and subjected to mass spectrometry for identification. A total of 19 protein spots were successfully identified and corresponded to 13 distinct proteins. Another group used immunoaffinity chromatography to identify antigens bound by IgGs produced by mice with enhanced immunity to Plasmodium yoelii. Immunorelevant antigens were isolated and identified by immobilizing immunoglobulin from immune mice to a Sephadex column and then passing a blood-stage antigen mixture through the column followed by the elution of specific bound antigens with sodium deoxycholate and the identification of those antigens by western blotting with specific antibodies. Conclusions 2D western blotting using native antigens has the potential to identify antibody responses selective for specific defined isomeric forms of the same protein, including isoforms (protein species) generated by posttranscriptional modifications such as phosphorylation, glycosylation, and methylation. The process involved in 2D western blotting enables highly sensitive detection, high resolution, and preservation of antibody responses during blotting. Validation by immunoaffinity chromatography can compensate for the antigen loss associated with the blotting process. It has the potential for indirect quantification of protective antibody responses by enabling quantification of the amount of eluted antibody bound antigens through mass spectrometry. International Registered Report Identifier (IRRID) PRR1-10.2196/15690
Collapse
Affiliation(s)
- Michael Eisenhut
- Luton&Dunstable University Hospital NHS Foundation Trust, Luton, United Kingdom
| |
Collapse
|
26
|
Duffy PE, Patrick Gorres J. Malaria vaccines since 2000: progress, priorities, products. NPJ Vaccines 2020; 5:48. [PMID: 32566259 PMCID: PMC7283239 DOI: 10.1038/s41541-020-0196-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Malaria vaccine development entered a new era in 2015 when the pre-erythrocytic Plasmodium falciparum candidate RTS,S was favorably reviewed by the European Medicines Agency and subsequently introduced into national pilot implementation programs, marking the first human anti-parasite vaccine to pass regulatory scrutiny. Since the first trials published in 1997, RTS,S has been evaluated in a series of clinical trials culminating in Phase 3 testing, while testing of other pre-erythrocytic candidates (that target sporozoite- or liver-stage parasites), particularly whole sporozoite vaccines, has also increased. Interest in blood-stage candidates (that limit blood-stage parasite growth) subsided after disappointing human efficacy results, although new blood-stage targets and concepts may revive activity in this area. Over the past decade, testing of transmission-blocking vaccines (that kill mosquito/sexual-stage parasites) advanced to field trials and the first generation of placental malaria vaccines (that clear placenta-sequestering parasites) entered the clinic. Novel antigen discovery, human monoclonal antibodies, structural vaccinology, and improved platforms promise to expand on RTS,S and improve existing vaccine candidates.
Collapse
Affiliation(s)
- Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - J. Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
27
|
Optimization of a Plasmodium falciparum circumsporozoite protein repeat vaccine using the tobacco mosaic virus platform. Proc Natl Acad Sci U S A 2020; 117:3114-3122. [PMID: 31988134 PMCID: PMC7022184 DOI: 10.1073/pnas.1911792117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RTS,S/AS01 is a circumsporozoite protein (CSP)-based malaria vaccine that confers partial protection against malaria in endemic areas. Recent reports have elucidated structures of monoclonal antibodies that bind to the central (NPNA) repeat region of CSP and that inhibit parasite invasion. Antigen configuration and copy number of CSP repeats displayed on a tobacco mosaic virus (TMV) particle platform were studied. A TMV vaccine containing CSP repeats displayed as a loop induced 10× better antibody titer than a nearly full-length CSP in mice. In rhesus model, this translated to a 5× improvement in titer. Rhesus antibodies potently inhibited parasite invasion up to 11 mo after vaccination. An optimized epitope-focused, repeat-only CSP vaccine may be sufficient or better than the existing CSP vaccines. Plasmodium falciparum vaccine RTS,S/AS01 is based on the major NPNA repeat and the C-terminal region of the circumsporozoite protein (CSP). RTS,S-induced NPNA-specific antibody titer and avidity have been associated with high-level protection in naïve subjects, but efficacy and longevity in target populations is relatively low. In an effort to improve upon RTS,S, a minimal repeat-only, epitope-focused, protective, malaria vaccine was designed. Repeat antigen copy number and flexibility was optimized using the tobacco mosaic virus (TMV) display platform. Comparing antigenicity of TMV displaying 3 to 20 copies of NPNA revealed that low copy number can reduce the abundance of low-affinity monoclonal antibody (mAb) epitopes while retaining high-affinity mAb epitopes. TMV presentation improved titer and avidity of repeat-specific Abs compared to a nearly full-length protein vaccine (FL-CSP). NPNAx5 antigen displayed as a loop on the TMV particle was found to be most optimal and its efficacy could be further augmented by combination with a human-use adjuvant ALFQ that contains immune-stimulators. These data were confirmed in rhesus macaques where a low dose of TMV-NPNAx5 elicited Abs that persisted at functional levels for up to 11 mo. We show here a complex association between NPNA copy number, flexibility, antigenicity, immunogenicity, and efficacy of CSP-based vaccines. We hypothesize that designing minimal epitope CSP vaccines could confer better and more durable protection against malaria. Preclinical data presented here supports the evaluation of TMV-NPNAx5/ALFQ in human trials.
Collapse
|
28
|
Amelia F, Iyori M, Emran TB, Yamamoto DS, Genshi K, Otsuka H, Onoue Y, Yusuf Y, Islam A, Yoshida S. Down-selecting circumsporozoite protein-based malaria vaccine: A comparison of malaria sporozoite challenge model. Parasite Immunol 2020; 41:e12624. [PMID: 30883819 DOI: 10.1111/pim.12624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
Abstract
Plasmodium falciparum circumsporozoite protein (PfCSP) is the main target antigen in development of pre-erythrocytic malaria vaccines. To evaluate PfCSP vaccines in animal models, challenge by intravenous sporozoite injection is preferentially used. However, in clinical trials, vaccinated human volunteers are exposed to the bites of malaria-infected mosquitoes. In this study, we down-selected Escherichia coli-produced full-length PfCSP (PfCSP-F) and its three truncated PfCSPs based on their abilities to elicit immune response and protection in mice against two challenge models. We showed that immunization with three doses of PfCSP-F elicited high anti-PfCSP antibody titres and 100% protection against the bites of infected mosquitoes. Meanwhile, three-dose truncated PfCSP induced 60%-70% protection after immunization with each truncated PfCSP. Heterologous prime-boost immunization regimen with adenovirus-PfCSP-F and R32LR greatly induced complete protection against intravenous sporozoite injection. Our results suggest that Abs to both anti-repeat and anti-nonrepeat regions induced by PfCSP-F are required to confer complete protection against challenge by the bites of infected mosquitoes, whereas anti-repeat Abs play an important role in protection against intravenous sporozoite injection. Our findings provide a potential clinical application that PfCSP-F vaccine induces potent Abs capable of neutralizing sporozoites in the dermis inoculated by infected mosquitoes and subsequently sporozoites in the blood circulation.
Collapse
Affiliation(s)
- Fitri Amelia
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan.,Department of Chemistry, Universitas Negeri Padang, Padang, Indonesia
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Talha Bin Emran
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Kento Genshi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Hiromu Otsuka
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Yutaro Onoue
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Yenni Yusuf
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Ashekul Islam
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| |
Collapse
|
29
|
Singh SK, Plieskatt J, Chourasia BK, Singh V, Bolscher JM, Dechering KJ, Adu B, López-Méndez B, Kaviraj S, Locke E, King CR, Theisen M. The Plasmodium falciparum circumsporozoite protein produced in Lactococcus lactis is pure and stable. J Biol Chem 2019; 295:403-414. [PMID: 31792057 DOI: 10.1074/jbc.ra119.011268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/03/2019] [Indexed: 12/20/2022] Open
Abstract
The Plasmodium falciparum circumsporozoite protein (PfCSP) is a sporozoite surface protein whose role in sporozoite motility and cell invasion has made it the leading candidate for a pre-erythrocytic malaria vaccine. However, production of high yields of soluble recombinant PfCSP, including its extensive NANP and NVDP repeats, has proven problematic. Here, we report on the development and characterization of a secreted, soluble, and stable full-length PfCSP (containing 4 NVDP and 38 NANP repeats) produced in the Lactococcus lactis expression system. The recombinant full-length PfCSP, denoted PfCSP4/38, was produced initially with a histidine tag and purified by a simple two-step procedure. Importantly, the recombinant PfCSP4/38 retained a conformational epitope for antibodies as confirmed by both in vivo and in vitro characterizations. We characterized this complex protein by HPLC, light scattering, MS analysis, differential scanning fluorimetry, CD, SDS-PAGE, and immunoblotting with conformation-dependent and -independent mAbs, which confirmed it to be both pure and soluble. Moreover, we found that the recombinant protein is stable at both frozen and elevated-temperature storage conditions. When we used L. lactis-derived PfCSP4/38 to immunize mice, it elicited high levels of functional antibodies that had the capacity to modify sporozoite motility in vitro We concluded that the reported yield, purity, results of biophysical analyses, and stability of PfCSP4/38 warrant further consideration of using the L. lactis system for the production of circumsporozoite proteins for preclinical and clinical applications in malaria vaccine development.
Collapse
Affiliation(s)
- Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | - Bishwanath Kumar Chourasia
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Vandana Singh
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | - Bright Adu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Blanca López-Méndez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Emily Locke
- PATH's Malaria Vaccine Initiative, Washington, D. C. 20001
| | - C Richter King
- PATH's Malaria Vaccine Initiative, Washington, D. C. 20001
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|
30
|
Julien JP, Wardemann H. Antibodies against Plasmodium falciparum malaria at the molecular level. Nat Rev Immunol 2019; 19:761-775. [DOI: 10.1038/s41577-019-0209-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
|
31
|
Wells MB, Andrew DJ. Anopheles Salivary Gland Architecture Shapes Plasmodium Sporozoite Availability for Transmission. mBio 2019; 10:e01238-19. [PMID: 31387905 PMCID: PMC6686039 DOI: 10.1128/mbio.01238-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Plasmodium sporozoites (SPZs) must traverse the mosquito salivary glands (SGs) to reach a new vertebrate host and continue the malaria disease cycle. Although SGs can harbor thousands of sporozoites, only 10 to 100 are deposited into a host during probing. To determine how the SGs might function as a bottleneck in SPZ transmission, we have characterized Anopheles stephensi SGs infected with the rodent malaria parasite Plasmodium berghei using immunofluorescence confocal microscopy. Our analyses corroborate findings from previous electron microscopy studies and provide new insights into the invasion process. We identified sites of SPZ accumulation within SGs across a range of infection intensities. Although SPZs were most often seen in the distal lateral SG lobes, they were also observed in the medial and proximal lateral lobes. Most parasites were associated with either the basement membrane or secretory cavities. SPZs accumulated at physical barriers, including fused salivary ducts and extensions of the chitinous salivary duct wall into the distal lumen. SPZs were observed only rarely within salivary ducts. SPZs appeared to contact each other in many different quantities, not just in the previously described large bundles. Within parasite bundles, all of the SPZs were oriented in the same direction. We found that moderate levels of infection did not necessarily correlate with major SG disruptions or abundant SG cell death. Altogether, our findings suggest that SG architecture largely acts as a barrier to SPZ transmission.IMPORTANCE Malaria continues to have a devastating impact on human health. With growing resistance to insecticides and antimalarial drugs, as well as climate change predictions indicating expansion of vector territories, the impact of malaria is likely to increase. Additional insights regarding pathogen migration through vector mosquitoes are needed to develop novel methods to prevent transmission to new hosts. Pathogens, including the microbes that cause malaria, must invade the salivary glands (SGs) for transmission. Since SG traversal is required for parasite transmission, SGs are ideal targets for transmission-blocking strategies. The work presented here highlights the role that mosquito SG architecture plays in limiting parasite traversal, revealing how the SG transmission bottleneck is imposed. Further, our data provide unprecedented detail about SG-sporozoite interactions and gland-to-gland variation not provided in previous studies.
Collapse
Affiliation(s)
- Michael B Wells
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Aliprandini E, Tavares J, Panatieri RH, Thiberge S, Yamamoto MM, Silvie O, Ishino T, Yuda M, Dartevelle S, Traincard F, Boscardin SB, Amino R. Cytotoxic anti-circumsporozoite antibodies target malaria sporozoites in the host skin. Nat Microbiol 2018; 3:1224-1233. [PMID: 30349082 DOI: 10.1038/s41564-018-0254-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 08/28/2018] [Indexed: 01/09/2023]
Abstract
The circumsporozoite protein (CSP) is the major surface protein of malaria sporozoites (SPZs), the motile and invasive parasite stage inoculated in the host skin by infected mosquitoes. Antibodies against the central CSP repeats of different plasmodial species are known to block SPZ infectivity1-5, but the precise mechanism by which these effectors operate is not completely understood. Here, using a rodent Plasmodium yoelii malaria model, we show that sterile protection mediated by anti-P. yoelii CSP humoral immunity depends on the parasite inoculation into the host skin, where antibodies inhibit motility and kill P. yoelii SPZs via a characteristic 'dotty death' phenotype. Passive transfer of an anti-repeat monoclonal antibody (mAb) recapitulates the skin inoculation-dependent protection, in a complement- and Fc receptor γ-independent manner. This purified mAb also decreases motility and, notably, induces the dotty death of P. yoelii SPZs in vitro. Cytotoxicity is species-transcendent since cognate anti-CSP repeat mAbs also kill Plasmodium berghei and Plasmodium falciparum SPZs. mAb cytotoxicity requires the actomyosin motor-dependent translocation and stripping of the protective CSP surface coat, rendering the parasite membrane susceptible to the SPZ pore-forming-like protein secreted to wound and traverse the host cell membrane6. The loss of SPZ fitness caused by anti-P. yoelii CSP repeat antibodies is thus a dynamic process initiated in the host skin where SPZs either stop moving7, or migrate and traverse cells to progress through the host tissues7-9 at the eventual expense of their own life.
Collapse
Affiliation(s)
| | - Joana Tavares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Raquel Hoffmann Panatieri
- Unit of Malaria Infection & Immunity, Institut Pasteur, Paris, France.,Parasitology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sabine Thiberge
- Unit of Malaria Infection & Immunity, Institut Pasteur, Paris, France.,Centre de Production et d'Infection des Anophèles, Institut Pasteur, Paris, France
| | - Marcio Massao Yamamoto
- Parasitology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Tomoko Ishino
- Department of Molecular Parasitology, Ehime University, Ehime, Japan
| | - Masao Yuda
- Department of Medical Zoology, Mie University School of Medicine, Mie, Japan
| | - Sylvie Dartevelle
- Plateforme d'Ingénierie des Anticorps, Institut Pasteur, Paris, France
| | | | - Silvia Beatriz Boscardin
- Parasitology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Rogerio Amino
- Unit of Malaria Infection & Immunity, Institut Pasteur, Paris, France.
| |
Collapse
|
33
|
Oyen D, Torres JL, Cottrell CA, Richter King C, Wilson IA, Ward AB. Cryo-EM structure of P. falciparum circumsporozoite protein with a vaccine-elicited antibody is stabilized by somatically mutated inter-Fab contacts. SCIENCE ADVANCES 2018; 4:eaau8529. [PMID: 30324137 PMCID: PMC6179375 DOI: 10.1126/sciadv.aau8529] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/07/2018] [Indexed: 05/29/2023]
Abstract
The circumsporozoite protein (CSP) on the surface of Plasmodium falciparum sporozoites is important for parasite development, motility, and host hepatocyte invasion. However, intrinsic disorder of the NANP repeat sequence in the central region of CSP has hindered its structural and functional characterization. Here, the cryo-electron microscopy structure at ~3.4-Å resolution of a recombinant shortened CSP construct with the variable domains (Fabs) of a highly protective monoclonal antibody reveals an extended spiral conformation of the central NANP repeat region surrounded by antibodies. This unusual structure appears to be stabilized and/or induced by interaction with an antibody where contacts between adjacent Fabs are somatically mutated and enhance the interaction. This maturation in non-antigen contact residues may be an effective mechanism for antibodies to target tandem repeat sequences and provide novel insights into malaria vaccine design.
Collapse
Affiliation(s)
- David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - C. Richter King
- PATH’s Malaria Vaccine Initiative, PATH’s Center for Vaccine Innovation and Access, Washington, DC 20001, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
34
|
Wardemann H, Murugan R. From human antibody structure and function towards the design of a novel Plasmodium falciparum circumsporozoite protein malaria vaccine. Curr Opin Immunol 2018; 53:119-123. [PMID: 29751213 DOI: 10.1016/j.coi.2018.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 11/19/2022]
Abstract
Malaria is a life-threatening vector-borne disease caused by Plasmodium parasites that infect millions of people in endemic areas every year. The most advanced malaria vaccine candidate RTS,S targets the immune response against circumsporozoite protein of Plasmodium falciparum (PfCSP), the most deadly Plasmodium species in humans. PfCSP plays a fundamental role in parasite development as well as the establishment of the infection and is a molecular target of protective antibodies. However, RTS,S shows overall low efficacy and insufficient long-term protection. Therefore, a major goal in the development of an improved PfCSP-based vaccine remains the reliable and stable induction of protective and ideally sterilizing antibody titers. The molecular and functional characterization of human anti-PfCSP antibody responses paves the way for the rational design of novel immunogens for the development of an improved next-generation PfCSP malaria vaccine.
Collapse
Affiliation(s)
- Hedda Wardemann
- German Cancer Research Center, Im Neuenheimer Feld 280, 69121 Heidelberg, Germany.
| | - Rajagopal Murugan
- German Cancer Research Center, Im Neuenheimer Feld 280, 69121 Heidelberg, Germany
| |
Collapse
|
35
|
MacRaild CA, Seow J, Das SC, Norton RS. Disordered epitopes as peptide vaccines. Pept Sci (Hoboken) 2018; 110:e24067. [PMID: 32328540 PMCID: PMC7167742 DOI: 10.1002/pep2.24067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 01/23/2023]
Abstract
The development of clinically useful peptide-based vaccines remains a long-standing goal. This review highlights that intrinsically disordered protein antigens, which lack an ordered three-dimensional structure, represent excellent starting points for the development of such vaccines. Disordered proteins represent an important class of antigen in a wide range of human pathogens, and, contrary to widespread belief, they are frequently targets of protective antibody responses. Importantly, disordered epitopes appear invariably to be linear epitopes, rendering them ideally suited to incorporation into a peptide vaccine. Nonetheless, the conformational properties of disordered antigens, and hence their recognition by antibodies, frequently depend on the interactions they make and the context in which they are presented to the immune system. These effects must be considered in the design of an effective vaccine. Here we discuss these issues and propose design principles that may facilitate the development of peptide vaccines targeting disordered antigens.
Collapse
Affiliation(s)
- Christopher A. MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Jeffrey Seow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Sreedam C. Das
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| |
Collapse
|
36
|
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev 2018; 41:923-940. [PMID: 29077880 DOI: 10.1093/femsre/fux046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.
Collapse
Affiliation(s)
- Heledd M Davies
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Stephanie D Nofal
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Emilia J McLaughlin
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
37
|
Protein-protein conjugate nanoparticles for malaria antigen delivery and enhanced immunogenicity. PLoS One 2017; 12:e0190312. [PMID: 29281708 PMCID: PMC5744994 DOI: 10.1371/journal.pone.0190312] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022] Open
Abstract
Chemical conjugation of polysaccharide to carrier proteins has been a successful strategy to generate potent vaccines against bacterial pathogens. We developed a similar approach for poorly immunogenic malaria protein antigens. Our lead candidates in clinical trials are the malaria transmission blocking vaccine antigens, Pfs25 and Pfs230D1, individually conjugated to the carrier protein Exoprotein A (EPA) through thioether chemistry. These conjugates form nanoparticles that show enhanced immunogenicity compared to unconjugated antigens. In this study, we examined the broad applicability of this technology as a vaccine development platform, by comparing the immunogenicity of conjugates prepared by four different chemistries using different malaria antigens (PfCSP, Pfs25 and Pfs230D1), and carriers such as EPA, TT and CRM197. Several conjugates were synthesized using thioether, amide, ADH and glutaraldehyde chemistries, characterized for average molecular weight and molecular weight distribution, and evaluated in mice for humoral immunogenicity. Conjugates made with the different chemistries, or with different carriers, showed no significant difference in immunogenicity towards the conjugated antigens. Since particle size can influence immunogenicity, we tested conjugates with different average size in the range of 16–73 nm diameter, and observed greater immunogenicity of smaller particles, with significant differences between 16 and 73 nm particles. These results demonstrate the multiple options with respect to carriers and chemistries that are available for protein-protein conjugate vaccine development.
Collapse
|
38
|
Kumar K, Srinivasan P, Nold MJ, Moch JK, Reiter K, Sturdevant D, Otto TD, Squires RB, Herrera R, Nagarajan V, Rayner JC, Porcella SF, Geromanos SJ, Haynes JD, Narum DL. Profiling invasive Plasmodium falciparum merozoites using an integrated omics approach. Sci Rep 2017; 7:17146. [PMID: 29215067 PMCID: PMC5719419 DOI: 10.1038/s41598-017-17505-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
The symptoms of malaria are brought about by blood-stage parasites, which are established when merozoites invade human erythrocytes. Our understanding of the molecular events that underpin erythrocyte invasion remains hampered by the short-period of time that merozoites are invasive. To address this challenge, a Plasmodium falciparum gamma-irradiated long-lived merozoite (LLM) line was developed and investigated. Purified LLMs invaded erythrocytes by an increase of 10-300 fold compared to wild-type (WT) merozoites. Using an integrated omics approach, we investigated the basis for the phenotypic difference. Only a few single nucleotide polymorphisms within the P. falciparum genome were identified and only marginal differences were observed in the merozoite transcriptomes. By contrast, using label-free quantitative mass-spectrometry, a significant change in protein abundance was noted, of which 200 were proteins of unknown function. We determined the relative molar abundance of over 1100 proteins in LLMs and further characterized the major merozoite surface protein complex. A unique processed MSP1 intermediate was identified in LLM but not observed in WT suggesting that delayed processing may be important for the observed phenotype. This integrated approach has demonstrated the significant role of the merozoite proteome during erythrocyte invasion, while identifying numerous unknown proteins likely to be involved in invasion.
Collapse
Affiliation(s)
- Krishan Kumar
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Rockville, MD, USA
| | - Prakash Srinivasan
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA.
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | | | - J Kathleen Moch
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Rockville, MD, USA
| | - Dan Sturdevant
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
| | - Thomas D Otto
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - R Burke Squires
- Computational Biology Section, Bioinformatics and Computational Biosciences Branch, NIAID, NIH, Bethesda, MD, USA
| | - Raul Herrera
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Rockville, MD, USA
| | - Vijayaraj Nagarajan
- Computational Biology Section, Bioinformatics and Computational Biosciences Branch, NIAID, NIH, Bethesda, MD, USA
| | - Julian C Rayner
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Stephen F Porcella
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
| | | | - J David Haynes
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Rockville, MD, USA.
| |
Collapse
|
39
|
Moris P, Jongert E, van der Most RG. Characterization of T-cell immune responses in clinical trials of the candidate RTS,S malaria vaccine. Hum Vaccin Immunother 2017; 14:17-27. [PMID: 28934066 PMCID: PMC5791571 DOI: 10.1080/21645515.2017.1381809] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The candidate malaria vaccine RTS,S has demonstrated 45.7% efficacy over 18 months against all clinical disease in a phase-III field study of African children. RTS,S targets the circumsporozoite protein (CSP), which is expressed on the Plasmodium sporozoite during the pre-erythrocyte stage of its life-cycle; the stage between mosquito bite and liver infection. Early in the development of RTS,S, it was recognized that CSP-specific cell-mediated immunity (CMI) was required to complement CSP-specific antibody-mediated immunity. In reviewing RTS,S clinical studies, associations between protection and various types of CMI (CSP-specific CD4+ T cells and INF-γ ELISPOTs) have been identified, but not consistently. It is plausible that certain CD4+ T cells support antibody responses or co-operate with other immune-cell types to potentially elicit protection. However, the identities of vaccine correlates of protection, implicating either CSP-specific antibodies or T cells remain elusive, suggesting that RTS,S clinical trials may benefit from additional immunogenicity analyses that can be informed by the results of controlled human malaria infection studies.
Collapse
|
40
|
Structural basis for antibody recognition of the NANP repeats in Plasmodium falciparum circumsporozoite protein. Proc Natl Acad Sci U S A 2017; 114:E10438-E10445. [PMID: 29138320 PMCID: PMC5715787 DOI: 10.1073/pnas.1715812114] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Plasmodium falciparum circumsporozoite protein (CSP) has been studied for decades as a potential immunogen, but little structural information is available on how antibodies recognize the immunodominant NANP repeats within CSP. The most advanced vaccine candidate is RTS,S, which includes multiple NANP repeats. Here, we analyzed two functional antibodies from an RTS,S trial and determined the number of repeats that interact with the antibody Fab fragments using isothermal titration calorimetry and X-ray crystallography. Using negative-stain electron microscopy, we also established how the antibody binds to the NANP repeat region in a recombinant CSP construct. The structural features outlined here provide a rationale for structure-based immunogen design to improve upon the efficacy of the current RTS,S vaccine. Acquired resistance against antimalarial drugs has further increased the need for an effective malaria vaccine. The current leading candidate, RTS,S, is a recombinant circumsporozoite protein (CSP)-based vaccine against Plasmodium falciparum that contains 19 NANP repeats followed by a thrombospondin repeat domain. Although RTS,S has undergone extensive clinical testing and has progressed through phase III clinical trials, continued efforts are underway to enhance its efficacy and duration of protection. Here, we determined that two monoclonal antibodies (mAbs 311 and 317), isolated from a recent controlled human malaria infection trial exploring a delayed fractional dose, inhibit parasite development in vivo by at least 97%. Crystal structures of antibody fragments (Fabs) 311 and 317 with an (NPNA)3 peptide illustrate their different binding modes. Notwithstanding, one and three of the three NPNA repeats adopt similar well-defined type I β-turns with Fab311 and Fab317, respectively. Furthermore, to explore antibody binding in the context of P. falciparum CSP, we used negative-stain electron microscopy on a recombinant shortened CSP (rsCSP) construct saturated with Fabs. Both complexes display a compact rsCSP with multiple Fabs bound, with the rsCSP–Fab311 complex forming a highly organized helical structure. Together, these structural insights may aid in the design of a next-generation malaria vaccine.
Collapse
|
41
|
Genito CJ, Beck Z, Phares TW, Kalle F, Limbach KJ, Stefaniak ME, Patterson NB, Bergmann-Leitner ES, Waters NC, Matyas GR, Alving CR, Dutta S. Liposomes containing monophosphoryl lipid A and QS-21 serve as an effective adjuvant for soluble circumsporozoite protein malaria vaccine FMP013. Vaccine 2017; 35:3865-3874. [DOI: 10.1016/j.vaccine.2017.05.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 05/03/2017] [Accepted: 05/24/2017] [Indexed: 11/24/2022]
|
42
|
Sack B, Kappe SHI, Sather DN. Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection. Expert Rev Vaccines 2017; 16:403-414. [PMID: 28277097 DOI: 10.1080/14760584.2017.1295853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION An effective malaria vaccine would be considered a milestone of modern medicine, yet has so far eluded research and development efforts. This can be attributed to the extreme complexity of the malaria parasites, presenting with a multi-stage life cycle, high genome complexity and the parasite's sophisticated immune evasion measures, particularly antigenic variation during pathogenic blood stage infection. However, the pre-erythrocytic (PE) early infection forms of the parasite exhibit relatively invariant proteomes, and are attractive vaccine targets as they offer multiple points of immune system attack. Areas covered: We cover the current state of and roadblocks to the development of an effective, antibody-based PE vaccine, including current vaccine candidates, limited biological knowledge, genetic heterogeneity, parasite complexity, and suboptimal preclinical models as well as the power of early stage clinical models. Expert commentary: PE vaccines will need to elicit broad and durable immunity to prevent infection. This could be achievable if recent innovations in studying the parasites' infection biology, rational vaccine selection and design as well as adjuvant formulation are combined in a synergistic and multipronged approach. Improved preclinical assays as well as the iterative testing of vaccine candidates in controlled human malaria infection trials will further accelerate this effort.
Collapse
Affiliation(s)
- Brandon Sack
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA
| | - Stefan H I Kappe
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA.,b Department of Global Health , University of Washington , Seattle , WA , USA
| | - D Noah Sather
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA
| |
Collapse
|
43
|
Patra AP, Sharma S, Ainavarapu SRK. Force Spectroscopy of the Plasmodium falciparum Vaccine Candidate Circumsporozoite Protein Suggests a Mechanically Pliable Repeat Region. J Biol Chem 2016; 292:2110-2119. [PMID: 28031457 DOI: 10.1074/jbc.m116.754796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/26/2016] [Indexed: 11/06/2022] Open
Abstract
The most effective vaccine candidate of malaria is based on the Plasmodium falciparum circumsporozoite protein (CSP), a major surface protein implicated in the structural strength, motility, and immune evasion properties of the infective sporozoites. It is suspected that reversible conformational changes of CSP are required for infection of the mammalian host, but the detailed structure and dynamic properties of CSP remain incompletely understood, limiting our understanding of its function in the infection. Here, we report the structural and mechanical properties of the CSP studied using single-molecule force spectroscopy on several constructs, one including the central region of CSP, which is rich in NANP amino acid repeats (CSPrep), and a second consisting of a near full-length sequence without the signal and anchor hydrophobic domains (CSPΔHP). Our results show that the CSPrep is heterogeneous, with 40% of molecules requiring virtually no mechanical force to unfold (<10 piconewtons (pN)), suggesting that these molecules are mechanically compliant and perhaps act as entropic springs, whereas the remaining 60% are partially structured with low mechanical resistance (∼70 pN). CSPΔHP having multiple force peaks suggests specifically folded domains, with two major populations possibly indicating the open and collapsed forms. Our findings suggest that the overall low mechanical resistance of the repeat region, exposed on the outer surface of the sporozoites, combined with the flexible full-length conformations of CSP, may provide the sporozoites not only with immune evasion properties, but also with lubricating capacity required during its navigation through the mosquito and vertebrate host tissues. We anticipate that these findings would further assist in the design and development of future malarial vaccines.
Collapse
Affiliation(s)
| | | | - Sri Rama Koti Ainavarapu
- Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
44
|
Malaria: Biology and Disease. Cell 2016; 167:610-624. [PMID: 27768886 DOI: 10.1016/j.cell.2016.07.055] [Citation(s) in RCA: 456] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/17/2016] [Accepted: 07/29/2016] [Indexed: 11/22/2022]
Abstract
Malaria has been a major global health problem of humans through history and is a leading cause of death and disease across many tropical and subtropical countries. Over the last fifteen years renewed efforts at control have reduced the prevalence of malaria by over half, raising the prospect that elimination and perhaps eradication may be a long-term possibility. Achievement of this goal requires the development of new tools including novel antimalarial drugs and more efficacious vaccines as well as an increased understanding of the disease and biology of the parasite. This has catalyzed a major effort resulting in development and regulatory approval of the first vaccine against malaria (RTS,S/AS01) as well as identification of novel drug targets and antimalarial compounds, some of which are in human clinical trials.
Collapse
|
45
|
Talaat KR, Ellis RD, Hurd J, Hentrich A, Gabriel E, Hynes NA, Rausch KM, Zhu D, Muratova O, Herrera R, Anderson C, Jones D, Aebig J, Brockley S, MacDonald NJ, Wang X, Fay MP, Healy SA, Durbin AP, Narum DL, Wu Y, Duffy PE. Safety and Immunogenicity of Pfs25-EPA/Alhydrogel®, a Transmission Blocking Vaccine against Plasmodium falciparum: An Open Label Study in Malaria Naïve Adults. PLoS One 2016; 11:e0163144. [PMID: 27749907 PMCID: PMC5066979 DOI: 10.1371/journal.pone.0163144] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022] Open
Abstract
Transmission-blocking vaccines (TBVs) that target sexual stage parasite development could be an integral part of measures for malaria elimination. Pfs25 is a leading TBV candidate, and previous studies conducted in animals demonstrated an improvement of its functional immunogenicity after conjugation to EPA, a recombinant, detoxified ExoProtein A from Pseudomonas aeruginosa. In this report, we describe results of an open-label, dose-escalating Phase 1 trial to assess the safety and immunogenicity of Pfs25-EPA conjugates formulated with Alhydrogel®. Thirty malaria-naïve healthy adults received up to four doses of the conjugate vaccine, with 8, 16, or 47 μg of conjugated Pfs25 mass, at 0, 2, 4, and 10 months. Vaccinations were generally well tolerated. The majority of solicited adverse events were mild in severity with pain at the injection site the most common complaint. Anemia was the most common laboratory abnormality, but was considered possibly related to the study in only a minority of cases. No vaccine-related serious adverse events occurred. The peak geometric mean anti-Pfs25 antibody level in the highest dose group was 88 (95% CI 53, 147) μg/mL two weeks after the 4th vaccination, and declined to near baseline one year later. Antibody avidity increased over successive vaccinations. Transmission blocking activity demonstrated in a standard membrane feeding assay (SMFA) also increased from the second to the third dose, and correlated with antibody titer and, after the final dose, with antibody avidity. These results support the further evaluation of Pfs25-EPA/Alhydrogel® in a malaria-endemic population.
Collapse
Affiliation(s)
- Kawsar R. Talaat
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ruth D. Ellis
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Janet Hurd
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Autumn Hentrich
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Erin Gabriel
- Biostatistical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Noreen A. Hynes
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kelly M. Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Daming Zhu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Olga Muratova
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Raul Herrera
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - David Jones
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joan Aebig
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sarah Brockley
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Nicholas J. MacDonald
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Xiaowei Wang
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Michael P. Fay
- Biostatistical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anna P. Durbin
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - David L. Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
46
|
MacDonald NJ, Nguyen V, Shimp R, Reiter K, Herrera R, Burkhardt M, Muratova O, Kumar K, Aebig J, Rausch K, Lambert L, Dawson N, Sattabongkot J, Ambroggio X, Duffy PE, Wu Y, Narum DL. Structural and Immunological Characterization of Recombinant 6-Cysteine Domains of the Plasmodium falciparum Sexual Stage Protein Pfs230. J Biol Chem 2016; 291:19913-22. [PMID: 27432885 DOI: 10.1074/jbc.m116.732305] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 01/21/2023] Open
Abstract
Development of a Plasmodium falciparum (Pf) transmission blocking vaccine (TBV) has the potential to significantly impact malaria control. Antibodies elicited against sexual stage proteins in the human bloodstream are taken up with the blood meal of the mosquitoes and inactivate parasite development in the mosquito. In a phase 1 trial, a leading TBV identified as Pfs25-EPA/Alhydrogel® appeared safe and immunogenic, however, the level of Pfs25-specific antibodies were likely too low for an effective vaccine. Pfs230, a 230-kDa sexual stage protein expressed in gametocytes is an alternative vaccine candidate. A unique 6-cysteine-rich domain structure within Pfs230 have thwarted its recombinant expression and characterization for clinical evaluation for nearly a quarter of a century. Here, we report on the identification, biochemical, biophysical, and immunological characterization of recombinant Pfs230 domains. Rabbit antibodies generated against recombinant Pfs230 domains blocked mosquito transmission of a laboratory strain and two field isolates using an ex vivo assay. A planned clinical trial of the Pfs230 vaccine is a significant step toward the potential development of a transmission blocking vaccine to eliminate malaria.
Collapse
Affiliation(s)
- Nicholas J MacDonald
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Vu Nguyen
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Richard Shimp
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Karine Reiter
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Raul Herrera
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Martin Burkhardt
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Olga Muratova
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Krishan Kumar
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Joan Aebig
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Kelly Rausch
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Lynn Lambert
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Nikiah Dawson
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Jetsumon Sattabongkot
- the Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand, and
| | | | - Patrick E Duffy
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Yimin Wu
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - David L Narum
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852,
| |
Collapse
|
47
|
Doritchamou JYA, Herrera R, Aebig JA, Morrison R, Nguyen V, Reiter K, Shimp RL, MacDonald NJ, Narum DL, Fried M, Duffy PE. VAR2CSA Domain-Specific Analysis of Naturally Acquired Functional Antibodies to Plasmodium falciparum Placental Malaria. J Infect Dis 2016; 214:577-86. [PMID: 27190180 DOI: 10.1093/infdis/jiw197] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/05/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Placental malaria is caused by Plasmodium falciparum-infected erythrocytes (IEs) that surface-express VAR2CSA and bind chondroitin sulfate A. The inflammatory response to placenta-sequestered parasites is associated with poor pregnancy outcomes, and protection may be mediated in part by VAR2CSA antibodies that block placental IE adhesion. METHODS In this study, we used a new approach to assess VAR2CSA domains for functional epitopes recognized by naturally acquired antibodies. Antigen-specific immunoglobulin (Ig) G targeting Duffy binding-like (DBL) domains from different alleles were sequentially purified from plasma pooled from multigravid women and then characterized using enzyme-linked immunosorbent assay, flow cytometry, and antiadhesion assays. RESULTS Different DBL domain-specific IgGs could react to homologous as well as heterologous antigens and parasites, suggesting that conserved epitopes are shared between allelic variants. Homologous blocking of IE binding was observed with ID1-DBL2-ID2a-, DBL4-, and DBL5-specific IgG (range, 42%-75%), whereas partial cross-inhibition activity was observed with purified IgG specific to ID1-DBL2-ID2a and DBL4 antigens. Plasma retained broadly neutralizing activity after complete depletion of these VAR2CSA specificities. CONCLUSIONS Broadly neutralizing antibodies of multigravidae are not depleted on VAR2CSA recombinant antigens, and hence development of VAR2CSA vaccines based on a single construct and variant might induce antibodies with limited broadly neutralizing activity.
Collapse
Affiliation(s)
- Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Raul Herrera
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Joan A Aebig
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Robert Morrison
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland MOMS Project, Seattle Biomedical Research Institute, Washington
| | - Vu Nguyen
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Karine Reiter
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Richard L Shimp
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Nicholas J MacDonald
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - David L Narum
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Michal Fried
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Patrick E Duffy
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| |
Collapse
|
48
|
Jones DS, Rowe CG, Chen B, Reiter K, Rausch KM, Narum DL, Wu Y, Duffy PE. A Method for Producing Protein Nanoparticles with Applications in Vaccines. PLoS One 2016; 11:e0138761. [PMID: 26950441 PMCID: PMC4780713 DOI: 10.1371/journal.pone.0138761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 09/03/2015] [Indexed: 11/18/2022] Open
Abstract
A practical method is described for synthesizing conjugated protein nanoparticles using thioether (thiol-maleimide) cross-linking chemistry. This method fills the need for a reliable and reproducible synthesis of protein conjugate vaccines for preclinical studies, which can be adapted to produce comparable material for clinical studies. The described method appears to be generally applicable to the production of nanoparticles from a variety of soluble proteins having different structural features. Examples presented include single-component particles of the malarial antigens AMA1, CSP and Pfs25, and two component particles comprised of those antigens covalently cross-linked with the immunogenic carrier protein EPA (a detoxified form of exotoxin A from Pseudomonas aeruginosa). The average molar masses (Mw) of particles in the different preparations ranged from 487 kDa to 3,420 kDa, with hydrodynamic radii (Rh) ranging from 12.1 nm to 38.3 nm. The antigenic properties and secondary structures of the proteins within the particles appear to be largely intact, with no significant changes seen in their far UV circular dichroism spectra, or in their ability to bind conformation-dependent monoclonal antibodies. Mice vaccinated with mixed particles of Pfs25 or CSP and EPA generated significantly greater antigen-specific antibody levels compared with mice vaccinated with the respective unmodified monomeric antigens, validating the potential of antigen-EPA nanoparticles as vaccines.
Collapse
Affiliation(s)
- David S. Jones
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, 20852, United States of America
- * E-mail:
| | - Christopher G. Rowe
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, 20852, United States of America
| | - Beth Chen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, 20852, United States of America
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, 20852, United States of America
| | - Kelly M. Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, 20852, United States of America
| | - David L. Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, 20852, United States of America
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, 20852, United States of America
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, 20852, United States of America
| |
Collapse
|