1
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Apolinario E, Sinclair J, Choi M, Luo K, Shridhar S, Tennant SM, Simon R, Lillehoj E, Cross A. Antisera against flagellin A or B inhibits Pseudomonas aeruginosa motility as measured by novel video microscopy assay. J Immunol Methods 2024; 531:113701. [PMID: 38852836 PMCID: PMC11285035 DOI: 10.1016/j.jim.2024.113701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Flagellum-mediated motility is essential to Pseudomonas aeruginosa (P. aeruginosa) virulence. Antibody against flagellin reduces motility and inhibits the spread of the bacteria from the infection site. The standard soft-agar assay to demonstrate anti-flagella motility inhibition requires long incubation times, is difficult to interpret, and requires large amounts of antibody. We have developed a time-lapse video microscopy method to analyze anti-flagellin P. aeruginosa motility inhibition that has several advantages over the soft agar assay. Antisera from mice immunized with flagellin type A or B were incubated with Green Fluorescent Protein (GFP)-expressing P. aeruginosa strain PAO1 (FlaB+) and GFP-expressing P. aeruginosa strain PAK (FlaA+). We analyzed the motion of the bacteria in video taken in ten second time intervals. An easily measurable decrease in bacterial locomotion was observed microscopically within minutes after the addition of small volumes of flagellin antiserum. From data analysis, we were able to quantify the efficacy of anti-flagellin antibodies in the test serum that decreased P. aeruginosa motility. This new video microscopy method to assess functional activity of anti-flagellin antibodies required less serum, less time, and had more robust and reproducible endpoints than the standard soft agar motility inhibition assay.
Collapse
Affiliation(s)
- Ethel Apolinario
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA.
| | - James Sinclair
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA
| | - Myeongjin Choi
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA; 141 Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Kun Luo
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA; Miltenyi Biotec, Inc., 1201 Clopper Road, Gaithersburg, MD, USA
| | - Surekha Shridhar
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA
| | - Sharon M Tennant
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA
| | - Raphael Simon
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA; Pfizer, Saddle River, NJ, USA
| | - Erik Lillehoj
- University of Maryland Baltimore, School of Medicine, Department of Pediatrics, Baltimore, MD, USA
| | - Alan Cross
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Xu J, Arakaki R, Tachibana S, Yamashiro T. Fermentation products of the fungus Monascus spp. impairs the physiological activities of toxin-producing Vibrio cholerae. Microbiol Res 2022; 258:126995. [DOI: 10.1016/j.micres.2022.126995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/26/2022]
|
4
|
Chiu TW, Peng CJ, Chen MC, Hsu MH, Liang YH, Chiu CH, Fang JM, Lee YC. Constructing conjugate vaccine against Salmonella Typhimurium using lipid-A free lipopolysaccharide. J Biomed Sci 2020; 27:89. [PMID: 32831077 PMCID: PMC7443816 DOI: 10.1186/s12929-020-00681-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background Salmonella enterica serotype Typhimurium is a nontyphoidal and common foodborne pathogen that causes serious threat to humans. There is no licensed vaccine to prevent the nontyphoid bacterial infection caused by S. Typhimurium. Methods To develop conjugate vaccines, the bacterial lipid-A free lipopolysaccharide (LFPS) is prepared as the immunogen and used to synthesize the LFPS–linker–protein conjugates 6a–9b. The designed bifunctional linkers 1–5 comprising either an o-phenylenediamine or amine moiety are specifically attached to the exposed 3-deoxy-D-manno-octulosonic acid (Kdo), an α-ketoacid saccharide of LFPS, via condensation reaction or decarboxylative amidation. In addition to bovine serum albumin and ovalbumin, the S. Typhimurium flagellin (FliC) is also used as a self-adjuvanting protein carrier. Results The synthesized conjugate vaccines are characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and fast performance liquid chromatography (FPLC), and their contents of polysaccharides and protein are determined by phenol–sulfuric acid assay and bicinchoninic acid assay, respectively. Enzyme-linked immunosorbent assay (ELISA) shows that immunization of mouse with the LFPS–linker–protein vaccines at a dosage of 2.5 μg is sufficient to elicit serum immunoglobulin G (IgG) specific to S. Typhimurium lipopolysaccharide (LPS). The straight-chain amide linkers in conjugates 7a–9b do not interfere with the desired immune response. Vaccines 7a and 7b derived from either unfractionated LFPS or the high-mass portion show equal efficacy in induction of IgG antibodies. The challenge experiments are performed by oral gavage of S. Typhimurium pathogen, and vaccine 7c having FliC as the self-adjuvanting protein carrier exhibits a high vaccine efficacy of 74% with 80% mice survival rate at day 28 post the pathogen challenge. Conclusions This study demonstrates that lipid-A free lipopolysaccharide prepared from Gram-negative bacteria is an appropriate immunogen, in which the exposed Kdo is connected to bifunctional linkers to form conjugate vaccines. The decarboxylative amidation of Kdo is a novel and useful method to construct a relatively robust and low immunogenic straight-chain amide linkage. The vaccine efficacy is enhanced by using bacterial flagellin as the self-adjuvanting carrier protein. Graphical abstract ![]()
Collapse
Affiliation(s)
- Tzu-Wei Chiu
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Chi-Jiun Peng
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Ming-Cheng Chen
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Mei-Hua Hsu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, 5, Fuxing St., Guishan Dist, Taoyuan, 33302, Taiwan
| | - Yi-Hua Liang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, 5, Fuxing St., Guishan Dist, Taoyuan, 33302, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, 5, Fuxing St., Guishan Dist, Taoyuan, 33302, Taiwan. .,Department of Pediatrics, Chang Gung Children's Hospital, 5, Fuxing St., Guishan Dist, Taoyuan, 33302, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Guishan Dist, Taoyuan, 33302, Taiwan.
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan. .,The Genomics Research Center, Academia Sinica, 128, Sec. 2, Academia Rd, Taipei, 11529, Taiwan.
| | - Yuan Chuan Lee
- Department of Biology, Johns Hopkins University, 3400 North Charles St, Baltimore, MD, 21218-2685, USA
| |
Collapse
|
5
|
Huang Y, Chen CL, Yuan JJ, Li HM, Han XR, Chen RC, Guan WJ, Zhong NS. Sputum Exosomal microRNAs Profiling Reveals Critical Pathways Modulated By Pseudomonas aeruginosa Colonization In Bronchiectasis. Int J Chron Obstruct Pulmon Dis 2019; 14:2563-2573. [PMID: 31819394 PMCID: PMC6878997 DOI: 10.2147/copd.s219821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Pseudomonas aeruginosa (PA) colonization confers poor prognosis in bronchiectasis. However, the biomarkers and biological pathways underlying these associations are unclear. Objective To identify the roles of PA colonization in bronchiectasis by exploring for sputum exosomal microRNA profiles. Methods We enrolled 98 patients with clinically stable bronchiectasis and 17 healthy subjects. Sputum was split for bacterial culture and exosomal microRNA sequencing, followed by validation with quantitative polymerase chain reaction. Bronchiectasis patients were stratified into PA and non-PA colonization groups based on sputum culture findings. We applied Gene Ontology and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis to explore biological pathways corresponding to the differentially expressed microRNAs (DEMs) associated with PA colonization. Results Eighty-two bronchiectasis patients and 9 healthy subjects yielded sufficient sputum that passed quality control. We identified 10 overlap DEMs for the comparison between bronchiectasis patients and healthy subjects, and between PA and non-PA colonization group. Both miR-92b-5p and miR-223-3p could discriminate PA colonization (C-statistic >0.60) and independently correlated with PA colonization in multiple linear regression analysis. The differential expression of miR-92b-5p was validated by quantitative polymerase chain reaction (P<0.05), whereas the differential expression of miR-223 trended towards statistical significance (P=0.06). These DEMs, whose expression levels correlated significantly with sputum inflammatory biomarkers (interleukin-1β and interleukin-8) level, were implicated in the modulation of the nuclear factor-κB, phosphatidylinositol and longevity regulation pathways. Conclusion Sputum exosomal microRNAs are implicated in PA colonization in bronchiectasis, highlighting candidate targets for therapeutic interventions to mitigate the adverse impacts conferred by PA colonization.
Collapse
Affiliation(s)
- Yan Huang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chun-Lan Chen
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing-Jing Yuan
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hui-Min Li
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiao-Rong Han
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Rong-Chang Chen
- Department of Respiratory Medicine, Shenzhen People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Wei-Jie Guan
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Nan-Shan Zhong
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
6
|
McConnell MJ. Where are we with monoclonal antibodies for multidrug-resistant infections? Drug Discov Today 2019; 24:1132-1138. [PMID: 30853568 DOI: 10.1016/j.drudis.2019.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2019] [Accepted: 03/01/2019] [Indexed: 01/17/2023]
Abstract
Widespread antibiotic resistance threatens the continued efficacy of antimicrobial therapy based on small-molecule antibiotics. Infections caused by multidrug-resistant Gram-negative bacteria are particularly worrisome owing to the lack of antimicrobials retaining sufficient activity against these microorganisms. Despite the explosion in monoclonal antibody therapies that have been developed for oncologic and rheumatic indications, only three antibacterial monoclonal antibodies have been approved for clinical use. In the present review, the therapeutic potential of this drug class for treating multidrug-resistant infections is discussed, and considerations for the development of antibacterial monoclonal antibodies are presented. Finally, the state of development of monoclonal antibody therapies for some of the most problematic multidrug-resistant Gram-negative infections is summarized.
Collapse
Affiliation(s)
- Michael J McConnell
- Antimicrobial Resistance and Hospital Acquired Infections Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
7
|
Maria de Souza Morais S, Ferreira Rodigues N, Ingrid Oliveira da Silva N, Aparecido Salvador E, Rodrigues Franco I, Augusto Pires de Souza G, Henrique Cruvinel da Silva P, Gustavo Nogueira de Almeida L, Prado Rocha R, Carolina Toledo da Cunha Pereira A, Portela Ferreira G, Veras Quelemes P, Pereira de Araújo M, Fornias Sperandio F, Júnia de Souza Santos L, Assis Martins Filho O, Cosme Cotta Malaquias L, Felipe Leomil Coelho L. Serum albumin nanoparticles vaccine provides protection against a lethal Pseudomonas aeruginosa challenge. Vaccine 2018; 36:6408-6415. [DOI: 10.1016/j.vaccine.2018.08.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/18/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
|
8
|
Curran CS, Bolig T, Torabi-Parizi P. Mechanisms and Targeted Therapies for Pseudomonas aeruginosa Lung Infection. Am J Respir Crit Care Med 2018; 197:708-727. [PMID: 29087211 PMCID: PMC5855068 DOI: 10.1164/rccm.201705-1043so] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a complex gram-negative facultative anaerobe replete with a variety of arsenals to activate, modify, and destroy host defense mechanisms. The microbe is a common cause of nosocomial infections and an antibiotic-resistant priority pathogen. In the lung, P. aeruginosa disrupts upper and lower airway homeostasis by damaging the epithelium and evading innate and adaptive immune responses. The biology of these interactions is essential to understand P. aeruginosa pathogenesis. P. aeruginosa interacts directly with host cells via flagella, pili, lipoproteins, lipopolysaccharides, and the type III secretion system localized in the outer membrane. P. aeruginosa quorum-sensing molecules regulate the release of soluble factors that enhance the spread of infection. These characteristics of P. aeruginosa differentially affect lung epithelial, innate, and adaptive immune cells involved in the production of mediators and the recruitment of additional immune cell subsets. Pathogen interactions with individual host cells and in the context of host acute lung infection are discussed to reveal pathways that may be targeted therapeutically.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Thomas Bolig
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Peng CJ, Chen HL, Chiu CH, Fang JM. Site-Selective Functionalization of Flagellin by Steric Self-Protection: A Strategy To Facilitate Flagellin as a Self-Adjuvanting Carrier in Conjugate Vaccine. Chembiochem 2018; 19:805-814. [PMID: 29377518 DOI: 10.1002/cbic.201700634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 01/18/2023]
Abstract
Flagellin (FliC) can act as a carrier protein in the preparation of conjugate vaccines to elicit a T-cell-dependent immune response and as an intrinsic adjuvant to activate the toll-like receptor 5 (TLR5) to enhance vaccine potency. To enable the use of FliC as a self-adjuvanting carrier, an effective method for site-selective modification (SSM) of pertinent amino-acid residues in the D2 and D3 domains of FliC is explored without excessive modification of the D0 and D1 domains, which are responsible for activating and binding with TLR5. In highly concentrated Na2 SO4 solution, FliC monomers form flagellar filaments, in which the D0 and D1 domains are situated inside the tubular structure. Thus, the lysine residues (K219, K224, K324, and K331) in the D2 and D3 domains of flagellin are selectively modified by a diazo-transfer reaction with imidazole-1-sulfonyl azide. The sites with azido modification are confirmed by MALDI-TOF-MS, ESI-TOF-MS, and LC-MS/MS analyses along with label-free quantitation. The azido-modified filament dissolves to give FliC monomers, which can conjugate with alkyne-hinged saccharides by the click reaction. Transmission electron microscopy imaging, dynamic light scattering measurements, and the secreted embryonic alkaline phosphatase reporter assay indicate that the modified FliC monomers retain the ability either to bind with TLR5 or to reassemble into filaments. Overall, this study establishes a feasible method for the SSM of FliC by steric self-protection of the D0 and D1 domains.
Collapse
Affiliation(s)
- Chi-Jiun Peng
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hsiu-Ling Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, 5, Fuxing Street, Guishan District, Taoyuan, 33302, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, 5, Fuxing Street, Guishan District, Taoyuan, 33302, Taiwan
- Department of Pediatrics, Chang Gung Children's Hospital, 5, Fuxing Street, Guishan District, Taoyuan, 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Guishan District, Taoyuan, 33302, Taiwan
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
- The Genomics Research Center, Academia Sinica, 128, Sec. 2, Academia Road, Taipei, 11529, Taiwan
| |
Collapse
|
10
|
Xu J, Nakamura S, Islam MS, Guo Y, Ihara K, Tomioka R, Masuda M, Yoneyama H, Isogai E. Mannose-Binding Lectin Inhibits the Motility of Pathogenic Salmonella by Affecting the Driving Forces of Motility and the Chemotactic Response. PLoS One 2016; 11:e0154165. [PMID: 27104738 PMCID: PMC4841586 DOI: 10.1371/journal.pone.0154165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 04/08/2016] [Indexed: 01/05/2023] Open
Abstract
Mannose-binding lectin (MBL) is a key pattern recognition molecule in the lectin pathway of the complement system, an important component of innate immunity. MBL functions as an opsonin which enhances the sequential immune process such as phagocytosis. We here report an inhibitory effect of MBL on the motility of pathogenic bacteria, which occurs by affecting the energy source required for motility and the signaling pathway of chemotaxis. When Salmonella cells were treated with a physiological concentration of MBL, their motile fraction and free-swimming speed decreased. Rotation assays of a single flagellum showed that the flagellar rotation rate was significantly reduced by the addition of MBL. Measurements of the intracellular pH and membrane potential revealed that MBL affected a driving force for the Salmonella flagellum, the electrochemical potential difference of protons. We also found that MBL treatment increased the reversal frequency of Salmonella flagellar rotation, which interfered with the relative positive chemotaxis toward an attractive substrate. We thus propose that the motility inhibition effect of MBL may be secondarily involved in the attack against pathogens, potentially facilitating the primary role of MBL in the complement system.
Collapse
Affiliation(s)
- Jun Xu
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
- * E-mail: (SN); (JX)
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
- * E-mail: (SN); (JX)
| | - Md. Shafiqul Islam
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Yijie Guo
- Department of Immunobiology and Pathogenic Biology, Medical School of Xi’an Jiaotong University, Xi’an, China
| | - Kohei Ihara
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Rintaro Tomioka
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Mizuki Masuda
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroshi Yoneyama
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Emiko Isogai
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
11
|
Adams H, Horrevoets WM, Adema SM, Carr HEV, van Woerden RE, Koster M, Tommassen J. Reprint of “Inhibition of biofilm formation by Camelid single-domainantibodies against the flagellum of Pseudomonas aeruginosa”. J Biotechnol 2015; 191:131-8. [PMID: 25450637 DOI: 10.1016/j.jbiotec.2014.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/13/2014] [Accepted: 06/25/2014] [Indexed: 10/24/2022]
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections in patients with compromised host defense mechanisms, including burn wound victims. In addition to its intrinsic resistance against most antibiotics, P. aeruginosa has the ability to form biofilms adhering to biotic or abiotic surfaces. These factors make treatment of P. aeruginosa infections complicated and demand new therapies and drugs. The flagellum of P. aeruginosa plays an important role in cell–cell and cell–surface interactions during the first stage of biofilm formation. In this study, we describe the selection of monoclonal anti-flagellin single-domain antibodies (VHHs) derived from the Camelid heavy-chain antibody repertoire of a llama immunized with P. aeruginosa antigens. The anti-flagellin VHHs could be produced efficiently in Saccharomyces cerevisiae, and surface plasmon resonance experiments demonstrated that they have apparent affinities in the nanomolar range. Functional screens showed that the anti-flagellin VHHs are capable of inhibiting P. aeruginosa from swimming and that they prevent biofilm formation in an in vitro assay. These data open doors for the development of novel methods for the prevention of P. aeruginosa-related infections.
Collapse
|
12
|
Xu J, Guo Y, Nakamura S, Islam MS, Tomioka R, Yoneyama H, Isogai E. Mannose-binding lectin impairs Leptospira activity through the inhibitory effect on the motility of cell. Microbiol Res 2015; 171:21-5. [PMID: 25644948 DOI: 10.1016/j.micres.2014.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/16/2014] [Accepted: 12/26/2014] [Indexed: 12/18/2022]
Abstract
Mannose-binding lectin (MBL) plays key role in lectin pathway of innate immunity, and shows the ability of triggering opsonization intermediately. Substantial increase in the serum level of MBL has been confirmed during leptospirosis, which caused by a pathogenic spirochete, Leptospira. Leptospira has a fascinating locomotion pattern, which simultaneously gyrating and swimming forward, such motility enables that Leptospira is difficult to be captured by immune cells if without any assistance. In this study, the effect of mannose-binding lectin to Leptospira was quantitatively investigated by measuring some kinematic parameters, to discover the mechanism behind MBL-mediated immune responses during leptospiral infection. The results showed that mannose-binding lectin is capable of inhibiting the motility of Leptospira by transforming free swimming cells to tumbled rotating cells, resulted in the increase number of rotating cells. Otherwise, decrease in rotation rate of rotating cell has been observed. However, the swimming speed of swimming Leptospira cells showed no observable change under the effect of MBL. The inhibitory effect were only valid in a relatively short period, Leptospira cells regained their original motility after 2 h. This raises an interesting topic that Leptospira is somehow able to escape from the inhibitory effect of MBL by dragging such unfavorable molecules toward to the cell end and eventually throwing it out. The inhibitory effect of MBL on the motility of Leptospira is expected to provide a new insight into lectin pathway.
Collapse
Affiliation(s)
- Jun Xu
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.
| | - Yijie Guo
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan; Department of Immunobiology and Pathogenic Biology, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Md Shafiqul Islam
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Rintaro Tomioka
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroshi Yoneyama
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Emiko Isogai
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
13
|
Sabharwal N, Chhibber S, Harjai K. New possibility for providing protection against urinary tract infection caused by Pseudomonas aeruginosa by non-adjuvanted flagellin ‘b’ induced immunity. Immunol Lett 2014; 162:229-38. [DOI: 10.1016/j.imlet.2014.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/07/2014] [Accepted: 10/12/2014] [Indexed: 11/16/2022]
|
14
|
Adams H, Horrevoets WM, Adema SM, Carr HEV, van Woerden RE, Koster M, Tommassen J. Inhibition of biofilm formation by Camelid single-domain antibodies against the flagellum of Pseudomonas aeruginosa. J Biotechnol 2014; 186:66-73. [PMID: 24997356 DOI: 10.1016/j.jbiotec.2014.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/13/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections in patients with compromised host defense mechanisms, including burn wound victims. In addition to its intrinsic resistance against most antibiotics, P. aeruginosa has the ability to form biofilms adhering to biotic or abiotic surfaces. These factors make treatment of P. aeruginosa infections complicated and demand new therapies and drugs. The flagellum of P. aeruginosa plays an important role in cell-cell and cell-surface interactions during the first stage of biofilm formation. In this study, we describe the selection of monoclonal anti-flagellin single-domain antibodies (VHHs) derived from the Camelid heavy-chain antibody repertoire of a llama immunized with P. aeruginosa antigens. The anti-flagellin VHHs could be produced efficiently in Saccharomyces cerevisiae, and surface plasmon resonance experiments demonstrated that they have apparent affinities in the nanomolar range. Functional screens showed that the anti-flagellin VHHs are capable of inhibiting P. aeruginosa from swimming and that they prevent biofilm formation in an in vitro assay. These data open doors for the development of novel methods for the prevention of P. aeruginosa-related infections.
Collapse
Affiliation(s)
- Hendrik Adams
- BAC BV, Department R&D, J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; Department of Molecular Microbiology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | - Simon M Adema
- BAC BV, Department R&D, J.H. Oortweg 21, 2333 CH Leiden, The Netherlands
| | - Hannah E V Carr
- BAC BV, Department R&D, J.H. Oortweg 21, 2333 CH Leiden, The Netherlands
| | - Richard E van Woerden
- Department of Molecular Microbiology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Margot Koster
- Department of Molecular Microbiology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jan Tommassen
- Department of Molecular Microbiology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
15
|
Hatano K, Matsumoto T, Furuya N, Hirakata Y, Tateda K. Role of Motility in the Endogenous Pseudomonas aeruginosa Sepsis after burn. J Infect Chemother 2014; 2:240-246. [PMID: 29681374 DOI: 10.1007/bf02355121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/1996] [Accepted: 11/05/1996] [Indexed: 10/24/2022]
Abstract
We investigated the relationship between bacterial motility and the lethal endogenous sepsis after burn in mice orally challenged with Pseudomonas aeruginosa, by using motility mutants. The mortality rates of postburn endogenous sepsis in mice orally challenged with low-motility mutants (strains B16-40 and B16-46) were 12% and 7.7%, respectively. By contrast, the mortality rates in mice who had been fed a high-motility mutant (B16-52) or the parental P. aeruginosa B16 (a high-motility strain) were 36% and 33%, respectively. Significant differences were found for mortality rates in groups fed the high-motility or lowmotility strains. A multiple regression analysis examining the effect of motility, number of cecal P. aeruginosa cells, and production of exotoxin A and total protease on the murine mortality rates associated with the 3 motility mutants and the parental strain showed a linear relationship between murine mortality and bacterial motility. In addition, when human monoclonal antibody specific for type-b flagella proteins of P. aeruginosa was intravenously administrated to mice orally challenged with P. aeruginosa B16, the mortality rate significantly decreased to 5.6%, compared with 33% in similar mice given intravenous saline. These results suggest that the occurrence of the lethal endogenous sepsis after burn in mice was closely related to the motility of the P. aeruginosa colonized in their intestinal tract, and that motility is an important virulence factor in endogenous P. aeruginosa sepsis after burn injury.
Collapse
Affiliation(s)
- Kazuo Hatano
- Department of Microbiology, Toho University School of Medicine, Ohmorinishi, Tokyo, Japan
| | - Tetsuya Matsumoto
- Department of Microbiology, Toho University School of Medicine, Ohmorinishi, Tokyo, Japan
| | - Nobuhiko Furuya
- Department of Microbiology, Toho University School of Medicine, Ohmorinishi, Tokyo, Japan
| | - Yoichi Hirakata
- Department of Clinical Laboratory Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Kazuhiro Tateda
- Department of Microbiology, Toho University School of Medicine, Ohmorinishi, Tokyo, Japan
| |
Collapse
|
16
|
The inhibition effect of antiserum on the motility of Leptospira. Curr Microbiol 2012; 66:359-64. [PMID: 23224413 DOI: 10.1007/s00284-012-0281-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
Abstract
Leptospires are a group of bacteria with a unique ultrastructure and a fascinating swimming behavior that cause a number of emerging and re-emerging diseases worldwide called leptospirosis. The unusual form of motility is thought to play a critical role in the infection process. However, the inhibition mechanism of antiserum on the motility of Leptospira to attenuate the infection efficiency is unknown. In this study, effect of antiserum on motility was quantitatively investigated by swimming speed. Relatively low concentration of antiserum was found to inhibit leptospiral motility, suggesting that the basic immunization can affect the infection efficiency. Recovery of motility a few hours later after the addition of antiserum was observed. This raises a hypothesis that Leptospira carries surface molecules bound with antibodies toward the cell end to escape and recovers the motility.
Collapse
|
17
|
Adawi A, Neville LF. Colony to colorimetry in 6 h: ELISA detection of a surface-expressed Pseudomonas aeruginosa virulence factor using immobilized bacteria. Diagn Microbiol Infect Dis 2012; 74:84-7. [DOI: 10.1016/j.diagmicrobio.2012.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 05/11/2012] [Accepted: 05/13/2012] [Indexed: 11/28/2022]
|
18
|
Adawi A, Bisignano C, Genovese T, Filocamo A, Khouri-Assi C, Neville A, Feuerstein GZ, Cuzzocrea S, Neville LF. In vitro and in vivo properties of a fully human IgG1 monoclonal antibody that combats multidrug resistant Pseudomonas aeruginosa. Int J Mol Med 2012; 30:455-64. [PMID: 22735858 PMCID: PMC3573743 DOI: 10.3892/ijmm.2012.1040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/31/2012] [Indexed: 01/16/2023] Open
Abstract
The development of an anti-bacterial drug in the form of a monoclonal antibody (mAb) targeting an exposed virulence factor, represents an innovative therapeutic strategy. Consequently, a fully human IgG1 mAb (LST-007) targeting Pseudomonas aeruginosa (PA) flagellin type b was recombinantly expressed and characterized in vitro and in an infection model driven by a multidrug resistant (MDR) PA strain. LST-007 demonstrated a highly specific binding towards whole PA bacteria harboring flagellin type b and its recombinant counterpart, with a K(D) of 7.4x10(-10) M. In bioactivity assays, LST-007 or titers of Cmax sera derived from pharmacokinetic studies, markedly attenuated PA motility in an equipotent manner. In vivo, parenteral LST-007 (20 mg/kg) given as a single or double-dosing paradigm post-infection, afforded survival (up to 75% at Day 7) in a lethal model of pneumonia driven by the intratracheal (i.t.) instillation of an LD(80) of the MDR PA isolate. This protective effect was markedly superior to that of imipenem (30% survival at Day 7) and totally devoid with an irrelevant, human isotype mAb. These data lay credence that LST-007 may be a valuable adjunct to the limited list of anti-bacterials that can tackle MDR PA strains, thereby warranting its continued development for eventual clinical evaluation.
Collapse
Affiliation(s)
- Azmi Adawi
- Lostam BioPharmaceuticals, Nazareth, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sharma A, Krause A, Worgall S. Recent developments for Pseudomonas vaccines. HUMAN VACCINES 2011; 7:999-1011. [PMID: 21941090 DOI: 10.4161/hv.7.10.16369] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infections with Pseudomonas aeruginosa are a major health problem for immune-compromised patients and individuals with cystic fibrosis. A vaccine against: P. aeruginosa has long been sought after, but is so far not available. Several vaccine candidates have been assessed in experimental animals and humans, which include sub-cellular fractions, capsule components, purified and recombinant proteins. Unique characteristics of the host and the pathogen have complicated the vaccine development. This review summarizes the current state of vaccine development for this ubiquitous pathogen, in particular to provide mucosal immunity against infections of the respiratory tract in susceptible individuals with cystic fibrosis.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | | | |
Collapse
|
20
|
Interleukin-8 production by human airway epithelial cells in response to Pseudomonas aeruginosa clinical isolates expressing type a or type b flagellins. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1196-202. [PMID: 20592113 DOI: 10.1128/cvi.00167-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa lung infection is a major cause of morbidity and mortality worldwide. P. aeruginosa flagellin, the main structural protein of the flagellar filament, is a virulence factor with proinflammatory activity on respiratory epithelial cells. P. aeruginosa bacteria express one of two isoforms of flagellin (type a or b) that differ in their primary amino acid sequences as well as in posttranslational glycosylation. In this study, the distribution of type a and b flagellins among 3 P. aeruginosa laboratory strains and 14 clinical isolates (1 ulcerative keratitis, 3 cystic fibrosis, and 10 acute pneumonia isolates) was determined, and their abilities to stimulate interleukin-8 (IL-8) production by human airway epithelial cells was compared. By comparison with the PAK (type a) and PAO1 (type b) prototype laboratory strains, 10/14 (71.4%) of clinical isolates expressed type a and 4/14 (28.6%) expressed type b flagellins. Among four cell lines surveyed, BEAS-2B cells were found to give the greatest difference between constitutive and flagellin-stimulated IL-8 production. All 17 flagellins stimulated IL-8 production by BEAS-2B cells (range, 700 to 4,000 pg/ml). However, no discernible differences in IL-8 production were evident when comparing type a versus type b flagellins or flagellins from laboratory versus clinical strains or among the clinical strains.
Collapse
|
21
|
Preclinical in vitro and in vivo characterization of the fully human monoclonal IgM antibody KBPA101 specific for Pseudomonas aeruginosa serotype IATS-O11. Antimicrob Agents Chemother 2010; 54:2338-44. [PMID: 20308370 DOI: 10.1128/aac.01142-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa infection in ventilator-associated pneumonia is a serious and often life-threatening complication in intensive care unit patients, and new treatment options are needed. We used B-cell-enriched peripheral blood lymphocytes from a volunteer immunized with a P. aeruginosa O-polysaccharide-toxin A conjugate vaccine to generate human hybridoma cell lines producing monoclonal antibodies specific for individual P. aeruginosa lipopolysaccharide serotypes. The fully human monoclonal antibody secreted by one of these lines, KBPA101, is an IgM/kappa antibody that binds P. aeruginosa of International Antigenic Typing System (IATS) serotype O11 with high avidity (5.81 x 10(7) M(-1) +/- 2.8 x 10(7) M(-1)) without cross-reacting with other serotypes. KBPA101 specifically opsonized the P. aeruginosa of IATS O11 serotype and mediated complement-dependent phagocytosis in vitro by the human monocyte-like cell line HL-60 at a very low concentration (half-maximal phagocytosis at 0.16 ng/ml). In vivo evaluation of KBPA101 demonstrated a dose-response relationship for protection against systemic infections in a murine burn wound sepsis model, where 70 to 100% of animals were protected against lethal challenges with P. aeruginosa at doses as low as 5 microg/animal. Furthermore, a high efficacy of KBPA101 in protection from local respiratory infections in an acute lung infection model in mice was demonstrated. Preclinical toxicology evaluation on human tissue, in rabbits, and in mice did not indicate any toxicity of KBPA101. Based on these preclinical findings, the first human clinical trials have been initiated.
Collapse
|
22
|
Abstract
Pseudomonas aeruginosa is a serious pathogen in hospitalized, immunocompromised, and cystic fibrosis (CF) patients. P. aeruginosa is motile via a single polar flagellum made of polymerized flagellin proteins differentiated into two major serotypes: a and b. Antibodies to flagella delay onset of infection in CF patients, but whether immunity to polymeric flagella and that to monomeric flagellin are comparable has not been addressed, nor has the question of whether such antibodies might negatively impact Toll-like receptor 5 (TLR5) activation, an important component of innate immunity to P. aeruginosa. We compared immunization with flagella and that with flagellin for in vitro effects on motility, opsonic killing, and protective efficacy using a mouse pneumonia model. Antibodies to flagella were superior to antibodies to flagellin at inhibiting motility, promoting opsonic killing, and mediating protection against P. aeruginosa pneumonia in mice. Protection against the flagellar type strains PAK and PA01 was maximal, but it was only marginal against motile clinical isolates from flagellum-immunized CF patients who nonetheless became colonized with P. aeruginosa. Purified flagellin was a more potent activator of TLR5 than were flagella and also elicited higher TLR5-neutralizing antibodies than did immunization with flagella. Antibody to type a but not type b flagella or flagellin inhibited TLR5 activation by whole bacterial cells. Overall, intact flagella appear to be superior for generating immunity to P. aeruginosa, and flagellin monomers might induce antibodies capable of neutralizing innate immunity due to TLR5 activation, but solid immunity to P. aeruginosa based on flagellar antigens may require additional components beyond type a and type b proteins from prototype strains.
Collapse
|
23
|
Abstract
OBJECTIVE Although most reviews of Pseudomonas aeruginosa therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjunctive therapies. DATA SOURCE Current literature regarding P. aeruginosa virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella. DATA EXTRACTION AND SYNTHESIS P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many P. aeruginosa virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus on much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjunctive therapies capable of improving outcomes. CONCLUSIONS Adjuvant therapies directed against virulence factors have the potential to improve outcomes in P. aeruginosa infections.
Collapse
|
24
|
Vaccines and immunotherapy against Pseudomonas aeruginosa. Vaccine 2008; 26:1011-24. [PMID: 18242792 DOI: 10.1016/j.vaccine.2007.12.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/28/2007] [Accepted: 12/05/2007] [Indexed: 11/21/2022]
|
25
|
Nilsson E, Amini A, Wretlind B, Larsson A. Pseudomonas aeruginosa infections are prevented in cystic fibrosis patients by avian antibodies binding Pseudomonas aeruginosa flagellin. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 856:75-80. [PMID: 17581799 DOI: 10.1016/j.jchromb.2007.05.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/11/2007] [Accepted: 05/18/2007] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa (PA) is the main cause of morbidity and mortality in cystic fibrosis (CF) patients. CF patients with chronic PA infections have a more rapid deterioration of their lung function and the bacteria become impossible to eradicate from the lungs. Antibiotic resistance among PA strains in CF patients is steadily increasing. Specific chicken (IgY) antibodies against PA have been shown to have potential to prevent PA infections in CF. Anti-Pseudomonas IgY reduces PA adhesion to epithelia, but the mechanism has not been fully elucidated. To gain further insight into the prophylactic effect of these antibodies, the immunoreactivity was investigated by 2D electrophoresis of PA strains, immunoblotting and MALDI-TOF-MS. To confirm the identity of the proteins, the tryptic peptides were analyzed by MALDI-TOF-MS to accurately measure their monoisotopic masses as well as determine their amino acid sequences. In order to facilitate fragmentation of the peptides they were N-terminally or C-terminally labeled. Several strains were investigated and anti-Pseudomonas IgY was immunoreactive against all of these strains, which strengthens its potential as a prophylactic treatment against PA. Flagellin was identified as the major antigen. Flagellin is the main protein of the flagella and is crucial for establishing infections in hosts as well as being involved in PA chemotaxis, motility, adhesion and inflammation. Furthermore, secreted flagellin elicits an inflammatory response. In conclusion, anti-Pseudomonas IgY binds flagellin, which may prevent PA infections in CF patients by hindering host invasion.
Collapse
Affiliation(s)
- E Nilsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, SE-751 85 Uppsala, Sweden.
| | | | | | | |
Collapse
|
26
|
Pier G. Application of vaccine technology to prevention of Pseudomonas aeruginosa infections. Expert Rev Vaccines 2007; 4:645-56. [PMID: 16221066 DOI: 10.1586/14760584.4.5.645] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Development of an effective vaccine against the multiple presentations of Pseudomonas aeruginosa infection, including nosocomial pneumonia, bloodstream infections, chronic lung infections in cystic fibrosis patients and potentially sight-threatening keratitis in users of contact lenses, is a high priority. As with vaccine development for any pathogen, key information about the most effective immunologic effectors of immunity and target antigens needs to be established. For P. aeruginosa, although there is a role for cell-mediated immunity in animals following active vaccination, the bulk of the data indicate that opsonically-active antibodies provide the most effective mediators of acquired immunity. Major target antigens include the lipopolysaccharide O-polysaccharides, cell-surface alginate, flagella, components of the Type III secretion apparatus and outer membrane proteins with a potentially additive effect achieved by including immune effectors to toxins and proteases. A variety of active vaccination approaches have the potential for efficacy such as vaccination with purified or recombinant antigens incorporating multiple epitopes, conjugate vaccines incorporating proteins and carbohydrate antigens, and live attenuated vaccines, including heterologous antigen delivery systems expressing immunogenic P. aeruginosa antigens. A diverse range of passive immunotherapeutic approaches are also candidates for effective immunity, with a variety of human monoclonal antibodies described over the years with good preclinical efficacy and some early Phase I and II studies in humans. Finding an effective active and/or passive vaccination strategy for P. aeruginosa infections could be realized in the next 5 to 10 years, but will require that advances are made in the understanding of antigen expression and immune effectors that work in different human tissues and clinical settings, and also require a means to validate that clinical outcomes achieved in Phase III trials represent meaningful advances in management and treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Gerald Pier
- Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Döring G, Meisner C, Stern M. A double-blind randomized placebo-controlled phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients. Proc Natl Acad Sci U S A 2007; 104:11020-5. [PMID: 17585011 PMCID: PMC1904125 DOI: 10.1073/pnas.0702403104] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas aeruginosa causes life-threatening lung infections in patients with cystic fibrosis. We hypothesized that vaccination may prevent P. aeruginosa lung infection. In a double-blind, placebo-controlled, multicenter trial, 483 European patients, 2-18 years of age without P. aeruginosa colonization were randomly assigned to receive four intramuscular injections of a bivalent P. aeruginosa flagella vaccine or placebo over a 14-month period. Patients were evaluated quarterly for P. aeruginosa-positive throat cultures and antipseudomonal serum antibody titers during the study period of 2 years. The vaccine was well tolerated, and the patients developed high and long-lasting serum antiflagella IgG titers. In the intention-to-treat group (all patients enrolled), 82 of 239 vaccinated patients had P. aeruginosa infection and/or antipseudomonal serum titers compared with 105 of 244 patients in the placebo group (P = 0.05; relative risk: 0.80; 95% CI: 0.64-1.00). Analysis of the 381 patients in the per-protocol group, who received all four vaccinations or placebo treatments, revealed 37 of 189 patients with infection episodes in the vaccine group compared with 59 of 192 patients with such episodes in the placebo group (P = 0.02; relative risk: 0.66; 95% CI: 0.46-0.93). P. aeruginosa strains, exhibiting flagella subtypes included in the vaccine, were significantly less frequently isolated from vaccinates than from placebo controls (P = 0.016, relative risk: 0.319; 95% CI: 0.12-0.86). Chronic P. aeruginosa infection was rare because of recent institution of early antibiotic eradication regimes. Active immunization of patients with cystic fibrosis lowers the risk for infection with P. aeruginosa and therefore may contribute to a longer survival of these patients.
Collapse
Affiliation(s)
- Gerd Döring
- Institute of Medical Microbiology and Hygiene, Wilhelmstrasse 31, D-72074 Tübingen, Germany.
| | | | | |
Collapse
|
28
|
Mingomataj EC, Rudzeviciene O. From latent incubation launched into hostile symptomatic pathology: A probable survival strategy for common respiratory infectious agents. Med Hypotheses 2006; 68:397-400. [PMID: 16962725 DOI: 10.1016/j.mehy.2006.06.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 06/24/2006] [Accepted: 06/30/2006] [Indexed: 11/18/2022]
Abstract
Common respiratory infections usually show a latent incubation period, followed by an acute stage. Finally, due to new synthesis of specific antibodies, the relative microorganisms undergo a massive eradication from hostile organism. Meanwhile, clinical symptoms induced by innate immunity mechanisms during these pathologies are assumed properly as host attempts for the expulsion of infectious agents. Some studies have demonstrated the existence of immuno-modulatory abilities by different infectious agents, which can inhibit inflammatory response and the development of respective symptoms by hostile organisms, especially during incubatory period. In contrast, after the incubatory period microorganisms-induced immuno-inhibitory effects may undergo a reduction, and in the meantime clinical symptoms appear a few days before the hostile organism synthesizes specific antibodies, which can eradicate these pathogens. From the evolutionary viewpoint of microorganisms, maybe induction of pathologic symptoms even before the period of specific hostile antibody synthesis, but not at beginning of infection, could play a particular adaptive role. Such scenario first could assure a maximal multiplication for the infectious agents, whereas later attempts to support the host abandonment, even due to induction of clinical expulsive symptoms. The existence of related pathologies since ancient times leads to the suggestion that perhaps the induction of such diseases is not a purpose per se for such pathogens, but rather an instrument to provide for host abandonment on time to catch a next one, assuring therefore maximal successive reproduction.
Collapse
Affiliation(s)
- Ervin C Mingomataj
- Mother Theresa School of Medicine, Department of Allergology and Clinical Immunology, Rruga Myslym Shyri, Pall. 47, Apt. 15, Tirana, Albania.
| | | |
Collapse
|
29
|
Kipnis E, Sawa T, Wiener-Kronish J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med Mal Infect 2006; 36:78-91. [PMID: 16427231 DOI: 10.1016/j.medmal.2005.10.007] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 10/18/2005] [Indexed: 01/08/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen responsible for ventilator-acquired pneumonia, acute lower respiratory tract infections in immunocompromised patients and chronic respiratory infections in cystic fibrosis patients. High incidence, infection severity and increasing resistance characterize P. aeruginosa infections, highlighting the need for new therapeutic options. One such option is to target the many pathogenic mechanisms conferred to P. aeruginosa by its large genome encoding many different virulence factors. This article reviews the pathogenic mechanisms and potential therapies targeting these mechanisms in P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- E Kipnis
- Department of Anesthesia and Perioperative Care, University of California San Francisco, 513 Parnassus Avenue, Room s-261, Medical Science Building, Box 0542, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
30
|
Pier GB, Boyer D, Preston M, Coleman FT, Llosa N, Mueschenborn-Koglin S, Theilacker C, Goldenberg H, Uchin J, Priebe GP, Grout M, Posner M, Cavacini L. Human monoclonal antibodies to Pseudomonas aeruginosa alginate that protect against infection by both mucoid and nonmucoid strains. THE JOURNAL OF IMMUNOLOGY 2004; 173:5671-8. [PMID: 15494518 DOI: 10.4049/jimmunol.173.9.5671] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two fully human mAbs specific for epitopes dependent on intact carboxylate groups on the C6 carbon of the mannuronic acid components of Pseudomonas aeruginosa alginate were found to promote phagocytic killing of both mucoid and nonmucoid strains as well as protection against both types of strains in a mouse model of acute pneumonia. The specificity of the mAbs for alginate was determined by ELISA and killing assays. Some strains of P. aeruginosa did not make detectable alginate in vitro, but in vivo protection against lethal pneumonia was obtained and shown to be due to rapid induction of expression of alginate in the murine lung. No protection against strains genetically unable to make alginate was achieved. These mAbs have potential to be passive therapeutic reagents for all strains of P. aeruginosa and the results document that alginate is a target for the proper type of protective Ab even when expressed at low levels on phenotypically nonmucoid strains.
Collapse
MESH Headings
- Acute Disease
- Alginates/metabolism
- Animals
- Antibodies, Bacterial/administration & dosage
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/genetics
- Antibodies, Bacterial/metabolism
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Binding Sites, Antibody
- Disease Models, Animal
- Female
- Glucuronic Acid/immunology
- Glucuronic Acid/metabolism
- Hexuronic Acids/immunology
- Hexuronic Acids/metabolism
- Humans
- Hybridomas
- Immunoglobulin Variable Region/administration & dosage
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Lung/immunology
- Lung/microbiology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Phagocytosis/immunology
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/microbiology
- Pneumonia, Bacterial/prevention & control
- Pseudomonas Infections/immunology
- Pseudomonas Infections/microbiology
- Pseudomonas Infections/prevention & control
- Pseudomonas aeruginosa/immunology
- Pseudomonas aeruginosa/pathogenicity
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/metabolism
- Species Specificity
Collapse
Affiliation(s)
- Gerald B Pier
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Priebe GP, Meluleni GJ, Coleman FT, Goldberg JB, Pier GB. Protection against fatal Pseudomonas aeruginosa pneumonia in mice after nasal immunization with a live, attenuated aroA deletion mutant. Infect Immun 2003; 71:1453-61. [PMID: 12595463 PMCID: PMC148856 DOI: 10.1128/iai.71.3.1453-1461.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of immunity to Pseudomonas aeruginosa have indicated that a variety of potential immunogens can elicit protection in animal models, utilizing both antibody- and cell-mediated immune effectors for protection. To attempt to optimize delivery of multiple protective antigens and elicit a broad range of immune effectors, we produced an aroA deletion mutant of the P. aeruginosa serogroup O2/O5 strain PAO1, designated PAO1deltaaroA. Previously, we reported that this strain elicits high levels of opsonic antibody directed against many serogroup O2/O5 strains after nasal immunization of mice and rabbits. Here, we assessed the protective efficacy of immunization with PAO1deltaaroA against acute fatal pneumonia in mice. After active immunization, high levels of protection were achieved against an ExoU-expressing cytotoxic variant of the parental strain PAO1 at doses up to 1,000-fold greater than the 50% lethal dose. Significant protection against PAO1 and two of four other serogroup O2/O5 strains was also found, but there was no protection against serogroup-heterologous strains. The serogroup O2/O5 strains not protected against were killed in opsonophagocytic assays as efficiently as the strains with which protection was seen, indicating a lack of correlation of protection and opsonic killing within the serogroup. In passive immunization experiments using challenge with wild-type PAO1 or other noncytotoxic members of the O2/O5 serogroup, there was no protection despite the presence of high levels of opsonic antibody in the mouse sera. However, passive immunization did prevent mortality from pneumonia due to the cytotoxic PAO1 variant at low-challenge doses. These data suggest that a combination of humoral and cellular immunity is required for protection against P. aeruginosa lung infections, that such immunity can be elicited by using aroA deletion mutants, and that a multivalent P. aeruginosa vaccine composed of aroA deletion mutants of multiple serogroups holds significant promise.
Collapse
Affiliation(s)
- Gregory P Priebe
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
32
|
Lillehoj EP, Kim BT, Kim KC. Identification of Pseudomonas aeruginosa flagellin as an adhesin for Muc1 mucin. Am J Physiol Lung Cell Mol Physiol 2002; 282:L751-6. [PMID: 11880301 DOI: 10.1152/ajplung.00383.2001] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We reported previously that Muc1 mucin on the epithelial cell surface is an adhesion site for Pseudomonas aeruginosa (Lillehoj EP, Hyun SW, Kim BT, Zhang XG, Lee DI, Rowland S, and Kim KC. Am J Physiol Lung Cell Mol Physiol 280: L181-L187, 2001). The present study was designed to identify the adhesin(s) responsible for bacterial binding to Muc1 mucin using genetic and biochemical approaches. Chinese hamster ovary (CHO) cells stably transfected with a Muc1 cDNA (CHO-Muc1) or empty plasmid (CHO-X) were compared for adhesion of P. aeruginosa strain PAK. Our results showed that 1) wild-type PAK and isogenic mutant strains lacking pili (PAK/NP) or flagella cap protein (PAK/fliD) demonstrated significantly increased binding to CHO-Muc1 cells, whereas flagellin-deficient (PAK/fliC) bacteria were no more adherent to CHO-Muc1 than CHO-X cells, and 2) P. aeruginosa adhesion was blocked by pretreatment of bacteria with antibody to flagellin or pretreatment of CHO-Muc1 cells with purified flagellin. We conclude that flagellin is an adhesin of P. aeruginosa responsible for its binding to Muc1 mucin on the epithelial cell surface.
Collapse
Affiliation(s)
- Erik P Lillehoj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
33
|
Rojas IA, Slunt JB, Grainger DW. Polyurethane coatings release bioactive antibodies to reduce bacterial adhesion. J Control Release 2000; 63:175-89. [PMID: 10640591 DOI: 10.1016/s0168-3659(99)00195-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study describes the formulation of a biomedical grade polyurethane hydrogel coating containing solid dispersed bioactive antibodies cast from an organic solvent onto a model polymer biomaterial substrate. A prepolymer dispersion in anhydrous isopropanol containing a uniformly distributed slurry of 22 microm sieved commercial lyophilized polyclonal pooled human immunoglobulin G (IgG) solids was coated onto polymer substrates by simple immersion. Maximum antibody release was approximately 50 microg/cm(2) from a 15% w/w IgG polymer coating. In vitro antimicrobial studies utilized Escherichia coli to compare performance of bare uncoated tubing, hydrogel-coated tubing with added aqueous phase antibodies, and antibody-dispersed hydrogel-coated tubing. Bacterial adhesion was reduced significantly (p<0.05) in the presence of antibodies with the greatest reduction seen with the antibody releasing coating. The presence of antibody also significantly enhanced the killing of the bacteria in an in vitro opsonophagocytic assay using freshly isolated blood neutrophils over 2 h indicating that antibody bioactivity is maintained. This controlled release polyurethane hydrogel coating imparts infection resistance by exploiting the low adhesive properties of the biomedical grade hydrogel and the intrinsic bioactive role of the antibodies to reduce bacterial adhesion and promote clearance via natural immune mechanisms.
Collapse
Affiliation(s)
- I A Rojas
- The Anthony G. Gristina Institute for Biomedical Research, Herndon, VA 20170, USA
| | | | | |
Collapse
|
34
|
Matsumoto T, Tateda K, Miyazaki S, Furuya N, Ohno A, Ishii Y, Hirakata Y, Yamaguchi K. Effect of antiflagellar human monoclonal antibody on gut-derived Pseudomonas aeruginosa sepsis in mice. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:537-41. [PMID: 10391858 PMCID: PMC95723 DOI: 10.1128/cdli.6.4.537-541.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We evaluated the effect of antiflagellar human monoclonal antibody on gut-derived Pseudomonas aeruginosa sepsis. Mice were given a suspension of P. aeruginosa SP10052 in their drinking water and were simultaneously treated with ampicillin (200 mg/kg of body weight) to disrupt the normal bacterial flora. Cyclophosphamide was then administered to induce leukopenia and translocation of the P. aeruginosa that had colonized the gastrointestinal tract, thereby producing gut-derived generalized sepsis. In this model, intraperitoneal injection of 100 microg of antiflagellar human monoclonal antibody (SC-1225) per mouse for 5 consecutive days significantly (P < 0.01) increased the survival rate compared with that for mice treated with bovine serum albumin (BSA). Treatment with SC-1225 significantly reduced the average number of viable bacteria in portal blood, liver, and heart blood compared with the average number after treatment with BSA. Furthermore, the presence in serum of the inflammatory cytokines tumor necrosis factor alpha and interleukin 6 were evaluated as markers of severity of infection, and the results showed that the levels of these cytokines in mice treated with SC-1225 were significantly decreased in comparison with those in BSA-treated control mice. Although there was no significant difference in the number of bacteria that colonized the intestine, SC-1225 treatment significantly increased bacterial opsonophagocytosis by cultured peritoneal macrophages from mice with or without cyclophosphamide pretreatment. Our results indicate that antiflagellar human monoclonal antibody SC-1225 protects mice against gut-derived sepsis caused by P. aeruginosa and suggest that such an effect is due to its opsonophagocytic activity and the reduced motility of the translocated bacteria once the bacteria move from the intestine into the bloodstream.
Collapse
Affiliation(s)
- T Matsumoto
- Department of Microbiology, Toho University School of Medicine, Omori-Nishi, Ota-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hatano K, Pier GB. Complex serology and immune response of mice to variant high-molecular-weight O polysaccharides isolated from Pseudomonas aeruginosa serogroup O2 strains. Infect Immun 1998; 66:3719-26. [PMID: 9673254 PMCID: PMC108407 DOI: 10.1128/iai.66.8.3719-3726.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The O antigen of the Pseudomonas aeruginosa lipopolysaccharide is the optimal target for protective antibodies, but the unusual and complex nature of their sugar substituents has made it difficult to define the range of these structures needed in an effective vaccine. Most clinical isolates of P. aeruginosa can be classified into 10 O-antigen serogroups, but slight chemical differences among O polysaccharides within a serogroup give rise to subtype epitopes. These epitopes could impact the reactivity of O-antigen-specific antibodies, as well as the susceptibility of a target strain to protective, opsonic antibodies. To define parameters of serogroup and subtype-epitope immunogenicity, antigenicity, and surface expression on P. aeruginosa cells, we prepared high-molecular-weight O-polysaccharide vaccines from strains of P. aeruginosa serogroup O2, for which eight structurally variant O antigens expressing six defined subtype epitopes (O2a to O2f) have been identified. A complex pattern of immune responses to these antigens was observed following vaccination of mice. The high-molecular-weight O polysaccharides were generally more immunogenic at low doses (1 and 10 microg) than at a high dose (50 microg) and usually elicited antibodies that opsonized the homologous strain for phagocytic killing. Some of the individual polysaccharides elicited cross-opsonic antibodies to a variable number of strains that express all of the defined serogroup O2 subtype epitopes. Combination into one vaccine of two antigens that individually elicited cross-reactive opsonic antibodies to most members of the O2 serogroup inhibited, instead of enhanced, the production of antibodies broadly reactive with most serogroup O2 subtype strains. Thus, immune responses to P. aeruginosa O antigens may be restricted to a limited range of epitopes on structurally complex O antigens, and combining multiple related antigens into a single vaccine formulation may inhibit the production of those antibodies best able to protect against most P. aeruginosa strains within a given O-antigen serogroup.
Collapse
Affiliation(s)
- K Hatano
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115-5804, USA
| | | |
Collapse
|
36
|
Brimer CD, Montie TC. Cloning and comparison of fliC genes and identification of glycosylation in the flagellin of Pseudomonas aeruginosa a-type strains. J Bacteriol 1998; 180:3209-17. [PMID: 9620973 PMCID: PMC107824 DOI: 10.1128/jb.180.12.3209-3217.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1997] [Accepted: 04/07/1998] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa a-type strains produce flagellin proteins which vary in molecular weight between strains. To compare the properties of a-type flagellins, the flagellin genes of several Pseudomonas aeruginosa a-type strains, as determined by interaction with specific anti-a monoclonal antibody, were cloned and sequenced. PCR amplification of the a-type flagellin gene fragments from five strains each yielded a 1.02-kb product, indicating that the gene size is not likely to be responsible for the observed molecular weight differences among the a-type strains. The flagellin amino acid sequences of several a-type strains (170,018, 5933, 5939, and PAK) were compared, and that of 170,018 was compared with that of PAO1, a b-type strain. The former comparisons revealed that a-type strains are similar in amino acid sequence, while the latter comparison revealed differences between 170,018 and PAO1. Posttranslational modification was explored for its contribution to the observed differences in molecular weight among the a-type strains. A biotin-hydrazide glycosylation assay was performed on the flagellins of three a-type strains (170,018, 5933, and 5939) and one b-type strain (M2), revealing a positive glycosylation reaction for strains 5933 and 5939 and a negative reaction for 170,018 and M2. Deglycosylation of the flagellin proteins with trifluoromethanesulfonic acid (TFMS) confirmed the glycosylation results. A molecular weight shift was observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis for the TFMS-treated flagellins of 5933 and 5939. These results indicate that the molecular weight discrepancies observed for the a-type flagellins can be attributed, at least in part, to glycosylation of the protein. Anti-a flagellin monoclonal antibody reacted with the TFMS-treated flagellins, suggesting that the glycosyl groups are not a necessary component of the epitope for the human anti-a monoclonal antibody. Comparisons between a-type sequences and a b-type sequence (PAO1) will aid in delineation of the epitope for this monoclonal antibody.
Collapse
Affiliation(s)
- C D Brimer
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845, USA
| | | |
Collapse
|
37
|
Feldman M, Bryan R, Rajan S, Scheffler L, Brunnert S, Tang H, Prince A. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun 1998; 66:43-51. [PMID: 9423837 PMCID: PMC107856 DOI: 10.1128/iai.66.1.43-51.1998] [Citation(s) in RCA: 317] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa strains are opportunistic pathogens associated with infections in immunocompromised hosts and patients with cystic fibrosis. Like many other mucosal pathogens, P. aeruginosa cells express flagella which provide motility and chemotaxis toward preferred substrates but also provide a ligand for clearance by phagocytic cells. We tested the role of flagella in the initial stages of respiratory tract infection by comparing the virulence of fliC mutants in a neonatal mouse model of pneumonia. In the absence of fliC, there was no mortality, compared with 30% mortality attributed to the parental strain PAK or 15% mortality associated with infection due to a pilA mutant PAK/NP (P < 0.0001). The fliC mutants caused pneumonia in only 25% of the mice inoculated, regardless of whether there was expression of the pilus, whereas the parental strain was associated with an 80% rate of pneumonia. Histopathological studies demonstrated that the fliC mutants caused very focal inflammation and that the organisms did not spread through the lungs as seen in infection due to either PAK or PAK/NP. Purified flagellin elicited an intense inflammatory response in the mouse lung. 125I-labeled flagellin bound to the glycolipids GM1 and GD1a and to asialoGM1 in an in vitro binding assay. However, flagellin-mediated binding to epithelial gangliosides was a relatively unusual event, as quantified by binding assays of wild-type or fliC mutant organisms to CHO Lec-2 cells with membrane-incorporated GM1. Fla+ organisms but not fliC mutants were efficiently taken up by murine macrophages. P. aeruginosa flagella are important in the establishment of respiratory tract infection and may act as a tether in initial interactions with epithelial membranes. This function is offset by the contribution of flagella to host clearance mechanisms facilitating phagocytic clearance and the role of flagellar genes in mucin binding and clearance.
Collapse
Affiliation(s)
- M Feldman
- College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
The Challenge of Pseudomonas aeruginosa Pneumonia. ACTA ACUST UNITED AC 1997. [DOI: 10.1007/978-3-662-13450-4_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Johansen HK. Potential of preventing Pseudomonas aeruginosa lung infections in cystic fibrosis patients: experimental studies in animals. APMIS. SUPPLEMENTUM 1996; 63:5-42. [PMID: 8944052 DOI: 10.1111/j.1600-0463.1996.tb05581.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In patients with cystic fibrosis (CF), respiratory tract infections caused by Staphylococcus aureus and Haemophilus influenzae are followed by Pseudomonas aeruginosa with increasing age. Chronic endobronchial lung infection with P. aeruginosa is the leading cause of morbidity and mortality. In Danish CF patients we noted that both onset of initial colonization and chronic lung infection with P. aeruginosa peaked during the winter months which is the season for respiratory virus infections. Virus may therefore pave the way for P. aeruginosa. We established a chronic P. aeruginosa lung infection in rats by embedding mucoid bacteria in seaweed alginate and installing the beads intratracheally into the lower part of the left lung. Although the rats did not suffer from CF, the antibody responses and the pathologic changes of the lungs mimicked the findings in CF patients. By using this model in normal and athymic rats we showed that the T-cell response during the "natural" course of the infection played no major role. In a model of acute P. aeruginosa pneumonia we found that the macroscopic inflammatory response of the lungs was immense and that the natural capacity to clear P. aeruginosa was very efficient and could not be improved by immunization, although high serum levels of IgM, IgG and IgA antibodies to P. aeruginosa alginate, LPS, exotoxin A and sonicate were induced. We developed a method for collecting and measuring IgA in saliva and noted that mucosal IgA antibodies were induced by vaccination; they did not significantly prevent inflammation, however. In the chronic rat model we succeeded to improve the survival significantly and to change the inflammatory response subsequent to vaccination from an acute type inflammation dominated by polymorphonuclear leukocytes (PMNs) as in CF patients to a chronic type inflammation dominated by mononuclear leukocytes. Furthermore, we found that rats immunized with an alginate containing vaccine had a significantly earlier cellular shift to a chronic type inflammation as well as a significant reduction in the severity of the macroscopic inflammation compared to two other vaccine groups and to nonimmunized controls. Similar results were obtained in rats treated with the TH1 cytokine, interferon-gamma (IFN-gamma). Several authors have shown that the lung tissue damage during chronic infection in CF patients is caused by a type III hypersensitivity reaction leading to release of elastase by PMNs surrounding the bacterial microcolonies. The cellular shift we have induced by vaccination and by IFN-gamma treatment therefore offers a possible new strategy for improving the clinical course in chronically infected CF patients.
Collapse
|
40
|
Abstract
Many bacterial species are motile by means of flagella. The structure and implantation of flagella seems related to the specific environments the cells live in. In some cases, the bacteria even adapt their flagellation pattern in response to the environmental conditions they encounter. Swarming cell differentiation is a remarkable example of this phenomenon. Flagella seem to have more functions than providing motility alone. For many pathogenic species, studies have been performed on the contribution of flagella to the virulence, but the result is not clear in all cases. Flagella are generally accepted as being important virulence factors, and expression and repression of flagellation and virulence have in several cases been shown to be linked. Providing motility is always an important feature of flagella of pathogenic bacteria, but adhesive and other properties also have been attributed to these flagella. In nonpathogenic bacterial colonization, flagella are important locomotive and adhesive organelles as well. In several cases where competition between several bacterial species exists, motility by means of flagella is shown to provide a specific advantage for a bacterium. This review gives an overview of studies that have been performed on the significance of flagellation in a wide variety of processes where flagellated bacteria are involved.
Collapse
Affiliation(s)
- S Moens
- F. A. Janssens Laboratory of Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | |
Collapse
|