1
|
Zheng Y, Sun H, Wang Y, Jin C, Li X, Pang Y, Ge Q, Wang L, Liu B. CsiR-Mediated Signal Transduction Pathway in Response to Low Iron Conditions Promotes Escherichia coli K1 Invasion and Penetration of the Blood-Brain Barrier. J Infect Dis 2024; 230:e807-e817. [PMID: 38531686 PMCID: PMC11481304 DOI: 10.1093/infdis/jiae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024] Open
Abstract
Escherichia coli K1 is the leading cause of neonatal gram-negative bacterial meningitis, but the pathogenesis of E coli K1 meningitis remains unclear. Blood-brain barrier (BBB) penetration is a crucial step in E coli meningitis development. Here, we uncovered the crucial role of CsiR, a GntR family regulator, in E coli K1 virulence. During infection, csiR expression was induced due to the derepression by Fur in the blood and human brain microvascular endothelial cells (HBMECs). CsiR positively regulated ilvB expression, which is associated with branched chain amino acid synthesis. Furthermore, we revealed that IlvB activated the FAK/PI3K pathway of HBMECs to induce actin cytoskeleton rearrangements, thereby promoting the bacterial invasion and penetration of the BBB. Overall, this study reveals a CsiR-mediated virulence regulation pathway in E coli K1, which may provide a useful target for the prevention or therapy of E coli meningitis.
Collapse
Affiliation(s)
- Yangyang Zheng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Hao Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Yanling Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Chen Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Xiaoya Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Yu Pang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Qianwen Ge
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Lei Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
- Nankai International Advanced Research Institute, Shenzhen, People's Republic of China
| |
Collapse
|
2
|
Afriyie-Asante A, Dabla A, Dagenais A, Berton S, Smyth R, Sun J. Mycobacterium tuberculosis Exploits Focal Adhesion Kinase to Induce Necrotic Cell Death and Inhibit Reactive Oxygen Species Production. Front Immunol 2021; 12:742370. [PMID: 34745115 PMCID: PMC8564185 DOI: 10.3389/fimmu.2021.742370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis is a deadly, contagious respiratory disease that is caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb). Mtb is adept at manipulating and evading host immunity by hijacking alveolar macrophages, the first line of defense against inhaled pathogens, by regulating the mode and timing of host cell death. It is established that Mtb infection actively blocks apoptosis and instead induces necrotic-like modes of cell death to promote disease progression. This survival strategy shields the bacteria from destruction by the immune system and antibiotics while allowing for the spread of bacteria at opportunistic times. As such, it is critical to understand how Mtb interacts with host macrophages to manipulate the mode of cell death. Herein, we demonstrate that Mtb infection triggers a time-dependent reduction in the expression of focal adhesion kinase (FAK) in human macrophages. Using pharmacological perturbations, we show that inhibition of FAK (FAKi) triggers an increase in a necrotic form of cell death during Mtb infection. In contrast, genetic overexpression of FAK (FAK+) completely blocked macrophage cell death during Mtb infection. Using specific inhibitors of necrotic cell death, we show that FAK-mediated cell death during Mtb infection occurs in a RIPK1-depedent, and to a lesser extent, RIPK3-MLKL-dependent mechanism. Consistent with these findings, FAKi results in uncontrolled replication of Mtb, whereas FAK+ reduces the intracellular survival of Mtb in macrophages. In addition, we demonstrate that enhanced control of intracellular Mtb replication by FAK+ macrophages is a result of increased production of antibacterial reactive oxygen species (ROS) as inhibitors of ROS production restored Mtb burden in FAK+ macrophages to same levels as in wild-type cells. Collectively, our data establishes FAK as an important host protective response during Mtb infection to block necrotic cell death and induce ROS production, which are required to restrict the survival of Mtb.
Collapse
Affiliation(s)
- Afrakoma Afriyie-Asante
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ankita Dabla
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Amy Dagenais
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Manipulation of Focal Adhesion Signaling by Pathogenic Microbes. Int J Mol Sci 2021; 22:ijms22031358. [PMID: 33572997 PMCID: PMC7866387 DOI: 10.3390/ijms22031358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) serve as dynamic signaling hubs within the cell. They connect intracellular actin to the extracellular matrix (ECM) and respond to environmental cues. In doing so, these structures facilitate important processes such as cell-ECM adhesion and migration. Pathogenic microbes often modify the host cell actin cytoskeleton in their pursuit of an ideal replicative niche or during invasion to facilitate uptake. As actin-interfacing structures, FA dynamics are also intimately tied to actin cytoskeletal organization. Indeed, exploitation of FAs is another avenue by which pathogenic microbes ensure their uptake, survival and dissemination. This is often achieved through the secretion of effector proteins which target specific protein components within the FA. Molecular mimicry of the leucine-aspartic acid (LD) motif or vinculin-binding domains (VBDs) commonly found within FA proteins is a common microbial strategy. Other effectors may induce post-translational modifications to FA proteins through the regulation of phosphorylation sites or proteolytic cleavage. In this review, we present an overview of the regulatory mechanisms governing host cell FAs, and provide examples of how pathogenic microbes have evolved to co-opt them to their own advantage. Recent technological advances pose exciting opportunities for delving deeper into the mechanistic details by which pathogenic microbes modify FAs.
Collapse
|
4
|
Virulence Factors of Meningitis-Causing Bacteria: Enabling Brain Entry across the Blood-Brain Barrier. Int J Mol Sci 2019; 20:ijms20215393. [PMID: 31671896 PMCID: PMC6862235 DOI: 10.3390/ijms20215393] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Infections of the central nervous system (CNS) are still a major cause of morbidity and mortality worldwide. Traversal of the barriers protecting the brain by pathogens is a prerequisite for the development of meningitis. Bacteria have developed a variety of different strategies to cross these barriers and reach the CNS. To this end, they use a variety of different virulence factors that enable them to attach to and traverse these barriers. These virulence factors mediate adhesion to and invasion into host cells, intracellular survival, induction of host cell signaling and inflammatory response, and affect barrier function. While some of these mechanisms differ, others are shared by multiple pathogens. Further understanding of these processes, with special emphasis on the difference between the blood-brain barrier and the blood-cerebrospinal fluid barrier, as well as virulence factors used by the pathogens, is still needed.
Collapse
|
5
|
Liu WT, Lv YJ, Yang RC, Fu JY, Liu L, Wang H, Cao Q, Tan C, Chen HC, Wang XR. New insights into meningitic Escherichia coli infection of brain microvascular endothelial cells from quantitative proteomics analysis. J Neuroinflammation 2018; 15:291. [PMID: 30340642 PMCID: PMC6195690 DOI: 10.1186/s12974-018-1325-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023] Open
Abstract
Background Bacterial meningitis remains a big threat to the integrity of the central nervous system (CNS), despite the advancements in antimicrobial reagents. Escherichia coli is a bacterial pathogen that can disrupt the CNS function, especially in neonates. E. coli meningitis occurs after bacteria invade the brain microvascular endothelial cells (BMECs) that form a direct and essential barrier restricting the entry of circulating microbes and toxins to the brain. Previous studies have reported on several cellular proteins that function during meningitic E. coli infections; however, more comprehensive investigations to elucidate the potential targets involved in E. coli meningitis are essential to better understand this disease and discover new treatments for it. Methods The isobaric tags for relative and absolute quantification (iTRAQ) approach coupled with LC-MS/MS were applied to compare and characterize the different proteomic profiles of BMECs in response to meningitic or non-meningitic E. coli strains. KEGG and gene ontology annotations, ingenuity pathways analysis, and functional experiments were combined to identify the key host molecules involved in the meningitic E. coli-induced tight junction breakdown and neuroinflammatory responses. Results A total of 13 cellular proteins were found to be differentially expressed by meningitic E. coli strains PCN033 and RS218, including one that was also affected by HB101, a non-meningitic E. coli strain. Through bioinformatics analysis, we identified the macrophage migration inhibitory factor (MIF), granzyme A, NF-κB signaling, and mitogen-activated protein kinase (MAPK) pathways as being biologically involved in the meningitic E. coli-induced tight junction breakdown and neuroinflammation. Functionally, we showed that MIF facilitated meningitic E. coli-induced production of cytokines and chemokines and also helped to disrupt the blood-brain barrier by decreasing the expression of tight junction proteins like ZO-1, occludin. Moreover, we demonstrated the significant activation of NF-κB and MAPK signaling in BMECs in response to meningitic E. coli strains, which dominantly determined the generation of the proinflammatory cytokines including IL-6, IL-8, TNF-α, and IL-1β. Conclusions Our work identified 12 host cellular targets that are affected by meningitic E. coli strains and revealed MIF to be an important contributor to meningitic E. coli-induced cytokine production and tight junction disruption, and also the NF-κB and MAPK signaling pathways that are mainly involved in the infection-induced cytokines production. Characterization of these distinct proteins and pathways in BMECs will facilitate further elucidation of meningitis-causing mechanisms in humans and animals, thereby enabling the development of novel preventative and therapeutic strategies against infection with meningitic E. coli. Electronic supplementary material The online version of this article (10.1186/s12974-018-1325-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Tong Liu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yu-Jin Lv
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan, China
| | - Rui-Cheng Yang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ji-Yang Fu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lu Liu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huan Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qi Cao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chen Tan
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huan-Chun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Ru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
6
|
Abstract
Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, and E. coli meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis contributes to such mortality and morbidity. Recent reports of E. coli strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. Studies using in vitro and in vivo models of the blood-brain barrier have shown that E. coli meningitis follows a high degree of bacteremia and invasion of the blood-brain barrier. E. coli invasion of the blood-brain barrier, the essential step in the development of E. coli meningitis, requires specific microbial and host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors contributing to E. coli invasion of the blood-brain barrier is shown to be efficient in preventing E. coli penetration into the brain. The basis for requiring a high degree of bacteremia for E. coli penetration of the blood-brain barrier, however, remains unclear. Continued investigation on the microbial and host factors contributing to a high degree of bacteremia and E. coli invasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of E. coli meningitis.
Collapse
|
7
|
Loh LN, McCarthy EMC, Narang P, Khan NA, Ward TH. Escherichia coli K1 utilizes host macropinocytic pathways for invasion of brain microvascular endothelial cells. Traffic 2017; 18:733-746. [PMID: 28799243 DOI: 10.1111/tra.12508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023]
Abstract
Eukaryotic cells utilize multiple endocytic pathways for specific uptake of ligands or molecules, and these pathways are commonly hijacked by pathogens to enable host cell invasion. Escherichia coli K1, a pathogenic bacterium that causes neonatal meningitis, invades the endothelium of the blood-brain barrier, but the entry route remains unclear. Here, we demonstrate that the bacteria trigger an actin-mediated uptake route, stimulating fluid phase uptake, membrane ruffling and macropinocytosis. The route of uptake requires intact lipid rafts as shown by cholesterol depletion. Using a variety of perturbants we demonstrate that small Rho GTPases and their downstream effectors have a significant effect on bacterial invasion. Furthermore, clathrin-mediated endocytosis appears to play an indirect role in E. coli K1 uptake. The data suggest that the bacteria effect a complex interplay between the Rho GTPases to increase their chances of uptake by macropinocytosis into human brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Lip Nam Loh
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Elizabeth M C McCarthy
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Priyanka Narang
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Naveed A Khan
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, Selangor, Malaysia
| | - Theresa H Ward
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
8
|
Yang X, Xie J, Jia L, Liu N, Liang Y, Wu F, Liang B, Li Y, Wang J, Sheng C, Li H, Liu H, Ma Q, Yang C, Du X, Qiu S, Song H. Analysis of miRNAs Involved in Mouse Brain Damage upon Enterovirus 71 Infection. Front Cell Infect Microbiol 2017; 7:133. [PMID: 28469998 PMCID: PMC5395563 DOI: 10.3389/fcimb.2017.00133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/31/2017] [Indexed: 12/02/2022] Open
Abstract
Enterovirus 71 (EV71) infects the central nervous system (CNS) and causes brainstem encephalitis in children. MiRNAs have been found to play various functions in EV71 infection in human cell lines. To identify potential miRNAs involved in the inflammatory injury in CNS, our study, for the first time, performed a miRNA microarray assay in vivo using EV71 infected mice brains. Twenty differentially expressed miRNAs were identified (four up- and 16 down-regulated) and confirmed by qRT-PCR. The target genes of these miRNAs were analyzed using KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, revealing that the miRNAs were mainly involved in the regulation of inflammation and neural system function. MiR-150-5p, -3082-5p, -3473a, -468-3p, -669n, -721, -709, and -5107-5p that regulate MAPK and chemokine signaling were all down-regulated, which might result in increased cytokine production. In addition, miR-3473a could also regulate focal adhesion and leukocyte trans-endothelial migration, suggesting a role in virus-induced blood-brain barrier disruption. The miRNAs and pathways identified in this study could help to understand the intricate interactions between EV71 and the brain injury, offering new insight for the future research of the molecular mechanism of EV71 induced brainstem encephalitis.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Jing Xie
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Leili Jia
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Nan Liu
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Yuan Liang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Fuli Wu
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Beibei Liang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Yongrui Li
- The Key Laboratory of Pharmacology and Molecular Biology, Medical College, Henan University of Science and TechnologyLuoyang, China
| | - Jinyan Wang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Chunyu Sheng
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Hao Li
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Hongbo Liu
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Qiuxia Ma
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Chaojie Yang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Xinying Du
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Shaofu Qiu
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Hongbin Song
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| |
Collapse
|
9
|
Yoshimoto T, Fujita T, Kajiya M, Ouhara K, Matsuda S, Komatsuzawa H, Shiba H, Kurihara H. Aggregatibacter actinomycetemcomitans outer membrane protein 29 (Omp29) induces TGF-β-regulated apoptosis signal in human gingival epithelial cells via fibronectin/integrinβ1/FAK cascade. Cell Microbiol 2016; 18:1723-1738. [PMID: 27121139 DOI: 10.1111/cmi.12607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 12/25/2022]
Abstract
Gingival junctional epithelial cell apoptosis caused by periodontopathic bacteria exacerbates periodontitis. This pathological apoptosis is involved in the activation of transforming growth factor β (TGF-β). However, the molecular mechanisms by which microbes induce the activation of TGF-β remain unclear. We previously reported that Aggregatibacter actinomycetemcomitans (Aa) activated TGF-β receptor (TGF-βR)/smad2 signalling to induce epithelial cell apoptosis, even though Aa cannot bind to TGF-βR. Additionally, outer membrane protein 29 kDa (Omp29), a member of the Aa Omps family, can induce actin rearrangements via focal adhesion kinase (FAK) signalling, which also plays a role in the activation of TGF-β by cooperating with integrin. Accordingly, we hypothesized that Omp29-induced actin rearrangements via FAK activity would enhance the activation of TGF-β, leading to gingival epithelial cell apoptosis in vitro. By using human gingival epithelial cell line OBA9, we found that Omp29 activated TGF-βR/smad2 signalling and decreased active TGF-β protein levels in the extracellular matrix (ECM) of cell culture, suggesting the transactivation of TGF-βR. Inhibition of actin rearrangements by cytochalasin D or blebbistatin and knockdown of FAK or integrinβ1 expression by siRNA transfection attenuated TGF-βR/smad2 signalling activity and reduction of TGF-β levels in the ECM caused by Omp29. Furthermore, Omp29 bound to fibronectin (Fn) to induce its aggregation on integrinβ1, which is associated with TGF-β signalling activity. All the chemical inhibitors and siRNAs tested blocked Omp29-induced OBA9 cells apoptosis. These results suggest that Omp29 binds to Fn in order to facilitate Fn/integrinβ1/FAK signalling-dependent TGF-β release from the ECM, thereby inducing gingival epithelial cell apoptosis via TGF-βR/smad2 pathway.
Collapse
Affiliation(s)
- Tetsuya Yoshimoto
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Komatsuzawa
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hideki Shiba
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Doran KS, Fulde M, Gratz N, Kim BJ, Nau R, Prasadarao N, Schubert-Unkmeir A, Tuomanen EI, Valentin-Weigand P. Host-pathogen interactions in bacterial meningitis. Acta Neuropathol 2016; 131:185-209. [PMID: 26744349 PMCID: PMC4713723 DOI: 10.1007/s00401-015-1531-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/26/2022]
Abstract
Bacterial meningitis is a devastating disease occurring worldwide with up to half of the survivors left with permanent neurological sequelae. Due to intrinsic properties of the meningeal pathogens and the host responses they induce, infection can cause relatively specific lesions and clinical syndromes that result from interference with the function of the affected nervous system tissue. Pathogenesis is based on complex host–pathogen interactions, some of which are specific for certain bacteria, whereas others are shared among different pathogens. In this review, we summarize the recent progress made in understanding the molecular and cellular events involved in these interactions. We focus on selected major pathogens, Streptococcus pneumonia, S. agalactiae (Group B Streptococcus), Neisseria meningitidis, and Escherichia coli K1, and also include a neglected zoonotic pathogen, Streptococcus suis. These neuroinvasive pathogens represent common themes of host–pathogen interactions, such as colonization and invasion of mucosal barriers, survival in the blood stream, entry into the central nervous system by translocation of the blood–brain and blood–cerebrospinal fluid barrier, and induction of meningeal inflammation, affecting pia mater, the arachnoid and subarachnoid spaces.
Collapse
|
11
|
Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JAK, Batzloff M, Ulett GC, Beacham IR. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 2014; 27:691-726. [PMID: 25278572 PMCID: PMC4187632 DOI: 10.1128/cmr.00118-13] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.
Collapse
Affiliation(s)
- Samantha J Dando
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Robert Norton
- Townsville Hospital, Townsville, Queensland, Australia
| | - Bart J Currie
- Menzies School of Health Research and Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - James A St John
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Jenny A K Ekberg
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
12
|
|
13
|
Martins M, Custódio R, Camejo A, Almeida MT, Cabanes D, Sousa S. Listeria monocytogenes triggers the cell surface expression of Gp96 protein and interacts with its N terminus to support cellular infection. J Biol Chem 2012; 287:43083-93. [PMID: 23109341 DOI: 10.1074/jbc.m112.422568] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Listeria monocytogenes is an intracellular food-borne pathogen causing listeriosis in humans. This bacterium deploys an arsenal of virulence factors that act in concert to promote cellular infection. Bacterial surface proteins are of primary importance in the process of host cell invasion. They interact with host cellular receptors, inducing/modulating specific cellular responses. We previously identified Vip, a Listeria surface protein covalently attached to the bacterial cell wall acting as a key virulence factor. We have shown that Vip interacts with Gp96 localized at the surface of host cells during invasion and that this interaction is critical for a successful infection in vivo. To better understand the importance of Vip-Gp96 interaction during infection, we aimed to characterize this interaction at the molecular level. Here we demonstrate that, during infection, L. monocytogenes triggers the cellular redistribution of Gp96, inducing its exposure at the cell surface. Upon infection, Gp96 N-terminal domain is exposed to the extracellular milieu in L2071 fibroblasts and interacts with Vip expressed by Listeria. We identified Gp96 (Asp(1)-Leu(170)) as sufficient to interact with Vip; however, we also showed that the region Tyr(179)-Leu(390) of Gp96 is important for the interaction. Our findings unravel the Listeria-induced surface expression of Gp96 and the topology of its insertion on the plasma membrane and improve our knowledge on the Vip-Gp96 interaction during Listeria infection.
Collapse
Affiliation(s)
- Mariana Martins
- Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
14
|
Khan NA, Iqbal J, Siddiqui R. Escherichia coli K1-induced cytopathogenicity of human brain microvascular endothelial cells. Microb Pathog 2012; 53:269-75. [PMID: 22819797 DOI: 10.1016/j.micpath.2012.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/16/2022]
Abstract
Pathophysiology of Escherichia coli sepsis is complex involving circulating bacterial products, cytokine release, and sustained bacteremia resulting in the damage of vascular endothelium. Here, it is shown that E. coli K1 produced cytopathogenicity of human brain microvascular endothelial cells (HBMEC), that constitute the blood-brain barrier. Whole bacteria or their conditioned medium produced severe HBMEC damage suggesting E. coli K1-cytopathogenicity is a contact-independent process. Using lipopolysaccharide (LPS) inhibitor, polymyxin B, purified LPS extracted from E. coli K1 as well as LPS mutant derived from E. coli K1, we showed that LPS is not the sole determinant of E. coli K1-mediated HBMEC death. Bacterial product(s) for HBMEC cytopathogenicity was heat-labile suggesting LPS-associated proteins. Several isogenic gene-deletion mutants (ΔompA, ΔibeA, ΔibeB, Δcnf1) exhibited HBMEC cytopathogenicity similar to that produced by wild type E. coli K1. E. coli K1-mediated HBMEC death was independent of phosphatidylinositol 3-kinase (PI3K) but dependent partially on focal adhesion kinase (FAK) using HBMEC expressing dominant negative FAK and PI3K.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, Karachi, Pakistan.
| | | | | |
Collapse
|
15
|
Slanina H, Hebling S, Hauck CR, Schubert-Unkmeir A. Cell invasion by Neisseria meningitidis requires a functional interplay between the focal adhesion kinase, Src and cortactin. PLoS One 2012; 7:e39613. [PMID: 22768099 PMCID: PMC3387252 DOI: 10.1371/journal.pone.0039613] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/23/2012] [Indexed: 02/07/2023] Open
Abstract
Entry of Neisseria meningitidis (the meningococcus) into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin or vitronectin bound to the surface protein Opc forming a bridge to the respective integrins. This interaction leads to cytoskeletal rearrangement and uptake of meningococci. In this study, we determined that the focal adhesion kinase (FAK), which directly associates with integrins, is involved in integrin-mediated internalization of N. meningitidis in HBMEC. Inhibition of FAK activity by the specific FAK inhibitor PF 573882 reduced Opc-mediated invasion of HBMEC more than 90%. Moreover, overexpression of FAK mutants that were either impaired in the kinase activity or were not capable of autophosphorylation or overexpression of the dominant-negative version of FAK (FRNK) blocked integrin-mediated internalization of N. meningitidis. Importantly, FAK-deficient fibroblasts were significantly less invaded by N. meningitidis. Furthermore, N. meningitidis induced tyrosine phosphorylation of several host proteins including the FAK/Src complex substrate cortactin. Inhibition of cortactin expression by siRNA silencing and mutation of critical amino acid residues within cortactin, that encompass Arp2/3 association and dynamin binding, significantly reduced meningococcal invasion into eukaryotic cells suggesting that both domains are critical for efficient uptake of N. meningitidis into eukaryotic cells. Together, these results indicate that N. meningitidis exploits the integrin signal pathway for its entry and that FAK mediates the transfer of signals from activated integrins to the cytoskeleton. A cooperative interplay between FAK, Src and cortactin then enables endocytosis of N. meningitidis into host cells.
Collapse
Affiliation(s)
- Heiko Slanina
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Sabrina Hebling
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
16
|
van Sorge NM, Doran KS. Defense at the border: the blood-brain barrier versus bacterial foreigners. Future Microbiol 2012; 7:383-94. [PMID: 22393891 DOI: 10.2217/fmb.12.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacterial meningitis is among the top ten causes of infectious disease-related deaths worldwide, with up to half of the survivors left with permanent neurological sequelae. The blood-brain barrier (BBB), composed mainly of specialized brain microvascular endothelial cells, maintains biochemical homeostasis in the CNS by regulating the passage of nutrients, molecules and cells from the blood to the brain. Despite its highly restrictive nature, certain bacterial pathogens are able to gain entry into the CNS resulting in serious disease. In recent years, important advances have been made in understanding the molecular and cellular events that are involved in the development of bacterial meningitis. In this review, we summarize the progress made in elucidating the molecular mechanisms of bacterial BBB-crossing, highlighting common themes of host-pathogen interaction, and the potential role of the BBB in innate defense during infection.
Collapse
Affiliation(s)
- Nina M van Sorge
- University Medical Center Utrecht, Medical Microbiology, Heidelberglaan 100, G04.614, 3584 GX Utrecht, The Netherlands
| | | |
Collapse
|
17
|
Krishnan S, Prasadarao NV. Outer membrane protein A and OprF: versatile roles in Gram-negative bacterial infections. FEBS J 2012; 279:919-31. [PMID: 22240162 DOI: 10.1111/j.1742-4658.2012.08482.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Outer membrane protein A (OmpA) is an abundant protein of Escherichia coli and other enterobacteria and has a multitude of functions. Although the structural features and porin function of OmpA have been well studied, its role in the pathogenesis of various bacterial infections has emerged only during the last decade. The four extracellular loops of OmpA interact with a variety of host tissues for adhesion to and invasion of the cell and for evasion of host-defense mechanisms when inside the cell. This review describes how various regions present in the extracellular loops of OmpA contribute to the pathogenesis of neonatal meningitis induced by E. coli K1 and to many other functions. In addition, the function of OmpA-like proteins, such as OprF of Pseudomonas aeruginosa, is discussed.
Collapse
Affiliation(s)
- Subramanian Krishnan
- Division of Infectious Diseases, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, CA, USA
| | | |
Collapse
|
18
|
Salmeri M, Motta C, Mastrojeni S, Amodeo A, Anfuso CD, Giurdanella G, Morello A, Alberghina M, Toscano MA, Lupo G. Involvement of PKCα-MAPK/ERK-phospholipase A(2) pathway in the Escherichia coli invasion of brain microvascular endothelial cells. Neurosci Lett 2012; 511:33-7. [PMID: 22306096 DOI: 10.1016/j.neulet.2012.01.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/19/2011] [Accepted: 01/17/2012] [Indexed: 01/12/2023]
Abstract
Escherichia coli K1 is the most common Gram-negative organism that causes neonatal meningitis following penetration of the blood-brain barrier. In the present study we demonstrated the involvement of cytosolic (cPLA(2)) and calcium-independent phospholipase A(2) (iPLA(2)) and the contribution of cyclooxygenase-2 products in E. coli invasion of microvascular endothelial cells. The traversal of bacteria did not determine trans-endothelial electrical resistance (TEER) and ZO-1 expression changes and was reduced by PLA(2)s siRNA. cPLA(2) and iPLA(2) enzyme activities and cPLA(2) phosphorylation were stimulated after E. coli incubation and were attenuated by PLA(2), PI3-K, ERK 1/2 inhibitors. Our results demonstrate the role of PKCα/ERK/MAPK signaling pathways in governing the E. coli penetration into the brain.
Collapse
Affiliation(s)
- Mario Salmeri
- Dept. Scienze Bio-Mediche, University of Catania, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Loh LN, Ward TH. Escherichia coli K1 invasion of human brain microvascular endothelial cells. Methods Enzymol 2012; 506:93-113. [PMID: 22341221 DOI: 10.1016/b978-0-12-391856-7.00030-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The pathogenic Escherichia coli strain E. coli K1 is a primary causative agent of neonatal meningitis. Understanding how these bacteria cross the blood-brain barrier is vital to develop therapeutics. Here, we describe the use of live-cell imaging techniques to study E. coli K1 interactions with cellular markers following infection of human brain microvascular endothelial cells, a model system of the blood-brain barrier. We also discuss optimization of endothelial cell transfection conditions using nonviral transfection technique, bacterial labeling techniques, and in vitro assays to screen for fluorescent bacteria that retain their ability to invade host cells.
Collapse
Affiliation(s)
- Lip Nam Loh
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
20
|
Banerjee A, Kim BJ, Carmona EM, Cutting AS, Gurney MA, Carlos C, Feuer R, Prasadarao NV, Doran KS. Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration. Nat Commun 2011; 2:462. [PMID: 21897373 PMCID: PMC3195231 DOI: 10.1038/ncomms1474] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/10/2011] [Indexed: 12/25/2022] Open
Abstract
Group B Streptococcus (GBS) is the leading cause of meningitis in newborn infants. Bacterial cell surface appendages, known as pili, have been recently described in streptococcal pathogens, including GBS. The pilus tip adhesin, PilA, contributes to GBS adherence to blood-brain barrier (BBB) endothelium; however, the host receptor and the contribution of PilA in central nervous system (CNS) disease pathogenesis are unknown. Here we show that PilA binds collagen, which promotes GBS interaction with the α₂β₁ integrin resulting in activation of host chemokine expression and neutrophil recruitment during infection. Mice infected with the PilA-deficient mutant exhibit delayed mortality, a decrease in neutrophil infiltration and bacterial CNS dissemination. We find that PilA-mediated virulence is dependent on neutrophil influx as neutrophil depletion results in a decrease in BBB permeability and GBS-BBB penetration. Our results suggest that the bacterial pilus, specifically the PilA adhesin, has a dual role in immune activation and bacterial entry into the CNS.
Collapse
Affiliation(s)
- Anirban Banerjee
- Department of Biology and Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Brandon J. Kim
- Department of Biology and Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
- These authors contributed equally to this work
| | - Ellese M. Carmona
- Department of Biology and Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
- These authors contributed equally to this work
| | - Andrew S. Cutting
- Department of Biology and Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Michael A. Gurney
- Department of Biology and Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Chris Carlos
- Department of Biology and Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Ralph Feuer
- Department of Biology and Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Nemani V. Prasadarao
- Division of Infectious Diseases, Department of Pediatrics, Childrens Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California 90027, USA
| | - Kelly S. Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
- Department of Pediatrics, University of California–San Diego School of Medicine, La Jolla, California 92093, USA
| |
Collapse
|
21
|
Agarwal V, Asmat TM, Dierdorf NI, Hauck CR, Hammerschmidt S. Polymeric immunoglobulin receptor-mediated invasion of Streptococcus pneumoniae into host cells requires a coordinate signaling of SRC family of protein-tyrosine kinases, ERK, and c-Jun N-terminal kinase. J Biol Chem 2010; 285:35615-23. [PMID: 20829350 DOI: 10.1074/jbc.m110.172999] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae are commensals of the human nasopharynx with the capacity to invade mucosal respiratory cells. PspC, a pneumococcal surface protein, interacts with the human polymeric immunoglobulin receptor (pIgR) to promote bacterial adherence to and invasion into epithelial cells. Internalization of pneumococci requires the coordinated action of actin cytoskeleton rearrangements and the retrograde machinery of pIgR. Here, we demonstrate the involvement of Src protein-tyrosine kinases (PTKs), focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinases (MAPK) in pneumococcal invasion via pIgR. Pharmacological inhibitors of PTKs and MAPKs and genetic interference with Src PTK and FAK functions caused a significant reduction of pIgR-mediated pneumococcal invasion but did not influence bacterial adhesion to host cells. Furthermore, pneumococcal ingestion by host cells induces activation of ERK1/2 and JNK. In agreement with activated JNK, its target molecule and DNA-binding protein c-Jun was phosphorylated. We also show that functionally active Src PTK is essential for activation of ERK1/2 upon pneumococcal infections. In conclusion, these data illustrate the importance of a coordinated signaling between Src PTKs, ERK1/2, and JNK during PspC-pIgR-mediated uptake of pneumococci by host epithelial cells.
Collapse
Affiliation(s)
- Vaibhav Agarwal
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald
| | | | | | | | | |
Collapse
|
22
|
Abstract
Bacterial meningitis continues to be an important cause of mortality and morbidity in neonates and children throughout the world. The introduction of the protein conjugate vaccines against Haemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis has changed the epidemiology of bacterial meningitis. Suspected bacterial meningitis is a medical emergency and needs empirical antimicrobial treatment without delay, but recognition of pathogens with increasing resistance to antimicrobial drugs is an important factor in the selection of empirical antimicrobial regimens. At present, strategies to prevent and treat bacterial meningitis are compromised by incomplete understanding of the pathogenesis. Further research on meningitis pathogenesis is thus needed. This Review summarises information on the epidemiology, pathogenesis, new diagnostic methods, empirical antimicrobial regimens, and adjunctive treatment of acute bacterial meningitis in infants and children.
Collapse
Affiliation(s)
- Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
23
|
Liu W, Zhao WD, Yan JC, Ren ZY, Fang WG, Zhu L, Shang DS, Chen YH. Involvement of Src tyrosine kinase in Escherichia coli invasion of human brain microvascular endothelial cells. FEBS Lett 2010; 584:27-32. [PMID: 19903481 DOI: 10.1016/j.febslet.2009.10.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 10/24/2009] [Accepted: 10/30/2009] [Indexed: 12/31/2022]
Abstract
Invasion of brain microvascular endothelial cells is a prerequisite for successful crossing of the blood-brain barrier by Escherichia coli (E. coli), but the underlying mechanism remains unclear. Here we showed activation of Src tyrosine kinase in E. coli K1 invasion of human brain microvascular endothelial cells (HBMEC). E. coli invasion of HBMEC and the E. coli-induced rearrangement of actin filaments were blocked by Src inhibitors. Overexpression of dominant-negative Src in HBMEC significantly attenuated E. coli invasion and the concomitant actin filaments rearrangement. Furthermore, E. coli K1-triggered phosphatidylinositol 3-kinase (PI3K) activation in HBMEC was effectively blocked by Src inhibitors and dominant-negative Src. These results demonstrated the involvement of Src and its interaction with PI3K in E. coli K1 invasion of HBMEC.
Collapse
Affiliation(s)
- Wei Liu
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Heping Distric, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
OmpA is the critical component for Escherichia coli invasion-induced astrocyte activation. J Neuropathol Exp Neurol 2009; 68:677-90. [PMID: 19458541 DOI: 10.1097/nen.0b013e3181a77d1e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Escherichia coli is the major Gram-negative bacterial pathogen in neonatal meningitis. Outer membrane protein A (OmpA) is a conserved major protein in the E. coli outer membrane and is involved in several host-cell interactions. To characterize the role of OmpA in the invasion of astrocytes by E. coli, we investigated OmpA-positive and OmpA-negative E. coli strains. Outer membrane protein A E44, E105, and E109 strains adhered to and invaded C6 glioma cells 10- to 15-fold more efficiently than OmpA-negative strains. Actin rearrangement, protein tyrosine kinase, and phosphoinositide 3-kinase activation were required for OmpA-mediated invasion by E. coli. In vitro infection of C6 cells and intracerebral injection into mice of the E44 strain induced expression of the astrocyte differentiation marker glial fibrillary acidic protein and the inflammatory mediators cyclooxygenase 2 and nitric oxide synthase 2. After intracerebral infection with E44, all C57BL/6 mice died within 36hours, whereas 80% of mice injected with E44 premixed with recombinant OmpA protein survived. Astrocyte activation and neutrophil infiltration were reduced in brain tissue sections in the mice given OmpA. Taken together, these data suggest that OmpA-mediated invasion plays an important role in the early stage of E.coli-induced brain damage, and that it may have therapeutic use in E. coli meningitis.
Collapse
|
25
|
Nerlich A, Rohde M, Talay SR, Genth H, Just I, Chhatwal GS. Invasion of endothelial cells by tissue-invasive M3 type group A streptococci requires Src kinase and activation of Rac1 by a phosphatidylinositol 3-kinase-independent mechanism. J Biol Chem 2009; 284:20319-28. [PMID: 19473989 DOI: 10.1074/jbc.m109.016501] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Streptococcus pyogenes can cause invasive diseases in humans, such as sepsis or necrotizing fasciitis. Among the various M serotypes of group A streptococci (GAS), M3 GAS lacks the major epithelial invasins SfbI/PrtF1 and M1 protein but has a high potential to cause invasive disease. We examined the uptake of M3 GAS into human endothelial cells and identified host signaling factors required to initiate streptococcal uptake. Bacterial uptake is accompanied by local F-actin accumulation and formation of membrane protrusions at the entry site. We found that Src kinases and Rac1 but not phosphatidylinositol 3-kinases (PI3Ks) are essential to mediate S. pyogenes internalization. Pharmacological inhibition of Src activity reduced bacterial uptake and abolished the formation of membrane protrusions and actin accumulation in the vicinity of adherent streptococci. We found that Src kinases are activated in a time-dependent manner in response to M3 GAS. We also demonstrated that PI3K is dispensable for internalization of M3 streptococci and the formation of F-actin accumulations at the entry site. Furthermore, Rac1 was activated in infected cells and accumulated with F-actin in a PI3K-independent manner at bacterial entry sites. Genetic interference with Rac1 function inhibited streptococcal internalization, demonstrating an essential role of Rac1 for the uptake process of streptococci into endothelial cells. In addition, we demonstrated for the first time accumulation of the actin nucleation complex Arp2/3 at the entry port of invading M3 streptococci.
Collapse
Affiliation(s)
- Andreas Nerlich
- Helmholtz Centre for Infection Research (HZI), Microbial Pathogenesis, D-38124 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Central nervous system (CNS) infections continue to be an important cause of morbidity and mortality. Microbial invasion and traversal of the blood-brain barrier is a prerequisite for CNS infections. Pathogens can cross the blood-brain barrier transcellularly, paracellularly and/or in infected phagocytes (the so-called Trojan-horse mechanism). Consequently, pathogens can cause blood-brain barrier dysfunction, including increased permeability, pleocytosis and encephalopathy. A more complete understanding of the microbial-host interactions that are involved in microbial traversal of the blood-brain barrier and the associated barrier dysfunction should help to develop new strategies to prevent CNS infections.
Collapse
|
27
|
Wang B, Li S, Dedhar S, Cleary PP. Paxillin phosphorylation: bifurcation point downstream of integrin-linked kinase (ILK) in streptococcal invasion. Cell Microbiol 2007; 9:1519-28. [PMID: 17298394 DOI: 10.1111/j.1462-5822.2007.00889.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient group A streptococcus (GAS) invasion of mammalian cells requires fibronectin (Fn) binding proteins, such as M1 and PrtF1/SfbI, that bridge bacteria to integrins and activate cellular signalling for ingestion. Previous studies of GAS invasion, mediated by both proteins, suggest a common signalling pathway. However, distinct cellular morphological changes at the port of bacterial entry suggest that different signals are also induced. Here we report that paxillin is phosphorylated in response to Fn-bound GAS that express either M1 or PrtF1/SfbI protein, but is not phosphorylated in response to a mutant deficient in both proteins. Inhibition of paxillin phosphorylation by a tyrosine kinase inhibitor, PP2, or by expression of a dominant negative form of paxillin significantly reduced invasion by M1+ but did not affect ingestion of PrtF1/SfbI+ strains. In contrast, another tyrosine inhibitor, genistein, did not significantly prevent paxillin phosphorylation and had no effect on ingestion of the M1+ strain, but reduced PrtF1/SfbI-mediated entry. This suggests that paxillin phosphorylation is induced by both proteins but only required for M1-mediated invasion. A bifurcation point, downstream of integrin-linked kinase (ILK) and phosphoinositide 3-kinase, likely accounts for the distinct morphological changes. Furthermore, ILK activity is indispensable for M1-induced paxillin recruitment and phosphorylation.
Collapse
Affiliation(s)
- Beinan Wang
- Department of Microbiology, Medical School, University of Minnesota, 1460 Mayo Memorial Building, MMC 196, 420 Delaware Street SE. Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
28
|
Selvaraj SK, Periandythevar P, Prasadarao NV. Outer membrane protein A of Escherichia coli K1 selectively enhances the expression of intercellular adhesion molecule-1 in brain microvascular endothelial cells. Microbes Infect 2007; 9:547-57. [PMID: 17368067 PMCID: PMC1993839 DOI: 10.1016/j.micinf.2007.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 12/21/2006] [Accepted: 01/18/2007] [Indexed: 01/26/2023]
Abstract
Escherichia coli K1 meningitis is a serious central nervous system disease with unchanged mortality and morbidity rates for last few decades. Intercellular adhesion molecule 1 (ICAM-1) is a cell adhesion molecule involved in leukocyte trafficking toward inflammatory stimuli at the vascular endothelium; however, the effect of E. coli invasion of endothelial cells on the expression of ICAM-1 is not known. We demonstrate here that E. coli K1 invasion of human brain microvascular endothelial cells (HBMEC) selectively up-regulates the expression of ICAM-1, which occurs only in HBMEC invaded by the bacteria. The interaction of outer membrane protein A (OmpA) of E. coli with its receptor, Ecgp, on HBMEC was critical for the up-regulation of ICAM-1 and was depend on PKC-alpha and PI3-kinase signaling. Of note, the E. coli-induced up-regulation of ICAM-1 was not due to the cytokines secreted by HBMEC upon bacterial infection. Activation of NF-kappaB was required for E. coli mediated expression of ICAM-1, which was significantly inhibited by over-expressing the dominant negative forms of PKC-alpha and p85 subunit of PI3-kinase. The increased expression of ICAM-1 also enhanced the binding of THP-1 cells to HBMEC. Taken together, these data suggest that localized increase in ICAM-1 expression in HBMEC invaded by E. coli requires a novel interaction between OmpA and its receptor, Ecgp.
Collapse
Affiliation(s)
- Suresh K. Selvaraj
- Division of Infectious Diseases, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Parameswaran Periandythevar
- Division of Infectious Diseases, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Nemani V. Prasadarao
- Division of Infectious Diseases, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
- * Corresponding author. Division of Infectious Diseases, MS #51, The Saban Research Institute, Children’s Hospital Los Angeles, 4650 Sunset Boulevard, Los Angeles, CA 90027, USA. Tel.: +1 323 669 5465; fax: +1 323 660 2661. E-mail address: (N.V. Prasadarao)
| |
Collapse
|
29
|
Khan NA, Kim Y, Shin S, Kim KS. FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells. Cell Microbiol 2007; 9:169-78. [PMID: 17222190 DOI: 10.1111/j.1462-5822.2006.00779.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adhesion to brain microvascular endothelial cells, which constitute the blood-brain barrier is considered important in Escherichia coli K1 bacterial penetration into the central nervous system. Type 1 fimbriae are known to mediate bacterial interactions with human brain microvascular endothelial cells (HBMEC). Here, we demonstrate that type 1 fimbriae, specifically FimH adhesin is not only an adhesive organelle that provides bacteria with a foothold on brain endothelial cells but also triggers signalling events that promote E. coli K1 invasion in HBMEC. This is shown by our demonstrations that exogenous FimH increases cytosolic-free-calcium levels as well as activates RhoA. Using purified recombinant mannose-recognition domain of FimH, we identified a glycosylphosphatidylinositol-anchored receptor, CD48, as a putative HBMEC receptor for FimH. Furthermore, E. coli K1 binding to and invasion of HBMEC were blocked by CD48 antibody. Taken together, these findings indicate that FimH induces host cell signalling cascades that are involved in E. coli K1 invasion of HBMEC and CD48 is a putative HBMEC receptor for FimH.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Park 256, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
30
|
Teng CH, Xie Y, Shin S, Di Cello F, Paul-Satyaseela M, Cai M, Kim KS. Effects of ompA deletion on expression of type 1 fimbriae in Escherichia coli K1 strain RS218 and on the association of E. coli with human brain microvascular endothelial cells. Infect Immun 2006; 74:5609-16. [PMID: 16988236 PMCID: PMC1594875 DOI: 10.1128/iai.00321-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that outer membrane protein A (OmpA) and type 1 fimbriae are the bacterial determinants involved in Escherichia coli K1 binding to human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. In investigating the role of OmpA in E. coli K1 binding to HBMEC, we showed for the first time that ompA deletion decreased the expression of type 1 fimbriae in E. coli K1. Decreased expression of type 1 fimbriae in the ompA deletion mutant was largely the result of driving the fim promoter toward the type 1 fimbrial phase-OFF orientation. mRNA levels of fimB and fimE were found to be decreased with the OmpA mutant compared to the parent strain. Of interest, the ompA deletion further decreased the abilities of E. coli K1 to bind to and invade HBMEC under the conditions of fixing type 1 fimbria expression in the phase-ON or phase-OFF status. These findings suggest that the decreased ability of the OmpA mutant to interact with HBMEC is not entirely due to its decreased type 1 fimbrial expression and that OmpA and type 1 fimbriae facilitate the interaction of E. coli K1 with HBMEC at least in an additive manner.
Collapse
Affiliation(s)
- Ching-Hao Teng
- Division of Clinical Research, National Health Research Institutes, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
31
|
Shin S, Paul-Satyaseela M, Maneesh PS, Lee JS, Romer LH, Kim KS. Focal adhesion kinase is involved in type III group B streptococcal invasion of human brain microvascular endothelial cells. Microb Pathog 2006; 41:168-73. [PMID: 16949788 DOI: 10.1016/j.micpath.2006.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 06/08/2006] [Accepted: 07/07/2006] [Indexed: 11/26/2022]
Abstract
Group B streptococcus (GBS), the leading cause of neonatal meningitis, has been shown to invade human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. GBS invasion of HBMEC has been shown to require the host cell actin cytoskeleton rearrangements. The present study examined the mechanisms underlying actin cytoskeleton rearrangements that are involved in type III GBS invasion of HBMEC. We showed that type III GBS invasion was inhibited by genistein, a general tyrosine kinase inhibitor (mean 54% invasion decrease at 100 microM), and LY294002, a phosphatidylinositol 3 (PI3) kinase inhibitor (mean 70% invasion decrease at 50 microM), but not by PP2, an inhibitor of the Src family tyrosine kinases. We subsequently showed that the focal adhesion kinase (FAK) was the one of the host proteins tyrosine phosphorylated by type III GBS. Over-expression of a dominant negative form of the FAK C-terminal domain significantly decreased type III GBS invasion of HBMEC (mean 51% invasion decrease). In addition, we showed that FAK phosphorylation correlated with its association of paxillin, an adapter protein of actin filament, and PI3-kinase subunit p85. This is the first demonstration that FAK phosphorylation and its association with paxillin and PI3 kinase play a key role in type III GBS invasion of HBMEC.
Collapse
Affiliation(s)
- Sooan Shin
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Park 256, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
32
|
Shin S, Kim KS. RhoA and Rac1 contribute to type III group B streptococcal invasion of human brain microvascular endothelial cells. Biochem Biophys Res Commun 2006; 345:538-42. [PMID: 16681996 DOI: 10.1016/j.bbrc.2006.04.130] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 04/18/2006] [Indexed: 11/19/2022]
Abstract
Type III group B streptococcus (GBS) has been shown to invade human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier, but the underlying mechanisms remain incompletely understood. In the present study, we showed that the geranylgeranyl transferase I inhibitor, GGTI-298, not the farnesyltransferase inhibitor, FTI-277 inhibited type III GBS invasion of HBMEC. The substrates for GGTI-298 include Rho family GTPases, and we showed that RhoA and Rac1 are involved in type III GBS invasion of HBMEC. This was shown by the demonstration that infection with type III GBS strain K79 increased the levels of activated RhoA and Rac1 and GBS invasion was inhibited in HBMEC expressing dominant-negative RhoA and Rac1. Of interest, the level of activated Rac1 in response to type III GBS was decreased in HBMEC expressing dominant-negative RhoA, while the level of activated RhoA was not affected by dominant-negative Rac1. These findings indicate for the first time that activation of geranylgeranylated proteins including RhoA and Rac1 is involved in type III GBS invasion of HBMEC and RhoA is upstream of Rac1 in GBS invasion of HBMEC.
Collapse
Affiliation(s)
- Sooan Shin
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
33
|
Kim KS. Microbial translocation of the blood–brain barrier. Int J Parasitol 2006; 36:607-14. [PMID: 16542662 DOI: 10.1016/j.ijpara.2006.01.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/19/2006] [Accepted: 01/30/2006] [Indexed: 11/23/2022]
Abstract
A major contributing factor to high mortality and morbidity associated with CNS infection is the incomplete understanding of the pathogenesis of this disease. Relatively small numbers of pathogens account for most cases of CNS infections in humans, but it is unclear how such pathogens cross the blood-brain barrier (BBB) and cause infections. The development of the in vitro BBB model using human brain microvascular endothelial cells has facilitated our understanding of the microbial translocation of the BBB, a key step for the acquisition of CNS infections. Recent studies have revealed that microbial translocation of the BBB involves host cell actin cytoskeletal rearrangements, most likely as the result of specific microbial-host interactions. A better understanding of microbial-host interactions that are involved in microbial translocation of the BBB should help in developing new strategies to prevent CNS infections. This review summarises our current understanding of the pathogenic mechanisms involved in translocation of the BBB by meningitis-causing bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Park 256, Baltimore, MD 21287, USA.
| |
Collapse
|
34
|
Affiliation(s)
- Zhimin Feng
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
35
|
Abstract
Escherichia coliis the most common Gram-negative organism causing neonatal meningitis. Neonatal E. colimeningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis and pathophysiology contributes to such mortality and morbidity. Recent reports of neonatal meningitis caused by E. coli strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. E. colipenetration into the brain, the essential step in the development of E. coli meningitis, requires a high-degree of bacteremia and penetration of the blood-brain barrier as live bacteria, but the underlying mechanisms remain incompletely understood. Recent functional genomic approaches of meningitis-causing E. coli in both in vitro and in vivo models of the blood-brain barrier (e.g., human brain microvascular endothelial cells and animal models of experimental hematogenousE. colimeningitis, respectively) have identified several E. coli factors contributing to a high-degree of bacteremia, as well as specific microbial factors contributing to E. coli invasion of the blood-brain barrier. In addition, E. coli penetration of the blood-brain barrier involves specific host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors and host cell signaling molecules is efficient in preventing E. coli penetration into the brain. Continued investigation of the microbial and host factors contributing to E. colibacteremia andinvasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of E. coli meningitis, thereby limiting the exposure to emerging antimicrobial-resistant E. coli.
Collapse
|
36
|
Abstract
Pathogenic Escherichia coli causes extraintestinal infections such as urinary tract infection and meningitis, which are prevalent and associated with considerable morbidity. Previous investigations have identified common strategies evolved by pathogenic E. coli to exploit host cell function and cause extraintestinal infections, which include the invasion into non-phagocytic eukaryotic cells such as epithelial and endothelial cells and associated host cell actin cytoskeletal rearrangements. However, the mechanisms involved in pathogenic E. coli invasion of eukaryotic cells are shown to differ depending upon types of host tissues and microbial determinants. In this mini-review, invasion processes of pathogenic E. coli are discussed using E. coli K1 invasion of human brain microvascular endothelial cells (HBMEC) as a paradigm. E. coli K1 is the most common Gram-negative organism causing neonatal meningitis, and E. coli invasion of HBMEC is shown to be a prerequisite for E. coli traversal of the blood-brain barrier in vivo. Previous studies have demonstrated that E. coli translocation of the blood-brain barrier is the result of specific E. coli host interactions including specific signal transduction pathways and modulation of endocytic pathways. Recent studies using functional genomics have identified additional microbial determinants contributing to E. coli K1 invasion of HBMEC. Complete understanding of microbial-host interactions that are involved in E. coli K1 invasion of HBMEC should help in the development of new strategies to prevent E. coli meningitis.
Collapse
Affiliation(s)
- Brian Y Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 600 North Wolfe Street/Park 256, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
37
|
Wattrang E, Almqvist M, Johansson A, Fossum C, Wallgren P, Pielberg G, Andersson L, Edfors-Lilja I. Confirmation of QTL on porcine chromosomes 1 and 8 influencing leukocyte numbers, haematological parameters and leukocyte function. Anim Genet 2005; 36:337-45. [PMID: 16026345 DOI: 10.1111/j.1365-2052.2005.01315.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A genome wide search in European Wild Boar x Swedish Yorkshire (W x Y) inter-cross pigs has earlier identified quantitative trait loci (QTL) for leucocyte number and function on porcine chromosomes 1 and 8 (SSC 1 and 8). To verify the involvement of these chromosomal regions in the regulation of haematocrit (Hem) and haemoglobin (Hb) levels, leucocyte numbers and in vitro leukocyte functions (mitogen induced proliferation and IL-2 production, virus induced interferon-alpha production and neutrophil phagocytosis), animals of different genetic backgrounds were analysed. The animals comprised a back-cross sire family (n=47) of W x Y pigs and six crossbred [Y x Landrace (L)] sire families (n=191). They were genotyped for 16 genetic markers and an interval analysis was performed. On SSC1, a QTL close to S0082 on the q-arm that influenced numbers of white blood cells in L x Y pigs and numbers of band neutrophils and CD8(+) cells in W x Y pigs was identified (P<or=0.01). An additional SSC1 QTL was identified on the p-arm close to S0008 with influence on numbers of CD2(+) cells in W x Y pigs (P<or=0.05). On SSC8, a QTL influencing Hb (P<or=0.01) and Hem (P<or=0.05) levels was identified close to KIT in the W x Y pigs. For L x Y pigs, a second QTL, distal to KIT and close to S0069, on SSC8 influenced the numbers of MHCII(+) cells and mitogen induced proliferation (P<or=0.05), whilst the QTL close to KIT influenced the number of IgM(+) cells in these pigs (P<or=0.05). The results confirm the involvement of earlier identified regions of SSC1 and SSC8 on porcine immune parameters and some candidate genes were suggested.
Collapse
Affiliation(s)
- E Wattrang
- Department of Molecular Biosciences, Section of Veterinary Immunology and Virology, Swedish University of Agricultural Sciences, Box 588, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Focal adhesions composed of integrins provide an important structural basis for anchoring the endothelial lining to its surrounding matrices in the vascular wall. Complex molecular reactions occur at the endothelial cell-matrix contact sites in response to physical and chemical stress present in the circulatory system. Recent experimental evidence points to the importance of focal adhesions in the regulation of microvascular barrier function. On one hand, the adhesive interaction between integrins and their extracellular ligands is essential to the maintenance of endothelial barrier properties, and interruption of integrin-matrix binding leads to leaky microvessels. On the other hand, focal adhesion assembly and activation serve as important signalling events in modulating endothelial permeability under stimulatory conditions in the presence of angiogenic factors, inflammatory mediators, or physical forces. The focal responses show distinctive patterns with different temporal characteristics, whereas focal adhesion kinase (FAK) plays a central role in initiating and integrating various signalling pathways that ultimately affect the barrier function. The molecular basis of focal adhesion-dependent microvascular permeability is currently under investigation, and advances in the technologies of computerized quantitative microscopy and intact microvessel imaging should aid the establishment of a functional significance for focal adhesions in the physiological regulation of microvascular permeability.
Collapse
Affiliation(s)
- Mack H Wu
- Department of Surgery, University of California at Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
39
|
Rudrabhatla RS, Selvaraj SK, Prasadarao NV. Role of Rac1 in Escherichia coli K1 invasion of human brain microvascular endothelial cells. Microbes Infect 2005; 8:460-9. [PMID: 16243562 PMCID: PMC1525332 DOI: 10.1016/j.micinf.2005.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 07/20/2005] [Indexed: 11/22/2022]
Abstract
Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC) requires the reorganization of host cytoskeleton at the sites of bacterial entry. Both actin and myosin constitute the cytoskeletal architecture. We have previously shown that myosin light chain (MLC) phosphorylation by MLC kinase is regulated during E. coli invasion by an upstream kinase, p21-activated kinase 1 (PAK1), which is an effector protein of Rac and Cdc42 GTPases, but not of RhoA. Here, we report that the binding of only Rac1 to PAK1 decreases in HBMEC upon infection with E. coli K1, which resulted in increased phosphorylation of MLC. Overexpression of a constitutively active (cAc) form of Rac1 in HBMEC blocked the E. coli invasion significantly, whereas overexpression of a dominant negative form had no effect. Increased PAK1 phosphorylation was observed in HBMEC expressing cAc-Rac1 with a concomitant reduction in the phosphorylation of MLC. Immunocytochemistry studies demonstrated that the inhibition of E. coli invasion into cAc-Rac1/HBMEC is due to lack of phospho-MLC recruitment to the sites of E. coli entry. Taken together the data suggest that E. coli modulates the binding of Rac1, but not Cdc42, to PAK1 during the invasion of HBMEC.
Collapse
Affiliation(s)
- Rajyalakshmi S. Rudrabhatla
- Division of Infectious Diseases, The Saban Research Institute, Children’s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Suresh K. Selvaraj
- Division of Infectious Diseases, The Saban Research Institute, Children’s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Nemani V. Prasadarao
- Division of Infectious Diseases, The Saban Research Institute, Children’s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
- * Corresponding author. Tel.: +1 323 669 5465; fax: +1 323 660 2661. E-mail address: (N.V. Prasadarao)
| |
Collapse
|
40
|
Cabanes D, Sousa S, Cebriá A, Lecuit M, García-del Portillo F, Cossart P. Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J 2005; 24:2827-38. [PMID: 16015374 PMCID: PMC1182245 DOI: 10.1038/sj.emboj.7600750] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 06/27/2005] [Indexed: 11/09/2022] Open
Abstract
By comparative genomics, we have identified a gene of the intracellular pathogen Listeria monocytogenes that encodes an LPXTG surface protein absent from nonpathogenic Listeria species. This gene, vip, is positively regulated by PrfA, the transcriptional activator of the major Listeria virulence factors. Vip is anchored to the Listeria cell wall by sortase A and is required for entry into some mammalian cells. Using a ligand overlay approach, we identified a cellular receptor for Vip, the endoplasmic reticulum (ER) resident chaperone Gp96 recently shown to interact with TLRs. The Vip-Gp96 interaction is critical for bacterial entry into some cells. Comparative infection studies using oral and intravenous inoculation of nontransgenic and transgenic mice expressing human E-cadherin demonstrated a role for Vip in Listeria virulence, not only at the intestine level but also in late stages of the infectious process. Vip thus appears as a new virulence factor exploiting Gp96 as a receptor for cell invasion and/or signalling events that may interfere with the host immune response in the course of the infection.
Collapse
Affiliation(s)
- Didier Cabanes
- Unité des Interactions Bactéries Cellules Institut Pasteur, INSERM U604, INRA USC 2020, Paris, France
| | - Sandra Sousa
- Unité des Interactions Bactéries Cellules Institut Pasteur, INSERM U604, INRA USC 2020, Paris, France
| | - Antonio Cebriá
- Departamento de Biotecnologia Microbiana, Centro National de Biotecnologia-CSIC Darwin 3, Madrid, Spain
| | - Marc Lecuit
- Unité des Interactions Bactéries Cellules Institut Pasteur, INSERM U604, INRA USC 2020, Paris, France
| | | | - Pascale Cossart
- Unité des Interactions Bactéries Cellules Institut Pasteur, INSERM U604, INRA USC 2020, Paris, France
- Unité des Interactions Bactéries Cellules Institut Pasteur, INSERM U604, INRA USC 2020, 28 rue du Dr Roux, 75015 Paris, France. Tel.: +33 1 4568 8841; Fax: +33 1 4568 8706; E-mail:
| |
Collapse
|
41
|
Eitel J, Heise T, Thiesen U, Dersch P. Cell invasion and IL-8 production pathways initiated by YadA of Yersinia pseudotuberculosis require common signalling molecules (FAK, c-Src, Ras) and distinct cell factors. Cell Microbiol 2005; 7:63-77. [PMID: 15617524 DOI: 10.1111/j.1462-5822.2004.00434.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The YadA protein of Yersinia pseudotuberculosis promotes tight adhesion and invasion into mammalian cells through beta(1)-integrins. In this work, we demonstrate that YadA also triggers the production of interleukin-8 (IL-8) in host cells and we identify intracellular signal transduction mechanisms involved in YadA-initiated cell invasion and/or IL-8 synthesis. Tyrosine protein kinases, including the focal adhesion kinase (FAK) and c-Src, as well as the small GTPase Ras, were shown to play a significant role in both YadA-promoted cell processes. YadA-mediated cell contact led to autophosphorylation of FAK at position Tyr397 and induced GTP-loading of Ras. Furthermore, IL-8 production and invasion induced by YadA were strongly reduced in FAK- and c-Src-deficient cells and in cells overexpressing dominant interfering forms of FAK, c-Src or Ras. We also demonstrate that YadA activates the Ras-dependent Raf-MEK1/2-ERK1/2 pathway and mitogen-activated protein kinases (MAPKs) p38 and JNK. Moreover, inhibition of ERK1/2 by pharmacological agents or overexpression of dominant negative FAK, c-Src or Ras abrogated IL-8 release, whereas invasion remained unaffected. In contrast, actin polymerization and phosphatidylinositol 3-kinase (PI3K) activity is essential for YadA-promoted cell entry, but not for cytokine secretion. We conclude that YadA triggers FAK-Src complex formation and subsequent Ras activation, which leads to the stimulation of MAPKs-dependent IL-8 production or to PI3K-dependent invasion.
Collapse
Affiliation(s)
- Julia Eitel
- Junior Research Group 6, Robert Koch Institut, Nordufer 20, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
42
|
Melo TG, Almeida DS, de Meirelles MDNSL, Pereira MC. Trypanosoma cruzi infection disrupts vinculin costameres in cardiomyocytes. Eur J Cell Biol 2005; 83:531-40. [PMID: 15679099 DOI: 10.1078/0171-9335-00419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chagas' disease cardiomyopathy is an important manifestation of Trypanosoma cruzi infection, leading to cardiac dysfunction and serious arrhythmias. We have here investigated by indirect immunofluorescence assay the distribution of vinculin, a focal adhesion protein with a major role in the transmission of contraction force, during the T. cruzi-cardiomyocyte infection in vitro and in vivo. No change in vinculin distribution was observed after 24 h of infection, where control and T. cruzi-infected cardiomyocytes displayed vinculin localized at costameres and intercalated discs. On the other hand, a clear disruption of vinculin costameric distribution was noted after 72 h of infection. A significant reduction in the levels of vinculin expression was observed at all times of infection. In murine experimental Chagas' disease, alteration in the vinculin distribution was also detected in the infected myocardium, with no costameric staining in infected myocytes and irregular alignment of intercalated discs in cardiac fibers. These data suggest that the disruption of costameric vinculin distribution and the enlargement of interstitial space due to inflammatory infiltration may contribute to the reduction of transmission of cardiac contraction force, leading to alterations in the heart function in Chagas' disease.
Collapse
Affiliation(s)
- Tatiana G Melo
- Departamento de Ultra-estrutura e Biologia Celular, Laboratório de Ultra-estrutura Celular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
43
|
Grab DJ, Perides G, Dumler JS, Kim KJ, Park J, Kim YV, Nikolskaia O, Choi KS, Stins MF, Kim KS. Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier. Infect Immun 2005; 73:1014-22. [PMID: 15664945 PMCID: PMC546937 DOI: 10.1128/iai.73.2.1014-1022.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurological manifestations of Lyme disease in humans are attributed in part to penetration of the blood-brain barrier (BBB) and invasion of the central nervous system (CNS) by Borrelia burgdorferi. However, how the spirochetes cross the BBB remains an unresolved issue. We examined the traversal of B. burgdorferi across the human BBB and systemic endothelial cell barriers using in vitro model systems constructed of human brain microvascular endothelial cells (BMEC) and EA.hy 926, a human umbilical vein endothelial cell (HUVEC) line grown on Costar Transwell inserts. These studies showed that B. burgdorferi differentially crosses human BMEC and HUVEC and that the human BMEC form a barrier to traversal. During the transmigration by the spirochetes, it was found that the integrity of the endothelial cell monolayers was maintained, as assessed by transendothelial electrical resistance measurements at the end of the experimental period, and that B. burgdorferi appeared to bind human BMEC by their tips near or at cell borders, suggesting a paracellular route of transmigration. Importantly, traversal of B. burgdorferi across human BMEC induces the expression of plasminogen activators, plasminogen activator receptors, and matrix metalloproteinases. Thus, the fibrinolytic system linked by an activation cascade may lead to focal and transient degradation of tight junction proteins that allows B. burgdorferi to invade the CNS.
Collapse
Affiliation(s)
- Dennis J Grab
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Park Building, Room 256, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Xie Y, Kim KJ, Kim KS. Current concepts on Escherichia coli K1 translocation of the blood-brain barrier. ACTA ACUST UNITED AC 2005; 42:271-9. [PMID: 15477040 DOI: 10.1016/j.femsim.2004.09.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 09/02/2004] [Indexed: 11/19/2022]
Abstract
The mortality and morbidity associated with neonatal gram-negative meningitis have remained significant despite advances in antimicrobial chemotherapy. Escherichia coli K1 is the most common gram-negative organism causing neonatal meningitis. Our incomplete knowledge of the pathogenesis of this disease is one of the main reasons for this high mortality and morbidity. We have previously established both in vitro and in vivo models of the blood-brain barrier (BBB) using human brain microvascular endothelial cells (HBMEC) and hematogenous meningitis in neonatal rats, respectively. With these in vitro and in vivo models, we have shown that successful crossing of the BBB by circulating E. coli requires a high-degree of bacteremia, E. coli binding to and invasion of HBMEC, and E. coli traversal of the BBB as live bacteria. Our previous studies using TnphoA, signature-tagged mutagenesis and differential fluorescence induction identified several E. coli K1 determinants such as OmpA, Ibe proteins, AslA, TraJ and CNF1 contributing to invasion of HBMEC in vitro and traversal of the blood-brain barrier in vivo. We have shown that some of these determinants interact with specific receptors on HBMEC, suggesting E. coli translocation of the BBB is the result of specific pathogen-host cell interactions. Recent studies using functional genomics techniques have identified additional E. coli K1 factors that contribute to the high degree of bacteremia and HBMEC binding/invasion/transcytosis. In this review, we summarize the current knowledge on the mechanisms underlying the successful E. coli translocation of the BBB.
Collapse
Affiliation(s)
- Yi Xie
- Division of Pediatric Infectious Diseases, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, Park 256, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
45
|
Kim KJ, Chung JW, Kim KS. 67-kDa Laminin Receptor Promotes Internalization of Cytotoxic Necrotizing Factor 1-expressing Escherichia coli K1 into Human Brain Microvascular Endothelial Cells. J Biol Chem 2005; 280:1360-8. [PMID: 15516338 DOI: 10.1074/jbc.m410176200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli K1 is the most common Gram-negative organism causing meningitis, and its invasion of human brain microvascular endothelial cells (HBMEC) is a prerequisite for penetration into the central nervous system. We have reported previously that cytotoxic necrotizing factor 1 (CNF1) contributes to E. coli K1 invasion of HBMEC and interacts with 37-kDa laminin receptor precursor (37LRP) of HBMEC, which is a precursor of 67-kDa laminin receptor (67LR). In the present study, we examined the role of 67LR in the CNF1-expressing E. coli K1 invasion of HBMEC. Immunofluorescence microscopy and ligand overlay assays showed that 67LR is present on the HBMEC membrane and interacts with CNF1 protein as well as the CDPGYIGSR laminin peptide. 67LR was up-regulated and clustered at the sites of E. coli K1 on HBMEC in a CNF1-dependent manner. Pretreatment of CNF1+ E. coli K1 with recombinant 37-kDa laminin receptor precursor reduced the invasion rate to the level of Deltacnf1 mutant, and the invasion rate of CNF1+ E. coli K1 was enhanced in 67LR-overexpressing HBMEC, indicating 67LR is involved in the CNF1+ E. coli K1 invasion of HBMEC. Coimmunoprecipitation analysis showed that, upon incubation with CNF1+ E. coli K1 but not with Deltacnf1 mutant, focal adhesion kinase and paxillin were recruited and associated with 67LR. When immobilized onto polystyrene beads, CNF1 was sufficient to induce internalization of coupled beads into HBMEC through interaction with 67LR. Taken together, this is the first demonstration that E. coli K1 invasion of HBMEC occurs through the ligand-receptor (CNF1-67LR) interaction, and 67LR promotes CNF1-expressing E. coli K1 internalization of HBMEC.
Collapse
Affiliation(s)
- Kee Jun Kim
- Division of Pediatrics Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
46
|
Grab DJ, Nikolskaia O, Kim YV, Lonsdale-Eccles JD, Ito S, Hara T, Fukuma T, Nyarko E, Kim KJ, Stins MF, Delannoy MJ, Rodgers J, Kim KS. African trypanosome interactions with an in vitro model of the human blood-brain barrier. J Parasitol 2004; 90:970-9. [PMID: 15562595 DOI: 10.1645/ge-287r] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The neurological manifestations of sleeping sickness in man are attributed to the penetration of the blood-brain barrier (BBB) and invasion of the central nervous system by Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. However, how African trypanosomes cross the BBB remains an unresolved issue. We have examined the traversal of African trypanosomes across the human BBB using an in vitro BBB model system constructed of human brain microvascular endothelial cells (BMECs) grown on Costar Transwell inserts. Human-infective T. b. gambiense strain IL 1852 was found to cross human BMECs far more readily than the animal-infective Trypanosoma brucei brucei strains 427 and TREU 927. Tsetse fly-infective procyclic trypomastigotes did not cross the human BMECs either alone or when coincubated with bloodstreamform T. b. gambiense. After overnight incubation, the integrity of the human BMEC monolayer measured by transendothelial electrical resistance was maintained on the inserts relative to the controls when the endothelial cells were incubated with T. b. brucei. However, decreases in electrical resistance were observed when the BMEC-coated inserts were incubated with T. b. gambiense. Light and electron microscopy studies revealed that T. b. gambiense initially bind at or near intercellular junctions before crossing the BBB paracellularly. This is the first demonstration of paracellular traversal of African trypanosomes across the BBB. Further studies are required to determine the mechanism of BBB traversal by these parasites at the cellular and molecular level.
Collapse
Affiliation(s)
- Dennis J Grab
- Department of Pediatrics, The Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sokolova O, Heppel N, Jägerhuber R, Kim KS, Frosch M, Eigenthaler M, Schubert-Unkmeir A. Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP- and tyrosine kinases in invasion and inflammatory cytokine release. Cell Microbiol 2004; 6:1153-66. [PMID: 15527495 DOI: 10.1111/j.1462-5822.2004.00422.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neisseria meningitidis traversal across the blood-cerebrospinal fluid barrier is an essential step in the pathogenesis of bacterial meningitis. We have previously shown that invasion of human brain microvascular endothelial cells (HBMEC) by meningococci is mediated by bacterial outer membrane protein Opc that binds fibronectin, thereby anchoring the bacterium to the integrin alpha 5 beta 1-receptor on the endothelial cell surface. However, subsequent signal transduction mechanisms essential for or regulated by N. meningitidis adhesion and invasion, or HBMEC responses to N. meningitidis are unknown. In this report we investigated the role of c-Jun N-terminal kinases 1 and 2 (JNK1 and JNK2), p38 mitogen-activated (MAP) kinase and protein tyrosine kinases in endothelial-N. meningitidis interaction. Binding of meningococci to HBMEC phosphorylated and activated JNK1 and JNK2 and p38 MAPK as well as their direct substrates c-Jun and MAP kinase activated kinase-2 (MAPKAPK-2), respectively. Non-invasive meningococcal strains lacking opc gene (opc mutants and sequence type 11 complex meningococci) still activated p38 MAPK, however, failed to activate JNK. Inhibition of JNK1 and JNK2 significantly reduced internalization of N. meningitidis by HBMEC without affecting its adherence. Blocking the endothelial integrin alpha 5 beta 1 also decreased N. meningitidis-induced JNK activation in HBMEC. These findings indicate the crucial role of JNK signalling pathway in N. meningitidis invasion in HBMEC. In contrast, p38 MAPK pathway was important for the control of interleukin-6 (IL-6) and IL-8 release by HBMEC. Genistein, a protein tyrosine kinase inhibitor, decreased both invasion of N. meningitidis into HBMEC and IL-6 and IL-8 release, indicating that protein tyrosine kinases, which link signals from integrins to intracellular signalling pathways are essential for both bacterial internalization and cytokine secretion by HBMEC.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Hygiene and Microbiology, University of Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Schlaepfer DD, Mitra SK, Ilic D. Control of motile and invasive cell phenotypes by focal adhesion kinase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1692:77-102. [PMID: 15246681 DOI: 10.1016/j.bbamcr.2004.04.008] [Citation(s) in RCA: 351] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 04/08/2004] [Indexed: 01/09/2023]
Abstract
Cell motility is stimulated by extracellular stimuli and initiated by intracellular signaling proteins that localize to sites of cell contact with the extracellular matrix termed focal contacts. Focal adhesion kinase (FAK) is an intracellular protein-tyrosine kinase (PTK) that acts to regulate the cycle of focal contact formation and disassembly required for efficient cell movement. FAK is activated by a variety of cell surface receptors and transmits signals to a range of targets. Thus, FAK acts as an integrator of cell motility-associated signaling events. We will review the stimulatory and regulatory mechanisms of FAK activation, the different signaling connections of FAK that are mediated by a growing number of FAK-interacting proteins, and the modulation of FAK function by tyrosine and serine phosphorylation. We will also summarize findings with regard to FAK function in vertebrate and invertebrate development as well as recent insights into the mechanistic role(s) of FAK in promoting cell migration. As increased FAK expression and tyrosine phosphorylation have been correlated with the progression to an invasive cell phenotype, there is growing interest in elucidating the important FAK-related signaling connections promoting invasive tumor cell movement. To this end, we will discuss the effects of FAK inhibition via the dominant-negative expression of the FAK C-terminal domain termed FAK-related non-kinase (FRNK) and how these studies have uncovered a distinct role for FAK in promoting cell invasion that may differ from its role in promoting cell motility.
Collapse
Affiliation(s)
- David D Schlaepfer
- Department of Immunology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
49
|
Abstract
Few microorganisms are as versatile as Escherichia coli. An important member of the normal intestinal microflora of humans and other mammals, E. coli has also been widely exploited as a cloning host in recombinant DNA technology. But E. coli is more than just a laboratory workhorse or harmless intestinal inhabitant; it can also be a highly versatile, and frequently deadly, pathogen. Several different E. coli strains cause diverse intestinal and extraintestinal diseases by means of virulence factors that affect a wide range of cellular processes.
Collapse
Affiliation(s)
- James B Kaper
- Center for Vaccine Development, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
50
|
Khan NA, Di Cello F, Nath A, Kim KS. Human immunodeficiency virus type 1 tat-mediated cytotoxicity of human brain microvascular endothelial cells. J Neurovirol 2004; 9:584-93. [PMID: 14602571 DOI: 10.1080/13550280390218760] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Human immunodeficiency virus (HIV)-1 infection is often complicated with neurologic disorders, but the pathogenesis of HIV-1 encephalopathy is incompletely understood. Tat (HIV-1 transactivator protein) is released from HIV-1-infected cells and has been detected in the sera and cerebrospinal fluid of HIV-1-infected patients. Tat, along with increased inflammatory cytokines such as interferon-gamma (IFN-gamma), have been implicated in the pathogenesis of HIV-1-associated blood-brain barrier dysfunction. The present study examined the effects of Tat and IFN-gamma on human brain microvascular endothelial cells (HBMECs), which constitute the blood-brain barrier. Tat produced cytotoxicity of HBMECs, but required IFN-gamma. IFN-gamma treatment of HBMECs up-regulates vascular endothelial growth factor receptor-2 (VEGFR2/KDR), which is known to be the receptor for Tat. Tat activated KDR in the presence of IFN-gamma, and Tat-mediated cytopathic changes involve its interaction with KDR and phosphatidylinositol 3-kinase (PI3K). Further understanding and characterization of Tat-HBMEC interactions should help us understand HIV-1 neuropathogenesis and develop strategies to prevent HIV-1 encephalopathy.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- Division of Pediatric Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|