1
|
Sangeetha Vijayan P, Xavier J, Valappil MP. A review of immune modulators and immunotherapy in infectious diseases. Mol Cell Biochem 2024; 479:1937-1955. [PMID: 37682390 DOI: 10.1007/s11010-023-04825-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/05/2023] [Indexed: 09/09/2023]
Abstract
The human immune system responds to harmful foreign invaders frequently encountered by the body and employs defense mechanisms to counteract such assaults. Various exogenous and endogenous factors play a prominent role in maintaining the balanced functioning of the immune system, which can result in immune suppression or immune stimulation. With the advent of different immune-modulatory agents, immune responses can be modulated or regulated to control infections and other health effects. Literature provides evidence on various immunomodulators from different sources and their role in modulating immune responses. Due to the limited efficacy of current drugs and the rise in drug resistance, there is a growing need for new therapies for infectious diseases. In this review, we aim to provide a comprehensive overview of different immune-modulating agents and immune therapies specifically focused on viral infectious diseases.
Collapse
Affiliation(s)
- P Sangeetha Vijayan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India
| | - Joseph Xavier
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India
| | - Mohanan Parayanthala Valappil
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India.
| |
Collapse
|
2
|
Clarke A, Llabona IM, Khalid N, Hulvey D, Irvin A, Adams N, Heine HS, Eshraghi A. Tolfenpyrad displays Francisella-targeted antibiotic activity that requires an oxidative stress response regulator for sensitivity. Microbiol Spectr 2023; 11:e0271323. [PMID: 37800934 PMCID: PMC10848828 DOI: 10.1128/spectrum.02713-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Francisella species are highly pathogenic bacteria that pose a threat to global health security. These bacteria can be made resistant to antibiotics through facile methods, and we lack a safe and protective vaccine. Given their history of development as bioweapons, new treatment options must be developed to bolster public health preparedness. Here, we report that tolfenpyrad, a pesticide that is currently in use worldwide, effectively inhibits the growth of Francisella. This drug has an extensive history of use and a plethora of safety and toxicity data, making it a good candidate for development as an antibiotic. We identified mutations in Francisella novicida that confer resistance to tolfenpyrad and characterized a transcriptional regulator that is required for sensitivity to both tolfenpyrad and reactive oxygen species.
Collapse
Affiliation(s)
- Ashley Clarke
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Isabelle M. Llabona
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Nimra Khalid
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Danielle Hulvey
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Alexis Irvin
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Nicole Adams
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Henry S. Heine
- Institute for Therapeutic Innovation, University of Florida, Orlando, Florida, USA
| | - Aria Eshraghi
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Host Immunity and Francisella tularensis: A Review of Tularemia in Immunocompromised Patients. Microorganisms 2021; 9:microorganisms9122539. [PMID: 34946140 PMCID: PMC8707036 DOI: 10.3390/microorganisms9122539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 01/31/2023] Open
Abstract
Tularemia, caused by the bacterium Francisella tularensis, is an infrequent zoonotic infection, well known in immunocompetent (but poorly described in immunocompromised) patients. Although there is no clear literature data about the specific characteristics of this disease in immunocompromised patients, clinical reports seem to describe a different presentation of tularemia in these patients. Moreover, atypical clinical presentations added to the fastidiousness of pathogen identification seem to be responsible for a delayed diagnosis, leading to a” loss of chance” for immunocompromised patients. In this article, we first provide an overview of the host immune responses to Francisella infections and discuss how immunosuppressive therapies or diseases can lead to a higher susceptibility to tularemia. Then, we describe the particular clinical patterns of tularemia in immunocompromised patients from the literature. We also provide hints of an alternative diagnostic strategy regarding these patients. In conclusion, tularemia should be considered in immunocompromised patients presenting pulmonary symptoms or unexplained fever. Molecular techniques on pathological tissues might improve diagnosis with faster results.
Collapse
|
4
|
Deletion Mutants of Francisella Phagosomal Transporters FptA and FptF Are Highly Attenuated for Virulence and Are Protective Against Lethal Intranasal Francisella LVS Challenge in a Murine Model of Respiratory Tularemia. Pathogens 2021; 10:pathogens10070799. [PMID: 34202420 PMCID: PMC8308642 DOI: 10.3390/pathogens10070799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Francisella tularensis (Ft) is a Gram-negative, facultative intracellular bacterium that is a Tier 1 Select Agent of concern for biodefense for which there is no licensed vaccine. A subfamily of 9 Francisella phagosomal transporter (fpt) genes belonging to the Major Facilitator Superfamily of transporters was identified as critical to pathogenesis and potential targets for attenuation and vaccine development. We evaluated the attenuation and protective capacity of LVS derivatives with deletions of the fptA and fptF genes in the C57BL/6J mouse model of respiratory tularemia. LVSΔfptA and LVSΔfptF were highly attenuated with LD50 values of >20 times that of LVS when administered intranasally and conferred 100% protection against lethal challenge. Immune responses to the fpt mutant strains in mouse lungs on day 6 post-infection were substantially modified compared to LVS and were associated with reduced organ burdens and reduced pathology. The immune responses to LVSΔfptA and LVSΔfptF were characterized by decreased levels of IL-10 and IL-1β in the BALF versus LVS, and increased numbers of B cells, αβ and γδ T cells, NK cells, and DCs versus LVS. These results support a fundamental requirement for FptA and FptF in the pathogenesis of Ft and the modulation of the host immune response.
Collapse
|
5
|
Abstract
There remains to this day a great gap in understanding as to the role of B cells and their products-antibodies and cytokines-in mediating the protective response to Francisella tularensis, a Gram-negative coccobacillus belonging to the group of facultative intracellular bacterial pathogens. We previously have demonstrated that Francisella interacts directly with peritoneal B-1a cells. Here, we demonstrate that, as early as 12 h postinfection, germ-free mice infected with Francisella tularensis produce infection-induced antibody clones reacting with Francisella tularensis proteins having orthologs or analogs in eukaryotic cells. Production of some individual clones was limited in time and was influenced by virulence of the Francisella strain used. The phylogenetically stabilized defense mechanism can utilize these early infection-induced antibodies both to recognize components of the invading pathogens and to eliminate molecular residues of infection-damaged self cells.
Collapse
|
6
|
Bradford MK, Elkins KL. Immune lymphocytes halt replication of Francisella tularensis LVS within the cytoplasm of infected macrophages. Sci Rep 2020; 10:12023. [PMID: 32694562 PMCID: PMC7374111 DOI: 10.1038/s41598-020-68798-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Francisella tularensis is a highly infectious intracellular bacterium that causes tularemia by invading and replicating in mammalian myeloid cells. Francisella primarily invades host macrophages, where it escapes phagosomes within a few hours and replicates in the cytoplasm. Less is known about how Francisella traffics within macrophages or exits into the extracellular environment for further infection. Immune T lymphocytes control the replication of Francisella within macrophages in vitro by a variety of mechanisms, but nothing is known about intracellular bacterial trafficking in the face of such immune pressure. Here we used a murine model of infection with a Francisella attenuated live vaccine strain (LVS), which is under study as a human vaccine, to evaluate the hypothesis that immune T cells control intramacrophage bacterial growth by re-directing bacteria into toxic intracellular compartments of infected macrophages. We visualized the interactions of lymphocytes and LVS-infected macrophages using confocal microscopy and characterized LVS intramacrophage trafficking when co-cultured with immune lymphocytes. We focused on the late stages of infection after bacteria escape from phagosomes, through bacterial replication and the death of macrophages. We found that the majority of LVS remained cytosolic in the absence of immune pressure, eventually resulting in macrophage death. In contrast, co-culture of LVS-infected macrophages with LVS-immune lymphocytes halted LVS replication and inhibited the spread of LVS infection between macrophages, but bacteria did not return to vacuoles such as lysosomes or autophagosomes and macrophages did not die. Therefore, immune lymphocytes directly limit intracellular bacterial replication within the cytoplasm of infected macrophages.
Collapse
Affiliation(s)
- Mary Katherine Bradford
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.,Johns Hopkins University Professional Development and Career Office, 1830 E. Monument, 2-107, Baltimore, MD, 21287, USA
| | - Karen L Elkins
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
7
|
Gregory DJ, DeLoid GM, Salmon SL, Metzger DW, Kramnik I, Kobzik L. SON DNA-binding protein mediates macrophage autophagy and responses to intracellular infection. FEBS Lett 2020; 594:2782-2799. [PMID: 32484234 DOI: 10.1002/1873-3468.13851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/11/2020] [Indexed: 12/09/2022]
Abstract
Intracellular pathogens affect diverse host cellular defence and metabolic pathways. Here, we used infection with Francisella tularensis to identify SON DNA-binding protein as a central determinant of macrophage activities. RNAi knockdown of SON increases survival of human macrophages following F. tularensis infection or inflammasome stimulation. SON is required for macrophage autophagy, interferon response factor 3 expression, type I interferon response and inflammasome-associated readouts. SON knockdown has gene- and stimulus-specific effects on inflammatory gene expression. SON is required for accurate splicing and expression of GBF1, a key mediator of cis-Golgi structure and function. Chemical GBF1 inhibition has similar effects to SON knockdown, suggesting that SON controls macrophage functions at least in part by controlling Golgi-associated processes.
Collapse
Affiliation(s)
- David J Gregory
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Pediatric Infectious Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Glen M DeLoid
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sharon L Salmon
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Dennis W Metzger
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, MA, USA
| | - Lester Kobzik
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
8
|
Soucy AM, Hurteau GJ, Metzger DW. Live Vaccination Generates Both Disease Tolerance and Host Resistance During Chronic Pulmonary Infection With Highly Virulent Francisella tularensis SchuS4. J Infect Dis 2019; 218:1802-1812. [PMID: 29931113 DOI: 10.1093/infdis/jiy379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Disease tolerance can preserve host homeostasis and limit the negative impact of infections. We report that vaccinated mice survived pulmonary challenge with the extremely virulent SchuS4 strain of Francisella tularensis for at least 100 days, despite the persistence of large numbers (~104) of organisms. Transfer of 100 of these resident bacteria to naive animals caused 100% lethality, demonstrating that virulence was maintained. Tissue damage in the lung was limited over the course of infection and was associated with increased levels of amphiregulin. Mice depleted of CD4+ cells had reduced amphiregulin and succumbed to infection. In addition, neutralization of interferon-γ or depletion of CD8+ cells resulted in increased pathogen loads, bacteremia, and death of the host. Conversely, depletion of Ly6G+ neutrophils had no effect on survival and actually resulted in reduced bacterial levels. Understanding the interplay between host resistance and disease tolerance will provide new insights into the understanding of chronic infectious diseases.
Collapse
Affiliation(s)
- Alicia M Soucy
- Department of Immunology and Microbial Disease, Albany Medical College, New York
| | - Gregory J Hurteau
- Department of Immunology and Microbial Disease, Albany Medical College, New York
| | - Dennis W Metzger
- Department of Immunology and Microbial Disease, Albany Medical College, New York
| |
Collapse
|
9
|
Protective effects of the Francisella tularensis ΔpdpC mutant against its virulent parental strain SCHU P9 in Cynomolgus macaques. Sci Rep 2019; 9:9193. [PMID: 31235714 PMCID: PMC6591246 DOI: 10.1038/s41598-019-45412-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/06/2019] [Indexed: 11/09/2022] Open
Abstract
Tularemia is a severe infectious zoonotic disease caused by Francisella tularensis. Although F. tularensis is considered to be a potential biological weapon due to its high infectivity and mortality rate, no vaccine has been currently licensed. Recently, we reported that F. tularensis SCHU P9 derived ΔpdpC strain lacking the pathogenicity determinant protein C gene conferred stable and good protection in a mouse lethal model. In this study, the protective effect of ΔpdpC was evaluated using a monkey lethal model. Two cynomolgus macaques (Macaca fascicularis) intratracheally challenged with the virulent strain SCHU P9 were euthanized on 7 and 11 days post-challenge after the development of severe clinical signs. The bacterial replication in alveolar macrophages and type II epithelial cells in the lungs would cause severe pneumonia accompanied by necrosis. Conversely, two animals subcutaneously immunized with ΔpdpC survived 3 weeks after SCHU P9 challenge. Though one of the two animals developed mild symptoms of tularemia, bacterial replication was limited in the respiratory organs, which may be due to a high level of humoral and cellular immune responses against F. tularensis. These results suggest that the ΔpdpC mutant would be a safe and promising candidate as a live attenuated tularemia vaccine.
Collapse
|
10
|
Roberts LM, Powell DA, Frelinger JA. Adaptive Immunity to Francisella tularensis and Considerations for Vaccine Development. Front Cell Infect Microbiol 2018; 8:115. [PMID: 29682484 PMCID: PMC5898179 DOI: 10.3389/fcimb.2018.00115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is an intracellular bacterium that causes the disease tularemia. There are several subspecies of F. tularensis whose ability to cause disease varies in humans. The most virulent subspecies, tularensis, is a Tier One Select Agent and a potential bioweapon. Although considerable effort has made to generate efficacious tularemia vaccines, to date none have been licensed for use in the United States. Despite the lack of a tularemia vaccine, we have learned a great deal about the adaptive immune response the underlies protective immunity. Herein, we detail the animal models commonly used to study tularemia and their recapitulation of human disease, the field's current understanding of vaccine-mediated protection, and discuss the challenges associated with new vaccine development.
Collapse
Affiliation(s)
- Lydia M Roberts
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Daniel A Powell
- Department of Immunobiology and Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| | - Jeffrey A Frelinger
- Department of Immunobiology and Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
11
|
Eneslätt K, Golovliov I, Rydén P, Sjöstedt A. Vaccine-Mediated Mechanisms Controlling Replication of Francisella tularensis in Human Peripheral Blood Mononuclear Cells Using a Co-culture System. Front Cell Infect Microbiol 2018; 8:27. [PMID: 29468144 PMCID: PMC5808333 DOI: 10.3389/fcimb.2018.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/23/2018] [Indexed: 11/17/2022] Open
Abstract
Cell-mediated immunity (CMI) is normally required for efficient protection against intracellular infections, however, identification of correlates is challenging and they are generally lacking. Francisella tularensis is a highly virulent, facultative intracellular bacterium and CMI is critically required for protection against the pathogen, but how this is effectuated in humans is poorly understood. To understand the protective mechanisms, we established an in vitro co-culture assay to identify how control of infection of F. tularensis is accomplished by human cells and hypothesized that the model will mimic in vivo immune mechanisms. Non-adherent peripheral blood mononuclear cells (PBMCs) were expanded with antigen and added to cultures with adherent PBMC infected with the human vaccine strain, LVS, or the highly virulent SCHU S4 strain. Intracellular numbers of F. tularensis was followed for 72 h and secreted and intracellular cytokines were analyzed. Addition of PBMC expanded from naïve individuals, i.e., those with no record of immunization to F. tularensis, generally resulted in little or no control of intracellular bacterial growth, whereas addition of PBMC from a majority of F. tularensis-immune individuals executed static and sometimes cidal effects on intracellular bacteria. Regardless of infecting strain, statistical differences between the two groups were significant, P < 0.05. Secretion of 11 cytokines was analyzed after 72 h of infection and significant differences with regard to secretion of IFN-γ, TNF, and MIP-1β was observed between immune and naïve individuals for LVS-infected cultures. Also, in LVS-infected cultures, CD4 T cells from vaccinees, but not CD8 T cells, showed significantly higher expression of IFN-γ, MIP-1β, TNF, and CD107a than cells from naïve individuals. The co-culture system appears to identify correlates of immunity that are relevant for the understanding of mechanisms of the protective host immunity to F. tularensis.
Collapse
Affiliation(s)
- Kjell Eneslätt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Patrik Rydén
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Brenz Y, Winther-Larsen HC, Hagedorn M. Expanding Francisella models: Pairing up the soil amoeba Dictyostelium with aquatic Francisella. Int J Med Microbiol 2017; 308:32-40. [PMID: 28843671 DOI: 10.1016/j.ijmm.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
The bacterial genus Francisella comprises highly pathogenic species that infect mammals, arthropods, fish and protists. Understanding virulence and host defense mechanisms of Francisella infection relies on multiple animal and cellular model systems. In this review, we want to summarize the most commonly used Francisella host model platforms and highlight novel, alternative model systems using aquatic Francisella species. Established mouse and macrophage models contributed extensively to our understanding of Francisella infection. However, murine and human cells display significant differences in their response to Francisella infection. The zebrafish and the amoeba Dictyostelium are well-established model systems for host-pathogen interactions and open up opportunities to investigate bacterial virulence and host defense. Comparisons between model systems using human and fish pathogenic Francisella species revealed shared virulence strategies and pathology between them. Hence, zebrafish and Dictyostelium might complement current model systems to find new vaccine candidates and contribute to our understanding of Francisella infection.
Collapse
Affiliation(s)
- Yannick Brenz
- Department of Parasitology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| | - Hanne C Winther-Larsen
- Centre for Integrative Microbial Evolution (CIME) and Department of Pharmaceutical Biosciences, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway.
| | - Monica Hagedorn
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
13
|
Monophosphoryl Lipid A Enhances Efficacy of a Francisella tularensis LVS-Catanionic Nanoparticle Subunit Vaccine against F. tularensis Schu S4 Challenge by Augmenting both Humoral and Cellular Immunity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00574-16. [PMID: 28077440 DOI: 10.1128/cvi.00574-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 01/01/2023]
Abstract
Francisella tularensis, a bacterial biothreat agent, has no approved vaccine in the United States. Previously, we showed that incorporating lysates from partially attenuated F. tularensis LVS or fully virulent F. tularensis Schu S4 strains into catanionic surfactant vesicle (V) nanoparticles (LVS-V and Schu S4-V, respectively) protected fully against F. tularensis LVS intraperitoneal (i.p.) challenge in mice. However, we achieved only partial protection against F. tularensis Schu S4 intranasal (i.n.) challenge, even when employing heterologous prime-boost immunization strategies. We now extend these findings to show that both LVS-V and Schu S4-V immunization (i.p./i.p.) elicited similarly high titers of anti-F. tularensis IgG and that the titers could be further increased by adding monophosphoryl lipid A (MPL), a nontoxic Toll-like receptor 4 (TLR4) adjuvant that is included in several U.S. FDA-approved vaccines. LVS-V+MPL immune sera also detected more F. tularensis antigens than LVS-V immune sera and, after passive transfer to naive mice, significantly delayed the time to death against F. tularensis Schu S4 subcutaneous (s.c.) but not i.n. challenge. Active immunization with LVS-V+MPL (i.p./i.p.) also increased the frequency of gamma interferon (IFN-γ)-secreting activated helper T cells, IFN-γ production, and the ability of splenocytes to control intramacrophage F. tularensis LVS replication ex vivo Active LVS-V+MPL immunization via heterologous routes (i.p./i.n.) significantly elevated IgA and IgG levels in bronchoalveolar lavage fluid and significantly enhanced protection against i.n. F. tularensis Schu S4 challenge (to ∼60%). These data represent a significant step in the development of a subunit vaccine against the highly virulent type A strains.
Collapse
|
14
|
Roberts LM, Crane DD, Wehrly TD, Fletcher JR, Jones BD, Bosio CM. Inclusion of Epitopes That Expand High-Avidity CD4+ T Cells Transforms Subprotective Vaccines to Efficacious Immunogens against Virulent Francisella tularensis. THE JOURNAL OF IMMUNOLOGY 2016; 197:2738-47. [PMID: 27543611 DOI: 10.4049/jimmunol.1600879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/21/2016] [Indexed: 12/24/2022]
Abstract
T cells are the immunological cornerstone in host defense against infections by intracellular bacterial pathogens, such as virulent Francisella tularensis spp. tularensis (Ftt). The general paucity of novel vaccines for Ftt during the past 60 y can, in part, be attributed to the poor understanding of immune parameters required to survive infection. Thus, we developed a strategy utilizing classical immunological tools to elucidate requirements for effective adaptive immune responses directed against Ftt. Following generation of various Francisella strains expressing well-characterized lymphocytic choriomeningitis virus epitopes, we found that survival correlated with persistence of Ag-specific CD4(+) T cells. Function of these cells was confirmed in their ability to more effectively control Ftt replication in vitro. The importance of understanding the Ag-specific response was underscored by our observation that inclusion of an epitope that elicits high-avidity CD4(+) T cells converted a poorly protective vaccine to one that engenders 100% protection. Taken together, these data suggest that improved efficacy of current tularemia vaccine platforms will require targeting appropriate Ag-specific CD4(+) T cell responses and that elucidation of Francisella epitopes that elicit high-avidity CD4(+) T cell responses, specifically in humans, will be required for successful vaccine development.
Collapse
Affiliation(s)
- Lydia M Roberts
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| | - Deborah D Crane
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| | - Tara D Wehrly
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| | - Joshua R Fletcher
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Bradley D Jones
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| |
Collapse
|
15
|
Babadjanova Z, Wiedinger K, Gosselin EJ, Bitsaktsis C. Targeting of a Fixed Bacterial Immunogen to Fc Receptors Reverses the Anti-Inflammatory Properties of the Gram-Negative Bacterium, Francisella tularensis, during the Early Stages of Infection. PLoS One 2015; 10:e0129981. [PMID: 26114641 PMCID: PMC4482730 DOI: 10.1371/journal.pone.0129981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/13/2015] [Indexed: 02/02/2023] Open
Abstract
Production of pro-inflammatory cytokines by innate immune cells at the early stages of bacterial infection is important for host protection against the pathogen. Many intracellular bacteria, including Francisella tularensis, the agent of tularemia, utilize the anti-inflammatory cytokine IL-10, to evade the host immune response. It is well established that IL-10 has the ability to inhibit robust antigen presentation by dendritic cells and macrophages, thus suppressing the generation of protective immunity. The pathogenesis of F. tularensis is not fully understood, and research has failed to develop an effective vaccine to this date. In the current study, we hypothesized that F. tularensis polarizes antigen presenting cells during the early stages of infection towards an anti-inflammatory status characterized by increased synthesis of IL-10 and decreased production of IL-12p70 and TNF-α in an IFN-ɣ-dependent fashion. In addition, F. tularensis drives an alternative activation of alveolar macrophages within the first 48 hours post-infection, thus allowing the bacterium to avoid protective immunity. Furthermore, we demonstrate that targeting inactivated F. tularensis (iFt) to Fcγ receptors (FcɣRs) via intranasal immunization with mAb-iFt complexes, a proven vaccine strategy in our laboratories, reverses the anti-inflammatory effects of the bacterium on macrophages by down-regulating production of IL-10. More specifically, we observed that targeting of iFt to FcγRs enhances the classical activation of macrophages not only within the respiratory mucosa, but also systemically, at the early stages of infection. These results provide important insight for further understanding the protective immune mechanisms generated when targeting immunogens to Fc receptors.
Collapse
Affiliation(s)
- Zulfia Babadjanova
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
| | - Kari Wiedinger
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
| | - Edmund J. Gosselin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Constantine Bitsaktsis
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
16
|
Roberts LM, Ledvina HE, Sempowski GD, Frelinger JA. TLR2 Signaling is Required for the Innate, but Not Adaptive Response to LVS clpB. Front Immunol 2014; 5:426. [PMID: 25250027 PMCID: PMC4155801 DOI: 10.3389/fimmu.2014.00426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/20/2014] [Indexed: 11/21/2022] Open
Abstract
Toll-like receptor 2 (TLR2) is the best-characterized pattern-recognition receptor for the highly pathogenic intracellular bacterium, Francisella tularensis. We previously identified a mutant in the live vaccine strain (LVS) of Francisella, LVS clpB, which is attenuated, but induces a protective immune response. We sought to determine whether TLR2 signaling was required during the immune response to LVS clpB. TLR2 knock-out (TLR2 KO) mice previously infected with LVS clpB are completely protected during a lethal challenge with LVS. Furthermore, the kinetics and magnitude of the primary T-cell response in B6 and TLR2 KO mice are similar indicating that TLR2 signaling is dispensable for the adaptive immune response to LVS clpB. TLR2 signaling was important, however, for the innate immune response to LVS clpB. We identified three classes of cytokines/chemokines that differ in their dependence on TLR2 signaling for production on day 3 post-inoculation in the bronchoalveolar lavage fluid. IL-1α, IL-1β, IL-2, IL-17, MIP-1α, and TNF-α production depended on TLR2 signaling, while GM-CSF, IFN-γ, and VEGF production were completely independent of TLR2 signaling. IL-6, IL-12, IP-10, KC, and MIG production were partially dependent on TLR2 signaling. Together our data indicate that the innate immune response to LVS clpB requires TLR2 signaling for the maximal innate response, whereas TLR2 is not required for the adaptive immune response.
Collapse
Affiliation(s)
- Lydia M Roberts
- Department of Immunobiology, University of Arizona , Tucson, AZ , USA
| | - Hannah E Ledvina
- Department of Immunobiology, University of Arizona , Tucson, AZ , USA
| | | | | |
Collapse
|
17
|
Lu Z, Rynkiewicz MJ, Madico G, Li S, Yang CY, Perkins HM, Sompuram SR, Kodela V, Liu T, Morris T, Wang D, Roche MI, Seaton BA, Sharon J. B-cell epitopes in GroEL of Francisella tularensis. PLoS One 2014; 9:e99847. [PMID: 24968190 PMCID: PMC4072690 DOI: 10.1371/journal.pone.0099847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/16/2014] [Indexed: 01/01/2023] Open
Abstract
The chaperonin protein GroEL, also known as heat shock protein 60 (Hsp60), is a prominent antigen in the human and mouse antibody response to the facultative intracellular bacterium Francisella tularensis (Ft), the causative agent of tularemia. In addition to its presumed cytoplasmic location, FtGroEL has been reported to be a potential component of the bacterial surface and to be released from the bacteria. In the current study, 13 IgG2a and one IgG3 mouse monoclonal antibodies (mAbs) specific for FtGroEL were classified into eleven unique groups based on shared VH-VL germline genes, and seven crossblocking profiles revealing at least three non-overlapping epitope areas in competition ELISA. In a mouse model of respiratory tularemia with the highly pathogenic Ft type A strain SchuS4, the Ab64 and N200 IgG2a mAbs, which block each other’s binding to and are sensitive to the same two point mutations in FtGroEL, reduced bacterial burden indicating that they target protective GroEL B-cell epitopes. The Ab64 and N200 epitopes, as well as those of three other mAbs with different crossblocking profiles, Ab53, N3, and N30, were mapped by hydrogen/deuterium exchange–mass spectrometry (DXMS) and visualized on a homology model of FtGroEL. This model was further supported by its experimentally-validated computational docking to the X-ray crystal structures of Ab64 and Ab53 Fabs. The structural analysis and DXMS profiles of the Ab64 and N200 mAbs suggest that their protective effects may be due to induction or stabilization of a conformational change in FtGroEL.
Collapse
Affiliation(s)
- Zhaohua Lu
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Michael J. Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Guillermo Madico
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sheng Li
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Chiou-Ying Yang
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Hillary M. Perkins
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Seshi R. Sompuram
- Medical Discovery Partners, LLC, Boston, Massachusetts, United States of America
| | - Vani Kodela
- Medical Discovery Partners, LLC, Boston, Massachusetts, United States of America
| | - Tong Liu
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Timothy Morris
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Daphne Wang
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Marly I. Roche
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara A. Seaton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacqueline Sharon
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Roberts LM, Davies JS, Sempowski GD, Frelinger JA. IFN-γ, but not IL-17A, is required for survival during secondary pulmonary Francisella tularensis Live Vaccine Stain infection. Vaccine 2014; 32:3595-603. [PMID: 24837506 DOI: 10.1016/j.vaccine.2014.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/02/2014] [Accepted: 05/01/2014] [Indexed: 01/01/2023]
Abstract
IL-17 and IFN-γ production by Th17 and Th1 cells, respectively, is critical for survival during primary respiratory infection with the pathogenic bacterium, Francisella tularensis Live Vaccine Strain (LVS). The importance, however, of these T cell subsets and their soluble mediators is not well understood during a secondary or memory response. We measured the number of CD4(+) T cells producing IFN-γ or IL-17 in the spleen and lungs of vaccinated mice on day four of the secondary response using intracellular cytokine staining in order to identify protective T cell subsets participating in the memory response. Few bacteria were present in spleens of vaccinated mice on day four and a T cell response was not observed. In the lung, where more bacteria were present, there was a robust Th1 response in vaccinated mice but Th17 cells were not present at higher numbers in vaccinated mice compared to unvaccinated mice. These data show that the lung is the dominant site of the secondary immune response and suggest that Th17 cells are not required for survival during secondary challenge. To further investigate the importance of IFN-γ and IL-17 during the secondary response to F. tularensis, we neutralized either IFN-γ or IL-17 in vivo using monoclonal antibody treatment. Vaccinated mice treated with anti-IFN-γ lost more weight and had higher bacterial burdens compared to vaccinated mice treated with isotype control antibody. In contrast, treatment with anti-IL-17A antibody did not alter weight loss profiles or bacterial burdens compared to mice treated with isotype control antibody. Together, these results suggested that IFN-γ is required during both primary and secondary respiratory F. tularensis infection. IL-17, on the other hand, is only critical during the primary response to respiratory F. tularensis but dispensable during the secondary response.
Collapse
Affiliation(s)
- Lydia M Roberts
- Department of Immunobiology, University of Arizona, 1656 E. Mabel Street, MRB 218,Tucson, AZ 85718, United States
| | - John S Davies
- Department of Immunobiology, University of Arizona, 1656 E. Mabel Street, MRB 218,Tucson, AZ 85718, United States
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, 909 S. LaSalle Street, Durham, NC 27710, United States
| | - Jeffrey A Frelinger
- Department of Immunobiology, University of Arizona, 1656 E. Mabel Street, MRB 218,Tucson, AZ 85718, United States.
| |
Collapse
|
19
|
Abstract
The adaptive immune response to Francisella tularensis is dependent on the route of inoculation. Intradermal inoculation with the F. tularensis live vaccine strain (LVS) results in a robust Th1 response in the lungs, whereas intranasal inoculation produces fewer Th1 cells and instead many Th17 cells. Interestingly, bacterial loads in the lungs are similar early after inoculation by these two routes. We hypothesize that the adaptive immune response is influenced by local events in the lungs, such as the type of cells that are first infected with Francisella. Using fluorescence-activated cell sorting, we identified alveolar macrophages as the first cell type infected in the lungs of mice intranasally inoculated with F. novicida U112, LVS, or F. tularensis Schu S4. Following bacterial dissemination from the skin to the lung, interstitial macrophages or neutrophils are infected. Overall, we identified the early interactions between Francisella and the host following two different routes of inoculation.
Collapse
|
20
|
Paranavitana C, DaSilva L, Vladimirova A, Pittman PR, Velauthapillai M, Nikolich M. Transcriptional profiling of recall responses to Francisella live vaccine strain. Pathog Dis 2014; 70:141-52. [PMID: 24453125 DOI: 10.1111/2049-632x.12113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/01/2013] [Accepted: 10/31/2013] [Indexed: 02/02/2023] Open
Abstract
Global gene expression profile changes were monitored in human peripheral blood mononuclear cells (PBMCs) after challenge with the live vaccine strain (LVS) of Francisella tularensis. Because these PBMCs were from individuals previously immunized with LVS, stimulating these cells with LVS should activate memory responses. The Ingenuity Pathway Analysis tool identified pathways, functions, and networks associated with this in vitro recall response, including novel pathways triggered by the memory response. Dendritic cell (DC) maturation was the most significant among the more than 25 relevant pathways discovered. Interleukin 15, granulocyte-macrophage colony-stimulating factor, and triggering receptor expressed on myeloid cells 1 signaling pathways were also significant. Pathway analysis indicated that Class 1 antigen presentation may not be optimal with LVS vaccination. The top three biological functions were antigen presentation, cell-mediated and humoral immune responses. Network analysis revealed that the top network associated with these functions had IFNγ and TNFα in central interactive positions. Our results suggest that DC maturation is a key factor in the recall responses and that more effective antigen processing and presentation is needed for cytotoxic T lymphocyte responses. Taken together, these considerations are critical for future tularemia vaccine development studies.
Collapse
|
21
|
T-bet regulates immunity to Francisella tularensis live vaccine strain infection, particularly in lungs. Infect Immun 2014; 82:1477-90. [PMID: 24421047 DOI: 10.1128/iai.01545-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Upregulation of the transcription factor T-bet is correlated with the strength of protection against secondary challenge with the live vaccine strain (LVS) of Francisella tularensis. Thus, to determine if this mediator had direct consequences in immunity to LVS, we examined its role in infection. Despite substantial in vivo gamma interferon (IFN-γ) levels, T-bet-knockout (KO) mice infected intradermally (i.d.) or intranasally (i.n.) with LVS succumbed to infection with doses 2 log units less than those required for their wild-type (WT) counterparts, and exhibited significantly increased bacterial burdens in the lung and spleen. Lungs of LVS-infected T-bet-KO mice contained fewer lymphocytes and more neutrophils and interleukin-17 than WT mice. LVS-vaccinated T-bet-KO mice survived lethal LVS intraperitoneal secondary challenge but not high doses of LVS i.n. challenge, independently of the route of vaccination. Immune T lymphocytes from the spleens of i.d. LVS-vaccinated WT or KO mice controlled intracellular bacterial replication in an in vitro coculture system, but cultures with T-bet-KO splenocyte supernatants contained less IFN-γ and increased amounts of tumor necrosis factor alpha. In contrast, immune T-bet-KO lung lymphocytes were greatly impaired in controlling intramacrophage growth of LVS; this functional defect is the likely mechanism underpinning the lack of respiratory protection. Taken together, T-bet is important in host resistance to primary LVS infection and i.n. secondary challenge. Thus, T-bet represents a true, useful correlate for immunity to LVS.
Collapse
|
22
|
Antibodies to both terminal and internal B-cell epitopes of Francisella tularensis O-polysaccharide produced by patients with tularemia. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:227-33. [PMID: 24351753 DOI: 10.1128/cvi.00626-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Francisella tularensis, the Gram-negative bacterium that causes tularemia, is considered a potential bioterrorism threat due to its low infectivity dose and the high morbidity and mortality from respiratory disease. We previously characterized two mouse monoclonal antibodies (MAbs) specific for the O-polysaccharide (O antigen [OAg]) of F. tularensis lipopolysaccharide (LPS): Ab63, which targets a terminal epitope at the nonreducing end of OAg, and Ab52, which targets a repeating internal OAg epitope. These two MAbs were protective in a mouse model of respiratory tularemia. To determine whether these epitope types are also targeted by humans, we tested the ability of each of 18 blood serum samples from 11 tularemia patients to inhibit the binding of Ab63 or Ab52 to F. tularensis LPS in a competition enzyme-linked immunosorbent assay (ELISA). Although all serum samples had Ab63- and Ab52-inhibitory activities, the ratios of Ab63 to Ab52 inhibitory potencies varied 75-fold. However, the variation was only 2.3-fold for sequential serum samples from the same patient, indicating different distributions of terminal- versus internal-binding antibodies in different individuals. Western blot analysis using class-specific anti-human Ig secondary antibodies showed that both terminal- and internal-binding OAg antibodies were of the IgG, IgM, and IgA isotypes. These results support the use of a mouse model to discover protective B-cell epitopes for tularemia vaccines or prophylactic/therapeutic antibodies, and they present a general strategy for interrogating the antibody responses of patients and vaccinees to microbial carbohydrate epitopes that have been characterized in experimental animals.
Collapse
|
23
|
Su S, Saldanha R, Pemberton A, Bangar H, Kawamoto SA, Aronow B, Hassett DJ, Lamkin TJ. Characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agent bacterium, Francisella tularensis Schu S4 and the surrogate type B live vaccine strain (LVS). Appl Microbiol Biotechnol 2013; 97:9029-41. [PMID: 23852642 DOI: 10.1007/s00253-013-5081-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/20/2013] [Accepted: 06/22/2013] [Indexed: 11/29/2022]
Abstract
Here, we constructed stable, constitutively expressed, chromosomal green (GFP) and red fluorescent (RFP) reporters in the genome of the surrogate strain, Francisella tularensis spp. holarctica LVS (herein LVS), and the select agent, F. tularensis Schu S4. A bioinformatic approach was used to identify constitutively expressed genes. Two promoter regions upstream of the FTT1794 and rpsF(FTT1062) genes were selected and fused with GFP and RFP reporter genes in pMP815, respectively. While the LVS strains with chromosomally integrated reporter fusions exhibited fluorescence, we were unable to deliver the same fusions into Schu S4. Neither a temperature-sensitive Francisella replicon nor a pBBR replicon in the modified pMP815 derivatives facilitated integration. However, a mini-Tn7 integration system was successful at integrating the reporter fusions into the Schu S4 genome. Finally, fluorescent F. tularensis LVS and a mutant lacking MglA were assessed for growth in monocyte-derived macrophages (MDMs). As expected, when compared to wild-type bacteria, replication of an mglA mutant was significantly diminished, and the overall level of fluorescence dramatically decreased with infection time. The utility of the fluorescent Schu S4 strain was also examined within infected MDMs treated with clarithromycin and enrofloxacin. Taken together, this study describes the development of an important reagent for F. tularensis research, especially since the likelihood of engineered antibiotic resistant strains will emerge with time. Such strains will be extremely useful in high-throughput screens for novel compounds that could interfere with critical virulence processes in this important bioweapons agent and during infection of alveolar macrophages.
Collapse
Affiliation(s)
- Shengchang Su
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0524, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Russo BC, Brown MJ, Nau GJ. MyD88-dependent signaling prolongs survival and reduces bacterial burden during pulmonary infection with virulent Francisella tularensis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1223-1232. [PMID: 23920326 DOI: 10.1016/j.ajpath.2013.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/06/2013] [Accepted: 06/11/2013] [Indexed: 01/24/2023]
Abstract
Francisella tularensis is the causative agent of the debilitating febrile illness tularemia. The severe morbidity associated with F. tularensis infections is attributed to its ability to evade the host immune response. Innate immune activation is undetectable until more than 48 hours after infection. The ensuing inflammatory response is considered pathological, eliciting a septic-like state characterized by hypercytokinemia and cell death. To investigate potential pathological consequences of the innate immune response, mice deficient in a key innate immune signaling molecule, MyD88, were studied. MyD88 knockout (KO) mice were infected with the prototypical virulent F. tularensis strain, Schu S4. MyD88 KO mice succumbed to infection more rapidly than wild-type mice. The enhanced pathogenicity of Schu S4 in MyD88 KO mice was associated with greater bacterial burdens in lungs and distal organs, and the absence of IFN-γ in the lungs, spleens, and sera. Cellular infiltrates were not observed on histological evaluation of the lungs, livers, or spleens of MyD88 KO mice, the first KO mouse described with this phenotype to our knowledge. Despite the absence of cellular infiltration, there was more cell death in the lungs of MyD88 KO mice. Thus, the host proinflammatory response is beneficial, and MyD88 signaling is required to limit bacterial burden and prolong survival during pulmonary infection by virulent F. tularensis.
Collapse
Affiliation(s)
- Brian C Russo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew J Brown
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard J Nau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
25
|
Increased susceptibility of IgA-deficient mice to pulmonary Francisella tularensis live vaccine strain infection. Infect Immun 2013; 81:3434-41. [PMID: 23836815 DOI: 10.1128/iai.00408-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is most deadly in the pneumonic form; therefore, mucosal immunity is an important first line of defense against this pathogen. We have now evaluated the lethality of primary F. tularensis live vaccine strain (LVS) pulmonary infection in mice that are defective in IgA (IgA(-/-) mice), the predominant mucosal Ig isotype. The results showed that IgA(-/-) mice were more susceptible than IgA(+/+) mice to intranasal F. tularensis LVS infection, despite developing higher levels of LVS-specific total, IgG, and IgM antibodies in the bronchoalveolar lavage specimens following infection. In addition, the absence of IgA resulted in a significant increase in bacterial loads and reduced survival. Interestingly, IgA(-/-) mice had lower pulmonary gamma interferon (IFN-γ) levels and decreased numbers of IFN-γ-secreting CD4(+) and CD8(+) T cells in the lung on day 9 postinfection compared to IgA(+/+) mice. Furthermore, IgA(-/-) mice displayed reduced interleukin 12 (IL-12) levels at early time points, and supplementing IgA(-/-) mice with IL-12 prior to LVS challenge induced IFN-γ production by NK cells and rescued them from mortality. Thus, IgA(-/-) mice are highly susceptible to primary pulmonary LVS infections not only because of IgA deficiency but also because of reduced IFN-γ responses.
Collapse
|
26
|
Targeting the "Rising DAMP" during a Francisella tularensis Infection. Antimicrob Agents Chemother 2013; 57:4222-4228. [PMID: 23796927 DOI: 10.1128/aac.01885-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022] Open
Abstract
Antibiotic efficacy is greatly enhanced the earlier it is administered following infection with a bacterial pathogen. However, in a clinical setting antibiotic treatment usually commences following the onset of symptoms, which in some cases (e.g., biothreat agents) may be too late. In a BALB/c murine intranasal model of infection for Francisella tularensis SCHU S4 infection, we demonstrate during a time course experiment that proinflammatory cytokines and the damage-associated molecular pattern HMGB1 were not significantly elevated above naive levels in tissue or sera until 72 h postinfection. HMGB1 was identified as a potential therapeutic target that could extend the window of opportunity for the treatment of tularemia with antibiotics. Antibodies to HMGB1 were administered in conjunction with a delayed/suboptimal levofloxacin treatment of F. tularensis We found in the intranasal model of infection that treatment with anti-HMGB1 antibody, compared to an isotype IgY control antibody, conferred a significant survival benefit and decreased bacterial loads in the spleen and liver but not the lung (primary loci of infection) 4 days into infection. We also observed an increase in the production of gamma interferon in all tested organs. These data demonstrate that treatment with anti-HMGB1 antibody is beneficial in enhancing the effectiveness of current antibiotics in treating tularemia. Strategies of this type, involving antibiotics in combination with immunomodulatory drugs, are likely to be essential for the development of a postexposure therapeutic for intracellular pathogens.
Collapse
|
27
|
Walters KA, Olsufka R, Kuestner RE, Cho JH, Li H, Zornetzer GA, Wang K, Skerrett SJ, Ozinsky A. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses. PLoS One 2013; 8:e62412. [PMID: 23690939 PMCID: PMC3653966 DOI: 10.1371/journal.pone.0062412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/20/2013] [Indexed: 12/26/2022] Open
Abstract
Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4). Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis) and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa) pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.
Collapse
|
28
|
Celli J, Zahrt TC. Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb Perspect Med 2013; 3:a010314. [PMID: 23545572 DOI: 10.1101/cshperspect.a010314] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Francisella tularensis is a zoonotic intracellular pathogen and the causative agent of the debilitating febrile illness tularemia. Although natural infections by F. tularensis are sporadic and generally localized, the low infectious dose, with the ability to be transmitted to humans via multiple routes and the potential to cause life-threatening infections, has led to concerns that this bacterium could be used as an agent of bioterror and released intentionally into the environment. Recent studies of F. tularensis and other closely related Francisella species have greatly increased our understanding of mechanisms used by this organism to infect and cause disease within the host. Here, we review the intracellular life cycle of Francisella and highlight key genetic determinants and/or pathways that contribute to the survival and proliferation of this bacterium within host cells.
Collapse
Affiliation(s)
- Jean Celli
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MO 59840, USA
| | | |
Collapse
|
29
|
Infection with Francisella tularensis LVS clpB leads to an altered yet protective immune response. Infect Immun 2013; 81:2028-42. [PMID: 23529616 DOI: 10.1128/iai.00207-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial attenuation is typically thought of as reduced bacterial growth in the presence of constant immune pressure. Infection with Francisella tularensis elicits innate and adaptive immune responses. Several in vivo screens have identified F. tularensis genes necessary for virulence. Many of these mutations render F. tularensis defective for intracellular growth. However, some mutations have no impact on intracellular growth, leading us to hypothesize that these F. tularensis mutants are attenuated because they induce an altered host immune response. We were particularly interested in the F. tularensis LVS (live vaccine strain) clpB (FTL_0094) mutant because this strain was attenuated in pneumonic tularemia yet induced a protective immune response. The attenuation of LVS clpB was not due to an intracellular growth defect, as LVS clpB grew similarly to LVS in primary bone marrow-derived macrophages and a variety of cell lines. We therefore determined whether LVS clpB induced an altered immune response compared to that induced by LVS in vivo. We found that LVS clpB induced proinflammatory cytokine production in the lung early after infection, a process not observed during LVS infection. LVS clpB provoked a robust adaptive immune response similar in magnitude to that provoked by LVS but with increased gamma interferon (IFN-γ) and interleukin-17A (IL-17A) production, as measured by mean fluorescence intensity. Altogether, our results indicate that LVS clpB is attenuated due to altered host immunity and not an intrinsic growth defect. These results also indicate that disruption of a nonessential gene(s) that is involved in bacterial immune evasion, like F. tularensis clpB, can serve as a model for the rational design of attenuated vaccines.
Collapse
|
30
|
IKKβ in myeloid cells controls the host response to lethal and sublethal Francisella tularensis LVS infection. PLoS One 2013; 8:e54124. [PMID: 23349802 PMCID: PMC3551972 DOI: 10.1371/journal.pone.0054124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 12/10/2012] [Indexed: 11/26/2022] Open
Abstract
Background The NF-κB activating kinases, IKKα and IKKβ, are key regulators of inflammation and immunity in response to infection by a variety of pathogens. Both IKKα and IKKβ have been reported to modulate either pro- or anti- inflammatory programs, which may be specific to the infectious organism or the target tissue. Here, we analyzed the requirements for the IKKs in myeloid cells in vivo in response to Francisella tularensis Live Vaccine Strain (Ft. LVS) infection. Methods and Principal Findings In contrast to prior reports in which conditional deletion of IKKβ in the myeloid lineage promoted survival and conferred resistance to an in vivo group B streptococcus infection, we show that mice with a comparable conditional deletion (IKKβ cKO) succumb more rapidly to lethal Ft. LVS infection and are unable to control bacterial growth at sublethal doses. Flow cytometry analysis of hepatic non-parenchymal cells from infected mice reveals that IKKβ inhibits M1 classical macrophage activation two days post infection, which has the collateral effect of suppressing IFN-γ+ CD8+ T cells. Despite this early enhanced inflammation, IKKβ cKO mice are unable to control infection; and this coincides with a shift toward M2a polarized macrophages. In comparison, we find that myeloid IKKα is dispensable for survival and bacterial control. However, both IKKα and IKKβ have effects on hepatic granuloma development. IKKα cKO mice develop fewer, but well-contained granulomas that accumulate excess necrotic cells after 9 days of infection; while IKKβ cKO mice develop numerous micro-granulomas that are less well contained. Conclusions Taken together our findings reveal that unlike IKKα, IKKβ has multiple, contrasting roles in this bacterial infection model by acting in an anti-inflammatory capacity at early times towards sublethal Ft. LVS infection; but in spite of this, macrophage IKKβ is also a critical effector for host survival and efficient pathogen clearance.
Collapse
|
31
|
Ashtekar AR, Katz J, Xu Q, Michalek SM. A mucosal subunit vaccine protects against lethal respiratory infection with Francisella tularensis LVS. PLoS One 2012; 7:e50460. [PMID: 23209745 PMCID: PMC3508931 DOI: 10.1371/journal.pone.0050460] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/22/2012] [Indexed: 01/18/2023] Open
Abstract
Francisella tularensis (FT) is a highly virulent pathogen for humans and other mammals. Severe morbidity and mortality is associated with respiratory FT infection and there are concerns about intentional dissemination of this organism. Therefore, FT has been designated a category A biothreat agent and there is a growing interest in the development of a protective vaccine. In the present study, we determine the protective potential of a subunit vaccine comprised of the FT heat shock protein DnaK and surface lipoprotein Tul4 against respiratory infection with the live vaccine strain (LVS) of FT in mice. First, we establish an optimal intranasal immunization regimen in C57BL/6 mice using recombinant DnaK or Tul4 together with the adjuvant GPI-0100. The individual immunization regimens induced robust salivary IgA, and vaginal and bronchoalveolar IgA and IgG antigen-specific antibodies. Serum IgG1 and IgG2c antibody responses were also induced, indicative of a mixed type 2 and type 1 response, respectively. Next, we show that immunization with DnaK and Tul4 induces mucosal and systemic antibody responses that are comparable to that seen following immunization with each antigen alone. This immunization regimen also induced IFN-γ, IL-10 and IL-17A production by splenic CD4(+) T cells in an antigen-specific manner. Importantly, over 80% of the mice immunized with DnaK and Tul4, but not with each antigen alone, were protected against a lethal respiratory challenge with FT LVS. Protection correlated with reduced bacterial burden in the lung, liver and spleen of mice. This study demonstrates the potential of DnaK and Tul4 as protective antigens and lends support to the notion of combining distinct, immunodominant antigens into an effective multivalent tularemia vaccine.
Collapse
Affiliation(s)
- Amit R. Ashtekar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jannet Katz
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Qingan Xu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Suzanne M. Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
32
|
Tang YW, Graham BS. Potential for Directing Appropriate Responses to Vaccines by Cytokine Manipulation. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03259330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Subversion of host recognition and defense systems by Francisella spp. Microbiol Mol Biol Rev 2012; 76:383-404. [PMID: 22688817 DOI: 10.1128/mmbr.05027-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a gram-negative intracellular pathogen and the causative agent of the disease tularemia. Inhalation of as few as 10 bacteria is sufficient to cause severe disease, making F. tularensis one of the most highly virulent bacterial pathogens. The initial stage of infection is characterized by the "silent" replication of bacteria in the absence of a significant inflammatory response. Francisella achieves this difficult task using several strategies: (i) strong integrity of the bacterial surface to resist host killing mechanisms and the release of inflammatory bacterial components (pathogen-associated molecular patterns [PAMPs]), (ii) modification of PAMPs to prevent activation of inflammatory pathways, and (iii) active modulation of the host response by escaping the phagosome and directly suppressing inflammatory pathways. We review the specific mechanisms by which Francisella achieves these goals to subvert host defenses and promote pathogenesis, highlighting as-yet-unanswered questions and important areas for future study.
Collapse
|
34
|
Lu Z, Madico G, Roche MI, Wang Q, Hui JH, Perkins HM, Zaia J, Costello CE, Sharon J. Protective B-cell epitopes of Francisella tularensis O-polysaccharide in a mouse model of respiratory tularaemia. Immunology 2012; 136:352-60. [PMID: 22486311 DOI: 10.1111/j.1365-2567.2012.03589.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibodies to the lipopolysaccharide (LPS) of Francisella tularensis have been shown to be protective against respiratory tularaemia in mouse models, and we have previously described mouse monoclonal antibodies (mAbs) to non-overlapping terminal and internal epitopes of the F. tularensis LPS O-polysaccharide (OAg). In the current study, we used F. tularensis LPS oligosaccharides of defined OAg repeat length as molecular rulers in competition ELISA to demonstrate that the epitope targeted by the terminal OAg-binding mAb FB11 is contained within one tetrasaccharide repeat whereas the epitope targeted by the internal OAg-binding mAb Ab52 spans two tetrasaccharide repeats. Both mAbs conferred survival to BALB/c mice infected intranasally with the F. tularensis type B live vaccine strain and prolonged survival of BALB/c mice infected intranasally with the highly virulent F. tularensis type A strain SchuS4. The protective effects correlated with reduced bacterial burden in mAb-treated infected mice. These results indicate that an oligosaccharide with two OAg tetrasaccharide repeats covers both terminal and internal protective OAg epitopes, which may inform the design of vaccines for tularaemia. Furthermore, the FB11 and Ab52 mAbs could serve as reporters to monitor the response of vaccine recipients to protective B-cell epitopes of F. tularensis OAg.
Collapse
Affiliation(s)
- Zhaohua Lu
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Eneslätt K, Normark M, Björk R, Rietz C, Zingmark C, Wolfraim LA, Stöven S, Sjöstedt A. Signatures of T cells as correlates of immunity to Francisella tularensis. PLoS One 2012; 7:e32367. [PMID: 22412866 PMCID: PMC3295757 DOI: 10.1371/journal.pone.0032367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/26/2012] [Indexed: 11/18/2022] Open
Abstract
Tularemia or vaccination with the live vaccine strain (LVS) of Francisella tularensis confers long-lived cell-mediated immunity. We hypothesized that this immunity depends on polyfunctional memory T cells, i.e., CD4(+) and/or CD8(+) T cells with the capability to simultaneously express several functional markers. Multiparametric flow cytometry, measurement of secreted cytokines, and analysis of lymphocyte proliferation were used to characterize in vitro recall responses of peripheral blood mononuclear cells (PBMC) to killed F. tularensis antigens from the LVS or Schu S4 strains. PBMC responses were compared between individuals who had contracted tularemia, had been vaccinated, or had not been exposed to F. tularensis (naïve). Significant differences were detected between either of the immune donor groups and naïve individuals for secreted levels of IL-5, IL-6, IL-10, IL-12, IL-13, IFN-γ, MCP-1, and MIP-1β. Expression of IFN-γ, MIP-1β, and CD107a by CD4(+)CD45RO(+) or CD8(+)CD45RO(+) T cells correlated to antigen concentrations. In particular, IFN-γ and MIP-1β strongly discriminated between immune and naïve individuals. Only one cytokine, IL-6, discriminated between the two groups of immune individuals. Notably, IL-2- or TNF-α-secretion was low. Our results identify functional signatures of T cells that may serve as correlates of immunity and protection against F. tularensis.
Collapse
Affiliation(s)
- Kjell Eneslätt
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
| | - Monica Normark
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
| | - Rafael Björk
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
| | - Cecilia Rietz
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
| | - Carl Zingmark
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
| | - Lawrence A. Wolfraim
- DynPort Vaccine Company, A CSC Company, Frederick, Maryland, United States of America
| | - Svenja Stöven
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
36
|
Eisele NA, Anderson DM. Host Defense and the Airway Epithelium: Frontline Responses That Protect against Bacterial Invasion and Pneumonia. J Pathog 2011; 2011:249802. [PMID: 22567325 PMCID: PMC3335569 DOI: 10.4061/2011/249802] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 07/18/2011] [Accepted: 07/21/2011] [Indexed: 01/31/2023] Open
Abstract
Airway epithelial cells are the first line of defense against invading microbes, and they protect themselves through the production of carbohydrate and protein matrices concentrated with antimicrobial products. In addition, they act as sentinels, expressing pattern recognition receptors that become activated upon sensing bacterial products and stimulate downstream recruitment and activation of immune cells which clear invading microbes. Bacterial pathogens that successfully colonize the lungs must resist these mechanisms or inhibit their production, penetrate the epithelial barrier, and be prepared to resist a barrage of inflammation. Despite the enormous task at hand, relatively few virulence factors coordinate the battle with the epithelium while simultaneously providing resistance to inflammatory cells and causing injury to the lung. Here we review mechanisms whereby airway epithelial cells recognize pathogens and activate a program of antibacterial pathways to prevent colonization of the lung, along with a few examples of how bacteria disrupt these responses to cause pneumonia.
Collapse
Affiliation(s)
- Nicholas A. Eisele
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA
- The Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- The Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
37
|
Roche MI, Lu Z, Hui JH, Sharon J. Characterization of monoclonal antibodies to terminal and internal O-antigen epitopes of Francisella tularensis lipopolysaccharide. Hybridoma (Larchmt) 2011; 30:19-28. [PMID: 21466282 DOI: 10.1089/hyb.2010.0083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The lipopolysaccharide (LPS) of Francisella tularensis (Ft), the Gram negative bacterium that causes tularemia, has been shown to be a main protective antigen in mice and humans; we have previously demonstrated that murine anti-Ft LPS IgG2a monoclonal antibodies (MAbs) can protect mice against otherwise lethal intranasal infection with the Ft live vaccine strain (LVS). Here we show that four IgG2a anti-LPS MAbs are specific for the O-polysaccharide (O-antigen [OAg]) of Ft LPS. But whereas three of the MAbs bind to immunodominant repeating internal epitopes, one binds to a unique terminal epitope of Ft OAg. This was deduced from its even binding to both long and short chains of the LPS ladder in Western blots, its rapid decrease in ELISA binding to decreasing solid-phase LPS concentrations, its inability to compete for LPS binding with a representative of the other three MAbs, and its inability to immunoprecipitate OAg despite its superior agglutination titer. Biacore analysis showed the end-binding MAb to have higher bivalent avidity for Ft OAg than the internal-binding MAbs and provided an immunogenicity explanation for the predominance of internal-binding anti-Ft OAg MAbs. These findings demonstrate that non-overlapping epitopes can be targeted by antibodies to Ft OAg, which may inform the design of vaccines and immunotherapies against tularemia.
Collapse
Affiliation(s)
- Marly I Roche
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
38
|
Pietras EM, Miller LS, Johnson CT, O'Connell RM, Dempsey PW, Cheng G. A MyD88-dependent IFNγR-CCR2 signaling circuit is required for mobilization of monocytes and host defense against systemic bacterial challenge. Cell Res 2011; 21:1068-79. [PMID: 21467996 PMCID: PMC3193491 DOI: 10.1038/cr.2011.59] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/25/2010] [Accepted: 12/15/2010] [Indexed: 12/24/2022] Open
Abstract
Monocytes are mobilized to sites of infection via interaction between the chemokine MCP-1 and its receptor, CCR2, at which point they differentiate into macrophages that mediate potent antimicrobial effects. In this study, we investigated the mechanisms by which monocytes are mobilized in response to systemic challenge with the intracellular bacterium Francisella tularensis. We found that mice deficient in MyD88, interferon-γ (IFNγ)R or CCR2 all had defects in the expansion of splenic monocyte populations upon F. tularensis challenge, and in control of F. tularensis infection. Interestingly, MyD88-deficient mice were defective in production of IFNγ, and IFNγR-deficient mice exhibited defective production of MCP-1, the ligand for CCR2. Transplantation of IFNγR-deficient bone marrow (BM) into wild-type mice further suggested that mobilization of monocytes in response to F. tularensis challenge required IFNγR expression on BM-derived cells. These studies define a critical host defense circuit wherein MyD88-dependent IFNγ production signals via IFNγR expressed on BM-derived cells, resulting in MCP-1 production and activation of CCR2-dependent mobilization of monocytes in the innate immune response to systemic F. tularensis challenge.
Collapse
Affiliation(s)
- Eric M Pietras
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lloyd S Miller
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Carl T Johnson
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan M O'Connell
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Paul W Dempsey
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Current address: Cynvenio Biosystems LLC, Westlake Village, CA 91361, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
39
|
Thathiah P, Sanapala S, Rodriguez AR, Yu JJ, Murthy AK, Guentzel MN, Forsthuber TG, Chambers JP, Arulanandam BP. Non-FcεR bearing mast cells secrete sufficient interleukin-4 to control Francisella tularensis replication within macrophages. Cytokine 2011; 55:211-20. [PMID: 21565523 DOI: 10.1016/j.cyto.2011.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/04/2011] [Accepted: 04/15/2011] [Indexed: 12/19/2022]
Abstract
Mast cells have classically been implicated in the triggering of allergic and anaphylactic reactions. However, recent findings have elucidated the ability of these cells to selectively release a variety of cytokines leading to bacterial clearance through neutrophil and dendritic cell mobilization, and suggest an important role in innate host defenses. Our laboratory has established a primary bone marrow derived mast cell-macrophage co-culture system and found that mast cells mediated a significant inhibition of Francisella tularensis live vaccine strain (LVS) uptake and replication within macrophages through contact and the secreted product interleukin-4 (IL-4). In this study, we utilized P815 mast cells and J774 macrophages to further investigate whether mast cell activation by non-FcεR driven signals could produce IL-4 and control intramacrophage LVS replication. P815 supernatants collected upon activation by the mast cell activating peptide MP7, as well as P815 cells co-cultured with J774 macrophages, exhibited marked inhibition of bacterial uptake and replication, which correlated with the production of IL-4. The inhibition noted in vitro was titratable and preserved at ratios relevant to cellular infiltration events following pulmonary challenge. Collectively, our data suggest that both primary mast cell and P815 mast cell (lacking FcεR) secreted IL-4 can control intramacrophage Francisella replication.
Collapse
Affiliation(s)
- Prea Thathiah
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Eneslätt K, Rietz C, Rydén P, Stöven S, House RV, Wolfraim LA, Tärnvik A, Sjöstedt A. Persistence of cell-mediated immunity three decades after vaccination with the live vaccine strain of Francisella tularensis. Eur J Immunol 2011; 41:974-80. [PMID: 21442618 DOI: 10.1002/eji.201040923] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/06/2010] [Accepted: 01/14/2011] [Indexed: 11/07/2022]
Abstract
The efficacy of many vaccines against intracellular bacteria depends on the generation of cell-mediated immunity, but studies to determine the duration of immunity are usually confounded by re-exposure. The causative agent of tularemia, Francisella tularensis, is rare in most areas and, therefore, tularemia vaccination is an interesting model for studies of the longevity of vaccine-induced cell-mediated immunity. Here, lymphocyte proliferation and cytokine production in response to F. tularensis were assayed in two groups of 16 individuals, vaccinated 1-3 or 27-34 years previously. As compared to naïve individuals, vaccinees of both groups showed higher proliferative responses and, out of 17 cytokines assayed, higher levels of MIP-1β, IFN-γ, IL-10, and IL-5 in response to recall stimulation. The responses were very similar in the two groups of vaccinees. A statistical model was developed to predict the immune status of the individuals and by use of two parameters, proliferative responses and levels of IFN-γ, 91.1% of the individuals were correctly classified. Using flow cytometry analysis, we demonstrated that during recall stimulation, expression of IFN-γ by CD4(+) CCR7(+) , CD4(+) CD62L(+) , CD8(+) CCR7(+) , and CD8(+) CD62L(+) cells significantly increased in samples from vaccinated donors. In conclusion, cell-mediated immunity was found to persist three decades after tularemia vaccination without evidence of decline.
Collapse
Affiliation(s)
- Kjell Eneslätt
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
In recent years, studies on the intracellular pathogen Francisella tularensis have greatly intensified, generating a wealth of new information on the interaction of this organism with the immune system. Here we review the basic elements of the innate and adaptive immune responses that contribute to protective immunity against Francisella species, with special emphasis on new data that has emerged in the last 5 years. Most studies have utilized the mouse model of infection, although there has been an expansion of work on human cells and other new animal models. In mice, basic immune parameters that operate in defense against other intracellular pathogen infections, such as interferon gamma, TNF-α, and reactive nitrogen intermediates, are central for control of Francisella infection. However, new important immune mediators have been revealed, including IL-17A, Toll-like receptor 2, and the inflammasome. Further, a variety of cell types in addition to macrophages are now recognized to support Francisella growth, including epithelial cells and dendritic cells. CD4+ and CD8+ T cells are clearly important for control of primary infection and vaccine-induced protection, but new T cell subpopulations and the mechanisms employed by T cells are only beginning to be defined. A significant role for B cells and specific antibodies has been established, although their contribution varies greatly between bacterial strains of lower and higher virulence. Overall, recent data profile a pathogen that is adept at subverting host immune responses, but susceptible to many elements of the immune system's antimicrobial arsenal.
Collapse
Affiliation(s)
- Siobhán C Cowley
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration Bethesda, MD, USA
| | | |
Collapse
|
42
|
Medina EA, Morris IR, Berton MT. Phosphatidylinositol 3-kinase activation attenuates the TLR2-mediated macrophage proinflammatory cytokine response to Francisella tularensis live vaccine strain. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:7562-72. [PMID: 21098227 DOI: 10.4049/jimmunol.0903790] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An inadequate innate immune response appears to contribute to the virulence of Francisella tularensis following pulmonary infection. Studies in mice suggest that this poor response results from suppression of proinflammatory cytokine production early during infection, but the mechanisms involved are not understood. PI3K is known to regulate proinflammatory cytokine expression, but its exact role (positive versus negative) is controversial. We sought to clarify the role of PI3K in regulating proinflammatory signaling and cytokine production during infection with F. tularensis live vaccine strain (LVS). In this study, we demonstrate that the induction of TNF and IL-6 expression by LVS in mouse bone marrow-derived macrophages was markedly enhanced when PI3K activity was inhibited by either of the well-known chemical inhibitors, wortmannin or LY294002. The enhanced cytokine expression was accompanied by enhanced activation of p38 MAPK and ERK1/2, both of which were critical for LVS-induced expression of TNF and IL-6. LVS-induced MAPK activation and cytokine production were TLR2- and MyD88- dependent. PI3K/Akt activation was MyD88-dependent, but was surprisingly TLR2-independent. LVS infection also rapidly induced MAPK phosphatase-1 (MKP-1) expression; PI3K and TLR2 signaling were required. Peak levels of MKP-1 correlated closely with the decline in p38 MAPK and ERK1/2 phosphorylation. These data suggest that infection by LVS restrains the TLR2-triggered proinflammatory response via parallel activation of PI3K, leading to enhanced MKP-1 expression, accelerated deactivation of MAPKs, and suppression of proinflammatory cytokine production. This TLR2-independent inhibitory pathway may be an important mechanism by which Francisella suppresses the host's innate immune response.
Collapse
Affiliation(s)
- Edward A Medina
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
43
|
Huang MTH, Mortensen BL, Taxman DJ, Craven RR, Taft-Benz S, Kijek TM, Fuller JR, Davis BK, Allen IC, Brickey WJ, Gris D, Wen H, Kawula TH, Ting JPY. Deletion of ripA alleviates suppression of the inflammasome and MAPK by Francisella tularensis. THE JOURNAL OF IMMUNOLOGY 2010; 185:5476-85. [PMID: 20921527 DOI: 10.4049/jimmunol.1002154] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Francisella tularensis is a facultative intracellular pathogen and potential biothreat agent. Evasion of the immune response contributes to the extraordinary virulence of this organism although the mechanism is unclear. Whereas wild-type strains induced low levels of cytokines, an F. tularensis ripA deletion mutant (LVSΔripA) provoked significant release of IL-1β, IL-18, and TNF-α by resting macrophages. IL-1β and IL-18 secretion was dependent on inflammasome components pyrin-caspase recruitment domain/apoptotic speck-containing protein with a caspase recruitment domain and caspase-1, and the TLR/IL-1R signaling molecule MyD88 was required for inflammatory cytokine synthesis. Complementation of LVSΔripA with a plasmid encoding ripA restored immune evasion. Similar findings were observed in a human monocytic line. The presence of ripA nearly eliminated activation of MAPKs including ERK1/2, JNK, and p38, and pharmacologic inhibitors of these three MAPKs reduced cytokine induction by LVSΔripA. Animals infected with LVSΔripA mounted a stronger IL-1β and TNF-α response than that of mice infected with wild-type live vaccine strain. This analysis revealed novel immune evasive mechanisms of F. tularensis.
Collapse
Affiliation(s)
- Max Tze-Han Huang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Anderson RV, Crane DD, Bosio CM. Long lived protection against pneumonic tularemia is correlated with cellular immunity in peripheral, not pulmonary, organs. Vaccine 2010; 28:6562-72. [PMID: 20688042 PMCID: PMC2939155 DOI: 10.1016/j.vaccine.2010.07.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/07/2010] [Accepted: 07/21/2010] [Indexed: 12/28/2022]
Abstract
Protection against the intracellular bacterium Francisella tularensis within weeks of vaccination is thought to involve both cellular and humoral immune responses. However, the relative roles for cellular and humoral immunity in long lived protection against virulent F. tularensis are not well established. Here, we dissected the correlates of immunity to pulmonary infection with virulent F. tularensis strain SchuS4 in mice challenged 30 and 90 days after subcutaneous vaccination with LVS. Regardless of the time of challenge, LVS vaccination protected approximately 90% of SchuS4 infected animals. Surprisingly, control of bacterial replication in the lung during the first 7 days of infection was not required for survival of SchuS4 infection in vaccinated mice. Control and survival of virulent F. tularensis strain SchuS4 infection within 30 days of vaccination was associated with high titers of SchuS4 agglutinating antibodies, and IFN-γ production by multiple cell types in both the lung and spleen. In contrast, survival of SchuS4 infection 90 days after vaccination was correlated only with IFN-γ producing splenocytes and activated T cells in the spleen. Together these data demonstrate that functional agglutinating antibodies and strong mucosal immunity are correlated with early control of pulmonary infections with virulent F. tularensis. However, early mucosal immunity may not be required to survive F. tularensis infection. Instead, survival of SchuS4 infection at extended time points after immunization was only associated with production of IFN-γ and activation of T cells in peripheral organs.
Collapse
Affiliation(s)
- Rebecca V. Anderson
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Deborah D. Crane
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Catharine M. Bosio
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| |
Collapse
|
45
|
Markel G, Bar-Haim E, Zahavy E, Cohen H, Cohen O, Shafferman A, Velan B. The involvement of IL-17A in the murine response to sub-lethal inhalational infection with Francisella tularensis. PLoS One 2010; 5:e11176. [PMID: 20585449 PMCID: PMC2887844 DOI: 10.1371/journal.pone.0011176] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 05/19/2010] [Indexed: 01/16/2023] Open
Abstract
Background Francisella tularensis is an intercellular bacterium often causing fatal disease when inhaled. Previous reports have underlined the role of cell-mediated immunity and IFNγ in the host response to Francisella tularensis infection. Methodology/Principal Findings Here we provide evidence for the involvement of IL-17A in host defense to inhalational tularemia, using a mouse model of intranasal infection with the Live Vaccine Strain (LVS). We demonstrate the kinetics of IL-17A production in lavage fluids of infected lungs and identify the IL-17A-producing lymphocytes as pulmonary γδ and Th17 cells. The peak of IL-17A production appears early during sub-lethal infection, it precedes the peak of immune activation and the nadir of the disease, and then subsides subsequently. Exogenous airway administration of IL-17A or of IL-23 had a limited yet consistent effect of delaying the onset of death from a lethal dose of LVS, implying that IL-17A may be involved in restraining the infection. The protective role for IL-17A was directly demonstrated by in vivo neutralization of IL-17A. Administration of anti IL-17A antibodies concomitantly to a sub-lethal airway infection with 0.1×LD50 resulted in a fatal disease. Conclusion In summary, these data characterize the involvement and underline the protective key role of the IL-17A axis in the lungs from inhalational tularemia.
Collapse
Affiliation(s)
- Gal Markel
- Department of Biochemistry and Molecular Genetics, Israel Institute of Biological Research, Ness Ziona, Israel
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute of Biological Research, Ness Ziona, Israel
| | - Eran Zahavy
- Department of Infectious Diseases, Israel Institute of Biological Research, Ness Ziona, Israel
| | - Hila Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute of Biological Research, Ness Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute of Biological Research, Ness Ziona, Israel
| | - Avigdor Shafferman
- Department of Biochemistry and Molecular Genetics, Israel Institute of Biological Research, Ness Ziona, Israel
| | - Baruch Velan
- Department of Biochemistry and Molecular Genetics, Israel Institute of Biological Research, Ness Ziona, Israel
- * E-mail:
| |
Collapse
|
46
|
Melillo AA, Bakshi CS, Melendez JA. Francisella tularensis antioxidants harness reactive oxygen species to restrict macrophage signaling and cytokine production. J Biol Chem 2010; 285:27553-60. [PMID: 20558723 DOI: 10.1074/jbc.m110.144394] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Francisella tularensis is the etiologic agent of the highly infectious animal and human disease tularemia. Its extreme infectivity and virulence are associated with its ability to evade immune detection, which we now link to its robust reactive oxygen species-scavenging capacity. Infection of primary human monocyte-derived macrophages with virulent F. tularensis SchuS4 prevented proinflammatory cytokine production in the presence or absence of IFN-gamma compared with infection with the attenuated live vaccine strain. SchuS4 infection also blocked signals required for macrophage cytokine production, including Akt phosphorylation, IkappaB alpha degradation, and NF-kappaB nuclear localization and activation. Concomitant with SchuS4-mediated suppression of Akt phosphorylation was an increase in the levels of the Akt antagonist PTEN. Moreover, SchuS4 prevented the H(2)O(2)-dependent oxidative inactivation of PTEN compared with a virulent live vaccine strain. Mutation of catalase (katG) sensitized F. tularensis to H(2)O(2) and enhanced PTEN oxidation, Akt phosphorylation, NF-kappaB activation, and inflammatory cytokine production. Together, these findings suggest a novel role for bacterial antioxidants in restricting macrophage activation through their ability to preserve phosphatases that temper kinase signaling and proinflammatory cytokine production.
Collapse
Affiliation(s)
- Amanda A Melillo
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208, USA
| | | | | |
Collapse
|
47
|
Oyston PCF, Griffiths R. Francisella virulence: significant advances, ongoing challenges and unmet needs. Expert Rev Vaccines 2010; 8:1575-85. [PMID: 19863250 DOI: 10.1586/erv.09.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Francisella tularensis, the causative agent of tularemia, is an organism of concern as a potential biowarfare agent. Progress towards understanding the molecular basis of pathogenicity has been hampered by a lack of tools with which to manipulate the pathogen. However, the availability of genome sequence data for a range of strains and the development of a range of plasmids and mutagenesis protocols for use in Francisella has resulted in a huge advance in understanding. No licensed vaccine is yet available. Various approaches towards a new vaccine are being evaluated, but novel adjuvants and delivery systems are needed to induce the complex response required for immunity. Better animal models to more accurately represent human responses to infection are also required.
Collapse
|
48
|
Pechous RD, McCarthy TR, Zahrt TC. Working toward the future: insights into Francisella tularensis pathogenesis and vaccine development. Microbiol Mol Biol Rev 2009; 73:684-711. [PMID: 19946137 PMCID: PMC2786580 DOI: 10.1128/mmbr.00028-09] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Francisella tularensis is a facultative intracellular gram-negative pathogen and the etiological agent of the zoonotic disease tularemia. Recent advances in the field of Francisella genetics have led to a rapid increase in both the generation and subsequent characterization of mutant strains exhibiting altered growth and/or virulence characteristics within various model systems of infection. In this review, we summarize the major properties of several Francisella species, including F. tularensis and F. novicida, and provide an up-to-date synopsis of the genes necessary for pathogenesis by these organisms and the determinants that are currently being targeted for vaccine development.
Collapse
Affiliation(s)
- Roger D. Pechous
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Travis R. McCarthy
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Thomas C. Zahrt
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| |
Collapse
|
49
|
Abplanalp AL, Morris IR, Parida BK, Teale JM, Berton MT. TLR-dependent control of Francisella tularensis infection and host inflammatory responses. PLoS One 2009; 4:e7920. [PMID: 19936231 PMCID: PMC2775407 DOI: 10.1371/journal.pone.0007920] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 10/28/2009] [Indexed: 01/03/2023] Open
Abstract
Background Francisella tularensis is the causative agent of tularemia and is classified as a Category A select agent. Recent studies have implicated TLR2 as a critical element in the host protective response to F. tularensis infection, but questions remain about whether TLR2 signaling dominates the response in all circumstances and with all species of Francisella and whether F. tularensis PAMPs are predominantly recognized by TLR2/TLR1 or TLR2/TLR6. To address these questions, we have explored the role of Toll-like receptors (TLRs) in the host response to infections with F. tularensis Live Vaccine Strain (LVS) and F. tularensis subspecies (subsp.) novicida in vivo. Methodology/Principal Findings C57BL/6 (B6) control mice and TLR– or MyD88-deficient mice were infected intranasally (i.n.) or intradermally (i.d.) with F. tularensis LVS or with F. tularensis subsp. novicida. B6 mice survived >21 days following infection with LVS by both routes and survival of TLR1−/−, TLR4−/−, and TLR6−/− mice infected i.n. with LVS was equivalent to controls. Survival of TLR2−/− and MyD88−/− mice, however, was significantly reduced compared to B6 mice, regardless of the route of infection or the subspecies of F. tularensis. TLR2−/− and MyD88−/− mice also showed increased bacterial burdens in lungs, liver, and spleen compared to controls following i.n. infection. Primary macrophages from MyD88−/− and TLR2−/− mice were significantly impaired in the ability to secrete TNF and other pro-inflammatory cytokines upon ex vivo infection with LVS. TNF expression was also impaired in vivo as demonstrated by analysis of bronchoalveolar lavage fluid and by in situ immunofluorescent staining. Conclusions/Significance We conclude from these studies that TLR2 and MyD88, but not TLR4, play critical roles in the innate immune response to F. tularensis infection regardless of the route of infection or the subspecies. Moreover, signaling through TLR2 does not depend exclusively on TLR1 or TLR6 during F. tularensis LVS infection.
Collapse
Affiliation(s)
- Allison L. Abplanalp
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ian R. Morris
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Bijaya K. Parida
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Judy M. Teale
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Michael T. Berton
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
50
|
Edwards JA, Rockx-Brouwer D, Nair V, Celli J. Restricted cytosolic growth of Francisella tularensis subsp. tularensis by IFN-gamma activation of macrophages. MICROBIOLOGY-SGM 2009; 156:327-339. [PMID: 19926654 DOI: 10.1099/mic.0.031716-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intracellular bacterium Francisella tularensis ensures its survival and proliferation within phagocytes of the infected host through phagosomal escape and cytosolic replication, to cause the disease tularemia. The cytokine interferon-gamma (IFN-gamma) is important in controlling primary infections in vivo, and in vitro intracellular proliferation of Francisella in macrophages, but its actual effects on the intracellular cycle of the bacterium are ambiguous. Here, we have performed an extensive analysis of the intracellular fate of the virulent F. tularensis subsp. tularensis strain Schu S4 in primary IFN-gamma-activated murine and human macrophages to understand how this cytokine controls Francisella proliferation. In both murine bone marrow-derived macrophages (muBMMs) and human blood monocyte-derived macrophages (MDMs), IFN-gamma controlled bacterial proliferation. Schu S4 growth inhibition was not due to a defect in phagosomal escape, since bacteria disrupted their phagosomes with indistinguishable kinetics in both muBMMs and MDMs, regardless of their activation state. Rather, IFN-gamma activation restricted cytosolic replication of Schu S4 in a manner independent of reactive oxygen or nitrogen species. Hence, IFN-gamma induces phagocyte NADPH oxidase Phox- and inducible nitric oxide synthase (iNOS)-independent cytosolic effector mechanisms that restrict growth of virulent Francisella in macrophages.
Collapse
Affiliation(s)
- Jessica A Edwards
- Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Dedeke Rockx-Brouwer
- Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Vinod Nair
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Jean Celli
- Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|