1
|
Chittick L, Okwumabua O. Loss of expression of the glutamate dehydrogenase (gdh) of Streptococcus suis serotype 2 compromises growth and pathogenicity. Microb Pathog 2024; 188:106565. [PMID: 38309311 DOI: 10.1016/j.micpath.2024.106565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Streptococcus suis serotype 2 is a zoonotic agent that causes substantial economic losses to the swine industry and threatens human public health. Factors that contribute to its ability to cause disease are not yet fully understood. Glutamate dehydrogenase (GDH) is an enzyme found in living cells and plays vital roles in cellular metabolism. It has also been shown to affect pathogenic potential of certain bacteria. In this study, we constructed a S. suis serotype 2 GDH mutant (Δgdh) by insertional inactivation mediated by a homologous recombination event and confirmed loss of expression of GDH in the mutant by immunoblot and enzyme activity staining assays. Compared with the wild type (WT) strain, Δgdh displayed a different phenotype. It exhibited impaired growth in all conditions evaluated (solid and broth media, increased temperature, varying pH, and salinity) and formed cells of reduced size. Using a swine infection model, pigs inoculated with the WT strain exhibited fever, specific signs of disease, and lesions, and the strain could be re-isolated from the brain, lung, joint fluid, and blood samples collected from the infected pigs. Pigs inoculated with the Δgdh strain did not exhibit any clinical signs of disease nor histologic lesions, and the strain could not be re-isolated from any of the tissues nor body fluid sampled. The Δgdh also showed a decreased level of survival in pig blood. Taken together, these results suggest that the gdh is important in S. suis physiology and its ability to colonize, disseminate, and cause disease.
Collapse
Affiliation(s)
- Lauren Chittick
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N 59th Avenue, Glendale, AZ, 85308, USA
| | - Ogi Okwumabua
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N 59th Avenue, Glendale, AZ, 85308, USA.
| |
Collapse
|
2
|
Kobayashi K, Kubota H, Tohya M, Ushikubo M, Yamamoto M, Ariyoshi T, Uchitani Y, Mitobe M, Okuno R, Nakagawa I, Sekizaki T, Suzuki J, Sadamasu K. Characterization of pig tonsils as niches for the generation of Streptococcus suis diversity. Vet Res 2024; 55:17. [PMID: 38321502 PMCID: PMC10848530 DOI: 10.1186/s13567-024-01270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Streptococcus suis is a gram-positive bacterium that causes meningitis, septicemia, endocarditis, and other disorders in pigs and humans. We obtained 42 and 50 S. suis isolates from lesions of porcine endocarditis and palatine tonsils, respectively, of clinically healthy pigs in Japan; we then determined their sequence types (STs) by multilocus sequence typing (MLST), cps genotypes, serotypes, and presence of classical major virulence-associated marker genes (mrp, epf, and sly). The 42 isolates from endocarditis lesions were assigned to a limited number of STs and clonal complexes (CCs). On the other hand, the 50 isolates from tonsils were diverse in these traits and seemingly in the degree of virulence, suggesting that tonsils can accommodate a variety of S. suis isolates. The goeBURST full algorithm using tonsil isolates obtained in this study and those retrieved from the database showed that major CCs as well as many other clusters were composed of isolates originating from different countries, and some of the STs were very similar to each other despite the difference in country of origin. These findings indicate that S. suis with not only different but also similar mutations in the genome have survived in tonsils independently across different geographical locations. Therefore, unlike the lesions of endocarditis, the tonsils of pigs seemingly accommodate various S. suis lineages. The present study suggests that S. suis acquired its diversity by natural mutations during colonization and persistence in the tonsils of pigs.
Collapse
Affiliation(s)
- Kai Kobayashi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan.
| | - Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Mari Tohya
- Division of Biomedical Food Research, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Department of Microbiology and Department of Microbiome Research, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Megumi Ushikubo
- Shibaura Meat Sanitary Inspection Station, Tokyo Metropolitan Government, Konan 2-7-19, Minato-ku, Tokyo, 108-0075, Japan
| | - Miki Yamamoto
- Shibaura Meat Sanitary Inspection Station, Tokyo Metropolitan Government, Konan 2-7-19, Minato-ku, Tokyo, 108-0075, Japan
| | - Tsukasa Ariyoshi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Yumi Uchitani
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Morika Mitobe
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Rumi Okuno
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tsutomu Sekizaki
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jun Suzuki
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| |
Collapse
|
3
|
Bornemann NN, Mayer L, Lacouture S, Gottschalk M, Baums CG, Strutzberg-Minder K. Invasive Bacterial Infections of the Musculoskeletal and Central Nervous System during Pig Rearing: Detection Frequencies of Different Pathogens and Specific Streptococcus suis Genotypes. Vet Sci 2024; 11:17. [PMID: 38250923 PMCID: PMC10820919 DOI: 10.3390/vetsci11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Locomotor and central nervous system disorders occur during pig rearing, but there is no systematic recording of the different causative agents in Germany. Joint and meningeal swabs, kidneys, lungs, and eight different lymph nodes per pig were cultured, and isolated pathogens were identified using polymerase chain reactions (PCRs). The cps and pathotype of Streptococcus suis (S. suis) isolates were determined using multiplex-PCR. S. suis was the most important pathogen in the infected joints (70.8%) and meningeal swabs (85.4%) and was most frequently detected in both sites in suckling and weaning piglets. To elucidate the possible portal of entry of S. suis, eight different lymph nodes from 201 pigs were examined in a prospective study. S. suis was detected in all examined lymph nodes (n = 1569), including the mesenteric lymph nodes (15.8%; n = 121/765), with cps 9 (37.2%; n = 147) and cps 2 (24.3%; n = 96) being the most dominating cps types. In piglets with a systemic S. suis infection, different lymph nodes are frequently infected with the invasive S. suis strain, which does not help clarify the portal of entry for S. suis.
Collapse
Affiliation(s)
| | - Leonie Mayer
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany (C.G.B.)
| | - Sonia Lacouture
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.L.); (M.G.)
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.L.); (M.G.)
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany (C.G.B.)
| | | |
Collapse
|
4
|
Nielsen DW, Hau SJ, Mou KT, Alt DP, Brockmeier SL. Shifts in the swine nasal microbiota following Bordetella bronchiseptica challenge in a longitudinal study. Front Microbiol 2023; 14:1260465. [PMID: 37840723 PMCID: PMC10574184 DOI: 10.3389/fmicb.2023.1260465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023] Open
Abstract
Bordetella bronchiseptica is a widespread, highly infectious bacterial pathogen that causes respiratory disease in swine and increases the severity of respiratory infections caused by other viral or bacterial pathogens. However, the impact of B. bronchiseptica infection on the swine respiratory microbiota has not been thoroughly investigated. Here, we aim to assess the influence of B. bronchiseptica infection on the community structure and abundance of members of the swine nasal microbiota. To do so, the nasal microbiota of a non-infected control group and a group infected with B. bronchiseptica (BB group) were characterized prior to B. bronchiseptica strain KM22 challenge (day 0) and on selected days in the weeks following B. bronchiseptica challenge (days 1, 3, 7, 10, 14, 21, 36, and 42). Bordetella bronchiseptica was cultured from nasal samples of the BB group to assess nasal colonization. The results showed that B. bronchiseptica colonization did not persistently affect the nasal bacterial diversity of either of the treatment groups (alpha diversity). However, the bacterial community structures (beta diversity) of the two treatment groups significantly diverged on day 7 when peak colonization levels of B. bronchiseptica were detected. This divergence continued through the last sampling time point. In addition, Pasteurella, Pasteurellaceae (unclassified), Mycoplasma, Actinobacillus, Streptococcus, Escherichia-Shigella, and Prevotellaceae (unclassified) showed increased abundances in the BB group relative to the control group at various time points. This study revealed that B. bronchiseptica colonization can disturb the upper respiratory tract microbiota, and further research is warranted to assess how these disturbances can impact susceptibility to secondary infections by other respiratory pathogens.
Collapse
Affiliation(s)
- Daniel W. Nielsen
- National Animal Disease Center, USDA Agricultural Research Service, Ames, IA, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge Associated Universities (ORAU), Oak Ridge, TN, United States
| | - Samantha J. Hau
- National Animal Disease Center, USDA Agricultural Research Service, Ames, IA, United States
| | - Kathy T. Mou
- National Animal Disease Center, USDA Agricultural Research Service, Ames, IA, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge Associated Universities (ORAU), Oak Ridge, TN, United States
| | - David P. Alt
- National Animal Disease Center, USDA Agricultural Research Service, Ames, IA, United States
| | - Susan L. Brockmeier
- National Animal Disease Center, USDA Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
5
|
Neila-Ibáñez C, Napp S, Pailler-García L, Franco-Martínez L, Cerón JJ, Aragon V, Casal J. Risk factors associated with Streptococcus suis cases on pig farms in Spain. Vet Rec 2023; 193:e3056. [PMID: 37269537 DOI: 10.1002/vetr.3056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Streptococcus suis can cause meningitis, polyarthritis and acute death in piglets. However, the risk factors associated with S. suis infection remain incompletely understood. Therefore, a longitudinal study was carried out, in which six batches from two Spanish pig farms with S. suis problems were repeatedly examined to determine possible risk factors. METHODS A prospective case-control study was conducted, and potential risk factors were evaluated using mixed-effects logistic regression models. The explanatory variables included: (a) concomitant pathogens; (b) biomarkers associated with stress, inflammation and oxidative status; (c) farm environmental factors; and (d) parity and S. suis presence in sows. Three models were built to study the effect of these variables, including two to assess the risk factors involved in the subsequent development of disease. RESULTS Risk factors for S. suis-associated disease included porcine reproductive and respiratory syndrome virus co-infection at weaning (odds ratio [OR] = 6.69), sow parity (OR = 0.71), haptoglobin level before weaning (OR = 1.01), relative humidity (OR = 1.11) and temperature (OR = 0.13). LIMITATIONS Laboratory diagnosis was done at the batch level, with individual diagnosis based on clinical signs only. CONCLUSIONS This study confirms the multifactorial nature of S. suis-associated disease, with both environmental factors and factors related to the host involved in disease development. Controlling these factors may, therefore, help prevent the appearance of disease.
Collapse
Affiliation(s)
- Carlos Neila-Ibáñez
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Sebastián Napp
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Lola Pailler-García
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis, University of Murcia, Espinardo, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, University of Murcia, Espinardo, Spain
| | - Virginia Aragon
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Jordi Casal
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
6
|
Hau SJ, Nielsen DW, Brockmeier SL. Prior infection with Bordetella bronchiseptica enhanced colonization but not disease with Streptococcus suis. Vet Microbiol 2023; 284:109841. [PMID: 37542929 DOI: 10.1016/j.vetmic.2023.109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Bordetella bronchiseptica and Streptococcus suis are widely distributed swine pathogens. B. bronchiseptica is a primary pathogen and causes atrophic rhinitis and bronchopneumonia. S. suis is a contributing agent to porcine respiratory disease complex and causes systemic diseases including arthritis, meningitis, polyserositis, and septicemia. Colonization with B. bronchiseptica has been associated with increased colonization by other pathogenic bacteria and increased disease severity with viral and bacterial pathogens. It has also been reported to predispose cesarean derived, colostrum deprived (CDCD) piglets to S. suis systemic disease. Here, we evaluated the role of B. bronchiseptica colonization on S. suis colonization, dissemination, and disease in one study using conventional pigs and another using CDCD pigs. Pigs were challenged with S. suis, B. bronchiseptica, or B. bronchiseptica followed by S. suis. Incidence of S. suis disease was not increased in either study for animals pre-inoculated with B. bronchiseptica. Nasal colonization with S. suis was increased in coinfected animals, while B. bronchiseptica was similar between mono- and co-infected animals. Although increased S. suis disease was not seen in coinfected pigs, there is evidence that B. bronchiseptica can increase colonization with S. suis, which may contribute to enhanced disease when animals are stressed or immunocompromised.
Collapse
Affiliation(s)
- Samantha J Hau
- National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, United States.
| | - Daniel W Nielsen
- National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, United States; Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Susan L Brockmeier
- National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, United States.
| |
Collapse
|
7
|
Establishment and Application of an Indirect ELISA for the Detection of Antibodies to Porcine Streptococcus suis Based on a Recombinant GMD Protein. Animals (Basel) 2023; 13:ani13040719. [PMID: 36830506 PMCID: PMC9952749 DOI: 10.3390/ani13040719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
S. suis is an important zoonotic pathogen from sick and recessive carrier pigs that poses a serious threat to animal husbandry production and public health. It usually causes horizontal transmission among pigs. The morbidity and mortality of this disease are very high. Human infection is caused through direct or indirect contact with sick pigs. The two large-scale outbreaks in China were due to the outbreak of S. suis on pig farms, which spread to human infection; thus, detecting S. suis in pig herds is crucial. At present, the commercial S. suis ELISA type 2 kits on the market can only detect single serotypes, high probabilities of interaction reactions, and biosafety risks when using inactivated S. suis as an antigen. Phosphate-3-glyceraldehyde dehydrogenase (GAPDH), muramidase-released protein (MRP), and dihydrolipoamide dehydrogenase (DLDH) are important S. suis type 2, S. suis type 7, and S. suis type 9 protective antigens. This study purified the GMD protein (B-cell-dominant epitopes of GAPDH, MRP, and DLDH antigens) and used a diverse combination of dominant epitopes of the multiple different antigens as coated antigens, improving the sensitivity and safety of the indirect ELISA experiments. An indirect ELISA method (GMD-ELISA) was developed for detecting S. suis antibodies. The antigen-antibody response was optimized using checkerboard titration. The results of testing using ELISA for Salmonella enterica (S. enterica), Escherichia coli (E. coli), Staphylococcus aureus (SA), and Streptococcus pyogenes (S. pyogenes) were all negative, indicating that this method had strong specificity. The results were still positive when the dilution ratio of S. suis-positive serum reached 1:6, 400, thus indicating that the method had high sensitivity. The results of the reproducibility assay for indirect ELISA showed that the intra-assay coefficient of variation and the inter-assay coefficient of variation were less than 10%, indicating that the method had good repeatability. We investigated the seroprevalence of S. suis in 167 serum samples collected in East China, and 33.5% of the samples were positive for antibodies against S. suis, indicating that the prevalence of S. suis is high in pig farms in Eastern China. The novel GMD-ELISA is a convenient, sensitive, and specific diagnostic method that provides technical support for rapid diagnosis and epidemiological investigation.
Collapse
|
8
|
Liedel C, Mayer L, Einspanier A, Völker I, Ulrich R, Rieckmann K, Baums CG. A new S. suis serotype 3 infection model in pigs: lack of effect of buprenorphine treatment to reduce distress. BMC Vet Res 2022; 18:435. [PMID: 36510249 PMCID: PMC9743652 DOI: 10.1186/s12917-022-03532-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Streptoccocus suis (S. suis) is a major porcine pathogen causing meningitis, septicemia, arthritis and endocarditis. These diseases severely impair welfare of pigs. Experimental studies in pigs are important to better understand the pathogenesis and to identify protective antigens, as so far there is no vaccine available protecting against various serotypes (cps). Due to the severity of disease, application of appropriate refinement strategies in experimental S. suis infections is essential to reduce distress imposed on the piglets without jeopardizing the scientific output. The objectives of this study were to evaluate buprenorphine treatment as a refinement measure and serum cortisol levels as a distress read out parameter in a new S. suis cps3 infection model in pigs. RESULTS Intravenous application of 2 × 108 CFU of S. suis cps3 (sly+, mrp+) to 6-week-old piglets led to severe morbidity in approximately 50% of the animals. Main pathological findings included suppurative meningoencephalitis and arthritis as well as fibrinosuppurative endocarditis. Buprenorphine treatment (0.05 mg/kg every 8 h) did not prevent signs of severe pain, high clinical scores, moderate to severe pathologies or high levels of serum cortisol in single severely affected piglets. Significant differences in the course of leukocytosis, induction of specific antibodies and bactericidal immunity were not recorded between groups with or w/o buprenorphine treatment. Of note, clinically unobtrusive piglets showed serum cortisol levels at 2 and 5 days post infectionem (dpi) comparable to the levels prior to infection with cps3. Cortisol levels in serum were significantly increased in piglets euthanized due to severe disease in comparison to clinically unobtrusive pigs. CONCLUSIONS Different clinical courses and pathologies are induced after intravenous challenge of piglets with 2 × 108 CFU of this S. suis cps3 strain. The chosen protocol of buprenorphine application does not prevent severe distress in this infection model. Important parameters of the humoral immune response, such as the level of IgM binding to S. suis cps3, do not appear to be affected by buprenorphine treatment. Serum cortisol is a meaningful parameter to measure distress in piglets experimentally infected with S. suis and to evaluate refinement strategies. In this intravenous model, which includes close clinical monitoring and different humane endpoints, clinics and cortisol levels suggest convalescence in surviving piglets within 5 days following experimental infection.
Collapse
Affiliation(s)
- Carolin Liedel
- grid.9647.c0000 0004 7669 9786Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Leonie Mayer
- grid.9647.c0000 0004 7669 9786Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Almuth Einspanier
- grid.9647.c0000 0004 7669 9786Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Iris Völker
- grid.9647.c0000 0004 7669 9786Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, 04103 Leipzig, Germany
| | - Reiner Ulrich
- grid.9647.c0000 0004 7669 9786Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, 04103 Leipzig, Germany
| | - Karoline Rieckmann
- grid.9647.c0000 0004 7669 9786Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Christoph G. Baums
- grid.9647.c0000 0004 7669 9786Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Estrada AA, Gottschalk M, Gebhart CJ, Marthaler DG. Comparative analysis of Streptococcus suis genomes identifies novel candidate virulence-associated genes in North American isolates. Vet Res 2022; 53:23. [PMID: 35303917 PMCID: PMC8932342 DOI: 10.1186/s13567-022-01039-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
Streptococcus suis is a significant economic and welfare concern in the swine industry. Pan-genome analysis provides an in-silico approach for the discovery of genes involved in pathogenesis in bacterial pathogens. In this study, we performed pan-genome analysis of 208 S. suis isolates classified into the pathogenic, possibly opportunistic, and commensal pathotypes to identify novel candidate virulence-associated genes (VAGs) of S. suis. Using chi-square tests and LASSO regression models, three accessory pan-genes corresponding to S. suis strain P1/7 markers SSU_RS09525, SSU_RS09155, and SSU_RS03100 (>95% identity) were identified as having a significant association with the pathogenic pathotype. The proposed novel SSU_RS09525 + /SSU_RS09155 + /SSU_RS03100 + genotype identified 96% of the pathogenic pathotype strains, suggesting a novel genotyping scheme for predicting the pathogenicity of S. suis isolates in North America. In addition, mobile genetic elements carrying antimicrobial resistance genes (ARGs) and VAGs were identified but did not appear to play a major role in the spread of ARGs and VAGs.
Collapse
Affiliation(s)
- April A Estrada
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Connie J Gebhart
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | | |
Collapse
|
10
|
Weiße C, Dittmar D, Jakóbczak B, Florian V, Schütze N, Alber G, Klose K, Michalik S, Valentin-Weigand P, Völker U, Baums CG. Immunogenicity and protective efficacy of a Streptococcus suis vaccine composed of six conserved immunogens. Vet Res 2021; 52:112. [PMID: 34433500 PMCID: PMC8390293 DOI: 10.1186/s13567-021-00981-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 01/12/2023] Open
Abstract
A vaccine protecting against different Streptococcus suis serotypes is highly needed in porcine practice to improve animal welfare and reduce the use of antibiotics. We hypothesized that immunogens prominently recognized by convalescence sera but significantly less so by sera of susceptible piglets are putative protective antigens. Accordingly, we investigated immunogenicity and protective efficacy of a multicomponent vaccine including six main conserved immunogens, namely SSU0934, SSU1869, SSU0757, SSU1950, SSU1664 and SSU0187. Flow cytometry confirmed surface expression of all six immunogens in S. suis serotypes 2, 9 and 14. Although prime-booster vaccination after weaning resulted in significantly higher specific IgG levels against all six immunogens compared to the placebo-treated group, no significant differences between bacterial survival in blood from either vaccinated or control animals were recorded for serotype 2, 9 and 14 strains. Furthermore, vaccinated piglets were not protected against morbidity elicited through intranasal challenge with S. suis serotype 14. As ~50% of animals in both groups did not develop disease, we investigated putative other correlates of protection. Induction of reactive oxygen species (ROS) in blood granulocytes was not associated with vaccination but correlated with protection as all piglets with >5% ROS survived the challenge. Based on these findings we discuss that the main immunogens of S. suis might actually not be a priori good candidates for protective antigens. On the contrary, expression of immunogens that evoke antibodies that do not mediate killing of this pathogen might constitute an evolutionary advantage conserved in many different S. suis strains.
Collapse
Affiliation(s)
- Christine Weiße
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Denise Dittmar
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Nicole Schütze
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Kristin Klose
- Institute of Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Stephan Michalik
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Peter Valentin-Weigand
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany.
| |
Collapse
|
11
|
Petrocchi-Rilo M, Martínez-Martínez S, Aguarón-Turrientes Á, Roca-Martínez E, García-Iglesias MJ, Pérez-Fernández E, González-Fernández A, Herencia-Lagunar E, Gutiérrez-Martín CB. Anatomical Site, Typing, Virulence Gene Profiling, Antimicrobial Susceptibility and Resistance Genes of Streptococcus suis Isolates Recovered from Pigs in Spain. Antibiotics (Basel) 2021; 10:antibiotics10060707. [PMID: 34208248 PMCID: PMC8230935 DOI: 10.3390/antibiotics10060707] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
A set of 207 Streptococcus suis isolates were collected from ten autonomous communities from Spain in 2019 to 2020 from pigs with meningitis, pneumonic lungs, arthritic joints or other swollen viscera, to a lesser extent. Thirteen capsular types were detected being the most prevalent serotype 2 (21.7%), followed by serotypes 1 (21.3%), 9 (19.3%) and 3 (6.3%). Serotypes 2 and 9 were recovered mainly from the central nervous system (CNS), while serotype 1 was isolated mostly from swollen joints and serotype 3 from the lungs. Twenty-five isolates (12.1%) could not be typed. The most prevalent pathotype was epf + mrp + sly + luxS (49 isolates, 23.8%), and it was related mainly to serotypes 1 and 2. Serotypes 1–3 and 9 were significantly associated with anatomical sites of isolation and virulence factors, serotype 9 (CNS) and serotypes 3 and 9 (lungs) being associated with virulence profiles without the epf gene. S. suis isolates showed globally high antimicrobial resistances, but ampicillin followed by spectinomycin and tiamulin resulted in the highest activities, while the greatest resistances were detected for sulphadimethoxine, tetracyclines, neomycin, clindamycin and macrolides. A total of 87.4% isolates were positive to the tetO gene, 62.4% to the ermB gene and 25.2% to the fexA gene, while 14.6% were positive to all three genes simultaneously. A significative association between isolate resistances to tetracyclines and macrolides and the resistance genes tested was established, except for phenicol resistance and the fexA gene. A set of 14 multiresistance patterns were obtained according to the number of antimicrobials to which the isolates were resistant, the resistances to 12 or more agents being the most prevalent ones. A remarkable amount of multiresistance profiles could be seen among the S. suis serotype 9 isolates.
Collapse
Affiliation(s)
- Máximo Petrocchi-Rilo
- Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.-R.); (S.M.-M.); (M.-J.G.-I.); (E.P.-F.); (A.G.-F.); (E.H.-L.)
| | - Sonia Martínez-Martínez
- Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.-R.); (S.M.-M.); (M.-J.G.-I.); (E.P.-F.); (A.G.-F.); (E.H.-L.)
| | | | | | - María-José García-Iglesias
- Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.-R.); (S.M.-M.); (M.-J.G.-I.); (E.P.-F.); (A.G.-F.); (E.H.-L.)
| | - Esther Pérez-Fernández
- Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.-R.); (S.M.-M.); (M.-J.G.-I.); (E.P.-F.); (A.G.-F.); (E.H.-L.)
| | - Alba González-Fernández
- Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.-R.); (S.M.-M.); (M.-J.G.-I.); (E.P.-F.); (A.G.-F.); (E.H.-L.)
| | - Elena Herencia-Lagunar
- Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.-R.); (S.M.-M.); (M.-J.G.-I.); (E.P.-F.); (A.G.-F.); (E.H.-L.)
| | - César-Bernardo Gutiérrez-Martín
- Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.-R.); (S.M.-M.); (M.-J.G.-I.); (E.P.-F.); (A.G.-F.); (E.H.-L.)
- Correspondence: ; Tel.: +34-98729-1203
| |
Collapse
|
12
|
Obradovic MR, Segura M, Segalés J, Gottschalk M. Review of the speculative role of co-infections in Streptococcus suis-associated diseases in pigs. Vet Res 2021; 52:49. [PMID: 33743838 PMCID: PMC7980725 DOI: 10.1186/s13567-021-00918-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Streptococcus suis is one of the most important bacterial swine pathogens affecting post-weaned piglets, causing mainly meningitis, arthritis and sudden death. It not only results in severe economic losses but also raises concerns over animal welfare and antimicrobial resistance and remains an important zoonotic agent in some countries. The definition and diagnosis of S. suis-associated diseases can be complex. Should S. suis be considered a primary or secondary pathogen? The situation is further complicated when referring to respiratory disease, since the pathogen has historically been considered as a secondary pathogen within the porcine respiratory disease complex (PRDC). Is S. suis a respiratory or strictly systemic pathogen? S. suis is a normal inhabitant of the upper respiratory tract, and the presence of potentially virulent strains alone does not guarantee the appearance of clinical signs. Within this unclear context, it has been largely proposed that co-infection with some viral and bacterial pathogens can significantly influence the severity of S. suis-associated diseases and may be the key to understanding how the infection behaves in the field. In this review, we critically addressed studies reporting an epidemiological link (mixed infections or presence of more than one pathogen at the same time), as well as in vitro and in vivo studies of co-infection of S. suis with other pathogens and discussed their limitations and possibilities for improvement and proposed recommendations for future studies.
Collapse
Affiliation(s)
- Milan R Obradovic
- Groupe de Recherche Sur Les Maladies Infectieuses en Production Animale (GREMIP), Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Mariela Segura
- Groupe de Recherche Sur Les Maladies Infectieuses en Production Animale (GREMIP), Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Joaquim Segalés
- UAB, CReSA (IRTA-UAB), Campus de la UAB, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Departament de Sanitat I Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Marcelo Gottschalk
- Groupe de Recherche Sur Les Maladies Infectieuses en Production Animale (GREMIP), Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
13
|
Lauer AN, Scholtysik R, Beineke A, Baums CG, Klose K, Valentin-Weigand P, Ishikawa H, Schroten H, Klein-Hitpass L, Schwerk C. A Comparative Transcriptome Analysis of Human and Porcine Choroid Plexus Cells in Response to Streptococcus suis Serotype 2 Infection Points to a Role of Hypoxia. Front Cell Infect Microbiol 2021; 11:639620. [PMID: 33763387 PMCID: PMC7982935 DOI: 10.3389/fcimb.2021.639620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 11/14/2022] Open
Abstract
Streptococcus suis (S. suis) is an important opportunistic pathogen, which can cause septicemia and meningitis in pigs and humans. Previous in vivo observations in S. suis-infected pigs revealed lesions at the choroid plexus (CP). In vitro experiments with primary porcine CP epithelial cells (PCPEC) and human CP epithelial papilloma (HIBCPP) cells demonstrated that S. suis can invade and traverse the CP epithelium, and that the CP contributes to the inflammatory response via cytokine expression. Here, next generation sequencing (RNA-seq) was used to compare global transcriptome profiles of PCPEC and HIBCPP cells challenged with S. suis serotype (ST) 2 infected in vitro, and of pigs infected in vivo. Identified differentially expressed genes (DEGs) were, amongst others, involved in inflammatory responses and hypoxia. The RNA-seq data were validated via quantitative PCR of selected DEGs. Employing Gene Set Enrichment Analysis (GSEA), 18, 28, and 21 enriched hallmark gene sets (GSs) were identified for infected HIBCPP cells, PCPEC, and in the CP of pigs suffering from S. suis ST2 meningitis, respectively, of which eight GSs overlapped between the three different sample sets. The majority of these GSs are involved in cellular signaling and pathways, immune response, and development, including inflammatory response and hypoxia. In contrast, suppressed GSs observed during in vitro and in vivo S. suis ST2 infections included those, which were involved in cellular proliferation and metabolic processes. This study suggests that similar cellular processes occur in infected human and porcine CP epithelial cells, especially in terms of inflammatory response.
Collapse
Affiliation(s)
- Alexa N Lauer
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rene Scholtysik
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| | - Andreas Beineke
- Institute for Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Christoph Georg Baums
- Faculty of Veterinary Medicine, Institute of Bacteriology and Mycology, Leipzig University, Leipzig, Germany
| | - Kristin Klose
- Faculty of Veterinary Medicine, Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | | | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
14
|
Complete Genome Sequences of Streptococcus suis Pig-Pathogenic Strains 10, 13-00283-02, and 16085/3b. Microbiol Resour Announc 2021; 10:10/2/e01137-20. [PMID: 33446586 PMCID: PMC7849699 DOI: 10.1128/mra.01137-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Streptococcus suis is an important pathogen of pigs that, as a zoonotic agent, can also cause severe disease in humans, including meningitis, endocarditis, and septicemia. We report complete and annotated genomes of S. suis strains 10, 13-00283-02, and 16085/3b, which represent the highly prevalent serotypes cps2, cps7, and cps9, respectively. Streptococcus suis is an important pathogen of pigs that, as a zoonotic agent, can also cause severe disease in humans, including meningitis, endocarditis, and septicemia. We report complete and annotated genomes of S. suis strains 10, 13-00283-02, and 16085/3b, which represent the highly prevalent serotypes cps2, cps7, and cps9, respectively.
Collapse
|
15
|
Vötsch D, Willenborg M, Baumgärtner W, Rohde M, Valentin-Weigand P. Bordetella bronchiseptica promotes adherence, colonization, and cytotoxicity of Streptococcus suis in a porcine precision-cut lung slice model. Virulence 2020; 12:84-95. [PMID: 33372837 PMCID: PMC7781633 DOI: 10.1080/21505594.2020.1858604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Bordetella (B.) bronchiseptica and Streptococcus (S.) suis are major pathogens in pigs, which are frequently isolated from co-infections in the respiratory tract and contribute to the porcine respiratory disease complex (PRDC). Despite the high impact of co-infections on respiratory diseases of swine (and other hosts), very little is known about pathogen-pathogen-host interactions and the mechanisms of pathogenesis. In the present study, we established a porcine precision-cut lung slice (PCLS) model to analyze the effects of B. bronchiseptica infection on adherence, colonization, and cytotoxic effects of S. suis. We hypothesized that induction of ciliostasis by a clinical isolate of B. bronchiseptica may promote subsequent infection with a virulent S. suis serotype 2 strain. To investigate this theory, we monitored the ciliary activity by light microscopy, measured the release of lactate dehydrogenase, and calculated the number of PCLS-associated bacteria. To study the role of the pore-forming toxin suilysin (SLY) in S. suis-induced cytotoxicity, we included a SLY-negative isogenic mutant and the complemented mutant strain. Furthermore, we analyzed infected PCLS by histopathology, immunofluorescence microscopy, and field emission scanning electron microscopy. Our results showed that pre-infection with B. bronchiseptica promoted adherence, colonization, and, as a consequence of the increased colonization, the cytotoxic effects of S. suis, probably by reduction of the ciliary activity. Moreover, cytotoxicity induced by S. suis is strictly dependent on the presence of SLY. Though the underlying molecular mechanisms remain to be fully clarified, our results clearly support the hypothesis that B. bronchiseptica paves the way for S. suis infection.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Maren Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Wolfgang Baumgärtner
- Institute for Pathology, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research , Braunschweig, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover , Hannover, Germany
| |
Collapse
|
16
|
Gaiser RA, Ayerra Mangado J, Mechkarska M, Kaman WE, van Baarlen P, Conlon JM, Wells JM. Selection of antimicrobial frog peptides and temporin-1DRa analogues for treatment of bacterial infections based on their cytotoxicity and differential activity against pathogens. Chem Biol Drug Des 2020; 96:1103-1113. [PMID: 31102497 PMCID: PMC7891380 DOI: 10.1111/cbdd.13569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/27/2019] [Accepted: 05/05/2019] [Indexed: 01/02/2023]
Abstract
Cationic, amphipathic, α-helical host-defense peptides (HDPs) that are naturally secreted by certain species of frogs (Anura) possess potent broad-spectrum antimicrobial activity and show therapeutic potential as alternatives to treat infections by multidrug-resistant pathogens. Fourteen amphibian skin peptides and twelve analogues of temporin-1DRa were studied for their antimicrobial activities against clinically relevant human or animal skin infection-associated pathogens. For comparison, antimicrobial potencies of frog skin peptides against a range of probiotic lactobacilli were determined. We used the VITEK 2 system to define a profile of antibiotic susceptibility for the bacterial panel. The minimal inhibitory concentration (MIC) values of the naturally occurring temporin-1DRa, CPF-AM1, alyteserin-1c, hymenochirin-2B, and hymenochirin-4B for pathogenic bacteria were threefold to ninefold lower than the values for the tested probiotic strains. Similarly, temporin-1DRa and its [Lys4 ], [Lys5 ], and [Aib8 ] analogues showed fivefold to 6.5-fold greater potency against the pathogens. In the case of PGLa-AM1, XT-7, temporin-1DRa and its [D-Lys8 ] and [Aib13 ] analogues, no apoptosis or necrosis was detected in human peripheral blood mononuclear cells at concentrations below or above the MIC. Given the differential activity against commensal bacteria and pathogens, some of these peptides are promising candidates for further development into therapeutics for topical treatment of skin infections.
Collapse
Affiliation(s)
- Rogier A Gaiser
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands
| | - Jaione Ayerra Mangado
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands
| | - Milena Mechkarska
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Wendy E Kaman
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre Rotterdam (EMC), Rotterdam, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands
| | - J Michael Conlon
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
17
|
Scherrer S, Rosato G, Spoerry Serrano N, Stevens MJA, Rademacher F, Schrenzel J, Gottschalk M, Stephan R, Peterhans S. Population structure, genetic diversity and pathotypes of Streptococcus suis isolated during the last 13 years from diseased pigs in Switzerland. Vet Res 2020; 51:85. [PMID: 32641158 PMCID: PMC7346511 DOI: 10.1186/s13567-020-00813-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus (S.) suis is a globally important swine pathogen, which comprises certain zoonotic serotypes. In this study, a detailed characterization of 88 porcine S. suis isolates was performed by analyzing capsular (cps) types, multilocus sequence typing (MLST) and investigation of the minimum core genome (MCG). In order to focus on the virulence potential of presumable invasive disease-associated S. suis isolates, virulence-associated gene profiles were assessed followed by screening a chosen subset of S. suis strains with a molecular pathotyping tool. Results showed a high genetic variability within this strain collection. In total, seventeen cps types were identified with a predominance of cps type 9 (15.9%) and 6 (14.8%). MLST revealed 48 sequence types (STs) including 41 novel ones. The population structure of S. suis was heterogenous and isolates belonged to eight different clonal complexes (CCs) including CC28 (9.1%), CC1109 (8%), CC13/149 (6.8%), CC1237 (5.7%), CC1 (3.4%), CC17 (3.4%), CC87 (2.3%), and CC1112 (1.1%), whereas a significant portion of isolates (60.2%) could not be assigned to any described CCs. Virulence-associated markers, namely extracellular protein factor (epf), muramidase-released protein (mrp), and suilysin (sly), showed a link with STs rather than with cps types. With this study an expanded knowledge about the population structure and the genetic diversity of S. suis could be achieved, which helps to contribute to an optimal public health surveillance system by promoting a focus on strains with an increased virulence and zoonotic potential.
Collapse
Affiliation(s)
- Simone Scherrer
- Department of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Giuliana Rosato
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nathalie Spoerry Serrano
- Department of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marc J A Stevens
- Department of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Fenja Rademacher
- Department of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jacques Schrenzel
- Bacteriology Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Groupe de recherche sur les maladies infectieuses des animaux de production (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Roger Stephan
- Department of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sophie Peterhans
- Department of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Rieckmann K, Pendzialek SM, Vahlenkamp T, Baums CG. A critical review speculating on the protective efficacies of autogenous Streptococcus suis bacterins as used in Europe. Porcine Health Manag 2020; 6:12. [PMID: 32391166 PMCID: PMC7201539 DOI: 10.1186/s40813-020-00150-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus (S.) suis is a major porcine pathogen causing high morbidity worldwide. This includes well-managed herds with high hygiene standards. In Europe, no licensed vaccine is available. As practitioners are obliged to reduce the use of antibiotics, autogenous S. suis vaccines have become very popular in Europe. Main body Autogenous vaccines (AV) are generally neither tested for safety, immunogenicity nor protective efficacy, which leads to substantial uncertainties regarding control of disease and return on investment. Here, S. suis publications are reviewed that include important data on epidemiology, pathologies and bacterin vaccination relevant for the use of AV in the field. Differences between herds such as the porcine reproductive and respiratory syndrome virus infection status and the impact of specific S. suis pathotypes are probably highly relevant for the outcome of immunoprophylaxis using autogenous S. suis bacterins. Thus, a profound diagnosis of the herd status is crucial for management of expectations and successful implementation of AV as a tool to control S. suis disease. Induction of opsonizing antibodies is an in vitro correlate of protective immunity elicited by S. suis bacterins. However, opsonophagocytosis assays are difficult to include in the portfolio of diagnostic services. Conclusion Autogenous S. suis bacterins are associated with limitations and risks of failure, which can partly be managed through improvement of diagnostics.
Collapse
Affiliation(s)
- Karoline Rieckmann
- 1Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Sophia-Mareike Pendzialek
- 1Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Thomas Vahlenkamp
- 2Institute of Virology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, Leipzig, Germany
| | - Christoph G Baums
- 1Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Park GY, Yu HJ, Son JS, Park SJ, Cha HJ, Song KS. Specific bacteriophage of Bordetella bronchiseptica regulates B. bronchiseptica-induced microRNA expression profiles to decrease inflammation in swine nasal turbinate cells. Genes Genomics 2020; 42:441-447. [PMID: 32034667 PMCID: PMC7095298 DOI: 10.1007/s13258-019-00906-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
Background Respiratory diseases in pigs are the main health concerns for swine producers. Similar to the diseases in human and other animals, respiratory diseases are primary related to morbidity and are the result of infection with bacteria, viruses, or both. B. bronchiseptica causes serious respiratory diseases in the swine airway track. However, the B. bronchiseptica-specific bacteriophage has diverse advantages such as decreasing antibiotic overuse and possible therapeutic potential against bacteria. Objective The objects of this study were to investigate the therapeutic effect of specific B. bronchiseptica bacteriophages and to identify genes related to bacteriophage signaling utilizing RNA microarrays in swine nasal turbinate cells. Methods Bor-BRP-1 phages were applied 24 h prior to B.bronchiseptica infection (1 × 107 cfu/ml) at several concentrations of bacterial infection. Cells were incubated to detect cytokines and 24 h to detect mucin production. And real-time quantitative PCR was performed to examine related genes expression. To determine the change of total gene expression based on B.bronchiseptica and Bor-BRP-1 treatment, we performed RNA sequencing experiments. Results The results showed that B. bronchiseptica induced increased expression of several inflammatory genes such as IL-1β, IL-6, and Muc1 in a dose-dependent manner. However, Bor-BRP-1 induced reduction of gene expression compared to the B. bronchiseptica induction group. In addition, microarrays detected Bor-BRP-1-altered inflammatory gene expression against B. bronchiseptica, reducing B. bronchiseptica-induced airway inflammation in swine epithelial cells. Conclusion These results suggest that the specific bacteriophage has a therapeutic potential to defend against B. bronchiseptica infection by altering inflammatory gene expression profiles.
Collapse
Affiliation(s)
- Ga Young Park
- Department of Cell Biology, Kosin University College of Medicine, 34 Amnam-dong, Seo-gu, Busan, 49267, South Korea
| | - Hyun Jin Yu
- Institute of Life Technology, iNtRON Biotechnology, Seongnam, South Korea
| | - Jee Soo Son
- Institute of Life Technology, iNtRON Biotechnology, Seongnam, South Korea
| | - Sang Joon Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea
| | - Kyoung Seob Song
- Department of Cell Biology, Kosin University College of Medicine, 34 Amnam-dong, Seo-gu, Busan, 49267, South Korea.
| |
Collapse
|
20
|
Willemse N, van der Ark KCH, Stockhofe-Zurwieden N, Smith H, Picavet DI, van Solt-Smits C, Wisselink HJ, Schultsz C, de Greeff A. Clonal expansion of a virulent Streptococcus suis serotype 9 lineage distinguishable from carriage subpopulations. Sci Rep 2019; 9:15429. [PMID: 31659179 PMCID: PMC6817849 DOI: 10.1038/s41598-019-51576-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 09/25/2019] [Indexed: 12/25/2022] Open
Abstract
Streptococcus suis is a porcine pathogen, causing severe invasive infections. S. suis serotype 9 is increasingly causing disease in Dutch and Chinese pig herds, but it is unknown whether all serotype 9 isolates are equally virulent and markers that can identify virulent strains are not available. Therefore, discrimination between virulent isolates and carriage isolates typically not associated with disease, is currently not possible. We collected tonsillar S. suis isolates from 6 herds not previously diagnosed with S. suis infections, and clinical S. suis isolates of previously diseased pigs. We confirmed the virulence of a virulent type strain and one representative clinical isolate, and the lack of virulence of two carriage isolates, in a pig infection model. Phylogenetic analysis of whole genome sequences of 124 isolates resulted in 10 groups, of which two were almost uniquely populated by clinical isolates. The population structure of S. suis serotype 9 appears highly diverse. However, analysis of the capsule loci sequences showed variation in a single region which fully correlated with a virulent genotype. Transmission electron microscopy suggested differences in capsule thickness between carriage and clinical genotypes. In conclusion, we found that that the S. suis serotype 9 population in the Netherlands is diverse. A distinct virulence-associated lineage was identified and could be discriminated based on the capsule locus sequence. Whilst the difference in virulence cannot be directly attributed to the DNA sequence, the correlation of capsule locus sequence with virulence could be used in the development of diagnostic tests to identify potential virulent S. suis serotype 9 in pigs.
Collapse
Affiliation(s)
- Niels Willemse
- Department of Global Health-Amsterdam Institute for Global Health and Development, Amsterdam UMC, Paasheuvelweg 25, 1105, BP, Amsterdam, The Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Kees C H van der Ark
- Department of Global Health-Amsterdam Institute for Global Health and Development, Amsterdam UMC, Paasheuvelweg 25, 1105, BP, Amsterdam, The Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Norbert Stockhofe-Zurwieden
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221, RA, Lelystad, The Netherlands
| | - Hilde Smith
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221, RA, Lelystad, The Netherlands
| | - Daisy I Picavet
- EMCA Amsterdam, Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Conny van Solt-Smits
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221, RA, Lelystad, The Netherlands
| | - Henk J Wisselink
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221, RA, Lelystad, The Netherlands
| | - Constance Schultsz
- Department of Global Health-Amsterdam Institute for Global Health and Development, Amsterdam UMC, Paasheuvelweg 25, 1105, BP, Amsterdam, The Netherlands.
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Astrid de Greeff
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221, RA, Lelystad, The Netherlands
| |
Collapse
|
21
|
Wileman TM, Weinert LA, Howell KJ, Wang J, Peters SE, Williamson SM, Wells JM, Langford PR, Rycroft AN, Wren BW, Maskell DJ, Tucker AW. Pathotyping the Zoonotic Pathogen Streptococcus suis: Novel Genetic Markers To Differentiate Invasive Disease-Associated Isolates from Non-Disease-Associated Isolates from England and Wales. J Clin Microbiol 2019; 57:e01712-18. [PMID: 30944194 PMCID: PMC6595460 DOI: 10.1128/jcm.01712-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Streptococcus suis is one of the most important zoonotic bacterial pathogens of pigs, causing significant economic losses to the global swine industry. S. suis is also a very successful colonizer of mucosal surfaces, and commensal strains can be found in almost all pig populations worldwide, making detection of the S. suis species in asymptomatic carrier herds of little practical value in predicting the likelihood of future clinical relevance. The value of future molecular tools for surveillance and preventative health management lies in the detection of strains that genetically have increased potential to cause disease in presently healthy animals. Here we describe the use of genome-wide association studies to identify genetic markers associated with the observed clinical phenotypes (i) invasive disease and (ii) asymptomatic carriage on the palatine tonsils of pigs on UK farms. Subsequently, we designed a multiplex PCR to target three genetic markers that differentiated 115 S. suis isolates into disease-associated and non-disease-associated groups, that performed with a sensitivity of 0.91, a specificity of 0.79, a negative predictive value of 0.91, and a positive predictive value of 0.79 in comparison to observed clinical phenotypes. We describe evaluation of our pathotyping tool, using an out-of-sample collection of 50 previously uncharacterized S. suis isolates, in comparison to existing methods used to characterize and subtype S. suis isolates. In doing so, we show our pathotyping approach to be a competitive method to characterize S. suis isolates recovered from pigs on UK farms and one that can easily be updated to incorporate global strain collections.
Collapse
Affiliation(s)
- Thomas M Wileman
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kate J Howell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jinhong Wang
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E Peters
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Jerry M Wells
- Host-Microbe Interactomics, Department of Animal Sciences, Wageningen Univeristy, Wageningen, the Netherlands
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Andrew N Rycroft
- The Royal Veterinary College, Hawkshead Campus, Hatfield, United Kingdom
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Draft Genome Sequence of Streptococcus suis S10, a Virulent Strain Used in Experimental Pig Infections. Microbiol Resour Announc 2019; 8:8/23/e00227-19. [PMID: 31171613 PMCID: PMC6554600 DOI: 10.1128/mra.00227-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the draft whole-genome sequence of Streptococcus suis strain S10, isolated from the tonsils of a healthy pig. S. suis S10 belongs to the highly virulent serotype 2, which includes isolates that cause infectious diseases, including meningitis, in pigs and human. The genome contains a complete prophage that encodes a candidate virulence gene.
Collapse
|
23
|
Velikova N. The VraSR regulatory system contributes to virulence in Streptococcus suis via resistance to innate immune defenses. Virulence 2018; 9:681-682. [PMID: 29405824 PMCID: PMC5955441 DOI: 10.1080/21505594.2018.1430466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Nadya Velikova
- a Host-microbe Interactomics Group, Animal Sciences Department , Wageningen University , De Elst 1, Wageningen , The Netherlands
| |
Collapse
|
24
|
O'Dea MA, Laird T, Abraham R, Jordan D, Lugsomya K, Fitt L, Gottschalk M, Truswell A, Abraham S. Examination of Australian Streptococcus suis isolates from clinically affected pigs in a global context and the genomic characterisation of ST1 as a predictor of virulence. Vet Microbiol 2018; 226:31-40. [PMID: 30389041 DOI: 10.1016/j.vetmic.2018.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/18/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Streptococcus suis is a major zoonotic pathogen that causes severe disease in both humans and pigs. Australia's pig herd has been quarantined for over 30 years, however S. suis remains a significant cause of disease. In this study, we investigated S. suis from 148 cases of clinical disease in pigs from 46 pig herds over a period of seven years, to determine the level of genetic difference from international isolates that may have arisen over the 30 years of separation. Isolates underwent whole genome sequencing, genome analysis and antimicrobial susceptibility testing. Data was compared at the core genome level to clinical isolates from overseas. Results demonstrated five predominant multi-locus sequence types and two major cps gene types (cps2 and 3). At the core genome level Australian isolates clustered predominantly within one large clade consisting of isolates from the UK, Canada and North America. A small proportion of Australian swine isolates (5%) were phylogenetically associated with south-east Asian and UK isolates, many of which were classified as causing systemic disease, and derived from cases of human and swine disease. Based on this dataset we provide a comprehensive outline of the current S. suis clones associated with disease in Australian pigs and their global context, with the main finding being that, despite three decades of separation, Australian S. suis are genomically similar to overseas strains. In addition, we show that ST1 clones carry a constellation of putative virulence genes not present in other Australian STs.
Collapse
Affiliation(s)
- Mark A O'Dea
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - Tanya Laird
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Rebecca Abraham
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - David Jordan
- Wollongbar Primary Industries Institute, NSW Department of Primary Industries, NSW, Australia
| | - Kittitat Lugsomya
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Laura Fitt
- ACE Laboratory Services, Bendigo, Victoria, Australia
| | - Marcelo Gottschalk
- Laboratory of Research on Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Alec Truswell
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
25
|
Rieckmann K, Seydel A, Szewczyk K, Klimke K, Rungelrath V, Baums CG. Streptococcus suis cps7: an emerging virulent sequence type (ST29) shows a distinct, IgM-determined pattern of bacterial survival in blood of piglets during the early adaptive immune response after weaning. Vet Res 2018; 49:48. [PMID: 29903042 PMCID: PMC6003162 DOI: 10.1186/s13567-018-0544-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/10/2018] [Indexed: 11/10/2022] Open
Abstract
Streptococcus (S.) suis is an important porcine pathogen causing meningitis, arthritis and septicemia. As cps7 emerged recently in Germany in association with severe herd problems, the objective of this study was to characterize the geno- and phenotype of invasive cps7 strains. Twenty cps7 strains were isolated from diseased pigs from different farms with S. suis herd problems due to meningitis and other pathologies. Eighteen of the cps7 isolates belonged to sequence type (ST) 29. Most of these cps7 strains secreted a short MRP variant in agreement with a premature stop codon. Expression of IdeSsuis, an IgM specific protease, was variable in four further investigated cps7 ST29 isolates. Bactericidal assays revealed very high survival factors of these four cps7 ST29 strains in the blood of weaning piglets. In growing piglets, the increase of specific IgM led to efficient killing of cps7 ST29 as shown by addition of the IgM protease IdeSsuis. Finally, virulence of a cps7 ST29 strain was confirmed in experimental infection of weaning piglets leading to meningitis and arthritis. In conclusion, this study characterizes cps7 ST29 as a distinct S. suis pathotype showing high survival factors in porcine blood after weaning, but IgM-mediated killing in the blood of older growing piglets. This underlines the relevance of IgM as an important host defense mechanism against S. suis.
Collapse
Affiliation(s)
- Karoline Rieckmann
- Institute for Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, 04103, Leipzig, Germany
| | - Anna Seydel
- Institute for Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, 04103, Leipzig, Germany
| | - Kristin Szewczyk
- Institute for Veterinary Pathology, Faculty of Veterinary Medicine, University Leipzig, 04103, Leipzig, Germany
| | - Kerstin Klimke
- Institute for Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, 04103, Leipzig, Germany
| | - Viktoria Rungelrath
- Institute for Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, 04103, Leipzig, Germany
| | - Christoph Georg Baums
- Institute for Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
26
|
van der Wal FJ, Achterberg RP, van Solt-Smits C, Bergervoet JHW, de Weerdt M, Wisselink HJ. Exploring target-specific primer extension in combination with a bead-based suspension array for multiplexed detection and typing using Streptococcus suis as a model pathogen. J Vet Diagn Invest 2017; 30:71-77. [PMID: 28980519 PMCID: PMC5753849 DOI: 10.1177/1040638717730384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigated the feasibility of an assay based on target-specific primer
extension, combined with a suspension array, for the multiplexed detection and
typing of a veterinary pathogen in animal samples, using Streptococcus
suis as a model pathogen. A procedure was established for
simultaneous detection of 6 S. suis targets in pig tonsil
samples (i.e., 4 genes associated with serotype 1, 2, 7, or 9, the generic
S. suis glutamate dehydrogenase gene
[gdh], and the gene encoding the extracellular protein factor
[epf]). The procedure was set up as a combination of
protocols: DNA isolation from porcine tonsils, a multiplex PCR, a multiplex
target-specific primer extension, and finally a suspension array as the readout.
The resulting assay was compared with a panel of conventional PCR assays. The
proposed multiplex assay can correctly identify the serotype of isolates and is
capable of simultaneous detection of multiple targets in porcine tonsillar
samples. The assay is not as sensitive as the current conventional PCR assays,
but with the correct sampling strategy, the assay can be useful for screening
pig herds to establish which S. suis serotypes are circulating
in a pig population.
Collapse
Affiliation(s)
- Fimme J van der Wal
- Wageningen University & Research, Bioveterinary Research, Lelystad, The Netherlands (van der Wal, Achterberg, van Solt-Smits, Wisselink).,Wageningen University & Research, Plant Research, Wageningen, The Netherlands (Bergervoet, de Weerdt)
| | - René P Achterberg
- Wageningen University & Research, Bioveterinary Research, Lelystad, The Netherlands (van der Wal, Achterberg, van Solt-Smits, Wisselink).,Wageningen University & Research, Plant Research, Wageningen, The Netherlands (Bergervoet, de Weerdt)
| | - Conny van Solt-Smits
- Wageningen University & Research, Bioveterinary Research, Lelystad, The Netherlands (van der Wal, Achterberg, van Solt-Smits, Wisselink).,Wageningen University & Research, Plant Research, Wageningen, The Netherlands (Bergervoet, de Weerdt)
| | - Jan H W Bergervoet
- Wageningen University & Research, Bioveterinary Research, Lelystad, The Netherlands (van der Wal, Achterberg, van Solt-Smits, Wisselink).,Wageningen University & Research, Plant Research, Wageningen, The Netherlands (Bergervoet, de Weerdt)
| | - Marjanne de Weerdt
- Wageningen University & Research, Bioveterinary Research, Lelystad, The Netherlands (van der Wal, Achterberg, van Solt-Smits, Wisselink).,Wageningen University & Research, Plant Research, Wageningen, The Netherlands (Bergervoet, de Weerdt)
| | - Henk J Wisselink
- Wageningen University & Research, Bioveterinary Research, Lelystad, The Netherlands (van der Wal, Achterberg, van Solt-Smits, Wisselink).,Wageningen University & Research, Plant Research, Wageningen, The Netherlands (Bergervoet, de Weerdt)
| |
Collapse
|
27
|
Dong W, zhu Y, Ma Y, Ma J, Zhang Y, Yuan L, Pan Z, Wu Z, Yao H. Multilocus sequence typing and virulence genotyping of Streptococcus suis serotype 9 isolates revealed high genetic and virulence diversity. FEMS Microbiol Lett 2017; 364:4209578. [DOI: 10.1093/femsle/fnx192] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 09/20/2017] [Indexed: 01/09/2023] Open
|
28
|
The Bordetella Bps Polysaccharide Is Required for Biofilm Formation and Enhances Survival in the Lower Respiratory Tract of Swine. Infect Immun 2017; 85:IAI.00261-17. [PMID: 28559403 DOI: 10.1128/iai.00261-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/18/2017] [Indexed: 12/21/2022] Open
Abstract
Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Additionally, B. bronchiseptica is capable of establishing long-term or chronic infections in swine. Bacterial biofilms are increasingly recognized as important contributors to chronic bacterial infections. Recently the polysaccharide locus bpsABCD has been demonstrated to serve a critical role in the development of mature biofilms formed by the sequenced laboratory strain of B. bronchiseptica We hypothesized that swine isolates would also have the ability to form mature biofilms and the bpsABCD locus would serve a key role in this process. A mutant containing an in-frame deletion of the bpsABCD structural genes was constructed in a wild-type swine isolate and found to be negative for poly-N-acetylglucosamine (PNAG)-like material by immunoblot assay. Further, the bpsABCD locus was found to be required for the development and maintenance of the three-dimensional structures under continuous-flow conditions. To investigate the contribution of the bpsABCD locus to the pathogenesis of B. bronchiseptica in swine, the KM22Δbps mutant was compared to the wild-type swine isolate for the ability to colonize and cause disease in pigs. The bpsABCD locus was found to not be required for persistence in the upper respiratory tract of swine. Additionally, the bpsABCD locus did not affect the development of anti-Bordetella humoral immunity, did not contribute to disease severity, and did not mediate protection from complement-mediated killing. However, the bpsABCD locus was found to enhance survival in the lower respiratory tract of swine.
Collapse
|
29
|
Potentially hazardous Streptococcus suis strains latent in asymptomatic pigs in a major swine production area of Thailand. J Med Microbiol 2017; 66:662-669. [DOI: 10.1099/jmm.0.000483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
30
|
Oh SI, Jeon AB, Jung BY, Byun JW, Gottschalk M, Kim A, Kim JW, Kim HY. Capsular serotypes, virulence-associated genes and antimicrobial susceptibility of Streptococcus suis isolates from pigs in Korea. J Vet Med Sci 2017; 79:780-787. [PMID: 28250312 PMCID: PMC5402202 DOI: 10.1292/jvms.16-0514] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Streptococcus suis is an important pig pathogen with potential for human
transmission. The serotype distributions and phenotypic characteristics vary over time and
among regions; however, little is known about the characteristics of S.
suis isolates in Korea. In this study, 240 S. suis isolates
collected from pigs in Korea in 2009–2010 were serotyped by coagglutination tests,
subsequently screened for three virulence-associated genes (mrp,
epf and sly) and tested for antimicrobial
susceptibility. As for 80 isolates, the serotypes of which were relevant to human
infections, clonal complexes (CCs) were further identified by PCR. Serotype 3 was the most
prevalent (15.8%), followed by serotype 2 (15.0%), with geographical variation for each
serotype. Overall, 55.4% of the isolates carried mrp, whereas only 3.8%
carried epf. CC25 was the most prevalent (41.3%) and was related to
serotypes 2 and 9. The isolates showed higher susceptibility to ampicillin (93.4%) and
ceftiofur (90.8%) than to the other antimicrobial agents tested. The highest resistance
rate was observed to tetracycline (98.0%), followed by erythromycin (88.8%). In addition,
the resistance to certain antimicrobials was significantly associated, in part, with
virulence-associated genes or serotypes. Therefore, continuous characterization of
S. suis is essential for the benefit of veterinary and human
medicine.
Collapse
Affiliation(s)
- Sang-Ik Oh
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, 39660, Korea.,College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan, 54596, Korea
| | - Albert Byungyun Jeon
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, 39660, Korea
| | - Byeong-Yeal Jung
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, 39660, Korea
| | - Jae-Won Byun
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, 39660, Korea
| | - Marcelo Gottschalk
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montréal, St-Hyacinthe, Québec, J2S 2M2, Canada
| | - Aeran Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, 39660, Korea
| | - Jong Wan Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, 39660, Korea
| | - Ha-Young Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, 39660, Korea
| |
Collapse
|
31
|
Okwumabua O, Peterson H, Hsu HM, Bochsler P, Behr M. Isolation and partial characterization of Streptococcus suis from clinical cases in cattle. J Vet Diagn Invest 2017; 29:160-168. [PMID: 28166707 DOI: 10.1177/1040638717690014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sixteen isolates of gram-positive, coccoid bacteria were obtained from clinical cases of diverse conditions in cattle and identified as Streptococcus suis using 16S ribosomal DNA gene sequencing and other bacterial identification methods. None of the isolates could be assigned to any of the known S. suis capsular types. Virulence-associated gene profiling that targeted muramidase-released protein, extracellular protein factor, suilysin, 89-kb pathogenicity island, and arginine deiminase ( arcA) genes were negative except for 1 isolate that was arcA positive. The arcA-positive isolate caused severe widespread lesions, including multiorgan suppurative and hemorrhagic inflammation in the meninges, lung, liver, spleen, lymph nodes, and serosae of heart and intestines. The other isolates were primarily associated with meningitis, bronchopneumonia, and multifocal acute necrotizing hepatitis. The isolates differed from each other by 4-6 fragments when examined by pulsed-field gel electrophoresis, indicating they are possibly related. The isolates were susceptible to ampicillin, penicillin, and tiamulin. Resistance was noted to sulfadimethoxine (93%), oxytetracycline (86%), chlortetracycline (86%), neomycin (67%), tilmicosin (47%), clindamycin (47%), enrofloxacin (33%), gentamicin (13%), florfenicol (7%), trimethoprim-sulfamethoxazole (7%), and spectinomycin (53%). Multi-drug resistance (defined as resistance to at least 1 agent in 3 or more antimicrobial classes) was detected in 67% of the isolates. The pathology observations provide evidence that S. suis may be an important pathogen of bovine calves. S. suis is an agent that clinical bacteriology laboratories should consider when dealing with cases involving cattle.
Collapse
Affiliation(s)
- Ogi Okwumabua
- Department of Pathobiological Sciences, School of Veterinary Medicine (Okwumabua, Bochsler, Behr)
- Wisconsin Veterinary Diagnostic Laboratory (Okwumabua, Hsu, Bochsler, Behr)
- College of Agriculture and Life Sciences (Peterson), University of Wisconsin, Madison, WI
| | - Hanna Peterson
- Department of Pathobiological Sciences, School of Veterinary Medicine (Okwumabua, Bochsler, Behr)
- Wisconsin Veterinary Diagnostic Laboratory (Okwumabua, Hsu, Bochsler, Behr)
- College of Agriculture and Life Sciences (Peterson), University of Wisconsin, Madison, WI
| | - Hui-Min Hsu
- Department of Pathobiological Sciences, School of Veterinary Medicine (Okwumabua, Bochsler, Behr)
- Wisconsin Veterinary Diagnostic Laboratory (Okwumabua, Hsu, Bochsler, Behr)
- College of Agriculture and Life Sciences (Peterson), University of Wisconsin, Madison, WI
| | - Phil Bochsler
- Department of Pathobiological Sciences, School of Veterinary Medicine (Okwumabua, Bochsler, Behr)
- Wisconsin Veterinary Diagnostic Laboratory (Okwumabua, Hsu, Bochsler, Behr)
- College of Agriculture and Life Sciences (Peterson), University of Wisconsin, Madison, WI
| | - Melissa Behr
- Department of Pathobiological Sciences, School of Veterinary Medicine (Okwumabua, Bochsler, Behr)
- Wisconsin Veterinary Diagnostic Laboratory (Okwumabua, Hsu, Bochsler, Behr)
- College of Agriculture and Life Sciences (Peterson), University of Wisconsin, Madison, WI
| |
Collapse
|
32
|
Kubelkova K, Benuchova M, Kozakova H, Sinkora M, Krocova Z, Pejchal J, Macela A. Gnotobiotic mouse model's contribution to understanding host-pathogen interactions. Cell Mol Life Sci 2016; 73:3961-9. [PMID: 27544211 PMCID: PMC11108488 DOI: 10.1007/s00018-016-2341-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/25/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
This brief review is dedicated to the legacy of Prof. Jaroslav Šterzl and his colleagues, who laid the foundation for gnotobiology in the former Czechoslovakia 55 years. Prof. Sterzl became one of the founders of modern Czechoslovak immunology, which was characterized by work on a wide range of problems needing to be solved. While examining the mechanisms of innate immunity, he focused his studies on the induction of antibody production by immunocompetent cells involved in adaptive immune transmission while using the model of pig fetuses and germ-free piglets and characterizing immunoglobulins in the sera of these piglets. Although not fully appreciated to this day, his experimental proof of the hypothesis focused on the common precursor of cell-forming antibodies of different isotypes was later confirmed in experiments at the gene level. Prof. Sterzl's work represented a true milestone in the development of not solely Czechoslovak but also European and global immunology. He collaborated closely with the World Health Organization for many years, serving there as leader of the Reference Laboratory for Factors of Innate Immunity.
Collapse
Affiliation(s)
- Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 1575 Trebesska, 500 01, Hradec Kralove, Czech Republic.
| | - Milota Benuchova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 1575 Trebesska, 500 01, Hradec Kralove, Czech Republic
| | - Hana Kozakova
- Laboratory of Gnotobiology, Czech Academy of Sciences, Institute of Microbiology, 549 22, Novy Hradek, Czech Republic
| | - Marek Sinkora
- Laboratory of Gnotobiology, Czech Academy of Sciences, Institute of Microbiology, 549 22, Novy Hradek, Czech Republic
| | - Zuzana Krocova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 1575 Trebesska, 500 01, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, 1575 Trebesska, 500 01, Hradec Kralove, Czech Republic
| | - Ales Macela
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 1575 Trebesska, 500 01, Hradec Kralove, Czech Republic
| |
Collapse
|
33
|
Dekker N, Daemen I, Verstappen K, de Greeff A, Smith H, Duim B. Simultaneous Quantification and Differentiation of Streptococcus suis Serotypes 2 and 9 by Quantitative Real-Time PCR, Evaluated in Tonsillar and Nasal Samples of Pigs. Pathogens 2016; 5:pathogens5030046. [PMID: 27376336 PMCID: PMC5039426 DOI: 10.3390/pathogens5030046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
Abstract
Invasive Streptococcus suis (S. suis) infections in pigs are often associated with serotypes 2 and 9. Mucosal sites of healthy pigs can be colonized with these serotypes, often multiple serotypes per pig. To unravel the contribution of these serotypes in pathogenesis and epidemiology, simultaneous quantification of serotypes is needed. A quantitative real-time PCR (qPCR) targeting cps2J (serotypes 2 and 1/2) and cps9H (serotype 9) was evaluated with nasal and tonsillar samples from S. suis exposed pigs. qPCR specifically detected serotypes in all pig samples. The serotypes loads in pig samples estimated by qPCR showed, except for serotype 9 in tonsillar samples (correlation coefficient = 0.25), moderate to strong correlation with loads detected by culture (correlation coefficient > 0.65), and also in pigs exposed to both serotypes (correlation coefficient > 0.75). This qPCR is suitable for simultaneous differentiation and quantification of important S. suis serotypes.
Collapse
Affiliation(s)
- Niels Dekker
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, P.O. Box 80.151, 3508 TD Utrecht, The Netherlands.
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, P.O. Box 80.165, 3508 TD Utrecht, The Netherlands.
| | - Ineke Daemen
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, P.O. Box 80.151, 3508 TD Utrecht, The Netherlands.
| | - Koen Verstappen
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, P.O. Box 80.165, 3508 TD Utrecht, The Netherlands.
| | - Astrid de Greeff
- Central Veterinary Institute of Wageningen UR, P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| | - Hilde Smith
- Central Veterinary Institute of Wageningen UR, P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| | - Birgitta Duim
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, P.O. Box 80.165, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
34
|
Doto DS, Moreno LZ, Calderaro FF, Matajira CEC, de Moura Gomes VT, Ferreira TSP, Mesquita RE, Timenetsky J, Gottschalk M, Moreno AM. Genetic diversity of Streptococcus suis serotype 2 isolated from pigs in Brazil. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2016; 80:106-111. [PMID: 27127337 PMCID: PMC4836036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Streptococcus suis is an emerging zoonotic pathogen that causes septicemia, meningitis, arthritis, and pneumonia in swine and humans. The present study aimed to characterize the genetic diversity of S. suis serotype 2 isolated from pigs showing signs of illness in Brazil using pulsed-field gel electrophoresis (PFGE), single-enzyme amplified fragment length polymorphism (SE-AFLP), and profiling of virulence-associated markers. A total of 110 isolates were studied, 62.7% of which were isolated from the central nervous system and 19.1% from the respiratory tract. Eight genotypes were obtained from the combination of virulence genes, with 43.6% and 5.5% frequencies for the mrp (+) /epf (+) /sly (+) and mrp (-) /epf (-) /sly (-) genotypes, respectively. The presence of isolates with epf gene variation with higher molecular weight also appears to be a characteristic of Brazilian S. suis serotype 2. The PFGE and SE-AFLP were able to type all isolates and, although they presented a slight tendency to cluster according to state and year of isolation, it was also evident the grouping of different herds in the same PFGE subtype and the existence of isolates originated from the same herd classified into distinct subtypes. No further correlation between the isolation sites and mrp/epf/sly genotypes was observed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrea Micke Moreno
- Address all correspondence to Dr. Moreno; telephone: +55 02 111 3091 1377; fax: +55 02 111 3091 7928; e-mail:
| |
Collapse
|
35
|
Zaccaria E, Cao R, Wells JM, van Baarlen P. A Zebrafish Larval Model to Assess Virulence of Porcine Streptococcus suis Strains. PLoS One 2016; 11:e0151623. [PMID: 26999052 PMCID: PMC4801416 DOI: 10.1371/journal.pone.0151623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/29/2016] [Indexed: 12/14/2022] Open
Abstract
Streptococcus suis is an encapsulated Gram-positive bacterium, and the leading cause of sepsis and meningitis in young pigs resulting in considerable economic losses in the porcine industry. It is also considered an emerging zoonotic agent. In the environment, both avirulent and virulent strains occur in pigs, and virulent strains appear to cause disease in both humans and pigs. There is a need for a convenient, reliable and standardized animal model to assess S. suis virulence. A zebrafish (Danio rerio) larvae infection model has several advantages, including transparency of larvae, low cost, ease of use and exemption from ethical legislation up to 6 days post fertilization, but has not been previously established as a model for S. suis. Microinjection of different porcine strains of S. suis in zebrafish larvae resulted in highly reproducible dose- and strain-dependent larval death, strongly correlating with presence of the S. suis capsule and to the original virulence of the strain in pigs. Additionally we compared the virulence of the two-component system mutant of ciaRH, which is attenuated for virulence in both mice and pigs in vivo. Infection of larvae with the ΔciaRH strain resulted in significantly higher survival rate compared to infection with the S10 wild-type strain. Our data demonstrate that zebrafish larvae are a rapid and reliable model to assess the virulence of clinical porcine S. suis isolates.
Collapse
Affiliation(s)
- Edoardo Zaccaria
- Host-Microbe Interactomics, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Rui Cao
- Host-Microbe Interactomics, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Jerry M. Wells
- Host-Microbe Interactomics, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
- * E-mail:
| |
Collapse
|
36
|
Virulence genotyping and population analysis of Streptococcus suis serotype 2 isolates from China. INFECTION GENETICS AND EVOLUTION 2015; 36:483-489. [DOI: 10.1016/j.meegid.2015.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/16/2015] [Accepted: 08/18/2015] [Indexed: 11/13/2022]
|
37
|
Ferrando ML, de Greeff A, van Rooijen WJM, Stockhofe-Zurwieden N, Nielsen J, Wichgers Schreur PJ, Pannekoek Y, Heuvelink A, van der Ende A, Smith H, Schultsz C. Host-pathogen Interaction at the Intestinal Mucosa Correlates With Zoonotic Potential of Streptococcus suis. J Infect Dis 2014; 212:95-105. [PMID: 25525050 PMCID: PMC4462715 DOI: 10.1093/infdis/jiu813] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/08/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Streptococcus suis has emerged as an important cause of bacterial meningitis in adults. The ingestion of undercooked pork is a risk factor for human S. suis serotype 2 (SS2) infection. Here we provide experimental evidence indicating that the gastrointestinal tract is an entry site of SS2 infection. METHODS We developed a noninvasive in vivo model to study oral SS2 infection in piglets. We compared in vitro interaction of S. suis with human and porcine intestinal epithelial cells (IEC). RESULTS Two out of 15 piglets showed clinical symptoms compatible with S. suis infection 24-48 hours after ingestion of SS2. SS2 was detected in mesenteric lymph nodes of 40% of challenged piglets. SS2 strains isolated from patients showed significantly higher adhesion to human IEC compared to invasive strains isolated from pigs. In contrast, invasive SS9 strains showed significantly higher adhesion to porcine IEC. Translocation across human IEC, which occurred predominately via a paracellular route, was significantly associated with clonal complex 1, the predominant zoonotic genotype. Adhesion and translocation were dependent on capsular polysaccharide production. CONCLUSIONS SS2 should be considered a food-borne pathogen. S. suis interaction with human and pig IEC correlates with S. suis serotype and genotype, which can explain the zoonotic potential of SS2.
Collapse
Affiliation(s)
- Maria Laura Ferrando
- Department of Medical Microbiology, Academic Medical Center, Center for Infection and Immunity Department of Global Health-Amsterdam Institute for Global Health and Development, University of Amsterdam
| | - Astrid de Greeff
- Central Veterinary Institute, Part of Wageningen UR, Lelystad, The Netherlands
| | - Willemien J M van Rooijen
- Department of Medical Microbiology, Academic Medical Center, Center for Infection and Immunity Department of Global Health-Amsterdam Institute for Global Health and Development, University of Amsterdam
| | | | - Jens Nielsen
- Technical University of Denmark, National Veterinary Institute, Lindholm, Denmark
| | | | - Yvonne Pannekoek
- Department of Medical Microbiology, Academic Medical Center, Center for Infection and Immunity
| | | | - Arie van der Ende
- Department of Medical Microbiology, Academic Medical Center, Center for Infection and Immunity
| | - Hilde Smith
- Central Veterinary Institute, Part of Wageningen UR, Lelystad, The Netherlands
| | - Constance Schultsz
- Department of Medical Microbiology, Academic Medical Center, Center for Infection and Immunity Department of Global Health-Amsterdam Institute for Global Health and Development, University of Amsterdam Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| |
Collapse
|
38
|
de Greeff A, Buys H, Wells JM, Smith HE. A naturally occurring nucleotide polymorphism in the orf2/folc promoter is associated with Streptococcus suis virulence. BMC Microbiol 2014; 14:264. [PMID: 25384512 PMCID: PMC4232619 DOI: 10.1186/s12866-014-0264-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus suis is a major problem in the swine industry causing meningitis, arthritis and pericarditis in piglets. Pathogenesis of S. suis is poorly understood. We previously showed that introduction of a 3 kb genomic fragment from virulent serotype 2 strain 10 into a weakly virulent serotype 2 strain S735, generated a hypervirulent isolate. The 3 kb genomic fragment contained two complete open reading frames (ORF) in an operon-structure of which one ORF showed similarity to folylpolyglutamate synthetase, whereas the function of the second ORF could not be predicted based on database searches for protein similarity. RESULTS In this study we demonstrate that introduction of orf2 from strain 10 into strain S735 is sufficient to dramatically increase the virulence of S735 in pigs. This increase in virulence could not be associated with changes in pro-inflammatory responses of porcine blood mononucleated cells in response to S. suis in vitro. Sequence analysis of the orf2-folC-operon of S. suis isolates 10 and S735 revealed an SNP in the -35 region of the putative promoter sequence of the operon, as well as several SNPs resulting in amino acid substitutions in the ORF2 protein. Transcript levels of orf2 and folC were significantly higher in the virulent strain 10 than in the weakly virulent strain S735 and in vitro mutagenesis of the orf2 promoter confirmed that this was due to a SNP in the predicted -35 region upstream of the orf2 promoter. In this study, we demonstrated that the stronger promoter was present in all virulent and highly virulent S. suis isolates included in our study. This highlights a correlation between high orf2 expression and virulence. Conversely, the weaker promoter was present in isolates known to be weakly pathogenic or non-pathogenic. CONCLUSION In summary, we demonstrate the importance of orf2 in the virulence of S. suis.
Collapse
Affiliation(s)
- Astrid de Greeff
- Central Veterinary Institute of Wageningen UR, Edelhertweg 15, 8219, , PH, Lelystad, The Netherlands.
| | - Herma Buys
- Central Veterinary Institute of Wageningen UR, Edelhertweg 15, 8219, , PH, Lelystad, The Netherlands.
| | - Jerry M Wells
- Wageningen UR, Host Microbe Interactions, De Elst 1, 6708, , WD, Wageningen, The Netherlands.
| | - Hilde E Smith
- Central Veterinary Institute of Wageningen UR, Edelhertweg 15, 8219, , PH, Lelystad, The Netherlands.
| |
Collapse
|
39
|
Draft Genome Sequence of the Bordetella bronchiseptica Swine Isolate KM22. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00670-14. [PMID: 25013141 PMCID: PMC4110755 DOI: 10.1128/genomea.00670-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bordetella bronchiseptica swine isolate KM22 has been used in experimental infections of swine as a model of clinical B. bronchiseptica infections within swine herds and to study host-to-host transmission. Here we report the draft genome sequence of KM22.
Collapse
|
40
|
The Bordetella bronchiseptica type III secretion system is required for persistence and disease severity but not transmission in swine. Infect Immun 2013; 82:1092-103. [PMID: 24366249 DOI: 10.1128/iai.01115-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Most studies addressing virulence factors of B. bronchiseptica utilize isolates derived from hosts other than pigs in conjunction with rodent infection models. Based on previous in vivo mouse studies, we hypothesized that the B. bronchiseptica type III secretion system (T3SS) would be required for maximal disease severity and persistence in the swine lower respiratory tract. To examine the contribution of the T3SS to the pathogenesis of B. bronchiseptica in swine, we compared the abilities of a virulent swine isolate and an isogenic T3SS mutant to colonize, cause disease, and be transmitted from host to host. We found that the T3SS is required for maximal persistence throughout the lower swine respiratory tract and contributed significantly to the development of nasal lesions and pneumonia. However, the T3SS mutant and the wild-type parent are equally capable of transmission among swine by both direct and indirect routes, demonstrating that transmission can occur even with attenuated disease. Our data further suggest that the T3SS skews the adaptive immune response in swine by hindering the development of serum anti-Bordetella antibody levels and inducing an interleukin-10 (IL-10) cell-mediated response, likely contributing to the persistence of B. bronchiseptica in the respiratory tract. Overall, our results demonstrate that the Bordetella T3SS is required for maximal persistence and disease severity in pigs, but not for transmission.
Collapse
|
41
|
Brockmeier SL, Loving CL, Vorwald AC, Kehrli ME, Baker RB, Nicholson TL, Lager KM, Miller LC, Faaberg KS. Genomic sequence and virulence comparison of four Type 2 porcine reproductive and respiratory syndrome virus strains. Virus Res 2012; 169:212-21. [PMID: 23073232 DOI: 10.1016/j.virusres.2012.07.030] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 02/05/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a ubiquitous and costly virus that exhibits substantial sequence and virulence disparity among diverse isolates. In this study, we compared the whole genomic sequence and virulence of 4 Type 2 PRRSV isolates. Among the 4 isolates, SDSU73, MN184, and NADC30 were all clearly more virulent than NADC31, and among the 3 more virulent isolates, there were subtle differences based on viral replication, lung lesions, lymphadenopathy, febrile response, decreased weight gains, and cytokine responses in the lung. Lesions consistent with bacterial bronchopneumonia were present to varying degrees in pigs infected with PRRSV, and bacteria typically associated with the porcine respiratory disease complex were isolated from the lung of these pigs. Genomic sequence evaluation indicates that SDSU73 is most similar to the nucleotide sequence of JA142, the parental strain of Ingelvac(®) PRRS ATP, while the nucleotide sequences of NADC30 and NADC31 are more similar to strain MN184. Both the NADC30 and NADC31 isolates of PRRSV, isolated in 2008, maintain the nonstructural protein 2 (nsp2) deletion seen in MN184 that was isolated in 2001, but NADC31 has two additional 15 and 36 nucleotide deletions, and these strains are 8-14% different on a nucleotide basis from the MN184 strain. These results indicate that newer U.S. Type 2 strains still exhibit variability in sequence and pathogenicity and although PRRSV strains appear to be reducing the size of the nsp2 over time, this does not necessarily mean that the strain is more virulent.
Collapse
Affiliation(s)
- Susan L Brockmeier
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fittipaldi N, Xu J, Lacouture S, Tharavichitkul P, Osaki M, Sekizaki T, Takamatsu D, Gottschalk M. Lineage and virulence of Streptococcus suis serotype 2 isolates from North America. Emerg Infect Dis 2012; 17:2239-44. [PMID: 22172538 PMCID: PMC3311171 DOI: 10.3201/eid1712.110609] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Two sequence types predominate and have lower virulence than other types. We performed multilocus sequence typing of 64 North American Streptococcus suis serotype 2 porcine isolates. Strains were sequence type (ST) 28 (51%), ST25 (44%), and ST1 (5%). We identified nonrandom associations between STs and expression of the virulence markers suilysin (SLY), muramidase-relased protein (MRP), and extracellular factor (EF). Expression of pili encoded by the srtF and srtG pilus clusters was also nonrandomly associated with STs. ST1 strains were SLY+ EF+ MRP+ srtF pilus+ srtG pilus−. ST25 strains were SLY− EF− MRP− srtF pilus− srtG pilus+, and most ST28 strains were SLY− MRP+ EF− srtF pilus+ srtG pilus+. ST28 isolates proved essentially nonvirulent in a mouse infection model; ST25 strains showed moderate virulence and ST1 isolates were highly virulent. ST1 is responsible for a high proportion of S. suis disease in humans worldwide. Its presence in North America indicates that potential zoonotic S. suis outbreaks in this continent cannot be disregarded.
Collapse
|
43
|
Wichgers Schreur PJ, van Weeghel C, Rebel JMJ, Smits MA, van Putten JPM, Smith HE. Lysozyme resistance in Streptococcus suis is highly variable and multifactorial. PLoS One 2012; 7:e36281. [PMID: 22558419 PMCID: PMC3340348 DOI: 10.1371/journal.pone.0036281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/04/2012] [Indexed: 12/19/2022] Open
Abstract
Background Streptococcus suis is an important infectious agent for pigs and occasionally for humans. The host innate immune system plays a key role in preventing and eliminating S. suis infections. One important constituent of the innate immune system is the protein lysozyme, which is present in a variety of body fluids and immune cells. Lysozyme acts as a peptidoglycan degrading enzyme causing bacterial lysis. Several pathogens have developed mechanisms to evade lysozyme-mediated killing. In the present study we compared the lysozyme sensitivity of various S. suis isolates and investigated the molecular basis of lysozyme resistance for this pathogen. Results The lysozyme minimal inhibitory concentrations of a wide panel of S. suis isolates varied between 0.3 to 10 mg/ml. By inactivating the oatA gene in a serotype 2 and a serotype 9 strain, we showed that OatA-mediated peptidoglycan modification partly contributes to lysozyme resistance. Furthermore, inactivation of the murMN operon provided evidence that additional peptidoglycan crosslinking is not involved in lysozyme resistance in S. suis. Besides a targeted approach, we also used an unbiased approach for identifying factors involved in lysozyme resistance. Based on whole genome comparisons of a lysozyme sensitive strain and selected lysozyme resistant derivatives, we detected several single nucleotide polymorphisms (SNPs) that were correlated with the lysozyme resistance trait. Two SNPs caused defects in protein expression of an autolysin and a capsule sugar transferase. Analysis of specific isogenic mutants, confirmed the involvement of autolysin activity and capsule structures in lysozyme resistance of S. suis. Conclusions This study shows that lysozyme resistance levels are highly variable among S. suis isolates and serotypes. Furthermore, the results show that lysozyme resistance in S. suis can involve different mechanisms including OatA-mediated peptidolycan modification, autolysin activity and capsule production.
Collapse
Affiliation(s)
- Paul J. Wichgers Schreur
- Central Veterinary Institute, Wageningen UR, Lelystad, The Netherlands
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | | | | | - Mari A. Smits
- Central Veterinary Institute, Wageningen UR, Lelystad, The Netherlands
- Wageningen Livestock Research, Wageningen UR, Lelystad, The Netherlands
| | - Jos P. M. van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Hilde E. Smith
- Central Veterinary Institute, Wageningen UR, Lelystad, The Netherlands
- * E-mail:
| |
Collapse
|
44
|
Meijerink M, Ferrando ML, Lammers G, Taverne N, Smith HE, Wells JM. Immunomodulatory effects of Streptococcus suis capsule type on human dendritic cell responses, phagocytosis and intracellular survival. PLoS One 2012; 7:e35849. [PMID: 22558240 PMCID: PMC3338795 DOI: 10.1371/journal.pone.0035849] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/23/2012] [Indexed: 01/15/2023] Open
Abstract
Streptococcus suis is a major porcine pathogen of significant commercial importance worldwide and an emerging zoonotic pathogen of humans. Given the important sentinel role of mucosal dendritic cells and their importance in induction of T cell responses we investigated the effect of different S. suis serotype strains and an isogenic capsule mutant of serotype 2 on the maturation, activation and expression of IL-10, IL-12p70 and TNF-α in human monocyte-derived dendritic cells. Additionally, we compared phagocytosis levels and bacterial survival after internalization. The capsule of serotype 2, the most common serotype associated with infection in humans and pigs, was highly anti-phagocytic and modulated the IL-10/IL-12 and IL-10/TNF-α cytokine production in favor of a more anti-inflammatory profile compared to other serotypes. This may have consequences for the induction of effective immunity to S. suis serotype 2 in humans. A shielding effect of the capsule on innate Toll-like receptor signaling was also demonstrated. Furthermore, we showed that 24 h after phagocytosis, significant numbers of viable intracellular S. suis were still present intracellularly. This may contribute to the dissemination of S. suis in the body.
Collapse
Affiliation(s)
- Marjolein Meijerink
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Maria Laura Ferrando
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Geraldine Lammers
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Nico Taverne
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Hilde E. Smith
- Animal Sciences Group, Wageningen University, Lelystad, The Netherlands
| | - Jerry M. Wells
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
45
|
Büttner N, Beineke A, de Buhr N, Lilienthal S, Merkel J, Waldmann KH, Valentin-Weigand P, Baums CG. Streptococcus suis serotype 9 bacterin immunogenicity and protective efficacy. Vet Immunol Immunopathol 2012; 146:191-200. [PMID: 22516423 DOI: 10.1016/j.vetimm.2012.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/01/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Streptococcus suis diseases in pigs, most importantly meningitis, are worldwide responsible for major economic losses in the pig industry. About one fourth of invasive S. suis diseases are caused by S. suis serotype 9 strains in Europe. However, little is known about serotype 9 since most studies were performed with serotype 2. The objective of this study was to determine the immunogenicity and protective efficacy of a serotype 9 bacterin in piglets. Challenge was conducted with a reference serotype 9 strain, belonging to the same clonal complex but to a different sequence type as the bacterin strain. The bacterin induced protection against mortality but not morbidity. Eleven days post infection, 3 of 7 vaccinated survivors were not fully convalescent and had not eliminated the challenge strain from inner organs completely. In accordance with the clinical findings, the majority of piglets showed fibrinous-suppurative lesions in at least one inner organ or tissue. In contrast to the placebo group such lesions were not detected in one third of bacterin-vaccinated piglets. Determination of specific serum IgG titers revealed that the bacterin elicited seroconversion against muramidase-released protein and basic membrane lipoprotein. Furthermore, vaccination was associated with induction of opsonizing antibodies against the serotype 9 challenge strain. However, titers of opsonizing antibodies were rather low in comparison to those found in our previous serotype 2 vaccination trial. Piglets developed substantially higher titers of opsonizing antibodies after challenge. Opsonizing antibodies were absorbable with the serotype 9 challenge strain but not with an unencapsulated isogenic mutant of a serotype 2 strain indicating their specificity. The results indicate that a serotype 9 bacterin is less protective than a serotype 2 bacterin, most likely due to inducing only low titers of opsonizing antibodies. This might contribute to emergence of serotype 9 strains, in particular strains of this clonal complex, in Europe.
Collapse
Affiliation(s)
- Nadine Büttner
- Institut für Mikrobiologie, Zentrum für Infektionsmedizin, Stiftung Tierärztliche Hochschule Hannover, D-30173 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Phenotypic modulation of the virulent Bvg phase is not required for pathogenesis and transmission of Bordetella bronchiseptica in swine. Infect Immun 2011; 80:1025-36. [PMID: 22158743 DOI: 10.1128/iai.06016-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The majority of virulence gene expression in Bordetella is regulated by a two-component sensory transduction system encoded by the bvg locus. In response to environmental cues, the BvgAS regulatory system controls expression of a spectrum of phenotypic phases, transitioning between a virulent (Bvg(+)) phase and a nonvirulent (Bvg(-)) phase, a process referred to as phenotypic modulation. We hypothesized that the ability of Bordetella bronchiseptica to undergo phenotypic modulation is required at one or more points during the infectious cycle in swine. To investigate the Bvg phase-dependent contribution to pathogenesis of B. bronchiseptica in swine, we constructed a series of isogenic mutants in a virulent B. bronchiseptica swine isolate and compared each mutant to the wild-type isolate for its ability to colonize and cause disease. We additionally tested whether a BvgAS system capable of modulation is required for direct or indirect transmission. The Bvg(-) phase-locked mutant was never recovered from any respiratory tract site at any time point examined. An intermediate phase-locked mutant (Bvg(i)) was found in numbers lower than the wild type at all respiratory tract sites and time points examined and caused limited to no disease. In contrast, colonization of the respiratory tract and disease caused by the Bvg(+) phase-locked mutant and the wild-type strain were indistinguishable. The Bvg(+) phase-locked mutant transmitted to naïve pigs by both direct and indirect contact with efficiency equal to that of the wild-type isolate. These results indicate that while full activation of the BvgAS regulatory system is required for colonization and severe disease, it is not deleterious to direct and indirect transmission. Overall, our results demonstrate that the Bvg(+) phase is sufficient for respiratory infection and host-to-host transmission of B. bronchiseptica in swine.
Collapse
|
47
|
de Greeff A, Wisselink HJ, de Bree FM, Schultsz C, Baums CG, Thi HN, Stockhofe-Zurwieden N, Smith HE. Genetic diversity of Streptococcus suis isolates as determined by comparative genome hybridization. BMC Microbiol 2011; 11:161. [PMID: 21736719 PMCID: PMC3142484 DOI: 10.1186/1471-2180-11-161] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 07/07/2011] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus suis is a zoonotic pathogen that causes infections in young piglets. S. suis is a heterogeneous species. Thirty-three different capsular serotypes have been described, that differ in virulence between as well as within serotypes. Results In this study, the correlation between gene content, serotype, phenotype and virulence among 55 S. suis strains was studied using Comparative Genome Hybridization (CGH). Clustering of CGH data divided S. suis isolates into two clusters, A and B. Cluster A isolates could be discriminated from cluster B isolates based on the protein expression of extracellular factor (EF). Cluster A contained serotype 1 and 2 isolates that were correlated with virulence. Cluster B mainly contained serotype 7 and 9 isolates. Genetic similarity was observed between serotype 7 and serotype 2 isolates that do not express muramidase released protein (MRP) and EF (MRP-EF-), suggesting these isolates originated from a common founder. Profiles of 25 putative virulence-associated genes of S. suis were determined among the 55 isolates. Presence of all 25 genes was shown for cluster A isolates, whereas cluster B isolates lacked one or more putative virulence genes. Divergence of S. suis isolates was further studied based on the presence of 39 regions of difference. Conservation of genes was evaluated by the definition of a core genome that contained 78% of all ORFs in P1/7. Conclusions In conclusion, we show that CGH is a valuable method to study distribution of genes or gene clusters among isolates in detail, yielding information on genetic similarity, and virulence traits of S. suis isolates.
Collapse
Affiliation(s)
- Astrid de Greeff
- Infection Biology, Central Veterinary Institute of Wageningen UR (University & Research Centre), Edelhertweg 15, Lelystad, 8219 PH, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Willenborg J, Fulde M, de Greeff A, Rohde M, Smith HE, Valentin-Weigand P, Goethe R. Role of glucose and CcpA in capsule expression and virulence of Streptococcus suis. Microbiology (Reading) 2011; 157:1823-1833. [DOI: 10.1099/mic.0.046417-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus suis is one of the most important pathogens in pigs and is also an emerging zoonotic agent. After crossing the epithelial barrier, S. suis causes bacteraemia, resulting in meningitis, endocarditis and bronchopneumonia. Since the host environment seems to be an important regulatory component for virulence, we related expression of virulence determinants of S. suis to glucose availability during growth and to the sugar metabolism regulator catabolite control protein A (CcpA). We found that expression of the virulence-associated genes arcB, representing arcABC operon expression, cps2A, representing capsular locus expression, as well as sly, ofs, sao and epf, differed significantly between exponential and early stationary growth of a highly virulent serotype 2 strain. Deletion of ccpA altered the expression of the surface-associated virulence factors arcB, sao and eno, as well as the two currently proven virulence factors in pigs, ofs and cps2A, in early exponential growth. Global expression analysis using a cDNA expression array revealed 259 differentially expressed genes in early exponential growth, of which 141 were more highly expressed in the CcpA mutant strain 10ΔccpA and 118 were expressed to a lower extent. Interestingly, among the latter genes, 18 could be related to capsule and cell wall synthesis. Correspondingly, electron microscopy characterization of strain 10ΔccpA revealed a markedly reduced thickness of the capsule. This phenotype correlated with enhanced binding to porcine plasma proteins and a reduced resistance to killing by porcine neutrophils. Taken together, our data demonstrate that CcpA has a significant effect on the capsule synthesis and virulence properties of S. suis.
Collapse
Affiliation(s)
- J. Willenborg
- Institute for Microbiology, University of Veterinary Medicine, Hannover, Germany
| | - M. Fulde
- Department of Microbial Pathogenesis, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - A. de Greeff
- Animal Sciences Group (ASG), Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - M. Rohde
- Department of Microbial Pathogenesis, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - H. E. Smith
- Animal Sciences Group (ASG), Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - P. Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine, Hannover, Germany
| | - R. Goethe
- Institute for Microbiology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
49
|
Ferrando ML, Fuentes S, de Greeff A, Smith H, Wells JM. ApuA, a multifunctional α-glucan-degrading enzyme of Streptococcus suis, mediates adhesion to porcine epithelium and mucus. Microbiology (Reading) 2010; 156:2818-2828. [DOI: 10.1099/mic.0.037960-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have identified apuA in Streptococcus suis, which encodes a bifunctional amylopullulanase with conserved α-amylase and pullulanase substrate-binding domains and catalytic motifs. ApuA exhibited properties typical of a Gram-positive surface protein, with a putative signal sequence and LPKTGE cell-wall-anchoring motif. A recombinant protein containing the predicted N-terminal α-amylase domain of ApuA was shown to have α-(1,4) glycosidic activity. Additionally, an apuA mutant of S. suis lacked the pullulanase α-(1,6) glycosidic activity detected in a cell-surface protein extract of wild-type S. suis. ApuA was required for normal growth in complex medium containing pullulan as the major carbon source, suggesting that this enzyme plays a role in nutrient acquisition in vivo via the degradation of glycogen and food-derived starch in the nasopharyngeal and oral cavities. ApuA was shown to promote adhesion to porcine epithelium and mucus in vitro, highlighting a link between carbohydrate utilization and the ability of S. suis to colonize and infect the host.
Collapse
Affiliation(s)
- Maria Laura Ferrando
- Host-Microbe Interactomics, Wageningen University and Research Centre, Marijkeweg 40, 6709 PG Wageningen, The Netherlands
| | - Susana Fuentes
- Host-Microbe Interactomics, Wageningen University and Research Centre, Marijkeweg 40, 6709 PG Wageningen, The Netherlands
| | - Astrid de Greeff
- Central Veterinary Institute of Wageningen UR, Edelhertweg 15, 8219 PH Lelystad, The Netherlands
| | - Hilde Smith
- Central Veterinary Institute of Wageningen UR, Edelhertweg 15, 8219 PH Lelystad, The Netherlands
| | - Jerry M. Wells
- Host-Microbe Interactomics, Wageningen University and Research Centre, Marijkeweg 40, 6709 PG Wageningen, The Netherlands
| |
Collapse
|
50
|
Immunogenicity of an autogenous Streptococcus suis bacterin in preparturient sows and their piglets in relation to protection after weaning. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1589-97. [PMID: 20739502 DOI: 10.1128/cvi.00159-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus suis is an important porcine pathogen causing meningitis and other invasive diseases in piglets of different ages. Application of S. suis serotype 2 bacterins to specific-pathogen-free (SPF) weaning piglets has been demonstrated to protect against the homologous serotype. However, autogenous S. suis bacterins are also applied to sows and suckling piglets in the field. Therefore, comparative evaluation of different bacterin immunization regimes, including sow vaccination, was performed in this study. The main objectives were to determine the immunogenicity of an S. suis bacterin in sows prepartum and its influence on active immunization of piglets. Experimental infection of 6- and 8-week-old weaning piglets was performed to elucidate protective efficacies. Humoral immune responses were investigated by an enzyme-linked immunosorbent assay (ELISA) measuring muramidase-released protein (MRP)-specific IgG titers and by opsonophagocytosis assays. Bacterin application elicited high MRP-specific IgG titers in the serum and colostrum of sows, as well as opsonizing antibodies. Piglets from vaccinated sows had significantly higher MRP-specific titers than respective piglets from nonvaccinated sows until 6 weeks postpartum. Vaccination of suckling piglets did not result in high MRP-specific titers nor in induction of opsonizing antibodies. Furthermore, neither vaccination of suckling nor of weaning piglets from immunized sows was associated with a prominent active immune response and protection at 8 weeks postpartum. However, protection was observed in respective 6-week-old weaning piglets, most likely because of protective maternal immunity. In conclusion, this study provides the first results suggesting protective passive maternal immunity for S. suis serotype 2 after bacterin vaccination of sows and a strong inhibitory effect on active immunization of suckling and weaning piglets, leading to highly susceptible growers.
Collapse
|