1
|
Rosenkranz M, Nkumama IN, Ogwang R, Kraker S, Blickling M, Mwai K, Odera D, Tuju J, Fürle K, Frank R, Chepsat E, Kapulu MC, Study Team CS, Osier FH. Full-length MSP1 is a major target of protective immunity after controlled human malaria infection. Life Sci Alliance 2024; 7:e202301910. [PMID: 38803222 PMCID: PMC11106525 DOI: 10.26508/lsa.202301910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The merozoite surface protein 1 (MSP1) is the most abundant protein on the surface of the invasive merozoite stages of Plasmodium falciparum and has long been considered a key target of protective immunity. We used samples from a single controlled human malaria challenge study to test whether the full-length version of MSP1 (MSP1FL) induced antibodies that mediated Fc-IgG functional activity in five independent assays. We found that anti-MSP1FL antibodies induced complement fixation via C1q, monocyte-mediated phagocytosis, neutrophil respiratory burst, and natural killer cell degranulation as well as IFNγ production. Activity in each of these assays was strongly associated with protection. The breadth of MSP1-specific Fc-mediated effector functions was more strongly associated with protection than the individual measures and closely mirrored what we have previously reported using the same assays against merozoites. Our findings suggest that MSP1FL is an important target of functional antibodies that contribute to a protective immune response against malaria.
Collapse
Affiliation(s)
- Micha Rosenkranz
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Irene N Nkumama
- B Cell Immunology, German Cancer Research Centre, Heidelberg, Germany
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sara Kraker
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marie Blickling
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Dennis Odera
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biotechnology and Biochemistry, Pwani University, Kilifi, Kenya
| | - Kristin Fürle
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Roland Frank
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Emily Chepsat
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Melissa C Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Chmi-Sika Study Team
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Faith Ha Osier
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
2
|
Thomson-Luque R, Stabler TC, Fürle K, Silva JC, Daubenberger C. Plasmodium falciparum merozoite surface protein 1 as asexual blood stage malaria vaccine candidate. Expert Rev Vaccines 2024; 23:160-173. [PMID: 38100310 DOI: 10.1080/14760584.2023.2295430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Malaria represents a public health challenge in tropical and subtropical regions, and currently deployed control strategies are likely insufficient to drive elimination of malaria. Development and improvement of malaria vaccines might be key to reduce disease burden. Vaccines targeting asexual blood stages of the parasite have shown limited efficacy when studied in human trials conducted over the past decades. AREAS COVERED Vaccine candidates based on the merozoite surface protein 1 (MSP1) were initially envisioned as one of the most promising approaches to provide immune protection against asexual blood-stage malaria. Successful immunization studies in monkey involved the use of the full-length MSP1 (MSP1FL) as vaccine construct. Vaccines using MSP1FL for immunization have the potential benefit of including numerous conserved B-cell and T-cell epitopes. This could result in improved parasite strain-transcending, protective immunity in the field. We review outcomes of clinical trials that utilized a variety of MSP1 constructs and formulations, including MSP1FL, either alone or in combination with other antigens, in both animal models and humans. EXPERT OPINION Novel approaches to analyze breadth and magnitude of effector functions of MSP1-targeting antibodies in volunteers undergoing experimental vaccination and controlled human malaria infection will help to define correlates of protective immunity.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Centre for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Sumaya-Biotech GmbH & Co. KG Heidelberg, Germany
| | - Thomas C Stabler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Basel Basel, Switzerland
- Swiss Tropical and Public Health Institute Allschwil, Switzerland
| | - Kristin Fürle
- Centre for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (GHTM IHMT, UNL), Lisbon, Portugal
| | - Claudia Daubenberger
- University of Basel Basel, Switzerland
- Swiss Tropical and Public Health Institute Allschwil, Switzerland
| |
Collapse
|
3
|
Studniberg SI, Ioannidis LJ, Utami RAS, Trianty L, Liao Y, Abeysekera W, Li‐Wai‐Suen CSN, Pietrzak HM, Healer J, Puspitasari AM, Apriyanti D, Coutrier F, Poespoprodjo JR, Kenangalem E, Andries B, Prayoga P, Sariyanti N, Smyth GK, Cowman AF, Price RN, Noviyanti R, Shi W, Garnham AL, Hansen DS. Molecular profiling reveals features of clinical immunity and immunosuppression in asymptomatic P. falciparum malaria. Mol Syst Biol 2022; 18:e10824. [PMID: 35475529 PMCID: PMC9045086 DOI: 10.15252/msb.202110824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/12/2023] Open
Abstract
Clinical immunity to P. falciparum malaria is non-sterilizing, with adults often experiencing asymptomatic infection. Historically, asymptomatic malaria has been viewed as beneficial and required to help maintain clinical immunity. Emerging views suggest that these infections are detrimental and constitute a parasite reservoir that perpetuates transmission. To define the impact of asymptomatic malaria, we pursued a systems approach integrating antibody responses, mass cytometry, and transcriptional profiling of individuals experiencing symptomatic and asymptomatic P. falciparum infection. Defined populations of classical and atypical memory B cells and a TH2 cell bias were associated with reduced risk of clinical malaria. Despite these protective responses, asymptomatic malaria featured an immunosuppressive transcriptional signature with upregulation of pathways involved in the inhibition of T-cell function, and CTLA-4 as a predicted regulator in these processes. As proof of concept, we demonstrated a role for CTLA-4 in the development of asymptomatic parasitemia in infection models. The results suggest that asymptomatic malaria is not innocuous and might not support the induction of immune processes to fully control parasitemia or efficiently respond to malaria vaccines.
Collapse
Affiliation(s)
- Stephanie I Studniberg
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Lisa J Ioannidis
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Retno A S Utami
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia,Eijkman Institute for Molecular BiologyJakartaIndonesia
| | - Leily Trianty
- Eijkman Institute for Molecular BiologyJakartaIndonesia
| | - Yang Liao
- Olivia Newton‐John Cancer Research InstituteHeidelbergVic.Australia
| | - Waruni Abeysekera
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Connie S N Li‐Wai‐Suen
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Halina M Pietrzak
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | | | - Dwi Apriyanti
- Eijkman Institute for Molecular BiologyJakartaIndonesia
| | | | | | | | | | - Pak Prayoga
- Papuan Health and Community FoundationPapuaIndonesia
| | | | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Ric N Price
- Global and Tropical Health DivisionMenzies School of Health Research and Charles Darwin UniversityDarwinNTAustralia,Centre for Tropical Medicine and Global HealthNuffield Department of MedicineUniversity of OxfordOxfordUK,Mahidol‐Oxford Tropical Medicine Research UnitMahidol UniversityBangkokThailand
| | | | - Wei Shi
- Olivia Newton‐John Cancer Research InstituteHeidelbergVic.Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| |
Collapse
|
4
|
Surette FA, Guthmiller JJ, Li L, Sturtz AJ, Vijay R, Pope RL, McClellan BL, Pack AD, Zander RA, Shao P, Lan LYL, Fernandez-Ruiz D, Heath WR, Wilson PC, Butler NS. Extrafollicular CD4 T cell-derived IL-10 functions rapidly and transiently to support anti-Plasmodium humoral immunity. PLoS Pathog 2021; 17:e1009288. [PMID: 33529242 PMCID: PMC7880450 DOI: 10.1371/journal.ppat.1009288] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/12/2021] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
Immunity against malaria depends on germinal center (GC)-derived antibody responses that are orchestrated by T follicular helper (TFH) cells. Emerging data show that the regulatory cytokine IL-10 plays an essential role in promoting GC B cell responses during both experimental malaria and virus infections. Here we investigated the cellular source and temporal role of IL-10, and whether IL-10 additionally signals to CD4 T-cells to support anti-Plasmodium humoral immunity. Distinct from reports of virus infection, we found that IL-10 was expressed by conventional, Foxp3-negative effector CD4 T cells and functioned in a B cell-intrinsic manner only during the first 96 hours of Plasmodium infection to support humoral immunity. The critical functions of IL-10 manifested only before the orchestration of GC responses and were primarily localized outside of B cell follicles. Mechanistically, our studies showed that the rapid and transient provision of IL-10 promoted B cell expression of anti-apoptotic factors, MHC class II, CD83, and cell-cell adhesion proteins that are essential for B cell survival and interaction with CD4 T cells. Together, our data reveal temporal features and mechanisms by which IL-10 critically supports humoral immunity during blood-stage Plasmodium infection, information that may be useful for developing new strategies designed to lessen the burden of malaria.
Collapse
Affiliation(s)
- Fionna A. Surette
- Immunology Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
| | - Jenna J. Guthmiller
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Lei Li
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Alexandria J. Sturtz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Rosemary L. Pope
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Brandon L. McClellan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Angela D. Pack
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ryan A. Zander
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Peng Shao
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Linda Yu-Ling Lan
- Committee on Immunology, The University of Chicago, Chicago, Illinois, United States of America
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - William R. Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Patrick C. Wilson
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Noah S. Butler
- Immunology Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
5
|
Brunner NC, Chacky F, Mandike R, Mohamed A, Runge M, Thawer SG, Ross A, Vounatsou P, Lengeler C, Molteni F, Hetzel MW. The potential of pregnant women as a sentinel population for malaria surveillance. Malar J 2019; 18:370. [PMID: 31752889 PMCID: PMC6873723 DOI: 10.1186/s12936-019-2999-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
Background With increasing spatial heterogeneity of malaria transmission and a shift of the disease burden towards older children and adults, pregnant women attending antenatal care (ANC) have been proposed as a pragmatic sentinel population for malaria surveillance. However, the representativeness of routine ANC malaria test-positivity and its relationship with prevalence in other population subgroups are yet to be investigated. Methods Monthly ANC malaria test-positivity data from all Tanzanian health facilities for January 2014 to May 2016 was compared to prevalence data from the School Malaria Parasitaemia Survey 2015, the Malaria Indicator Survey (MIS) 2015/16, the Malaria Atlas Project 2015, and a Bayesian model fitted to MIS data. Linear regression was used to describe the difference between malaria test-positivity in pregnant women and respective comparison groups as a function of ANC test-positivity and potential covariates. Results The relationship between ANC test-positivity and survey prevalence in children follows spatially and biologically meaningful patterns. However, the uncertainty of the relationship was substantial, particularly in areas with high or perennial transmission. In comparison, modelled data estimated higher prevalence in children at low transmission intensities and lower prevalence at higher transmission intensities. Conclusions Pregnant women attending ANC are a pragmatic sentinel population to assess heterogeneity and trends in malaria prevalence in Tanzania. Yet, since ANC malaria test-positivity cannot be used to directly predict the prevalence in other population subgroups, complementary community-level measurements remain highly relevant.
Collapse
Affiliation(s)
- Nina C Brunner
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Frank Chacky
- National Malaria Control Programme, P.O. Box 9083, Dar es Salaam, United Republic of Tanzania.,Ministry of Health, Community Development, Gender, Elderly and Children, Building No. 11, P. O. Box 743, 40478, Dodoma, United Republic of Tanzania
| | - Renata Mandike
- National Malaria Control Programme, P.O. Box 9083, Dar es Salaam, United Republic of Tanzania.,Ministry of Health, Community Development, Gender, Elderly and Children, Building No. 11, P. O. Box 743, 40478, Dodoma, United Republic of Tanzania
| | - Ally Mohamed
- National Malaria Control Programme, P.O. Box 9083, Dar es Salaam, United Republic of Tanzania.,Ministry of Health, Community Development, Gender, Elderly and Children, Building No. 11, P. O. Box 743, 40478, Dodoma, United Republic of Tanzania
| | - Manuela Runge
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Sumaiyya G Thawer
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland.,National Malaria Control Programme, P.O. Box 9083, Dar es Salaam, United Republic of Tanzania
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Penelope Vounatsou
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Christian Lengeler
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Fabrizio Molteni
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland.,National Malaria Control Programme, P.O. Box 9083, Dar es Salaam, United Republic of Tanzania
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland. .,University of Basel, Petersplatz 1, 4003, Basel, Switzerland.
| |
Collapse
|
6
|
Abstract
A single exposure to many viral and bacterial pathogens typically induces life-long immunity, however, the development of the protective immunity to Plasmodium parasites is strikingly less efficient and achieves only partial protection, with adults residing in endemic areas often experiencing asymptomatic infections. Although naturally acquired immunity to malaria requires both cell-mediated and humoral immune responses, antibodies govern the control of malarial disease caused by the blood-stage form of the parasites. A large body of epidemiological evidence described that antibodies to Plasmodium antigens are inefficiently generated and rapidly lost without continued parasite exposure, suggesting that malaria is accompanied by defects in the development of immunological B cell memory. This topic has been of focus of recent studies of malaria infection in humans and mice. This review examines the main findings to date on the processes that modulate the acquisition of memory B cell responses to malaria, and highlights the importance of closing outstanding gaps of knowledge in the field for the rational design of next generation therapeutics against malaria.
Collapse
Affiliation(s)
- Ann Ly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Wong R, Bhattacharya D. Basics of memory B-cell responses: lessons from and for the real world. Immunology 2019; 156:120-129. [PMID: 30488482 PMCID: PMC6328991 DOI: 10.1111/imm.13019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
The production of pathogen-specific B cells and antibodies underlies protective immunity elicited by most vaccines and many infections. Humoral immunity follows a regulated process by which high-affinity antibody-secreting plasma cells and memory B cells are generated. Yet for certain pathogens, protective immunity is inefficiently generated and/or maintained. For example, Dengue virus infections lead to lasting immunity against re-infection by the same serotype. However, if infected with a different Dengue serotype, the individual is predisposed to more severe disease than if he/she was completely naive. As another example, both natural infections with or vaccination against malaria do not necessarily lead to lasting immunity, as the same individual can be re-infected many times over the course of a lifetime. In this review, we discuss how these real-world problems can both instruct and be informed by recent basic studies using model organisms and antigens. An emphasis is placed on protective epitopes and functional distinctions between memory B-cell subsets in both mice and humans. Using flavivirus and Plasmodium infections as examples, we also speculate on the differences between ineffective B-cell responses that actually occur in the real world, and perfect-world responses that would generate lasting immunity.
Collapse
Affiliation(s)
- Rachel Wong
- Division of Biological and Biomedical SciencesWashington UniversitySt LouisMOUSA
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonAZUSA
| | - Deepta Bhattacharya
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonAZUSA
| |
Collapse
|
8
|
Hansen SG, Womack J, Scholz I, Renner A, Edgel KA, Xu G, Ford JC, Grey M, St Laurent B, Turner JM, Planer S, Legasse AW, Richie TL, Aguiar JC, Axthelm MK, Villasante ED, Weiss W, Edlefsen PT, Picker LJ, Früh K. Cytomegalovirus vectors expressing Plasmodium knowlesi antigens induce immune responses that delay parasitemia upon sporozoite challenge. PLoS One 2019; 14:e0210252. [PMID: 30673723 PMCID: PMC6343944 DOI: 10.1371/journal.pone.0210252] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
The development of a sterilizing vaccine against malaria remains one of the highest priorities for global health research. While sporozoite vaccines targeting the pre-erythrocytic stage show great promise, it has not been possible to maintain efficacy long-term, likely due to an inability of these vaccines to maintain effector memory T cell responses in the liver. Vaccines based on human cytomegalovirus (HCMV) might overcome this limitation since vectors based on rhesus CMV (RhCMV), the homologous virus in rhesus macaques (RM), elicit and indefinitely maintain high frequency, non-exhausted effector memory T cells in extralymphoid tissues, including the liver. Moreover, RhCMV strain 68-1 elicits CD8+ T cells broadly recognizing unconventional epitopes exclusively restricted by MHC-II and MHC-E. To evaluate the potential of these unique immune responses to protect against malaria, we expressed four Plasmodium knowlesi (Pk) antigens (CSP, AMA1, SSP2/TRAP, MSP1c) in RhCMV 68-1 or in Rh189-deleted 68-1, which additionally elicits canonical MHC-Ia-restricted CD8+ T cells. Upon inoculation of RM with either of these Pk Ag expressing RhCMV vaccines, we obtained T cell responses to each of the four Pk antigens. Upon challenge with Pk sporozoites we observed a delayed appearance of blood stage parasites in vaccinated RM consistent with a 75-80% reduction of parasite release from the liver. Moreover, the Rh189-deleted RhCMV/Pk vectors elicited sterile protection in one RM. Once in the blood, parasite growth was not affected. In contrast to T cell responses induced by Pk infection, RhCMV vectors maintained sustained T cell responses to all four malaria antigens in the liver post-challenge. The delayed appearance of blood stage parasites is thus likely due to a T cell-mediated inhibition of liver stage parasite development. As such, this vaccine approach can be used to efficiently test new T cell antigens, improve current vaccines targeting the liver stage and complement vaccines targeting erythrocytic antigens.
Collapse
Affiliation(s)
- Scott G Hansen
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Jennie Womack
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Isabel Scholz
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Andrea Renner
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Kimberly A Edgel
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Guangwu Xu
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Julia C Ford
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Mikayla Grey
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Brandyce St Laurent
- National Institutes of Health, Laboratory of Malaria and Vector Research, Malaria Pathogenesis and Human Immunity Unit, Rockville, MD, United States of America
| | - John M Turner
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Shannon Planer
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Al W Legasse
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Thomas L Richie
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Joao C Aguiar
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Michael K Axthelm
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Eileen D Villasante
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Walter Weiss
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Paul T Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Louis J Picker
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Klaus Früh
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| |
Collapse
|
9
|
Amoah LE, Abagna HB, Akyea-Mensah K, Lo AC, Kusi KA, Gyan BA. Characterization of anti-EBA175RIII-V in asymptomatic adults and children living in communities in the Greater Accra Region of Ghana with varying malaria transmission intensities. BMC Immunol 2018; 19:34. [PMID: 30453898 PMCID: PMC6245760 DOI: 10.1186/s12865-018-0271-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Antibodies against Region III-V of the erythrocyte binding antigen (EBA) 175 (EBA175RIII-V) have been suggested to provide protection from malaria in a natural infection. However, the quality and quantity of naturally induced antibodies to EBA175RIII-V has not been fully characterized in different cohorts of Ghanaians. This study sought to determine the characteristics of antibodies against EBA175RIII-V in asymptomatic adults and children living in two communities of varying P. falciparum parasite prevalence in southern Ghana. Methods Microscopic evaluation of thick and thin blood smears was used to identify asymptomatic Plasmodium falciparum carriage and indirect enzyme linked immunosorbent (ELISA) used to assess antibody concentrations and avidity. Results Parasite carriage estimated by microscopy in Obom was 35.6% as opposed to 3.5% in Asutsuare. Levels of IgG, IgG1, IgG2, IgG3 and IgG4 against EBA175RIII-V in the participants from Obom were significantly higher (P < 0.05, Dunn’s Multiple Comparison test) than those in Asutsuare. However the relative avidity of IgG antibodies against EBA175RIII-V was significantly higher (P < 0.0001, Mann Whitney test) in Asutsuare than in Obom. Conclusions People living in communities with limited exposure to P. falciparum parasites have low quantities of high avidity antibodies against EBA175RIII-V whilst people living in communities with high exposure to the parasites have high quantities of age-dependent but low avidity antibodies against EBA175RIII-V. Electronic supplementary material The online version of this article (10.1186/s12865-018-0271-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L E Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - H B Abagna
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - K Akyea-Mensah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - A C Lo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,Present address: University Cheikh Anta DIOP, Dakar, Senegal
| | - K A Kusi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - B A Gyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
10
|
The Association of High Prevalence of Trophozoites in Peripheral Blood with Lower Antibody Response to P. falciparum Infected Erythrocytes among Asymptomatic Children in Sudan. Mediators Inflamm 2016; 2016:7987686. [PMID: 27433028 PMCID: PMC4940569 DOI: 10.1155/2016/7987686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 06/01/2016] [Indexed: 11/18/2022] Open
Abstract
Background. The most prominent variant surface antigens (VSAs) of Plasmodium falciparum are the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which serves as a parasite-sequestering ligand to endothelial cells. In this study we have examined the antibody reactivity of autologous plasma from symptomatic and asymptomatic malaria infected children against the infected erythrocytes' surface antigens using flow cytometry. Methods. Ethidium-bromide-labelled erythrocytic mature forms of P. falciparum parasites obtained from symptomatic and asymptomatic children were sequentially incubated with autologous plasma and fluorescein isothiocyanate-conjugated (FITC) antihuman IgG. Plasma antibody reactivity was detected by flow cytometry. Results. Asymptomatic children had more prevalence of trophozoites in peripheral blood (66%) compared to symptomatic children (16%), p = 0.002. The mean percentage of infected RBCs reacting with autologous sera was 89.78 among symptomatic children compared to 79.62 among asymptomatic children (p = 0.09). Moreover, the mean fluorescence intensity (MFI) in the asymptomatic was significantly higher compared to symptomatic children (p value = 0.040). Conclusion. Variant surface antigens on Plasmodium falciparum infected RBCs from symptomatic malaria children tend to be better recognized by IgG antibodies. This may suggest a role of some IgG antibodies in severity of malaria.
Collapse
|
11
|
Abstract
With increasing malaria control and goals of malaria elimination, many endemic areas are transitioning from high-to-low-to-no malaria transmission. Reductions in transmission will impact on the development of naturally acquired immunity to malaria, which develops after repeated exposure to Plasmodium spp. However, it is currently unclear how declining transmission and malaria exposure will affect the development and maintenance of naturally acquired immunity. Here we review the key processes which underpin this knowledge; the amount of Plasmodium spp. exposure required to generate effective immune responses, the longevity of antibody responses and the ability to mount an effective response upon re-exposure through memory responses. Lastly we identify research priorities which will increase our understanding of how changing transmission will impact on malarial immunity.
Collapse
|
12
|
Immune protection-inducing protein structures (IMPIPS) against malaria: the weapons needed for beating Odysseus. Vaccine 2015; 33:7525-37. [DOI: 10.1016/j.vaccine.2015.09.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/04/2015] [Accepted: 09/28/2015] [Indexed: 11/19/2022]
|
13
|
Portugal S, Tipton CM, Sohn H, Kone Y, Wang J, Li S, Skinner J, Virtaneva K, Sturdevant DE, Porcella SF, Doumbo OK, Doumbo S, Kayentao K, Ongoiba A, Traore B, Sanz I, Pierce SK, Crompton PD. Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function. eLife 2015; 4. [PMID: 25955968 PMCID: PMC4444601 DOI: 10.7554/elife.07218] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/06/2015] [Indexed: 01/06/2023] Open
Abstract
Protective antibodies in Plasmodium falciparum malaria are only acquired after years of repeated infections. Chronic malaria exposure is associated with a large increase in atypical memory B cells (MBCs) that resemble B cells expanded in a variety of persistent viral infections. Understanding the function of atypical MBCs and their relationship to classical MBCs will be critical to developing effective vaccines for malaria and other chronic infections. We show that VH gene repertoires and somatic hypermutation rates of atypical and classical MBCs are indistinguishable indicating a common developmental history. Atypical MBCs express an array of inhibitory receptors and B cell receptor (BCR) signaling is stunted in atypical MBCs resulting in impaired B cell responses including proliferation, cytokine production and antibody secretion. Thus, in response to chronic malaria exposure, atypical MBCs appear to differentiate from classical MBCs becoming refractory to BCR-mediated activation and potentially interfering with the acquisition of malaria immunity. DOI:http://dx.doi.org/10.7554/eLife.07218.001 The human immune system works to protect individuals from harmful microbes, such as the parasites that cause malaria. One line of defense is to produce a large array of proteins called antibodies that specifically bind to microbes to mark them for destruction by the immune system. The immune system also produces long-lived memory B cells that are able to mount a quicker and more effective antibody response if the microbe enters the body again. This means that most people only become ill with a particular disease the first time they encounter the microbe that causes it. However, malaria is unusual in that it can take many years of exposure to the parasite that causes it before an individual produces enough antibodies and memory B cells to be protected from the disease. There is also no vaccine that provides effective and long-lasting protection against malaria. Vaccinations rely on stimulating the body's natural defenses, and so understanding more about antibodies and memory B cells in relation to malaria may aid future efforts to develop a vaccine. Researchers have discovered that many of the memory B cells that accumulate in people who have been exposed to the malaria parasite over long-periods of time are different from the normal memory B cells. But it was not clear what role these ‘atypical’ cells play in immunity to malaria. To address this question, Portugal et al. studied the genetics and activity of B cells collected from children and adults living in Mali who—by living in a region where malaria is common—had been repeatedly exposed to the parasite. The experiments indicate that atypical and normal memory B cells both develop from the same precursor cells. However, the genes that are active in each cell type are different, resulting in the atypical cells being less able to respond to the parasite than the normal memory B cells. Portugal et al.'s findings suggest that the atypical cells develop from normal memory B cells during long-term exposure to malaria, which may delay the development of immunity to this disease. Future challenges include understanding what drives the formation of the atypical memory B cells in malaria, and finding out why they are less active than the normal cells. This could aid the development of vaccines and/or therapies that restore their activity in patients. DOI:http://dx.doi.org/10.7554/eLife.07218.002
Collapse
Affiliation(s)
- Silvia Portugal
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Christopher M Tipton
- Departments of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, United States
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Younoussou Kone
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Jing Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Shanping Li
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Kimmo Virtaneva
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, United States
| | - Daniel E Sturdevant
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, United States
| | - Stephen F Porcella
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, United States
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Safiatou Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Inaki Sanz
- Departments of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, United States
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| |
Collapse
|
14
|
Hviid L, Barfod L, Fowkes FJI. Trying to remember: immunological B cell memory to malaria. Trends Parasitol 2015; 31:89-94. [PMID: 25596801 DOI: 10.1016/j.pt.2014.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 11/17/2022]
Abstract
In areas with stable transmission of Plasmodium falciparum parasites, even partially-protective immunity to malaria is acquired only after years of exposure and several infections. It has long been speculated that malaria parasites are directly able to undermine the establishment and maintenance of immunological memory, and that the often transient antibody responses to this parasite are evidence of such a dysfunction. We propose that long-lived antibody responses may not always be a prerequisite for protection, and that antibody longevity varies in an exposure- and age-dependent manner.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for Medical Parasitology at Institute for Medical Microbiology and Immunology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Lea Barfod
- Centre for Medical Parasitology at Institute for Medical Microbiology and Immunology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Freya J I Fowkes
- Macfarlane Burnet Institute of Medical Research, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, University of Melbourne, Australia; Department of Epidemiology and Preventive Medicine and Department of Infectious Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
15
|
B-cell responses to pregnancy-restricted and -unrestricted Plasmodium falciparum erythrocyte membrane protein 1 antigens in Ghanaian women naturally exposed to malaria parasites. Infect Immun 2014; 82:1860-71. [PMID: 24566620 DOI: 10.1128/iai.01514-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods (pregnancy) to responses specific for comparable antigens expressed independent of pregnancy. Our data indicate that PfEMP1-specific B-cell memory is adequately acquired even when antigen exposure is infrequent (e.g., VAR2CSA-type PfEMP1). Furthermore, immunological memory specific for VAR2CSA-type PfEMP1 can be maintained for many years without antigen reexposure and after circulating antigen-specific IgG has disappeared. The study provides evidence that natural exposure to P. falciparum leads to formation of durable B-cell immunity to clinically important PfEMP1 antigens. This has encouraging implications for current efforts to develop PfEMP1-based vaccines.
Collapse
|
16
|
Gitau EN, Tuju J, Karanja H, Stevenson L, Requena P, Kimani E, Olotu A, Kimani D, Marsh K, Bull P, Urban BC. CD4+ T cell responses to the Plasmodium falciparum erythrocyte membrane protein 1 in children with mild malaria. THE JOURNAL OF IMMUNOLOGY 2014; 192:1753-61. [PMID: 24453249 PMCID: PMC3918862 DOI: 10.4049/jimmunol.1200547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immune response against the variant surface Ag Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a key component of clinical immunity against malaria. We have investigated the development and maintenance of CD4+ T cell responses to a small semiconserved area of the Duffy binding–like domain (DBL)α–domain of PfEMP1, the DBLα-tag. Young children were followed up longitudinally, and parasites and PBMCs were isolated from 35 patients presenting with an acute case of uncomplicated malaria. The DBLα-tag from the PfEMP1 dominantly expressed by the homologous parasite isolate was cloned and expressed as recombinant protein. The recombinant DBLα-tag was used to activate PBMCs collected from each acute episode and from an annual cross-sectional survey performed after the acute malaria episode. In this article, we report that CD4+ T cell responses to the homologous DBLα-tag were induced in 75% of the children at the time of the acute episode and in 62% of the children at the following cross-sectional survey on average 235 d later. Furthermore, children who had induced DBLα-tag–specific CD4+IL-4+ T cells at the acute episode remained episode free for longer than children who induced other types of CD4+ T cell responses. These results suggest that a wide range of DBLα-tag–specific CD4+ T cell responses were induced in children with mild malaria and, in the case of CD4+IL-4+ T cell responses, were associated with protection from clinical episodes.
Collapse
Affiliation(s)
- Evelyn N Gitau
- KEMRI-Wellcome Trust Collaborative Programme, Centre for Geographic Medicine Coast, 80108 Kilifi, Kenya
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wilmore JR, Maue AC, Lefebvre JS, Haynes L, Rochford R. AcutePlasmodium chabaudiInfection Dampens Humoral Responses to a Secondary T-Dependent Antigen but Enhances Responses to a Secondary T-Independent Antigen. THE JOURNAL OF IMMUNOLOGY 2013; 191:4731-9. [DOI: 10.4049/jimmunol.1301450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Ndungu FM, Lundblom K, Rono J, Illingworth J, Eriksson S, Färnert A. Long-lived Plasmodium falciparum specific memory B cells in naturally exposed Swedish travelers. Eur J Immunol 2013; 43:2919-29. [PMID: 23881859 PMCID: PMC4114544 DOI: 10.1002/eji.201343630] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/07/2013] [Accepted: 07/18/2013] [Indexed: 01/08/2023]
Abstract
Antibodies (Abs) are critical for immunity to malaria. However, Plasmodium falciparum specific Abs decline rapidly in absence of reinfection, suggesting impaired immunological memory. This study determines whether residents of Sweden that were treated for malaria following international travel maintained long‐lasting malaria‐specific Abs and memory B cells (MBCs). We compared levels of malaria‐specific Abs and MBCs between 47 travelers who had been admitted with malaria at the Karolinska University Hospital between 1 and 16 years previously, eight malaria‐naïve adult Swedes without histories of travel, and 14 malaria‐immune adult Kenyans. Plasmodium falciparum‐lysate‐specific Ab levels were above naïve control levels in 30% of the travelers, whereas AMA‐1, merozoite surface protein‐142, and merozoite surface protein‐3‐specific Ab levels were similar. In contrast, 78% of travelers had IgG‐MBCs specific for at least one malaria antigen (59, 45, and 28% for apical merozoite antigen‐1, merozoite surface protein‐1, and merozoite surface protein‐3, respectively) suggesting that malaria‐specific MBCs are maintained for longer than the cognate serum Abs in the absence of re‐exposure to parasites. Five travelers maintained malaria antigen‐specific MBC responses for up to 16 years since the diagnosis of the index episode (and had not traveled to malaria‐endemic regions in the intervening time). Thus P. falciparum can induce long‐lasting MBCs, maintained for up to 16 years without reexposure.
Collapse
Affiliation(s)
- Francis M Ndungu
- Centre for Geographical Medicine Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya; Centres for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
19
|
Moncunill G, Mayor A, Jiménez A, Nhabomba A, Casas-Vila N, Puyol L, Campo JJ, Manaca MN, Aguilar R, Pinazo MJ, Almirall M, Soler C, Muñoz J, Bardají A, Angov E, Dutta S, Chitnis CE, Alonso PL, Gascón J, Dobaño C. High antibody responses against Plasmodium falciparum in immigrants after extended periods of interrupted exposure to malaria. PLoS One 2013; 8:e73624. [PMID: 23967347 PMCID: PMC3743903 DOI: 10.1371/journal.pone.0073624] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/23/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Malaria immunity is commonly believed to wane in the absence of Plasmodium falciparum exposure, based on limited epidemiological data and short-lived antibody responses in some longitudinal studies in endemic areas. METHODS A cross-sectional study was conducted among sub-Saharan African adults residing in Spain for 1 up to 38 years (immigrants) with clinical malaria (n=55) or without malaria (n=37), naïve adults (travelers) with a first clinical malaria episode (n=20) and life-long malaria exposed adults from Mozambique (semi-immune adults) without malaria (n=27) or with clinical malaria (n=50). Blood samples were collected and IgG levels against the erythrocytic antigens AMA-1 and MSP-1₄₂ (3D7 and FVO strains), EBA-175 and DBL-α were determined by Luminex. IgG levels against antigens on the surface of infected erythrocytes (IEs) were measured by flow cytometry. RESULTS Immigrants without malaria had lower IgG levels than healthy semi-immune adults regardless of the antigen tested (P≤0.026), but no correlation was found between IgG levels and time since migration. Upon reinfection, immigrants with malaria had higher levels of IgG against all antigens than immigrants without malaria. However, the magnitude of the response compared to semi-immune adults with malaria depended on the antigen tested. Thus, immigrants had higher IgG levels against AMA-1 and MSP-1₄₂ (P≤0.015), similar levels against EBA-175 and DBL-α, and lower levels against IEs (P≤0.016). Immigrants had higher IgG levels against all antigens tested compared to travelers (P≤0.001), both with malaria. CONCLUSIONS Upon cessation of malaria exposure, IgG responses to malaria-specific antigens were maintained to a large extent, although the conservation and the magnitude of the recall response depended on the nature of the antigen. Studies on immigrant populations can shed light on the factors that determine the duration of malaria specific antibody responses and its effect on protection, with important implications for future vaccine design and public health control measures.
Collapse
Affiliation(s)
- Gemma Moncunill
- Barcelona Centre for International Health Research-CRESIB, Hospital Clínic-Universitat de Barcelona-Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang J, Zhao F, Yu CX, Xiao D, Song LJ, Yin XR, Shen S, Hua WQ, Zhang JZ, Zhang HF, He LH, Qian CY, Zhang W, Xu YL, Yang J. Identification of proteins inducing short-lived antibody responses from excreted/secretory products of Schistosoma japonicum adult worms by immunoproteomic analysis. J Proteomics 2013; 87:53-67. [DOI: 10.1016/j.jprot.2013.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/16/2013] [Accepted: 05/01/2013] [Indexed: 01/05/2023]
|
21
|
Portugal S, Pierce SK, Crompton PD. Young lives lost as B cells falter: what we are learning about antibody responses in malaria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:3039-46. [PMID: 23526829 PMCID: PMC3608210 DOI: 10.4049/jimmunol.1203067] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasmodium falciparum malaria remains a major public health threat for which there is no licensed vaccine. Abs play a key role in malaria immunity, but Ab-mediated protection is only acquired after years of repeated infections, leaving children in endemic areas vulnerable to severe malaria and death. Many P. falciparum Ags are extraordinarily diverse and clonally variant, which likely contribute to the inefficient acquisition of protective Abs. However, mounting evidence suggests that there is more to the story and that infection-induced dysregulation of B cell function also plays a role. We herein review progress toward understanding the B cell biology of P. falciparum infection, focusing on what has been learned from population-based studies in malaria-endemic areas. We suggest ways in which advances in immunology and genomics-based technology can further improve our understanding of the B cell response in malaria and perhaps illuminate new pathways to the development of effective vaccines.
Collapse
Affiliation(s)
- Silvia Portugal
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | |
Collapse
|
22
|
Kynast-Wolf G, Wakilzadeh W, Coulibaly B, Schnitzler P, Traoré C, Becher H, Müller O. ITN protection, MSP1 antibody levels and malaria episodes in young children of rural Burkina Faso. Acta Trop 2012; 123:117-22. [PMID: 22569564 DOI: 10.1016/j.actatropica.2012.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/29/2012] [Accepted: 04/22/2012] [Indexed: 10/28/2022]
Abstract
Malaria blood-stage vaccines are in an early phase of clinical development with MSP1 being a major antigen candidate. There are limited data on the protective efficacy of antibodies against subunits of MSP1 in the malaria endemic areas of sub-Saharan Africa. This prospective cohort study was nested into a large insecticide-treated mosquito net (ITN) trial during which neonates were individually randomised to ITN protection from birth vs. protection from month six onwards in rural Burkina Faso. A sub sample of 120 children from three villages was followed for 10 months with six measurements of MSP1(42) antibodies (ELISA based on recombinant 42kDa fragment) and daily assessment of malaria episodes. Time to the next malaria episode was determined in relation to MSP1(42) antibody titres. MSP1(42) antibody titres were dependent on age, season, ITN-group, number of previous malaria episodes and parasitaemia. There were no significant differences in time until the next malaria episode in children with low compared to children with high MSP1(42) antibody titres at any point in time (101 vs. 97 days in May, p=0.6; 58 vs. 84 days in September, p=0.3; 144 vs. 161 days in March, p=0.5). The findings of this study support the short-lived nature of the humoral immune response in infants of malaria endemic areas. The study provides no evidence for antibodies against a subunit of MSP1 being protective against new malaria episodes in infants.
Collapse
Affiliation(s)
- Gisela Kynast-Wolf
- Institute of Public Health, Ruprecht-Karls-University Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Effect of seasonality and ecological factors on the prevalence of the four malaria parasite species in northern mali. J Trop Med 2012; 2012:367160. [PMID: 22529864 PMCID: PMC3316987 DOI: 10.1155/2012/367160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 12/29/2011] [Indexed: 11/21/2022] Open
Abstract
Background. We performed 2 cross-sectional studies in Ménaka in the Northeastern Mali across 9 sites in different ecological settings: 4 sites have permanent ponds, 4 without ponds, and one (City of Ménaka) has a semipermanent pond. We enrolled 1328 subjects in May 2004 (hot dry season) and 1422 in February 2005 (cold dry season) after the rainy season. Objective. To examine the seasonality of malaria parasite prevalence in this dry northern part of Mali at the edge of the Sahara desert. Results. Slide prevalence was lower in hot dry than cold dry season (4.94 versus 6.85%, P = 0.025). Gametocyte rate increased to 0.91% in February. Four species were identified. Plasmodium falciparum was most prevalent (74.13 and 63.72%). P. malariae increased from 9.38% to 22.54% in February. In contrast, prevalence of P. vivax was higher (10.31%) without seasonal variation. Smear positivity was associated with splenomegaly (P = 0.007). Malaria remained stable in the villages with ponds (P = 0.221); in contrast, prevalence varied between the 2 seasons in the villages without ponds (P = 0.004). Conclusion. Malaria was mesoendemic; 4 species circulates with a seasonal fluctuation for Plasmodium falciparum.
Collapse
|
24
|
Plasmodium falciparum malaria in the Peruvian Amazon, a region of low transmission, is associated with immunologic memory. Infect Immun 2012; 80:1583-92. [PMID: 22252876 DOI: 10.1128/iai.05961-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The development of clinical immunity to Plasmodium falciparum malaria is thought to require years of parasite exposure, a delay often attributed to difficulties in developing protective antibody levels. In this study, we evaluated several P. falciparum vaccine candidate antigens, including apical membrane antigen 1 (AMA-1), circumsporozoite protein (CSP), erythrocyte binding antigen 175 (EBA-175), and the 19-kDa region of merozoite surface protein 1 (MSP1(19)). After observing a more robust antibody response to MSP1(19), we evaluated the magnitude and longevity of IgG responses specific to this antigen in Peruvian adults and children before, during, and after P. falciparum infection. In this low-transmission region, even one reported prior infection was sufficient to produce a positive anti-MSP1(19) IgG response for >5 months in the absence of reinfection. We also observed an expansion of the total plasmablast (CD19(+) CD27(+) CD38(high)) population in the majority of individuals shortly after infection and detected MSP1-specific memory B cells in a subset of individuals at various postinfection time points. This evidence supports our hypothesis that effective antimalaria humoral immunity can develop in low-transmission regions.
Collapse
|
25
|
Nasr A, Iriemenam NC, Troye-Blomberg M, Arnot D, Theander TG, Berzins K, Giha HA, Elghazali G. Pattern of pre-existing IgG subclass responses to a panel of asexual stage malaria antigens reported during the lengthy dry season in Daraweesh, Sudan. Scand J Immunol 2011; 74:390-396. [PMID: 21645028 DOI: 10.1111/j.1365-3083.2011.02585.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The anti-malarial IgG immune response during the lengthy and dry season in areas of low malaria transmission as in Eastern Sudan is largely unknown. In this study, ELISA was used for the measurement of pre-existing total IgG and IgG subclasses to a panel of malaria antigens, MSP2-3D7, MSP2-FC27, AMA-1 and Pf332-C231. The results showed that the antibody responses were predominantly age dependent, antigen specific, and their lifespan was at least 5-6 month long. Generally, the IgG3 was most abundant IgG subclass, and the most recognized antigen was Pf332-C231. Furthermore, the correlation between the levels of IgG subclasses was strongest between IgG1 and IgG3, which were more predictive to the total IgG levels. Finally, the response pattern of each of the IgG subclasses to the different test antigens that were spanning the dry season and the correlation between these responses were described in details for the first time.
Collapse
Affiliation(s)
- A Nasr
- Department of Microbiology, College of Medicine, Taif University, Taif, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Nduati E, Gwela A, Karanja H, Mugyenyi C, Langhorne J, Marsh K, Urban BC. The plasma concentration of the B cell activating factor is increased in children with acute malaria. J Infect Dis 2011; 204:962-70. [PMID: 21849293 PMCID: PMC3156925 DOI: 10.1093/infdis/jir438] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/20/2011] [Indexed: 11/17/2022] Open
Abstract
Malaria-specific antibody responses in children often appear to be short-lived but the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the relationship between the B-cell activating factor (BAFF) and its receptors expressed on B cells with antibody responses during and after acute malaria in children. Our results demonstrate that BAFF plasma levels increased during acute malarial disease and reflected disease severity. The expression profiles for BAFF receptors on B cells agreed with rapid activation and differentiation of a proportion of B cells to plasma cells. However, BAFF receptor (BAFF-R) expression was reduced on all peripheral blood B cells during acute infection, but those children with the highest level of BAFF-R expression on B cells maintained schizont-specific immunoglobin G (IgG) over a period of 4 months, indicating that dysregulation of BAFF-R expression on B cells may contribute to short-lived antibody responses to malarial antigens in children. In summary, this study suggests a potential role for BAFF during malaria disease, both as a marker for disease severity and in shaping the differentiation pattern of antigen-specific B cells.
Collapse
Affiliation(s)
- Eunice Nduati
- KEMRI/Wellcome Trust Collaborative Research Program, Centre for Geographical Medicine Research, Kilifi, Kenya
| | - Agnes Gwela
- KEMRI/Wellcome Trust Collaborative Research Program, Centre for Geographical Medicine Research, Kilifi, Kenya
| | - Henry Karanja
- KEMRI/Wellcome Trust Collaborative Research Program, Centre for Geographical Medicine Research, Kilifi, Kenya
| | - Cleopatra Mugyenyi
- KEMRI/Wellcome Trust Collaborative Research Program, Centre for Geographical Medicine Research, Kilifi, Kenya
| | - Jean Langhorne
- Division of Parasitology, MRC, National Institute for Medical Research, London
| | - Kevin Marsh
- KEMRI/Wellcome Trust Collaborative Research Program, Centre for Geographical Medicine Research, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington
| | - Britta C. Urban
- KEMRI/Wellcome Trust Collaborative Research Program, Centre for Geographical Medicine Research, Kilifi, Kenya
- Molecular and Biochemical Parasitology Group, Liverpool School of Tropical Medicine, United Kingdom
| |
Collapse
|
27
|
Liljander A, Bejon P, Mwacharo J, Kai O, Ogada E, Peshu N, Marsh K, Färnert A. Clearance of asymptomatic P. falciparum Infections Interacts with the number of clones to predict the risk of subsequent malaria in Kenyan children. PLoS One 2011; 6:e16940. [PMID: 21383984 PMCID: PMC3044709 DOI: 10.1371/journal.pone.0016940] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/17/2011] [Indexed: 12/20/2022] Open
Abstract
Background Protective immunity to malaria is acquired after repeated infections in endemic areas. Asymptomatic multiclonal P. falciparum infections are common and may predict host protection. Here, we have investigated the effect of clearing asymptomatic infections on the risk of clinical malaria. Methods Malaria episodes were continuously monitored in 405 children (1–6 years) in an area of moderate transmission, coastal Kenya. Blood samples collected on four occasions were assessed by genotyping the polymorphic P. falciparum merozoite surface protein 2 using fluorescent PCR and capillary electrophoresis. Following the second survey, asymptomatic infections were cleared with a full course of dihydroartemisinin. Results Children who were parasite negative by PCR had a lower risk of subsequent malaria regardless of whether treatment had been given. Children with ≥2 clones had a reduced risk of febrile malaria compared with 1 clone after clearance of asymptomatic infections, but not if asymptomatic infections were not cleared. Multiclonal infection was associated with an increased risk of re-infection after drug treatment. However, among the children who were re-infected, multiclonal infections were associated with a shift from clinical malaria to asymptomatic parasitaemia. Conclusion The number of clones was associated with exposure as well as blood stage immunity. These effects were distinguished by clearing asymptomatic infection with anti-malarials. Exposure to multiple P. falciparum infections is associated with protective immunity, but there appears to be an additional effect in untreated multiclonal infections that offsets this protective effect.
Collapse
Affiliation(s)
- Anne Liljander
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Philip Bejon
- Centre for Geographical Medicine Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jedidah Mwacharo
- Centre for Geographical Medicine Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
| | - Oscar Kai
- Centre for Geographical Medicine Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
| | - Edna Ogada
- Centre for Geographical Medicine Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
| | - Norbert Peshu
- Centre for Geographical Medicine Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
| | - Kevin Marsh
- Centre for Geographical Medicine Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Oxford, United Kingdom
| | - Anna Färnert
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
28
|
Liljander A, Chandramohan D, Kweku M, Olsson D, Montgomery SM, Greenwood B, Färnert A. Influences of intermittent preventive treatment and persistent multiclonal Plasmodium falciparum infections on clinical malaria risk. PLoS One 2010; 5:e13649. [PMID: 21048970 PMCID: PMC2965101 DOI: 10.1371/journal.pone.0013649] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/12/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Intermittent preventive treatment (IPT) of malaria involves administration of curative doses of antimalarials at specified time points to vulnerable populations in endemic areas, regardless whether a subject is known to be infected. The effect of this new intervention on the development and maintenance of protective immunity needs further understanding. We have investigated how seasonal IPT affects the genetic diversity of Plasmodium falciparum infections and the risk of subsequent clinical malaria. MATERIAL AND METHODS The study included 2227 Ghanaian children (3-59 months) who were given sulphadoxine-pyrimethamine (SP) bimonthly, artesunate plus amodiaquine (AS+AQ) monthly or bimonthly, or placebo monthly for six months spanning the malaria transmission season. Blood samples collected at three post-interventional surveys were analysed by genotyping of the polymorphic merozoite surface protein 2 gene. Malaria morbidity and anaemia was monitored during 12 months follow-up. RESULTS Monthly IPT with AS+AQ resulted in a marked reduction in number of concurrent clones and only children parasite negative just after the intervention period developed clinical malaria during follow-up. In the placebo group, children without parasites as well as those infected with ≥2 clones had a reduced risk of subsequent malaria. The bimonthly SP or AS+AQ groups had similar number of clones as placebo after intervention; however, diversity and parasite negativity did not predict the risk of malaria. An interaction effect showed that multiclonal infections were only associated with protection in children without intermittent treatment. CONCLUSION Molecular typing revealed effects of the intervention not detected by ordinary microscopy. Effective seasonal IPT temporarily reduced the prevalence and genetic diversity of P. falciparum infections. The reduced risk of malaria in children with multiclonal infections only seen in untreated children suggests that persistence of antigenically diverse P. falciparum infections is important for the maintenance of protective malaria immunity in high transmission settings.
Collapse
Affiliation(s)
- Anne Liljander
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Chandramohan
- Infectious and Tropical Diseases Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Margaret Kweku
- Infectious and Tropical Diseases Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Ghana Health Service, University of Ghana, Accra, Ghana
| | - Daniel Olsson
- Medical Statistics Unit, Department of Learning Informatics Management and Ethics, Karolinska Institutet, Stockholm, Sweden
| | - Scott M. Montgomery
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Clinical Epidemiology and Biostatistics Unit, Örebro University Hospital, Örebro, Sweden
- Department of Primary Care and Social Medicine, Charing Cross Hospital, Imperial College, London, United Kingdom
| | - Brian Greenwood
- Infectious and Tropical Diseases Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Anna Färnert
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
29
|
Chang SP, Kayatani AKK, Terrientes ZI, Herrera S, Leke RGF, Taylor DW. Shift in epitope dominance of IgM and IgG responses to Plasmodium falciparum MSP1 block 4. Malar J 2010; 9:14. [PMID: 20070906 PMCID: PMC2837054 DOI: 10.1186/1475-2875-9-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 01/13/2010] [Indexed: 11/11/2022] Open
Abstract
Background Plasmodium falciparum merozoite surface protein-1 (MSP1) has been extensively studied as a blood-stage malaria vaccine candidate, with most work focused on the conserved 19 kDa and semi-conserved 42 kDa C-terminal regions (blocks 16-17) and the hypervariable N-terminal repeat region (block 2). However, recent genotyping studies suggest that additional regions of MSP1 may be under selective pressure, including a locus of intragenic recombination designated as block 4 within the 3' region of the gene. Methods The current study examined the antibody response to the two parental and two recombinant forms of block 4 and to blocks 16-17 (3D7) in study populations from Colombia, Papua New Guinea and Cameroon that differ in malaria transmission intensity and ethnic composition. Results IgM and IgG antibodies were detected against parental and recombinant MSP1 block 4 peptides in all three populations. Overall, 32-44% of the individuals produced IgM to one or more of the peptides, with most individuals having IgM antibodies reactive with both parental and recombinant forms. In contrast, IgG seropositivity to block 4 varied among populations (range 15-65%), with the majority of antibodies showing specificity for one or a pair of block 4 peptides. The IgG response to block 4 was significantly lower than that to blocks 16-17, indicating block 4 is subdominant. Antibodies to block 4 and blocks 16-17 displayed distinct IgG subclass biases, with block 4 responses biased toward IgG3 and blocks 16-17 toward IgG1. These patterns of responsiveness were consistently observed in the three study populations. Conclusions Production of antibodies specific for each parental and recombinant MSP1 block 4 allele in different populations exposed to P. falciparum is consistent with balancing selection of the MSP1 block 4 region by the immune response of individuals in areas of both low and high malaria transmission. MSP1 block 4 determinants may be important in isolate-specific immunity to P. falciparum.
Collapse
Affiliation(s)
- Sandra P Chang
- John A Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo St, Honolulu, HI 96813, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Kinyanjui SM, Bejon P, Osier FH, Bull PC, Marsh K. What you see is not what you get: implications of the brevity of antibody responses to malaria antigens and transmission heterogeneity in longitudinal studies of malaria immunity. Malar J 2009; 8:242. [PMID: 19860926 PMCID: PMC2773787 DOI: 10.1186/1475-2875-8-242] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 10/28/2009] [Indexed: 11/18/2022] Open
Abstract
Background A major handicap in developing a malaria vaccine is the difficulty in pinpointing the immune responses that protect against malaria. The protective efficacy of natural or vaccine-induced immune responses against malaria is normally assessed by relating the level of the responses in an individual at the beginning of a follow-up period and the individual's experience of malaria infection or disease during the follow-up. This approach has identified a number of important responses against malaria, but their protective efficacies vary considerably between studies. Hypothesis It is likely that apart from differences in study methodologies, differences in exposure among study subjects within each study and brevity of antibody responses to malaria antigen are important sources of the variation in protective efficacy of anti-malaria immune responses mentioned above. Since malaria immunity is not complete, anyone in an area of stable malaria transmission who does not become asymptomatically or symptomatically infected during follow-up subsequent to treatment is most likely unexposed rather than immune. Testing the hypothesis It is proposed that individuals involved in a longitudinal study of malaria immunity should be treated for malaria prior to the start of the study and only those who present with at least an asymptomatic infection during the follow-up should be included in the analysis. In addition, it is proposed that more closely repeated serological survey should be carried out during follow-up in order to get a better picture of an individual's serological status. Implications of the hypothesis Failure to distinguish between individuals who do not get a clinical episode during follow-up because they were unexposed and those who are genuinely immune undermines our ability to assign a protective role to immune responses against malaria. The brevity of antibodies responses makes it difficult to assign the true serological status of an individual at any given time, i.e. those positive at a survey may be negative by the time they encounter the next infection.
Collapse
Affiliation(s)
- Samson M Kinyanjui
- Kenyan Medical Research Institute (KEMRI), Centre for Geographic Medicine Research (Coast), PO Box 230, Kilifi 80108, Kenya.
| | | | | | | | | |
Collapse
|
31
|
Low prevalence of antibodies to preerythrocytic but not blood-stage Plasmodium falciparum antigens in an area of unstable malaria transmission compared to prevalence in an area of stable malaria transmission. Infect Immun 2008; 76:5721-8. [PMID: 18809666 DOI: 10.1128/iai.00591-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In areas where levels of transmission of Plasmodium falciparum are high and stable, the age-related acquisition of high-level immunoglobulin G (IgG) antibodies to preerythrocytic circumsporozoite protein (CSP) and liver-stage antigen 1 (LSA-1) has been associated with protection from clinical malaria. In contrast, age-related protection from malaria develops slowly or not at all in residents of epidemic-prone areas with unstable low levels of malaria transmission. We hypothesized that this suboptimal clinical and parasitological immunity may in part be due to reduced antibodies to CSP or LSA-1 and/or vaccine candidate blood-stage antigens. Frequencies and levels of IgG antibodies to CSP, LSA-1, thrombospondin-related adhesive protein (TRAP), apical membrane antigen 1 (AMA-1), erythrocyte binding antigen 175 (EBA-175), and merozoite surface protein 1 (MSP-1) were compared in 243 Kenyans living in a highland area of unstable transmission and 210 residents of a nearby lowland area of stable transmission. Levels of antibodies to CSP, LSA-1, TRAP, and AMA-1 in the oldest age group (>40 years) in the unstable transmission area were lower than or similar to those of children 2 to 6 years old in the stable transmission area. Only 3.3% of individuals in the unstable transmission area had high levels of IgG (>2 arbitrary units) to both CSP and LSA-1, compared to 43.3% of individuals in the stable transmission area. In contrast, antibody levels to and frequencies of MSP-1 and EBA-175 were similar in adults in areas of stable and unstable malaria transmission. Suboptimal immunity to malaria in areas of unstable malaria transmission may relate in part to infrequent high-level antibodies to preerythrocytic antigens and AMA-1.
Collapse
|
32
|
Torres KJ, Clark EH, Hernandez JN, Soto-Cornejo KE, Gamboa D, Branch OH. Antibody response dynamics to the Plasmodium falciparum conserved vaccine candidate antigen, merozoite surface protein-1 C-terminal 19kD (MSP1-19kD), in Peruvians exposed to hypoendemic malaria transmission. Malar J 2008; 7:173. [PMID: 18782451 PMCID: PMC2557017 DOI: 10.1186/1475-2875-7-173] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 09/09/2008] [Indexed: 11/17/2022] Open
Abstract
Background In high-transmission areas, developing immunity to symptomatic Plasmodium falciparum infections requires 2–10 years of uninterrupted exposure. Delayed malaria-immunity has been attributed to difficult-to-develop and then short-lived antibody responses. Methods In a study area with <0.5 P. falciparum infections/person/year, antibody responses to the MSP1-19kD antigen were evaluated and associations with P. falciparum infections in children and adults. In months surrounding and during the malaria seasons of 2003–2004, 1,772 participants received ≥6 active visits in one study-year. Community-wide surveys were conducted at the beginning and end of each malaria season, and weekly active visits were completed for randomly-selected individuals each month. There were 79 P. falciparum infections with serum samples collected during and approximately one month before and after infection. Anti-MSP1-19kD IgG levels were measured by ELISA. Results The infection prevalence during February-July was similar in children (0.02–0.12 infections/person/month) and adults (0.03–0.14 infections/person/month) and was negligible in the four-month dry season. In children and adults, the seroprevalence was maintained in the beginning (children = 28.9%, adults = 61.8%) versus ending malaria-season community survey (children = 26.7%, adults = 64.6%). Despite the four-month non-transmission season, the IgG levels in Plasmodium-negative adults were similar to P. falciparum-positive adults. Although children frequently responded upon infection, the transition from a negative/low level before infection to a high level during/after infection was slower in children. Adults and children IgG-positive before infection had reduced symptoms and parasite density. Conclusion Individuals in low transmission areas can rapidly develop and maintain αMSP1-19kD IgG responses for >4 months, unlike responses reported in high transmission study areas. A greater immune capacity might contribute to the frequent asymptomatic P. falciparum infections in this Peruvian population.
Collapse
Affiliation(s)
- Katherine J Torres
- Department of Medicine, Division of Infectious Disease, University of Alabama, Alabama, Birmingham, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate Molecular Interactions of P. falciparum Merozoite Proteins Involved in Invasion of Red Blood Cells and Their Implications for Vaccine Design. Chem Rev 2008; 108:3656-705. [DOI: 10.1021/cr068407v] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Gladys Cifuentes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Claudia Reyes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | | |
Collapse
|
34
|
Lucchi NW, Tongren JE, Jain V, Nagpal AC, Kauth CW, Woehlbier U, Bujard H, Dash AP, Singh N, Stiles JK, Udhayakumar V. Antibody responses to the merozoite surface protein-1 complex in cerebral malaria patients in India. Malar J 2008; 7:121. [PMID: 18601721 PMCID: PMC2491629 DOI: 10.1186/1475-2875-7-121] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 07/04/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum infection causes cerebral malaria (CM) in a subset of patients with anti-malarial treatment protecting only about 70% to 80% of patients. Why a subset of malaria patients develops CM complications, including neurological sequelae or death, is still not well understood. It is believed that host immune factors may modulate CM outcomes and there is substantial evidence that cellular immune factors, such as cytokines, play an important role in this process. In this study, the potential relationship between the antibody responses to the merozoite surface protein (MSP)-1 complex (which consists of four fragments namely: MSP-1(83), MSP-1(30), MSP-1(38) and MSP-1(42)), MSP-6(36) and MSP-7(22) and CM was investigated. METHODS Peripheral blood antibody responses to recombinant antigens of the two major allelic forms of MSP-1 complex, MSP-6(36) and MSP-7(22) were compared between healthy subjects, mild malaria patients (MM) and CM patients residing in a malaria endemic region of central India. Total IgG and IgG subclass antibody responses were determined using ELISA method. RESULTS The prevalence and levels of IgG and its subclasses in the plasma varied for each antigen. In general, the prevalence of total IgG, IgG1 and IgG3 was higher in the MM patients and lower in CM patients compared to healthy controls. Significantly lower levels of total IgG antibodies to the MSP-1(f38), IgG1 levels to MSP-1(d83), MSP-1(19) and MSP-6(36) and IgG3 levels to MSP-1(f42) and MSP-7(22) were observed in CM patients as compared to MM patients. CONCLUSION These results suggest that there may be some dysregulation in the generation of antibody responses to some MSP antigens in CM patients and it is worth investigating further whether perturbations of antibody responses in CM patients contribute to pathogenesis.
Collapse
Affiliation(s)
- Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dicko A, Sagara I, Ellis RD, Miura K, Guindo O, Kamate B, Sogoba M, Niambelé MB, Sissoko M, Baby M, Dolo A, Mullen GED, Fay MP, Pierce M, Diallo DA, Saul A, Miller LH, Doumbo OK. Phase 1 study of a combination AMA1 blood stage malaria vaccine in Malian children. PLoS One 2008; 3:e1563. [PMID: 18270560 PMCID: PMC2216433 DOI: 10.1371/journal.pone.0001563] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Accepted: 12/27/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Apical Membrane Antigen-1 (AMA1) is one of the leading blood stage malaria vaccine candidates. AMA1-C1/Alhydrogel consists of an equal mixture of recombinant AMA1 from FVO and 3D7 clones of P. falciparum, adsorbed onto Alhydrogel. A Phase 1 study in semi-immune adults in Mali showed that the vaccine was safe and immunogenic, with higher antibody responses in those who received the 80 microg dose. The aim of this study was to assess the safety and immunogenicity of this vaccine in young children in a malaria endemic area. DESIGN This was a Phase 1 dose escalating study in 36 healthy children aged 2-3 years started in March 2006 in Donéguébougou, Mali. Eighteen children in the first cohort were randomized 2 ratio 1 to receive either 20 microg AMA1-C1/Alhydrogel or Haemophilus influenzae type b Hiberix vaccine. Two weeks later 18 children in the second cohort were randomized 2 ratio 1 to receive either 80 microg AMA1-C1/Alhydrogel or Haemophilus influenzae type b Hiberix vaccine. Vaccinations were administered on Days 0 and 28 and participants were examined on Days 1, 2, 3, 7, and 14 after vaccination and then about every two months. Results to Day 154 are reported in this manuscript. RESULTS Of 36 volunteers enrolled, 33 received both vaccinations. There were 9 adverse events related to the vaccination in subjects who received AMA1-C1 vaccine and 7 in those who received Hiberix. All were mild to moderate. No vaccine-related serious or grade 3 adverse events were observed. There was no increase in adverse events with increasing dose of vaccine or number of immunizations. In subjects who received the test vaccine, antibodies to AMA1 increased on Day 14 and peaked at Day 42, with changes from baseline significantly different from subjects who received control vaccine. CONCLUSION AMA-C1 vaccine is well tolerated and immunogenic in children in this endemic area although the antibody response was short lived. TRIAL REGISTRATION Clinicaltrials.gov NCT00341250.
Collapse
Affiliation(s)
- Alassane Dicko
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Ruth D. Ellis
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kazutoyo Miura
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ousmane Guindo
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Beh Kamate
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Moussa Sogoba
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Mohamed Balla Niambelé
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Mady Sissoko
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Mounirou Baby
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Amagana Dolo
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Gregory E. D. Mullen
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael P. Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark Pierce
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dapa A. Diallo
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Allan Saul
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Louis H. Miller
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- *E-mail: (LHM); (OKD)
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
- *E-mail: (LHM); (OKD)
| |
Collapse
|
36
|
Characterization of the antibody response against Plasmodium falciparum erythrocyte membrane protein 1 in human volunteers. Infect Immun 2007; 75:5967-73. [PMID: 17923524 DOI: 10.1128/iai.00327-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immune response against the Plasmodium falciparum variant surface antigen P. falciparum erythrocyte membrane protein 1 (PfEMP1) is a key component of clinical immunity against falciparum malaria. In this study, we used sera from human volunteers who had been infected with the P. falciparum 3D7 strain to investigate the development, specificity, and dynamics of anti-PfEMP1 antibodies measured against six different strain 3D7 Duffy binding-like domain 1alpha (DBL1alpha) fusion proteins. We observed that a parasitemia of 20 to 200 infected erythrocytes per mul was required to trigger an antibody response to DBL1alpha and that antibodies against one DBL1alpha variant cross-react with other DBL1alpha variants. Both serum and purified immunoglobulin Gs (IgGs) were able to agglutinate infected erythrocytes, and purified anti-DBL1alpha IgGs bound to the live infected red blood cell surface in a punctate surface pattern, confirming that the IgGs recognize native PfEMP1. Analysis of sera from tourists naturally infected with P. falciparum suggests that the anti-PfEMP1 antibodies often persisted for more than 100 days after a single infection. These results help to further our understanding of the development of acquired immunity to P. falciparum infections.
Collapse
|
37
|
Kinyanjui SM, Conway DJ, Lanar DE, Marsh K. IgG antibody responses to Plasmodium falciparum merozoite antigens in Kenyan children have a short half-life. Malar J 2007; 6:82. [PMID: 17598897 PMCID: PMC1920526 DOI: 10.1186/1475-2875-6-82] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 06/28/2007] [Indexed: 11/15/2022] Open
Abstract
Background Data suggest that antibody responses to malaria parasites merozoite antigens are generally short-lived and this has implications for serological studies and malaria vaccine designs. However, precise data on the kinetics of these responses is lacking. Methods IgG1 and IgG3 responses to five recombinant Plasmodium falciparum merozoite antigens (MSP-119, MSP-2 type A and B, AMA-1 ectodomain and EBA-175 region II) among Kenyan children were monitored using ELISA for 12 weeks after an acute episode of malaria and their half-lives estimated using an exponential decay model. Results The responses peaked mainly at week 1 and then decayed rapidly to very low levels within 6 weeks. Estimation of the half-lives of 40 IgG1 responses yielded a mean half-life of 9.8 days (95% CI: 7.6 – 12.0) while for 16 IgG3 responses it was 6.1 days (95% CI: 3.7 – 8.4), periods that are shorter than those normally described for the catabolic half-life of these antibody subclasses. Conclusion This study indicates antibodies against merozoite antigens have very short half-lives and this has to be taken into account when designing serological studies and vaccines based on the antigens.
Collapse
Affiliation(s)
- Samson M Kinyanjui
- Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, P.O. Box 230, Kilifi, Kenya
| | - David J Conway
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK & MRC laboratories, Fajara, P.O. Box 273, Banjul, The Gambia
| | - David E Lanar
- Department of Immunology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Kevin Marsh
- Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, P.O. Box 230, Kilifi, Kenya
| |
Collapse
|
38
|
Dobaño C, Rogerson SJ, Taylor TE, McBride JS, Molyneux ME. Expression of merozoite surface protein markers by Plasmodium falciparum-infected erythrocytes in peripheral blood and tissues of children with fatal malaria. Infect Immun 2006; 75:643-52. [PMID: 17118989 PMCID: PMC1828492 DOI: 10.1128/iai.01527-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequestration of Plasmodium falciparum-infected erythrocytes is a pathological feature of fatal cerebral malaria. P. falciparum is genetically diverse among, and often within, patients. Preferential sequestration of certain genotypes might be important in pathogenesis. We compared circulating parasites with parasites sequestered in the brain, spleen, liver, and lung in the same Malawian children with fatal malaria, classifying serotypes using antibodies to merozoite surface proteins 1 and 2 and immunofluorescence in order to differentiate parasites and to quantify the proportions of each serotype. We found (i) similar distributions of various serotypes in different tissues and (ii) concordance between parasite serotypes in peripheral blood and parasite serotypes in tissues. No serotypes predominated in the brain in cerebral malaria, and parasites belonging to a single serotype did not cluster within individual vessels or within single tissues. These findings do not support the hypothesis that cerebral malaria is caused by cerebral sequestration of certain virulent types.
Collapse
Affiliation(s)
- Carlota Dobaño
- Centre de Salut Internacional, Hospital Clínic/IDIBAPS, Universitat de Barcelona, E-08036 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
39
|
Achtman AH, Bull PC, Stephens R, Langhorne J. Longevity of the Immune Response and Memory to Blood-Stage Malaria Infection. Curr Top Microbiol Immunol 2005; 297:71-102. [PMID: 16265903 DOI: 10.1007/3-540-29967-x_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Immunity to malaria develops slowly with protection against the parasite lagging behind protection against disease symptoms. The data on the longevity of protective immune responses are sparse. However, studies of antibody responses associated with protection reveal that they consist of a short- and a long-lived component. Compared with the antibody levels observed in other infection and immunization systems, the levels of the short-lived antibody compartment drop below the detectable threshold with unusual rapidity. The prevalence of long-lived antibodies is comparable to that seen after bacterial and protozoan infections. There is even less available data concerning T cell longevity in malaria infection, but what there is seems to indicate that T cell memory is short in the absence of persistent antigen. In general, the degree and duration of parasite persistence represent a major factor determining how immune response longevity and protection correlate. The predilection for short-lived immune responses in malaria infection could be caused by a number of mechanisms resulting from the interplay of normal regulatory mechanisms of the immune system and immune evasion by the parasite. In conclusion, it appears that the parasite-host relationship has developed to favor some short-lived responses, which allow the host to survive while allowing the parasite to persist. Anti-malarial immune responses present a complex picture, and many aspects of regulation and longevity of the response require further research.
Collapse
Affiliation(s)
- A H Achtman
- Molecular Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | | | | | | |
Collapse
|
40
|
Ferrante A, Rzepczyk CM. Atypical IgG subclass antibody responses to Plasmodium falciparum asexual stage antigens. ACTA ACUST UNITED AC 2005; 13:145-8. [PMID: 15275101 DOI: 10.1016/s0169-4758(97)89812-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of Plasmodium falciparum to induce long-term immunity in the absence of continual restimulation has often been questioned. Recently it has been shown that, while a high proportion of individuals living in areas of high malaria endemicity have antibodies to merozoite surface antigen 2 (MSA2; MSP2) of P. falciparum, these antibodies are primarily of the IgG3 subclass. In this article, Antonio Ferrante and Christine Rzepczyk discuss how such atypical antibody responses may in part explain why immunity to malaria has been widely perceived to be short-lived.
Collapse
Affiliation(s)
- A Ferrante
- Department of Immunopathology. The Women's and Children's Hospital, Adelaide, South Australia, 5006, Australia
| | | |
Collapse
|
41
|
Abstract
It is widely perceived that immunity to malaria is, to an extent, defective and that one component of this defective immune response is the inability to induce or maintain long-term memory responses. If true, this is likely to pose problems for development of an effective vaccine against malaria. In this article, we critically review and challenge this interpretation of the epidemiological and experimental evidence. While evasion and modulation of host immune responses clearly occurs and naturally acquired immunity is far from optimal, mechanisms to control blood-stage parasites are acquired and maintained by individuals living in endemic areas, allowing parasite density to be kept below the threshold for induction of acute disease. Furthermore, protective immunity to severe pathology is achieved relatively rapidly and is maintained in the absence of boosting by re-infection. Nevertheless, there are significant challenges to overcome. The need for multiple infections to acquire immunity means that young children remain at risk of infection for far too long. Persistent or frequent exposure to antigen seems to be required to maintain anti-parasite immunity (premunition). Lastly, pre-erythrocytic and sexual stages of the life cycle are poorly immunogenic, and there is little evidence of effective pre-erythrocytic or transmission-blocking immunity at the population level. While these problems might theoretically be due to defective immunological memory, we suggest alternative explanations. Moreover, we question the extent to which these problems are malaria-specific rather than generic (i.e. result from inherent limitations of the vertebrate immune system).
Collapse
Affiliation(s)
- Siske S Struik
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
42
|
Cavanagh DR, Dodoo D, Hviid L, Kurtzhals JAL, Theander TG, Akanmori BD, Polley S, Conway DJ, Koram K, McBride JS. Antibodies to the N-terminal block 2 of Plasmodium falciparum merozoite surface protein 1 are associated with protection against clinical malaria. Infect Immun 2004; 72:6492-502. [PMID: 15501780 PMCID: PMC522997 DOI: 10.1128/iai.72.11.6492-6502.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This longitudinal prospective study shows that antibodies to the N-terminal block 2 region of the Plasmodium falciparum merozoite surface protein 1 (MSP-1) are associated with protection against clinical malaria in an area of stable but seasonal malaria transmission of Ghana. Antibodies to the block 2 region of MSP-1 were measured in a cohort of 280 children before the beginning of the major malaria transmission season. The cohort was then actively monitored for malaria, clinically and parasitologically, over a period of 17 months. Evidence is presented for an association between antibody responses to block 2 and a significantly reduced risk of subsequent clinical malaria. Furthermore, statistical survival analysis provides new information on the duration of the effect over time. The results support a conclusion that the block 2 region of MSP-1 is a target of protective immunity against P. falciparum and, thus, a promising new candidate for the development of a malaria vaccine.
Collapse
Affiliation(s)
- David R Cavanagh
- Institute of Cell, Animal and Population Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Rd., EH9 3JT, Scotland, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Achtman AH, Khan M, MacLennan ICM, Langhorne J. Plasmodium chabaudi chabaudi infection in mice induces strong B cell responses and striking but temporary changes in splenic cell distribution. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:317-24. [PMID: 12817013 DOI: 10.4049/jimmunol.171.1.317] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cells and Abs play a key role in controlling the erythrocytic stage of malaria. However, little is known about the way the humoral response develops during infection. We show that Plasmodium chabaudi chabaudi causes major, but temporary changes in the distribution of leukocytes in the spleen. Despite these changes, an ordered response to infection develops, which includes vigorous extrafollicular growth of plasmablasts and germinal center formation. Early in the response, the lymphocytes in the T zone and follicles become widely spaced, and the edges of these compartments blur. This effect is maximal around the peak of parasitemia. Germinal centers are apparent by day 8, peak at day 20, and persist through day 60. Extrafollicular foci of plasmablasts are visible from day 4 and initiate a very strong plasma cell response. Initially, the plasma cells have a conventional red pulp distribution, but by day 10 they are unconventionally sited in the periarteriolar region of the white pulp. In this region they form clusters occupying part of the area normally filled by T cells. B cells are absent from the marginal zone for at least 30 days after the peak of infection, although flow cytometry shows their continued presence in the spleen throughout infection. Relatively normal splenic architecture is regained by day 60 of infection. These results show that the changes in splenic cell distribution are linked to the presence of parasites and do not seem to interfere with the development of the humoral response.
Collapse
Affiliation(s)
- Ariel H Achtman
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
| | | | | | | |
Collapse
|
44
|
Polley SD, Tetteh KKA, Cavanagh DR, Pearce RJ, Lloyd JM, Bojang KA, Okenu DMN, Greenwood BM, McBride JS, Conway DJ. Repeat sequences in block 2 of Plasmodium falciparum merozoite surface protein 1 are targets of antibodies associated with protection from malaria. Infect Immun 2003; 71:1833-42. [PMID: 12654798 PMCID: PMC152097 DOI: 10.1128/iai.71.4.1833-1842.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human antibodies to the block 2 region of Plasmodium falciparum merozoite surface protein 1 (MSP1) are associated with a reduced prospective risk of clinical malaria. Block 2 is highly polymorphic, but all known alleles can be grouped into three major types. Two of these types (the K1-like and MAD20-like types) contain type-specific sequences (found in all alleles of a particular type) that flank polymorphic tripeptide repeats. These repeats contain both type-specific and subtype-specific sequences. To evaluate the antibody recognition of these parts of block 2, a new panel of six recombinant proteins was used (fused type-specific flanking sequences and two representative repeat sequences for each of the K1-like and MAD20-like types separately). Extensive testing of these antigens and full-length block 2 antigens showed that human serum immunoglobulin G antibodies induced by infection can recognize (i) type-specific epitopes in the repeats, (ii) subtype-specific epitopes in the repeats, or (iii) type-specific epitopes in flanking sequences. A large prospective study in The Gambia showed that antibodies to the repeats are strongly associated with protection from clinical malaria. The results are important for design of a vaccine to induce protective antibodies, and they address hypotheses about repeat sequences in malaria antigens.
Collapse
Affiliation(s)
- Spencer D Polley
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ekala MT, Jouin H, Lekoulou F, Issifou S, Mercereau-Puijalon O, Ntoumi F. Plasmodium falciparum merozoite surface protein 1 (MSP1): genotyping and humoral responses to allele-specific variants. Acta Trop 2002; 81:33-46. [PMID: 11755430 DOI: 10.1016/s0001-706x(01)00188-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study is the first to investigate Plasmodium falciparum merozoite surface protein 1 (MSP1) allele-specific humoral responses in residents of central Africa. In endemic areas, acquired immune responses to malaria are assumed to reflect the need to be infected with a large number of antigenically diverse parasite populations. In the work presented here, the relationship between antibody specificity and the infecting parasite genotype was investigated in asymptomatic subjects and patients with uncomplicated malaria in order to possibly clarify the relationship between anti-MSP1 block2 antibodies and clinical malaria. Overall isolates were typed by nested PCR using allele-specific primers of the P. falciparum MSP1 gene to identify the infecting parasite genotype. The K1 type was the predominant allelic family in both clinical groups. Polyinfection (number of isolates with more than one parasite genotype) and the complexity of infections (mean number of parasite genotype per infected subject) were higher in isolates from asymptomatic individuals. Total immunoglobulins G (IgG) responses to schizont crude extract antigens and to MSP1 variant-specific peptides were assessed by ELISA test. More than 90% of the sera reacted against schizont extract, whatever the clinical group and the K1 seroprevalence was the highest in both clinical groups. Our results showed an age-dependence in the number of different variants of MSP1 block2 recognised by serum. Indeed, isolates from older (>14 years) subjects showed lower multiplicity of infection and higher was the mean number of different MSP1 variants recognised by their serum. This corresponded to the age reported for the acquisition of anti-parasite immunity under high malaria endemicity. The contribution of variant-specific immunity in asymptomatic malaria infections is discussed.
Collapse
Affiliation(s)
- Marie-Thérèse Ekala
- Centre International de Recherches Médicales, Franceville (CIRMF) B.P. 769, Franceville, Gabon
| | | | | | | | | | | |
Collapse
|
46
|
Cavanagh DR, Dobaño C, Elhassan IM, Marsh K, Elhassan A, Hviid L, Khalil EA, Theander TG, Arnot DE, McBride JS. Differential patterns of human immunoglobulin G subclass responses to distinct regions of a single protein, the merozoite surface protein 1 of Plasmodium falciparum. Infect Immun 2001; 69:1207-11. [PMID: 11160024 PMCID: PMC98008 DOI: 10.1128/iai.69.2.1207-1211.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparisons of immunoglobulin G (IgG) subclass responses to the major polymorphic region and to a conserved region of MSP-1 in three cohorts of African villagers exposed to Plasmodium falciparum revealed that responses to Block 2 are predominantly IgG3 whereas antibodies to MSP-1(19) are mainly IgG1. The striking dominance of IgG3 to Block 2 may explain the short duration of this response and also the requirement for continuous stimulation by malaria infection to maintain clinical immunity.
Collapse
Affiliation(s)
- D R Cavanagh
- Institute of Cell, Animal and Population Biology, Division of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, Scotland. cavanagh@
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jouin H, Rogier C, Trape JF, Mercereau-Puijalon O. Fixed, epitope-specific, cytophilic antibody response to the polymorphic block 2 domain of the Plasmodium falciparum merozoite surface antigen MSP-1 in humans living in a malaria-endemic area. Eur J Immunol 2001; 31:539-50. [PMID: 11180119 DOI: 10.1002/1521-4141(200102)31:2<539::aid-immu539>3.0.co;2-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MSP-1 merozoite surface antigen of the human malaria parasite Plasmodium falciparum is a major target of immune response. The domain called block 2 shows extensive allelic diversity, with more than 50 alleles identified, grouped into three allelic families. Presence of anti-block 2 antibodies has been associated with reduced risk for clinical malaria, but whether or not allele-specific antibodies are implicated remains unclear. To study the fine specificity of the human antibody response, we have used a series of 82 overlapping, N-biotinylated, 15-mer peptides scanning reference alleles and including numerous sequence variants. Peptide antigenicity was validated using sera from mice immunized with recombinant proteins. A cross-sectional survey conducted in a Senegalese village with intense malaria transmission indicated an overall 56 % seroprevalence. The response was specific for individuals and unrelated to the HLA type. Each responder reacted to a few peptides, unrelated to the infecting parasite genotype(s). Seroprevalence of each individual peptide was low, with no identifiable immunodominant epitope. Anti-block 2 antibodies were mostly of the IgG3 isotype, consistent with an involvement in cytophilic antibody-mediated merozoite clearance. The number of responders increased with age, but there was no accumulation of novel specificities with age and hence with exposure to an increasingly large number of alleles. A 15-month longitudinal follow up outlined a remarkably fixed response, with identical reactivity profiles, independent of the past or current parasite types, a pattern reminiscent of clonal imprinting. The implications of the characteristics of the anti-block 2 antibody response in parasite clearance are discussed.
Collapse
Affiliation(s)
- H Jouin
- Unité d'Immunologie Moléculaire des Parasites, CNRS URA 1960, Institut Pasteur, Paris, France.
| | | | | | | |
Collapse
|
48
|
Johnson A, Leke R, Harun L, Ginsberg C, Ngogang J, Stowers A, Saul A, Quakyi IA. Interaction of HLA and age on levels of antibody to Plasmodium falciparum rhoptry-associated proteins 1 and 2. Infect Immun 2000; 68:2231-6. [PMID: 10722624 PMCID: PMC97408 DOI: 10.1128/iai.68.4.2231-2236.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum rhoptry-associated proteins 1 and 2 (RAP1 and RAP2) are candidate antigens for a subunit malaria vaccine. The design of the study, which looks at the acquisition of immunity to malaria from childhood to old age, has allowed us to document the interaction of HLA and age on levels of antibody to specific malarial antigens. Antibodies reach maximum levels to RAP1 after the age of 15 but to RAP2 only after the age of 30. The effect of HLA-DRB1 and -DQB1 and age on levels of antibody to rRAP1 and rRAP2 was analyzed with a multiple regression model in which all HLA alleles and age were independent variables. DQB1*0301 and -*03032 showed an age-dependent association with levels of antibody to rRAP1, being significant in children 5 to 15 years (P < 0.001) but not in individuals over 15 years of age. DRB1*03011 showed an age-dependent association with antibody levels to rRAP2; however, this association was in adults over the age of 30 years (P < 0.01) but not in individuals under the age of 30 years. No associations were detected between DRB1 alleles and RAP1 antibody levels or between DQB1 alleles and RAP2 antibody levels. Thus, not only the HLA allele but also the age at which an interaction is manifested varies for different malarial antigens. The interaction may influence either the rate of acquisition of antibody or the final level of antibody acquired by adults.
Collapse
Affiliation(s)
- A Johnson
- Pediatrics, Georgetown University, Washington, D.C., USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Da Silveira LA, Dorta ML, Kimura EA, Katzin AM, Kawamoto F, Tanabe K, Ferreira MU. Allelic diversity and antibody recognition of Plasmodium falciparum merozoite surface protein 1 during hypoendemic malaria transmission in the Brazilian amazon region. Infect Immun 1999; 67:5906-16. [PMID: 10531247 PMCID: PMC96973 DOI: 10.1128/iai.67.11.5906-5916.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polymorphic merozoite surface protein (MSP-1) of Plasmodium falciparum is a major asexual blood-stage malaria vaccine candidate. The impact of allelic diversity on recognition of MSP-1 during the immune response remains to be investigated in areas of hypoendemicity such as the Brazilian Amazon region. In this study, PCR was used to type variable regions, blocks 2, 4, and 10, of the msp-1 gene and to characterize major gene types (unique combinations of allelic types in variable blocks) in P. falciparum isolates collected across the Amazon basin over a period of 12 years. Twelve of the 24 possible gene types were found among 181 isolates, and 68 (38%) of them had more than one gene type. Temporal, but not spatial, variation was found in the distribution of MSP-1 gene types in the Amazon. Interestingly, some gene types occurred more frequently than expected from random assortment of allelic types in different blocks, as previously found in other areas of endemicity. We also compared the antibody recognition of polymorphic (block 2), dimorphic (block 6), and conserved (block 3) regions of MSP-1 in Amazonian malaria patients and clinically immune Africans, using a panel of recombinant peptides. Results were summarized as follows. (i) All blocks were targeted by naturally acquired cytophilic antibodies of the subclasses IgG1 and IgG3, but the balance between IgG1 and IgG3 depended on the subjects' cumulative exposure to malaria. (ii) The balance between IgG1 and IgG3 subclasses and the duration of antibody responses differed in relation to distinct MSP-1 peptides. (iii) Antibody responses to variable blocks 2 and 6 were predominantly type specific, but variant-specific antibodies that target isolate-specific repetitive motifs within block 2 were more frequent in Amazonian patients than in previously studied African populations.
Collapse
Affiliation(s)
- L A Da Silveira
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
50
|
Dodoo D, Theander TG, Kurtzhals JA, Koram K, Riley E, Akanmori BD, Nkrumah FK, Hviid L. Levels of antibody to conserved parts of Plasmodium falciparum merozoite surface protein 1 in Ghanaian children are not associated with protection from clinical malaria. Infect Immun 1999; 67:2131-7. [PMID: 10225865 PMCID: PMC115948 DOI: 10.1128/iai.67.5.2131-2137.1999] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 19-kDa conserved C-terminal part of the Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is a malaria vaccine candidate antigen, and human antibody responses to PfMSP119 have been associated with protection against clinical malaria. In this longitudinal study carried out in an area of stable but seasonal malaria transmission with an estimated parasite inoculation of about 20 infective bites/year, we monitored 266 3- to 15-year-old Ghanaian children clinically and parasitologically over a period of 18 months. Blood samples were collected at the beginning of the study before the major malaria season in April and after the season in November. Using enzyme-linked immunosorbent assay, we measured antibody responses to recombinant gluthathione S-transferase-PfMSP119 fusion proteins corresponding to the Wellcome and MAD20 allelic variants in these samples. Prevalence of antibodies recognizing the Wellcome 19 construct containing both epidermal growth factor (EGF)-like motifs in Wellcome type PfMSP119 was about 30%. Prevalence of antibodies to constructs containing only the first EGF domain from either Wellcome or MAD20 type PfMSP119 was about 15%, whereas antibodies recognizing a construct containing only the second EGF domain of MAD20 type PfMSP119 was found in only about 4% of the donors. Neither the prevalence nor the levels of any of the antibody specificities varied significantly with season, age, or sex. Significantly, and in contrast to previous reports from other parts of West Africa, we found no evidence of an association between antibody responses to PfMSP119 and clinical protection against malaria.
Collapse
Affiliation(s)
- D Dodoo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | | | | | | | | | | | | |
Collapse
|