1
|
Yamaguchi D, Kamoshida G, Kawakubo S, Azuma S, Tsuji T, Kitada N, Saito-Moriya R, Yamada N, Tanaka R, Okuda A, Ueyama K, Isaka S, Tomita M, Nakano R, Morita Y, Yano H, Maki SA, Yahiro K, Kato S. Near-infrared in vivo imaging system for dynamic visualization of lung-colonizing bacteria in mouse pneumonia. Microbiol Spectr 2024; 12:e0082824. [PMID: 39287455 PMCID: PMC11537041 DOI: 10.1128/spectrum.00828-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
In vivo imaging of bacterial infection models enables noninvasive and temporal analysis of individuals, enhancing our understanding of infectious disease pathogenesis. Conventional in vivo imaging methods for bacterial infection models involve the insertion of the bacterial luciferase LuxCDABE into the bacterial genome, followed by imaging using an expensive ultrasensitive charge-coupled device (CCD) camera. However, issues such as limited light penetration into the body and lack of versatility have been encountered. We focused on near-infrared (NIR) light, which penetrates the body effectively, and attempted to establish an in vivo imaging method to evaluate the number of lung-colonizing bacteria during the course of bacterial pneumonia. This was achieved by employing a novel versatile system that combines plasmid-expressing firefly luciferase bacteria, NIR substrate, and an inexpensive, scientific complementary metal-oxide semiconductor (sCMOS) camera. The D-luciferin derivative "TokeOni," capable of emitting NIR bioluminescence, was utilized in a mouse lung infection model of Acinetobacter baumannii, an opportunistic pathogen that causes pneumonia and is a concern due to drug resistance. TokeOni exhibited the highest sensitivity in detecting bacteria colonizing the mouse lungs compared with other detection systems such as LuxCDABE, enabling the monitoring of changes in bacterial numbers over time and the assessment of antimicrobial agent efficacy. Additionally, it was effective in detecting A. baumannii clinical isolates and Klebsiella pneumoniae. The results of this study are expected to be used in the analysis of animal models of infectious diseases for assessing the efficacy of therapeutic agents and understanding disease pathogenesis. IMPORTANCE Conventional animal models of infectious diseases have traditionally relied upon average assessments involving numerous individuals, meaning they do not directly reflect changes in the pathology of an individual. Moreover, in recent years, ethical concerns have resulted in the demand to reduce the number of animals used in such models. Although in vivo imaging offers an effective approach for longitudinally evaluating the pathogenesis of infectious diseases in individual animals, a standardized method has not yet been established. To our knowledge, this study is the first to develop a highly versatile in vivo pulmonary bacterial quantification system utilizing near-infrared luminescence, plasmid-mediated expression of firefly luciferase in bacteria, and a scientific complementary metal-oxide semiconductor camera. Our research holds promise as a useful tool for assessing the efficacy of therapeutic drugs and pathogenesis of infectious diseases.
Collapse
Affiliation(s)
- Daiki Yamaguchi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
- Laboratory of Pharmacological and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Go Kamoshida
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
- Department of Infection Control Science, Meiji Pharmaceutical University, Tokyo, Japan
| | - Syun Kawakubo
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Saki Azuma
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Takamitsu Tsuji
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Nobuo Kitada
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Japan
| | - Ryohei Saito-Moriya
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, Tokyo, Japan
| | - Noriteru Yamada
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Rentaro Tanaka
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ayane Okuda
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Keisuke Ueyama
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Shingo Isaka
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Manaha Tomita
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Nara, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Nara, Japan
| | - Shojiro A. Maki
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Japan
| | - Kinnosuke Yahiro
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Shinichi Kato
- Laboratory of Pharmacological and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
2
|
Shang W, Hu Z, Li M, Wang Y, Rao Y, Tan L, Chen J, Huang X, Liu L, Liu H, Guo Z, Peng H, Yang Y, Hu Q, Li S, Hu X, Zou J, Rao X. Optimizing a high-sensitivity NanoLuc-based bioluminescence system for in vivo evaluation of antimicrobial treatment. MLIFE 2023; 2:462-478. [PMID: 38818266 PMCID: PMC10989145 DOI: 10.1002/mlf2.12091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 06/01/2024]
Abstract
Focal and systemic infections are serious threats to human health. Preclinical models enable the development of new drugs and therapeutic regimens. In vivo, animal bioluminescence (BL) imaging has been used with bacterial reporter strains to evaluate antimicrobial treatment effects. However, high-sensitivity bioluminescent systems are required because of the limited tissue penetration and low brightness of the BL signals of existing approaches. Here, we report that NanoLuc (Nluc) showed better performance than LuxCDABE in bacteria. However, the retention rate of plasmid constructs in bacteria was low. To construct stable Staphylococcus aureus reporter strains, a partner protein enolase (Eno) was identified by screening of S. aureus strain USA300 for fusion expression of Nluc-based luciferases, including Nluc, Teluc, and Antares2. Different substrates, such as hydrofurimazine (HFZ), furimazine (FUR), and diphenylterazine (DTZ), were used to optimize a stable reporter strain/substrate pair for BL imaging. S. aureus USA300/Eno-Antares2/HFZ produced the highest number of photons of orange-red light in vitro and enabled sensitive BL tracking of S. aureus in vivo, with sensitivities of approximately 10 CFU from mouse skin and 750 CFU from mouse kidneys. USA300/Eno-Antares2/HFZ was a powerful combination based on the longitudinal evaluation of the therapeutic efficacy of antibiotics. The optimized S. aureus Eno-Antares2/HFZ pair provides a technological advancement for the in vivo evaluation of antimicrobial treatment.
Collapse
Affiliation(s)
- Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing Army Medical University (Third Military Medical University) Chongqing China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing Army Medical University (Third Military Medical University) Chongqing China
| | - Mengyang Li
- Department of Microbiology, School of Medicine Chongqing University Chongqing China
| | - Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing Army Medical University (Third Military Medical University) Chongqing China
| | - Yifan Rao
- Department of Emergency Medicine, Xinqiao Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing Army Medical University (Third Military Medical University) Chongqing China
| | - Juan Chen
- Department of Pharmacy, Xinqiao Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Xiaonan Huang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing Army Medical University (Third Military Medical University) Chongqing China
| | - Lu Liu
- Department of Microbiology, School of Medicine Chongqing University Chongqing China
| | - He Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing Army Medical University (Third Military Medical University) Chongqing China
| | - Zuwen Guo
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing Army Medical University (Third Military Medical University) Chongqing China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing Army Medical University (Third Military Medical University) Chongqing China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing Army Medical University (Third Military Medical University) Chongqing China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing Army Medical University (Third Military Medical University) Chongqing China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing Army Medical University (Third Military Medical University) Chongqing China
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing Army Medical University (Third Military Medical University) Chongqing China
| | - Jiao Zou
- Department of Military Cognitive Psychology, School of Psychology Army Medical University (Third Military Medical University) Chongqing China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing Army Medical University (Third Military Medical University) Chongqing China
| |
Collapse
|
3
|
Jenull S, Bauer T, Silbermayr K, Dreer M, Stark TD, Ehling-Schulz M. The toxicological spectrum of the Bacillus cereus toxin cereulide points towards niche-specific specialisation. Environ Microbiol 2023; 25:2231-2249. [PMID: 37354053 DOI: 10.1111/1462-2920.16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Most microbes share their environmental niches with very different forms of life thereby engaging in specialised relationships to enable their persistence. The bacterium Bacillus cereus occurs ubiquitously in the environment with certain strain backgrounds causing foodborne and opportunistic infections in humans. The emetic lineage of B. cereus is capable of producing the toxin cereulide, which evokes emetic illnesses. Although food products favouring the accumulation of cereulide are known, the ecological role of cereulide and the environmental niche of emetic B. cereus remain elusive. To better understand the ecology of cereulide-producing B. cereus, we systematically assayed the toxicological spectrum of cereulide on a variety of organisms belonging to different kingdoms. As cereulide is a potassium ionophore, we further tested the effect of environmental potassium levels on the action of cereulide. We found that adverse effects of cereulide exposure are species-specific, which can be exacerbated with increased environmental potassium. Additionally, we demonstrate that cereulide is produced within an insect cadaver indicating its potential ecological function for a saprophytic lifestyle. Collectively, distinct cereulide susceptibilities of other organisms may reflect its role in enabling competitive niche specialization of emetic B. cereus.
Collapse
Affiliation(s)
- Sabrina Jenull
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tobias Bauer
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katja Silbermayr
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maximilian Dreer
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Timo D Stark
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Freising, Germany
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Fodah RA, Scott JB, Warawa JM. Direct monitoring of meropenem therapeutic efficacy against Klebsiella pneumoniae respiratory infection by bioluminescence imaging. J Med Microbiol 2023; 72. [PMID: 37252851 DOI: 10.1099/jmm.0.001686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Abstract
Introduction. Klebsiella pneumoniae is a major threat to public health worldwide. It is the causative agent for multiple disease presentations including urinary tract infection, septicemia, liver abscess, wound infection and respiratory tract infection. K. pneumoniae causes community- and hospital-acquired pneumonia, which is a devastating disease associated with high mortality rates.Hypothesis. There is a growing concern about the emergence of multidrug-resistant K. pneumoniae strains complicating the treatment with the current available therapeutics; therefore, there is an urgent need for the development of new antimicrobial agents.Aim. K. pneumoniae causes an acute respiratory disease in mice and in the current work we investigated the capability to perform non-invasive monitoring of bioluminescent Klebsiella to monitor therapeutic efficacy.Methodology. We engineered a bioluminescence reporter strain of K. pneumoniae to monitor the impact of antibiotics in a murine respiratory disease model.Results. We demonstrate that bioluminescence correlates with bacterial numbers in host tissues allowing for a non-invasive enumeration of bacterial replication in vivo. Light production is directly linked to bacterial viability, and this novel bioluminescent K. pneumoniae strain enabled monitoring of the efficacy of meropenem therapy in arresting bacterial proliferation in the lung.Conclusion. The use of non-invasive bioluminescent imaging improves preclinical animal model testing to detect study outcome earlier and with higher sensitivity.
Collapse
Affiliation(s)
- Ramy A Fodah
- Department of Microbiology and Immunology, University of Louisville, Louisville, USA
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Present address: King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Jacob B Scott
- Dental School, University of Louisville, Louisville, Kentucky, USA
| | - Jonathan M Warawa
- Department of Microbiology and Immunology, University of Louisville, Louisville, USA
- Center for Predictive Medicine, University of Louisville, Louisville, USA
| |
Collapse
|
5
|
Echlin H, Iverson A, Sardo U, Rosch JW. Airway proteolytic control of pneumococcal competence. PLoS Pathog 2023; 19:e1011421. [PMID: 37256908 PMCID: PMC10259803 DOI: 10.1371/journal.ppat.1011421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 06/12/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen that colonizes the upper respiratory tract asymptomatically and, upon invasion, can lead to severe diseases including otitis media, sinusitis, meningitis, bacteremia, and pneumonia. One of the first lines of defense against pneumococcal invasive disease is inflammation, including the recruitment of neutrophils to the site of infection. The invasive pneumococcus can be cleared through the action of serine proteases generated by neutrophils. It is less clear how serine proteases impact non-invasive pneumococcal colonization, which is the key first step to invasion and transmission. One significant aspect of pneumococcal biology and adaptation in the respiratory tract is its natural competence, which is triggered by a small peptide CSP. In this study, we investigate if serine proteases are capable of degrading CSP and the impact this has on pneumococcal competence. We found that CSP has several potential sites for trypsin-like serine protease degradation and that there were preferential cleavage sites recognized by the proteases. Digestion of CSP with two different trypsin-like serine proteases dramatically reduced competence in a dose-dependent manner. Incubation of CSP with mouse lung homogenate also reduced recombination frequency of the pneumococcus. These ex vivo experiments suggested that serine proteases in the lower respiratory tract reduce pneumococcal competence. This was subsequently confirmed measuring in vivo recombination frequencies after induction of protease production via poly (I:C) stimulation and via co-infection with influenza A virus, which dramatically lowered recombination events. These data shed light on a new mechanism by which the host can modulate pneumococcal behavior and genetic exchange via direct degradation of the competence signaling peptide.
Collapse
Affiliation(s)
- Haley Echlin
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Amy Iverson
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ugo Sardo
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jason W. Rosch
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
6
|
Jiang T, Song J, Zhang Y. Coelenterazine-Type Bioluminescence-Induced Optical Probes for Sensing and Controlling Biological Processes. Int J Mol Sci 2023; 24:ijms24065074. [PMID: 36982148 PMCID: PMC10049153 DOI: 10.3390/ijms24065074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Bioluminescence-based probes have long been used to quantify and visualize biological processes in vitro and in vivo. Over the past years, we have witnessed the trend of bioluminescence-driven optogenetic systems. Typically, bioluminescence emitted from coelenterazine-type luciferin–luciferase reactions activate light-sensitive proteins, which induce downstream events. The development of coelenterazine-type bioluminescence-induced photosensory domain-based probes has been applied in the imaging, sensing, and control of cellular activities, signaling pathways, and synthetic genetic circuits in vitro and in vivo. This strategy can not only shed light on the mechanisms of diseases, but also promote interrelated therapy development. Here, this review provides an overview of these optical probes for sensing and controlling biological processes, highlights their applications and optimizations, and discusses the possible future directions.
Collapse
Affiliation(s)
- Tianyu Jiang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, China
- Correspondence: (T.J.); (Y.Z.)
| | - Jingwen Song
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (T.J.); (Y.Z.)
| |
Collapse
|
7
|
Theus AS, Ning L, Kabboul G, Hwang B, Tomov ML, LaRock CN, Bauser-Heaton H, Mahmoudi M, Serpooshan V. 3D bioprinting of nanoparticle-laden hydrogel scaffolds with enhanced antibacterial and imaging properties. iScience 2022; 25:104947. [PMID: 36065192 PMCID: PMC9440295 DOI: 10.1016/j.isci.2022.104947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Biomaterial-associated microbial contaminations in biologically conducive three-dimensional (3D) tissue-engineered constructs have significantly limited the clinical applications of scaffold systems. To prevent such infections, antimicrobial biomaterials are rapidly evolving. Yet, the use of such materials in bioprinting-based approaches of scaffold fabrication has not been examined. This study introduces a new generation of bacteriostatic gelatin methacryloyl (GelMA)-based bioinks, incorporated with varying doses of antibacterial superparamagnetic iron oxide nanoparticles (SPIONs). The SPION-laden GelMA scaffolds showed significant resistance against the Staphylococcus aureus growth, while providing a contrast in magnetic resonance imaging. We simulated the bacterial contamination of cellular 3D GelMA scaffolds in vitro and demonstrated the significant effect of functionalized scaffolds in inhibiting bacterial growth, while maintaining cell viability and growth. Together, these results present a new promising class of functionalized bioinks to 3D bioprint tissue-engineered scaffold with markedly enhanced properties for the use in a variety of in vitro and clinical applications.
Collapse
Affiliation(s)
- Andrea S. Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Gabriella Kabboul
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Martin L. Tomov
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Christopher N. LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Holly Bauser-Heaton
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Sibley Heart Center at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, MI 48842, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Anti-Inflammatory Activity of Soluble Epoxide Hydrolase Inhibitors Based on Selenoureas Bearing an Adamantane Moiety. Int J Mol Sci 2022; 23:ijms231810710. [PMID: 36142611 PMCID: PMC9501280 DOI: 10.3390/ijms231810710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The inhibitory potency of the series of inhibitors of the soluble epoxide hydrolase (sEH) based on the selenourea moiety and containing adamantane and aromatic lipophilic groups ranges from 34.3 nM to 1.2 μM. The most active compound 5d possesses aliphatic spacers between the selenourea group and lipophilic fragments. Synthesized compounds were tested against the LPS-induced activation of primary murine macrophages. The most prominent anti-inflammatory activity, defined as a suppression of nitric oxide synthesis by LPS-stimulated macrophages, was demonstrated for compounds 4a and 5b. The cytotoxicity of the obtained substances was studied using human neuroblastoma and fibroblast cell cultures. Using these cell assays, the cytotoxic concentration for 4a was 4.7–18.4 times higher than the effective anti-inflammatory concentration. The genotoxicity and the ability to induce oxidative stress was studied using bacterial lux-biosensors. Substance 4a does not exhibit genotoxic properties, but it can cause oxidative stress at concentrations above 50 µM. Put together, the data showed the efficacy and safety of compound 4a.
Collapse
|
9
|
An Autobioluminescent Method for Evaluating In Vitro and In Vivo Growth of Rhodococcus equi. Microbiol Spectr 2022; 10:e0075822. [PMID: 35638814 PMCID: PMC9241598 DOI: 10.1128/spectrum.00758-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A previously reported method for evaluating the intracellular growth of Rhodococcus equi using enhanced green fluorescent protein is unsuitable for the quantitative evaluation of the entire sample because the signal can be detected only in the excitation region. Therefore, we created an autobioluminescent R. equi using luciferase (luxABCDE). First, we connected luxABCDE to the functional promoter PaphII and introduced it into the chromosomes of ATCC33701 and ATCC33701_P-. Luminescence was detected in both transformants, and a correlation between the bacterial number and luminescence intensity in the logarithmic phase was observed, indicating that luxABCDE is functionally and quantitatively expressed in R. equi. The luminescence of ATCC33701 was significantly higher than that of ATCC33701_P- at 24 h after infection with J774A.1. Next, RNA-Seq analysis of ATCC33701 to search for endogenous high-expression promoters resulted in the upstream sequences of RS29370, RS41760, and vapA being selected as candidates. Luminescence was detected in each transformant expressing the luxABCDE using these upstream sequences. We examined the luminescence intensity by coexpressing the frp gene, an enhancer of the luciferase reaction, with luxABCDE. The luminescence intensity of the coexpressing transformant was significantly enhanced in J774A.1 compared with the non-coexpressing transformant. Finally, we examined the luminescence in vivo. The luminescence signals in the organs peaked on the third day following the administration of ATCC33701 derivatives in mice, but no luminescence signal was detected when the ATCC33701_P- derivative was administered. The autologous bioluminescent method described herein will enhance the in vitro and in vivo quantitative analysis of R. equi proliferation. IMPORTANCE We established an autologous bioluminescent strain of R. equi and a method to evaluate its proliferation in vitro and in vivo quantitatively. This method overcomes the weakness of the fluorescence detection system that only measures the site of excitation light irradiation. It is expected to be used as an in vitro and in vivo growth evaluation method with excellent quantitative properties. In addition, it was suggested that the selection of a promoter that expresses luxABCDE could produce a luminescence with high intensity. Although this method needs further improvement, such as creating transformants that can maintain high luminescence intensity regardless of environmental changes such as temperature fluctuations, it is possible to observe bacterial growth over time in mice without killing them. Therefore, this method can be used to not only evaluate the pathogenicity of various wild and gene-deficient strains but also to screen preventive and therapeutic methods such as vaccines.
Collapse
|
10
|
Zhao P, Wu X, Li J, Dong G, Sun Y, Ma Z, Li M, Du L. Discovery of alkene-conjugated luciferins for redshifted and improved bioluminescence imaging in vitro and in vivo. Org Biomol Chem 2022; 20:4224-4230. [PMID: 35551298 DOI: 10.1039/d1ob02477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The firefly luciferase system is the most extensively utilized bioluminescence system in the field of life science at the moment. In this work, we designed and synthesized a series of alkene-conjugated luciferins to develop new firefly bioluminescence substrates, and further evaluated their activities in vitro and in vivo. It is worth noting that the maximum biological emission wavelength of novel luciferin analogue AL3 ((S,E)-2-(6-hydroxy-5-(3-methoxy-3-oxoprop-1-en-1-yl)benzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid) is 100 nm red-shifted compared with D-luciferin, while that of analogue AL4 ((S,E)-2-(5-(2-cyanovinyl)-6-hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid) is 75 nm red-shifted. The new substrate AL2 ((S,E)-2-(6-hydroxy-7-(3-methoxy-3-oxoprop-1-en-1-yl)benzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid) showed better bioluminescence performance in vivo.
Collapse
Affiliation(s)
- Pei Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Xiaokang Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Jie Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Yingai Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
11
|
Gomes ATPC, Faustino MAF, Neves MGPMS, Almeida A. Bioluminescent Models to Evaluate the Efficiency of Light-Based Antibacterial Approaches. Methods Mol Biol 2022; 2451:631-669. [PMID: 35505039 DOI: 10.1007/978-1-0716-2099-1_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The emergence of microbial resistance to antimicrobials among several common pathogenic microbial strains is an increasing problem worldwide. Thus, it is urgent to develop not only new antimicrobial therapeutics to fight microbial infections, but also new effective, rapid, and inexpensive methods to monitor the efficacy of these new therapeutics. Antimicrobial photodynamic therapy (aPDT) and antimicrobial blue light (aBL) therapy are receiving considerable attention for their antimicrobial potential and represent realistic alternatives to antibiotics. To monitor the photoinactivation process provided by aPDT and aBL, faster and more effective methods are required instead of laborious conventional plating and overnight incubation procedures. Bioluminescent microbial models are very interesting in this context. Light emission from bioluminescent microorganisms is a highly sensitive indication of their metabolic activity and can be used to monitor, in real time, the effects of antimicrobial agents and therapeutics. This chapter reviews the efforts of the scientific community concerning the development of in vitro, ex vivo, and in vivo bioluminescent bacterial models and their potential to evaluate the efficiency of aPDT and aBL in the inactivation of bacteria.
Collapse
Affiliation(s)
- Ana T P C Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Maria A F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Maria G P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
12
|
Gnuchikh EY, Manukhov IV, Zavilgelsky GB. Biosensors to Assess the Activity of Promoters and Chaperones in Bacillus subtilis Cells. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821080020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Constructing of Bacillus subtilis-Based Lux-Biosensors with the Use of Stress-Inducible Promoters. Int J Mol Sci 2021; 22:ijms22179571. [PMID: 34502476 PMCID: PMC8431380 DOI: 10.3390/ijms22179571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we present a new lux-biosensor based on Bacillus subtilis for detecting of DNA-tropic and oxidative stress-causing agents. Hybrid plasmids pNK-DinC, pNK-AlkA, and pNK-MrgA have been constructed, in which the Photorhabdus luminescens reporter genes luxABCDE are transcribed from the stress-inducible promoters of B. subtilis: the SOS promoter PdinC, the methylation-specific response promoter PalkA, and the oxidative stress promoter PmrgA. The luminescence of B. subtilis-based biosensors specifically increases in response to the appearance in the environment of such common toxicants as mitomycin C, methyl methanesulfonate, and H2O2. Comparison with Escherichia coli-based lux-biosensors, where the promoters PdinI, PalkA, and Pdps were used, showed generally similar characteristics. However, for B. subtilis PdinC, a higher response amplitude was observed, and for B. subtilis PalkA, on the contrary, both the amplitude and the range of detectable toxicant concentrations were decreased. B. subtilis PdinC and B. subtilis PmrgA showed increased sensitivity to the genotoxic effects of the 2,2'-bis(bicyclo [2.2.1] heptane) compound, which is a promising propellant, compared to E. coli-based lux-biosensors. The obtained biosensors are applicable for detection of toxicants introduced into soil. Such bacillary biosensors can be used to study the differences in the mechanisms of toxicity against Gram-positive and Gram-negative bacteria.
Collapse
|
14
|
Huebinger RM, Do DH, Carlson DL, Yao X, Stones DH, De Souza Santos M, Vaz DP, Keen E, Wolf SE, Minei JP, Francis KP, Orth K, Krachler AM. Bacterial adhesion inhibitor prevents infection in a rodent surgical incision model. Virulence 2021; 11:695-706. [PMID: 32490711 PMCID: PMC7550027 DOI: 10.1080/21505594.2020.1772652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Surgical site infection risk continues to increase due to lack of efficacy in current standard of care drugs. New methods to treat or prevent antibiotic-resistant bacterial infections are needed. Multivalent Adhesion Molecules (MAM) are bacterial adhesins required for virulence. We developed a bacterial adhesion inhibitor using recombinant MAM fragment bound to polymer scaffold, mimicking MAM7 display on the bacterial surface. Here, we test MAM7 inhibitor efficacy to prevent Gram-positive and Gram-negative infections. Using a rodent model of surgical infection, incision sites were infected with antibiotic-resistant bioluminescent strains of Staphylococcus aureus or Pseudomonas aeruginosa. Infections were treated with MAM7 inhibitor or control suspension. Bacterial abundance was quantified for nine days post infection. Inflammatory responses and histology were characterized using fixed tissue sections. MAM7 inhibitor treatment decreased burden of S. aureus and P. aeruginosa below detection threshold. Bacterial load of groups treated with control were significantly higher than MAM7 inhibitor-treated groups. Treatment with inhibitor reduced colonization of clinically-relevant pathogens in an in vivo model of surgical infection. Use of MAM7 inhibitor to block initial adhesion of bacteria to tissue in surgical incisions may reduce infection rates, presenting a strategy to mitigate overuse of antibiotics to prevent surgical site infections.
Collapse
Affiliation(s)
- R M Huebinger
- Department of Surgery, Division of General and Acute Care Surgery, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | - D H Do
- Department of Surgery, Division of General and Acute Care Surgery, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | - D L Carlson
- Department of Surgery, Division of General and Acute Care Surgery, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | - X Yao
- Department of Surgery, Division of General and Acute Care Surgery, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | - D H Stones
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham , Birmingham, UK.,University of Gloucestershire, School of Natural and Social Sciences , Cheltenham, UK
| | - M De Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | - D P Vaz
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, McGovern Medical School , Houston, TX, USA
| | - E Keen
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham , Birmingham, UK
| | - S E Wolf
- Department of Surgery, Division of General and Acute Care Surgery, University of Texas Southwestern Medical Center , Dallas, TX, USA.,UTMB Department of Surgery, Shriners Hospitals for Children , Galveston, TX, USA
| | - J P Minei
- Department of Surgery, Division of General and Acute Care Surgery, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | | | - K Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center , Dallas, TX, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | - A M Krachler
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, McGovern Medical School , Houston, TX, USA
| |
Collapse
|
15
|
Briestenská K, Mikušová M, Tomčíková K, Kostolanský F, Varečková E. Quantification of bacteria by in vivo bioluminescence imaging in comparison with standard spread plate method and reverse transcription quantitative PCR (RT-qPCR). Arch Microbiol 2021; 203:4737-4742. [PMID: 34184097 PMCID: PMC8360831 DOI: 10.1007/s00203-021-02458-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
In vivo bioluminescence imaging (BLI) offers a unique opportunity to analyze ongoing bacterial infections qualitatively and quantitatively in intact animals over time, leading to a reduction in the number of animals needed for a study. Since accurate determination of the bacterial burden plays an essential role in microbiological research, the present study aimed to evaluate the ability to quantify bacteria by non-invasive BLI technique in comparison to standard spread plate method and reverse transcription quantitative PCR (RT-qPCR). For this purpose, BALB/c mice were intranasally infected with 1 × 105 CFU of bioluminescent Streptococcus pneumoniae A66.1. At day 1 post-infection, the presence of S. pneumoniae in lungs was demonstrated by spread plate method and RT-qPCR, but not by in vivo BLI. However, on the second day p.i., the bioluminescent signal was already detectable, and the photon flux values positively correlated with CFU counts and RT-qPCR data within days 2–6. Though in vivo BLI is valuable research tool allowing the continuous monitoring and quantification of pneumococcal infection in living mice, it should be kept in mind that early in the infection, depending on the infective dose, the bioluminescent signal may be below the detection limit.
Collapse
Affiliation(s)
- Katarína Briestenská
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Miriam Mikušová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Karolína Tomčíková
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - František Kostolanský
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Eva Varečková
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
16
|
Cui S, Chen C, Gu J, Mao B, Zhang H, Zhao J, Chen W. Tracing Lactobacillus plantarum within the intestinal tract of mice: green fluorescent protein-based fluorescent tagging. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1758-1766. [PMID: 32892354 DOI: 10.1002/jsfa.10789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lactobacillus plantarum is an important probiotic with a variety of physiologic functions. Studies have focused on the effects of L. plantarum on host physiology and microbiota, but studies of the fate of strains after they enter the intestine are lacking. In this study, L. plantarum ST-III was genetically engineered to express green fluorescent protein (GFP). Mice were administered ST-III-GFP, and fluorescence imaging was used to study the distribution, location and quantity of strains within 8 h after entry into the intestine. RESULTS The results indicated that genetic modification did not affect the growth of ST-III, tolerance to simulated gastric juice and intestinal fluid or tolerance to antibiotics (with the exception of chloramphenicol). Fluorescence imaging and colony counting indicated that ST-III-GFP can be detected in the small intestine 5 min after oral gavage. After 30 min, nearly all ST-III-GFP was located in the small intestine. After 1.5 h, ST-III-GFP was detected in both the cecum and large intestine. After 4 and 8 h, ST-III-GFP was mainly concentrated in the cecum and large intestine. Compared to the initial amount ingested, the survival rate of ST-III-GFP within the intestine of mice was 10% after 8 h. In addition, a strong linear relationship was found between the fluorescence intensity and the viable count of ST-III-GFP. CONCLUSIONS The obtained data indicate that the amount of ST-III-GFP can be estimated by measuring the fluorescence intensity of this novel strain within the intestinal tract. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, PR China
| | - Cailing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Jiayu Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| |
Collapse
|
17
|
Functional Imaging Using Bioluminescent Reporter Genes in Living Subjects. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
In Vivo Bioluminescent Imaging of Yersinia ruckeri Pathogenesis in Fish. Methods Mol Biol 2020. [PMID: 31721119 DOI: 10.1007/978-1-4939-9940-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Bioluminescent reporters and advanced luciferase technologies are useful to study host-pathogen interactions. This chapter describes the use of the luxCDABE operon from Photorhabdus luminescens as a tool to analyze the progression of the fish pathogen Yersinia ruckeri during the infection of rainbow trout, as well as the quantification of promoter activity of specific bacterial genes during host colonization.
Collapse
|
19
|
Li S, Ruan Z, Zhang H, Xu H. Recent achievements of bioluminescence imaging based on firefly luciferin-luciferase system. Eur J Med Chem 2020; 211:113111. [PMID: 33360804 DOI: 10.1016/j.ejmech.2020.113111] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
Bioluminescence imaging (BLI) is a newly developed noninvasive visual approach which facilitates the understanding of a plethora of biological processes in vitro and in vivo due to the high sensitivity, resolution and selectivity, low background signal, and the lack of external light excitation. BLI based on firefly luciferin-luciferase system has been widely used for the activity evaluation of tumor-specific enzymes, for the detection of diseases-related bioactive small molecules and metal ions, and for the diagnosis and therapy of diseases including the studies of drug transport, the research of immune response, and the evaluation of drug potency and tissue distribution. In this review, we highlight the recent achievements in luciferin derivatives with red-shifted emission spectra, mutant luciferase-luciferin pairs, and the diagnostic and therapeutic application of BLI based on firefly luciferin-luciferase system. The development and application of BLI will expand our knowledge of the occurrence and development of diseases and shed light on the diagnosis and treatment of various diseases.
Collapse
Affiliation(s)
- Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyang Ruan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
20
|
Gnuchikh EY, Manukhov IV, Zavilgelsky GB. DnaK Chaperone Takes Part in Folding but Not in Refolding of Thermal Inactivated Proteins in Bacillus subtilis. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420090070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Chemically Synthesized Alcaligenes Lipid A Shows a Potent and Safe Nasal Vaccine Adjuvant Activity for the Induction of Streptococcus pneumoniae-Specific IgA and Th17 Mediated Protective Immunity. Microorganisms 2020; 8:microorganisms8081102. [PMID: 32718009 PMCID: PMC7464877 DOI: 10.3390/microorganisms8081102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022] Open
Abstract
Effective and safe vaccine adjuvants are needed to appropriately augment mucosal vaccine effects. Our previous study demonstrated that lipopolysaccharide (LPS) from Peyer’s patch resident Alcaligenes stimulated dendritic cells to promote the production of mucosal immunity-enhancing cytokines (e.g., IL-6 and BAFF), thus enhancing antigen-specific immune responses (including IgA production and Th17 responses) without excessive inflammation. Here, we chemically synthesized Alcaligenes lipid A, the biologically active part of LPS, and examined its efficacy as a nasal vaccine adjuvant for the induction of protectively immunity against Streptococcus pneumoniae infection. Mice were nasally immunized with pneumococcal surface protein A (PspA) as a vaccine antigen for S. pneumoniae, together with Alcaligenes lipid A. Alcaligenes lipid A supported the generation of high levels of PspA-specific IgA and IgG responses through the augmentation of germinal center formation in the nasopharynx-associated lymphoid tissue and cervical lymph nodes (CLNs). Moreover, Alcaligenes lipid A promoted PspA-specific CD4+ Th17 responses in the CLNs and spleen. Furthermore, neutrophils were recruited to infection sites upon nasal infection and synchronized with the antigen-specific T and B cell responses, resulting in the protection against S. pneumoniae infection. Taken together, Alcaligenes lipid A could be applied to the prospective adjuvant to enhance nasal vaccine efficacy by means of augmenting both the innate and acquired arms of mucosal immunity against respiratory bacterial infection.
Collapse
|
22
|
Cooper VS, Honsa E, Rowe H, Deitrick C, Iverson AR, Whittall JJ, Neville SL, McDevitt CA, Kietzman C, Rosch JW. Experimental Evolution In Vivo To Identify Selective Pressures during Pneumococcal Colonization. mSystems 2020; 5:e00352-20. [PMID: 32398278 PMCID: PMC7219553 DOI: 10.1128/msystems.00352-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Experimental evolution is a powerful technique to understand how populations evolve from selective pressures imparted by the surrounding environment. With the advancement of whole-population genomic sequencing, it is possible to identify and track multiple contending genotypes associated with adaptations to specific selective pressures. This approach has been used repeatedly with model species in vitro, but only rarely in vivo Herein we report results of replicate experimentally evolved populations of Streptococcus pneumoniae propagated by repeated murine nasal colonization with the aim of identifying gene products under strong selection as well as the population genetic dynamics of infection cycles. Frameshift mutations in one gene, dltB, responsible for incorporation of d-alanine into teichoic acids on the bacterial surface, evolved repeatedly and swept to high frequency. Targeted deletions of dltB produced a fitness advantage during initial nasal colonization coupled with a corresponding fitness disadvantage in the lungs during pulmonary infection. The underlying mechanism behind the fitness trade-off between these two niches was found to be enhanced adherence to respiratory cells balanced by increased sensitivity to host-derived antimicrobial peptides, a finding recapitulated in the murine model. Additional mutations that are predicted to affect trace metal transport, central metabolism, and regulation of biofilm production and competence were also selected. These data indicate that experimental evolution can be applied to murine models of pathogenesis to gain insight into organism-specific tissue tropisms.IMPORTANCE Evolution is a powerful force that can be experimentally harnessed to gain insight into how populations evolve in response to selective pressures. Herein we tested the applicability of experimental evolutionary approaches to gain insight into how the major human pathogen Streptococcus pneumoniae responds to repeated colonization events using a murine model. These studies revealed the population dynamics of repeated colonization events and demonstrated that in vivo experimental evolution resulted in highly reproducible trajectories that reflect the environmental niche encountered during nasal colonization. Mutations impacting the surface charge of the bacteria were repeatedly selected during colonization and provided a fitness benefit in this niche that was counterbalanced by a corresponding fitness defect during lung infection. These data indicate that experimental evolution can be applied to models of pathogenesis to gain insight into organism-specific tissue tropisms.
Collapse
Affiliation(s)
- Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Erin Honsa
- St. Jude Children's Research Hospital, Department of Infectious Diseases, Memphis, Tennessee, USA
| | - Hannah Rowe
- St. Jude Children's Research Hospital, Department of Infectious Diseases, Memphis, Tennessee, USA
| | - Christopher Deitrick
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy R Iverson
- St. Jude Children's Research Hospital, Department of Infectious Diseases, Memphis, Tennessee, USA
| | - Jonathan J Whittall
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Colin Kietzman
- St. Jude Children's Research Hospital, Department of Infectious Diseases, Memphis, Tennessee, USA
| | - Jason W Rosch
- St. Jude Children's Research Hospital, Department of Infectious Diseases, Memphis, Tennessee, USA
| |
Collapse
|
23
|
Kotlobay AA, Kaskova ZM, Yampolsky IV. Palette of Luciferases: Natural Biotools for New Applications in Biomedicine. Acta Naturae 2020; 12:15-27. [PMID: 32742724 PMCID: PMC7385095 DOI: 10.32607/actanaturae.10967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022] Open
Abstract
Optoanalytical methods based on using genetically encoded bioluminescent enzymes, luciferases, allow one to obtain highly sensitive signals, are non-invasive, and require no external irradiation. Bioluminescence is based on the chemical reaction of oxidation of a low-molecular-weight substrate (luciferin) by atmospheric oxygen, which is catalyzed by an enzyme (luciferase). Relaxation of the luciferin oxidation product from its excited state is accompanied by a release of a quantum of light, which can be detected as an analytical signal. The ability to express luciferase genes in various heterological systems and high quantum yields of luminescence reactions have made these tools rather popular in biology and medicine. Among several naturally available luciferases, a few have been found to be useful for practical application. Luciferase size, the wavelength of its luminescence maximum, enzyme thermostability, optimal pH of the reaction, and the need for cofactors are parameters that may differ for luciferases from different groups of organisms, and this fact directly affects the choice of the application area for each enzyme. It is quite important to overview the whole range of currently available luciferases based on their biochemical properties before choosing one bioluminescent probe suitable for a specific application.
Collapse
Affiliation(s)
- A. A. Kotlobay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - Z. M. Kaskova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - I. V. Yampolsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| |
Collapse
|
24
|
Gnuchikh E, Baranova A, Schukina V, Khaliullin I, Zavilgelsky G, Manukhov I. Kinetics of the thermal inactivation and the refolding of bacterial luciferases in Bacillus subtilis and in Escherichia coli differ. PLoS One 2019; 14:e0226576. [PMID: 31869349 PMCID: PMC6927610 DOI: 10.1371/journal.pone.0226576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/28/2019] [Indexed: 11/19/2022] Open
Abstract
Here we present a study of the thermal inactivation and the refolding of the proteins in Gram positive Bacillus subtilis. To enable use of bacterial luciferases as the models for protein thermal inactivation and refolding in B. subtilis cells, we developed a variety of bright luminescent B. subtilis strains which express luxAB genes encoding luciferases of differing thermolability. The kinetics of the thermal inactivation and the refolding of luciferases from Photorhabdus luminescens and Photobacterium leiognathi were compared in Gram negative and Gram positive bacteria. In B. subtilis cells, these luciferases are substantially more thermostable than in Escherichia coli. Thermal inactivation of the thermostable luciferase P. luminescens in B. subtilis at 48.5°С behaves as a first-order reaction. In E.coli, the first order rate constant (Kt) of the thermal inactivation of luciferase in E. coli exceeds that observed in B. subtilis cells 2.9 times. Incubation time dependence curves for the thermal inactivation of the thermolabile luciferase of P. leiognathi luciferase in the cells of E. coli and B. subtilis may be described by first and third order kinetics, respectively. Here we shown that the levels and the rates of refolding of thermally inactivated luciferases in B. subtilis cells are substantially lower that that observed in E. coli. In dnaK-negative strains of B. subtilis, both the rates of thermal inactivation and the efficiency of refolding are similar to that observed in wild-type strains. These experiments point that the role that DnaKJE plays in thermostability of luciferases may be limited to bacterial species resembling E. coli.
Collapse
Affiliation(s)
- Eugeny Gnuchikh
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- National Research Center, Kurchatov Institute, GOSNIIGENETIKA, Moscow, Russia
| | - Ancha Baranova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- School of Systems Biology, George Mason University, Fairfax, VA, United States of America
- Research Centre for Medical Genetics, Moscow, Russia
| | - Vera Schukina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Ilyas Khaliullin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Gennady Zavilgelsky
- National Research Center, Kurchatov Institute, GOSNIIGENETIKA, Moscow, Russia
| | - Ilya Manukhov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- National Research Center, Kurchatov Institute, GOSNIIGENETIKA, Moscow, Russia
- * E-mail:
| |
Collapse
|
25
|
Bessaiah H, Pokharel P, Habouria H, Houle S, Dozois CM. yqhG Contributes to Oxidative Stress Resistance and Virulence of Uropathogenic Escherichia coli and Identification of Other Genes Altering Expression of Type 1 Fimbriae. Front Cell Infect Microbiol 2019; 9:312. [PMID: 31555608 PMCID: PMC6727828 DOI: 10.3389/fcimb.2019.00312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Urinary tract infections (UTIs) are common bacterial infections and the vast majority of UTIs are caused by extraintestinal pathogenic Escherichia coli (ExPEC) strains referred to as uropathogenic E. coli (UPEC). Successful colonization of the human urinary tract by UPEC is mediated by secreted or surface exposed virulence factors-toxins, iron transport systems, and adhesins, such as type 1 fimbriae (pili). To identify factors involved in the expression of type 1 fimbriae, we constructed a chromosomal transcriptional reporter consisting of lux under the control of the fimbrial promoter region, fimS and this construct was inserted into the reference UPEC strain CFT073 genome at the attTn7 site. This fimS reporter strain was used to generate a Tn10 transposon mutant library, coupled with high-throughput sequencing to identify genes that affect the expression of type 1 fimbriae. Transposon insertion sites were linked to genes involved in protein fate and synthesis, energy metabolism, adherence, transcriptional regulation, and transport. We showed that YqhG, a predicted periplasmic protein, is one of the important mediators that contribute to the decreased expression of type 1 fimbriae in UPEC strain CFT073. The ΔyqhG mutant had reduced expression of type 1 fimbriae and a decreased capacity to colonize the murine urinary tract. Reduced expression of type 1 fimbriae correlated with an increased bias for orientation of the fim switch in the OFF position. Interestingly, the ΔyqhG mutant was more motile than the WT strain and was also significantly more sensitive to hydrogen peroxide. Taken together, loss of yqhG may decrease virulence in the urinary tract due to a decrease in production of type 1 fimbriae and a greater sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Hicham Bessaiah
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Pravil Pokharel
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Hajer Habouria
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Sébastien Houle
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Charles M. Dozois
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
26
|
Mesenchyme-free expansion and transplantation of adult alveolar progenitor cells: steps toward cell-based regenerative therapies. NPJ Regen Med 2019; 4:17. [PMID: 31452939 PMCID: PMC6702233 DOI: 10.1038/s41536-019-0080-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Alveolar type-2 (AT2) cells are necessary for the lung’s regenerative response to epithelial insults such as influenza. However, current methods to expand these cells rely on mesenchymal co-culture, complicating the possibility of transplantation following acute injury. Here we developed several mesenchyme-free culture conditions that promote growth of murine AT2 organoids. Transplanting dissociated AT2 organoids into influenza-infected mice demonstrated that organoids engraft and either proliferate as AT2 cells or unexpectedly adopt a basal cell-like fate associated with maladaptive regeneration. Alternatively, transplanted primary AT2 cells also robustly engraft, maintaining their AT2 lineage while replenishing the alveolar type-1 (AT1) cell population in the epithelium. Importantly, pulse oximetry revealed significant increase in blood-oxygen saturation in primary AT2 recipients, indicating that transplanted cells also confer increased pulmonary function after influenza. We further demonstrated that both acid installation and bleomycin injury models are also amenable to AT2 transplantation. These studies provide additional methods to study AT2 progenitor potential, while serving as proof-of-principle for adoptive transfer of alveolar progenitors in potential therapeutic applications.
Collapse
|
27
|
Regulation of the Staphylococcal Superantigen-Like Protein 1 Gene of Community-Associated Methicillin-Resistant Staphylococcus aureus in Murine Abscesses. Toxins (Basel) 2019; 11:toxins11070391. [PMID: 31277443 PMCID: PMC6669464 DOI: 10.3390/toxins11070391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes substantial skin and soft tissue infections annually in the United States and expresses numerous virulence factors, including a family of toxins known as the staphylococcal superantigen-like (SSL) proteins. Many of the SSL protein structures have been determined and implicated in immune system avoidance, but the full scope that these proteins play in different infection contexts remains unknown and continues to warrant investigation. Analysis of ssl gene regulation may provide valuable information related to the function of these proteins. To determine the transcriptional regulation of the ssl1 gene of CA-MRSA strain MW2, an ssl1 promoter::lux fusion was constructed and transformed into S.aureus strains RN6390 and Newman. Resulting strains were grown in a defined minimal medium (DSM) broth and nutrient-rich brain-heart infusion (BHI) broth and expression was determined by luminescence. Transcription of ssl1 was up-regulated and occurred earlier during growth in DSM broth compared to BHI broth suggesting expression is regulated by nutrient availability. RN6390 and Newman strains containing the ssl1::lux fusion were also used to analyze regulation in vivo using a mouse abscess model of infection. A marked increase in ssl1 transcription occurred early during infection, suggesting SSL1 is important during early stages of infection, perhaps to avoid the immune system.
Collapse
|
28
|
Abstract
Streptococcus pyogenes (group A streptococcus) is remarkable in terms of the large number of diseases it can cause in humans and for the large number of streptococcal factors that have been identified as potential virulence determinants for these diseases. A challenge is to link the function of potential virulence factors to the pathogenesis of specific diseases. An exciting advance has been the development of sophisticated genetic systems for the construction of loss-of-function, conditional, hypomorphic, and gain-of-function mutations in targeted S. pyogenes genes that can be used to test specific hypotheses regarding these genes in pathogenesis. This will facilitate a mechanistic understanding of how a specific gene function contributes to the pathogenesis of each streptococcal disease. Since the first S. pyogenes genome was completed in 2001, hundreds of complete and draft genome sequences have been deposited. We now know that the average S. pyogenes genome is approximately 1.85 Mb and encodes ∼1,800 genes and that the function of most of those genes in pathogenesis remains to be elucidated. However, advances in the development of a variety of genetic tools for manipulation of the S. pyogenes genome now provide a platform for the interrogation of gene/phenotype relationships for individual S. pyogenes diseases, which may lead to the development of more sophisticated and targeted therapeutic interventions. This article presents an overview of these genetic tools, including the methods of genetic modification and their applications.
Collapse
|
29
|
Novel Immunoprotective Proteins of Streptococcus pneumoniae Identified by Opsonophagocytosis Killing Screen. Infect Immun 2018; 86:IAI.00423-18. [PMID: 29891544 DOI: 10.1128/iai.00423-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
The success of polysaccharide conjugate vaccines represents a major advance in the prevention of pneumococcal disease, but the power of these vaccines is limited by partial spectrum of coverage and high cost. Vaccines using immunoprotective proteins are a promising alternative type of pneumococcal vaccines. In this study, we constructed a library of antisera against conserved pneumococcal proteins predicted to be associated with cell surface or virulence using a combination of bioinformatic prediction and immunization of rabbits with recombinant proteins. Screening of the library by an opsonophagocytosis killing (OPK) assay identified the OPK-positive antisera, which represented 15 (OPK-positive) proteins. Further tests showed that virtually all of these OPK-positive antisera conferred passive protection against lethal infection of virulent pneumococci. More importantly, immunization with recombinant forms of three OPK-positive proteins (SP148, PBP2b, and ScpB), alone or in combination, conferred significant protection against lethal challenge of pneumococcal strains representing capsular serotypes 3, 4, and 6A in a mouse sepsis model. To our best knowledge, this work represents the first example in which novel vaccine candidates are successfully identified by the OPK screening. Our data have also provided further confirmation that the OPK activity may serve as a reliable in vitro surrogate for evaluating vaccine efficacy of pneumococcal proteins.
Collapse
|
30
|
Ogunniyi AD, Kopecki Z, Hickey EE, Khazandi M, Peel E, Belov K, Boileau A, Garg S, Venter H, Chan WY, Hill PB, Page SW, Cowin AJ, Trott DJ. Bioluminescent murine models of bacterial sepsis and scald wound infections for antimicrobial efficacy testing. PLoS One 2018; 13:e0200195. [PMID: 30011298 PMCID: PMC6047774 DOI: 10.1371/journal.pone.0200195] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/07/2018] [Indexed: 12/27/2022] Open
Abstract
There are very few articles in the literature describing continuous models of bacterial infections that mimic disease pathogenesis in humans and animals without using separate cohorts of animals at each stage of disease. In this work, we developed bioluminescent mouse models of partial-thickness scald wound infection and sepsis that mimic disease pathogenesis in humans and animals using a recombinant luciferase-expressing Staphylococcus aureus strain (Xen29). Two days post-scald wound infection, mice were treated twice daily with a 2% topical mupirocin ointment for 7 days. For sepsis experiments, mice were treated intraperitoneally with 6 mg/kg daptomycin 2 h and 6 h post-infection and time to moribund monitored for 72 h. Consistent bacterial burden data were obtained from individual mice by regular photon intensity quantification on a Xenogen IVIS Lumina XRMS Series III biophotonic imaging system, with concomitant significant reduction in photon intensities in drug-treated mice. Post-mortem histopathological examination of wounds and bacterial counts in blood correlated closely with disease severity and total flux obtained from Xen29. The bioluminescent murine models provide a refinement to existing techniques of multiple bacterial enumeration during disease pathogenesis and promote animal usage reduction. The models also provide an efficient and information-rich platform for preclinical efficacy evaluation of new drug classes for treating acute and chronic human and animal bacterial infections.
Collapse
Affiliation(s)
- Abiodun D. Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
- * E-mail:
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Elizabeth E. Hickey
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Manouchehr Khazandi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Alexandra Boileau
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Henrietta Venter
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Wei Yee Chan
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Peter B. Hill
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Stephen W. Page
- Luoda Pharma, Caringbah, New South Wales, Australia
- Neoculi Pty Ltd, Burwood, Victoria, Australia
| | - Allison J. Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
31
|
A Multimodal Imaging Approach Enables In Vivo Assessment of Antifungal Treatment in a Mouse Model of Invasive Pulmonary Aspergillosis. Antimicrob Agents Chemother 2018; 62:AAC.00240-18. [PMID: 29760132 DOI: 10.1128/aac.00240-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/06/2018] [Indexed: 12/16/2022] Open
Abstract
Aspergillus fumigatus causes life-threatening lung infections in immunocompromised patients. Mouse models are extensively used in research to assess the in vivo efficacies of antifungals. In recent years, there has been an increasing interest in the use of noninvasive imaging techniques to evaluate experimental infections. However, single imaging modalities have limitations concerning the type of information they can provide. In this study, magnetic resonance imaging and bioluminescence imaging were combined to obtain longitudinal information on the extent of developing lesions and fungal load in a leukopenic mouse model of invasive pulmonary aspergillosis (IPA). This multimodal imaging approach was used to assess changes occurring within lungs of infected mice receiving voriconazole treatment starting at different time points after infection. The results showed that IPA development depends on the inoculum size used to infect animals and that disease can be successfully prevented or treated by initiating intervention during early stages of infection. Furthermore, we demonstrated that a reduction in fungal load is not necessarily associated with the disappearance of lesions on anatomical lung images, especially when antifungal treatment coincides with immune recovery. In conclusion, multimodal imaging allows an investigation of different aspects of disease progression or recovery by providing complementary information on dynamic processes, which are highly useful for assessing the efficacy of (novel) therapeutic compounds in a time- and labor-efficient manner.
Collapse
|
32
|
Kuo CJ, Wang ST, Chen CS. Detection of Enterohemorrhagic Escherichia Coli Colonization in Murine Host by Non-invasive In Vivo Bioluminescence System. J Vis Exp 2018. [PMID: 29683443 DOI: 10.3791/56169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Enterohemorrhagic E. coli (EHEC) O157:H7, which is a foodborne pathogen that causesdiarrhea, hemorrhagic colitis (HS), and hemolytic uremic syndrome (HUS), colonize to the intestinal tract of humans. To study the detailed mechanism of EHEC colonization in vivo, it is essential to have animal models to monitor and quantify EHEC colonization. We demonstrate here a mouse-EHEC colonization model by transforming the bioluminescent expressing plasmid to EHEC to monitor and quantify EHEC colonization in living hosts. Animals inoculated with bioluminescence-labeled EHEC show intense bioluminescent signals in mice by detection with a non-invasive in vivo imaging system. After 1 and 2 days post infection, bioluminescent signals could still be detected in infected animals, which suggests that EHEC colonize in hosts for at least 2 days. We also demonstrate that these bioluminescent EHEC locate to mouse intestine, specifically in the cecum and colon, from ex vivo images. This mouse-EHEC colonization model may serve as a tool to advance the current knowledge of the EHEC colonization mechanism.
Collapse
Affiliation(s)
- Cheng-Ju Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University
| | - Sin-Tian Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University
| | - Chang-Shi Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University;
| |
Collapse
|
33
|
Pinar IP, Jones HD. Novel imaging approaches for small animal models of lung disease (2017 Grover Conference series). Pulm Circ 2018; 8:2045894018762242. [PMID: 29480066 PMCID: PMC5888832 DOI: 10.1177/2045894018762242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Imaging in small animal models of lung disease is challenging, as existing technologies are limited either by resolution or by the terminal nature of the imaging approach. Here, we describe the current state of small animal lung imaging, the technological advances of laboratory-sourced phase contrast X-ray imaging, and the application of this novel technology and its attendant image analysis techniques to the in vivo imaging of the large airways and pulmonary vasculature in murine models of lung health and disease.
Collapse
Affiliation(s)
- Isaac P Pinar
- 1 Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia.,2 Division of Biological Engineering, Faculty of Engineering, Monash University, Melbourne, VIC, Australia
| | - Heather D Jones
- 3 Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
34
|
Karlsson EA, Schultz-Cherry S, Rosch JW. Protective Capacity of Statins during Pneumonia Is Dependent on Etiological Agent and Obesity. Front Cell Infect Microbiol 2018; 8:41. [PMID: 29497602 PMCID: PMC5819214 DOI: 10.3389/fcimb.2018.00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 01/14/2023] Open
Abstract
Acute respiratory infections are a leading cause of death worldwide. Clinical data is conflicted regarding whether statins improve outcomes for pneumonia. Potential confounding factors including specific etiology of pneumonia as well as obesity could potentially mask protective benefit. Obesity is a risk factor for high cholesterol, the main target for statin therapy. We demonstrate that statin intervention conferred no protective benefit in the context of wild-type mice regardless of infectious agent. Statin intervention conferred either a protective benefit, during influenza infection, or detrimental effect, in the case of pneumococcal infection, in obese animals. These data suggest etiology of pneumonia in the context of obesity could be dramatically altered by the protective effects of statin therapy during bacterial and viral pneumonia.
Collapse
Affiliation(s)
- Erik A Karlsson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
35
|
Herbert JA, Mitchell AM, Ritchie R, Ma J, Ross-Hutchinson K, Mitchell TJ. Expression of the lux genes in Streptococcus pneumoniae modulates pilus expression and virulence. PLoS One 2018; 13:e0189426. [PMID: 29342160 PMCID: PMC5771582 DOI: 10.1371/journal.pone.0189426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/25/2017] [Indexed: 11/18/2022] Open
Abstract
Bioluminescence has been harnessed for use in bacterial reporter systems and for in vivo imaging of infection in animal models. Strain Xen35, a bioluminescent derivative of Streptococcus pneumoniae serotype 4 strain TIGR4 was previously constructed for use for in vivo imaging of infections in animal models. We have shown that strain Xen35 is less virulent than its parent TIGR4 and that this is associated with the expression of the genes for bioluminescence. The expression of the luxA-E genes in the pneumococcus reduces virulence and down regulates the expression of the pneumococcal pilus.
Collapse
Affiliation(s)
- Jenny A. Herbert
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrea M. Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Technology Hub Manager, Infrastructure and Facilities, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ryan Ritchie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jiangtao Ma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kirsty Ross-Hutchinson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Timothy J. Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Temporal Regulation of fim Genes in Uropathogenic Escherichia coli during Infection of the Murine Urinary Tract. J Pathog 2017; 2017:8694356. [PMID: 29445547 PMCID: PMC5763102 DOI: 10.1155/2017/8694356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) adhere to cells in the human urinary tract via type 1 pili that undergo phase variation where a 314-bp fimS DNA element flips between Phase-ON and Phase-OFF orientations through two site-specific recombinases, FimB and FimE. Three fim-lux operon transcriptional fusions were created and moved into the clinical UPEC isolate NU149 to determine their temporal regulation in UPEC growing in the urinary tract. Within murine urinary tracts, the UPEC strains demonstrated elevated transcription of fimA and fimB early in the infection, but lower transcription by the fifth day in murine kidneys. In contrast, fimE transcription was much lower than either fimA or fimB early, increased markedly at 24 h after inoculation, and then dropped five days after inoculation. Positioning of fimS was primarily in the Phase-ON position over the time span in UPEC infected bladders, whereas in UPEC infected murine kidneys the Phase-OFF orientation was favored by the fifth day after inoculation. Hemagglutination titers with guinea pig erythrocytes remained constant in UPEC growing in infected murine bladders but fell substantially in UPEC infected kidneys over time. Our results show temporal in vivo regulation of fim gene expression in different environmental niches when UPEC infects the murine urinary tract.
Collapse
|
37
|
In Vivo Bioluminescent Monitoring of Therapeutic Efficacy and Pharmacodynamic Target Assessment of Antofloxacin against Escherichia coli in a Neutropenic Murine Thigh Infection Model. Antimicrob Agents Chemother 2017; 62:AAC.01281-17. [PMID: 29038275 DOI: 10.1128/aac.01281-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/16/2017] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance among uropathogens has increased the rates of infection-related morbidity and mortality. Antofloxacin is a novel fluoroquinolone with broad-spectrum antibacterial activity against urinary Gram-negative bacilli, such as Escherichia coli This study monitored the in vivo efficacy of antofloxacin using bioluminescent imaging and determined pharmacokinetic (PK)/pharmacodynamic (PD) targets against E. coli isolates in a neutropenic murine thigh infection model. The PK properties were determined after subcutaneous administration of antofloxacin at 2.5, 10, 40, and 160 mg/kg of body weight. Following thigh infection, the mice were treated with 2-fold-increasing doses of antofloxacin from 2.5 to 80 mg/kg administered every 12 h. Efficacy was assessed by quantitative determination of the bacterial burdens in thigh homogenates and was compared with the bioluminescent density. Antofloxacin demonstrated both static and killing endpoints in relation to the initial burden against all study strains. The PK/PD index area under the concentration-time curve (AUC)/MIC correlated well with efficacy (R2 = 0.92), and the dose-response relationship was relatively steep, as observed with escalating doses of antofloxacin. The mean free drug AUC/MIC targets necessary to produce net bacterial stasis and 1-log10 and 2-log10 kill for each isolate were 38.7, 66.1, and 147.0 h, respectively. In vivo bioluminescent imaging showed a rapid decrease in the bioluminescent density at free drug AUC/MIC exposures that exceeded the stasis targets. The integration of these PD targets combined with the results of PK studies with humans will be useful in setting optimal dosing regimens for the treatment of urinary tract infections due to E. coli.
Collapse
|
38
|
Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 2017; 9:28-63. [PMID: 28960132 PMCID: PMC6067836 DOI: 10.1080/21505594.2017.1371897] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traditional methods of localizing and quantifying the presence of pathogenic microorganisms in living experimental animal models of infections have mostly relied on sacrificing the animals, dissociating the tissue and counting the number of colony forming units. However, the discovery of several varieties of the light producing enzyme, luciferase, and the genetic engineering of bacteria, fungi, parasites and mice to make them emit light, either after administration of the luciferase substrate, or in the case of the bacterial lux operon without any exogenous substrate, has provided a new alternative. Dedicated bioluminescence imaging (BLI) cameras can record the light emitted from living animals in real time allowing non-invasive, longitudinal monitoring of the anatomical location and growth of infectious microorganisms as measured by strength of the BLI signal. BLI technology has been used to follow bacterial infections in traumatic skin wounds and burns, osteomyelitis, infections in intestines, Mycobacterial infections, otitis media, lung infections, biofilm and endodontic infections and meningitis. Fungi that have been engineered to be bioluminescent have been used to study infections caused by yeasts (Candida) and by filamentous fungi. Parasitic infections caused by malaria, Leishmania, trypanosomes and toxoplasma have all been monitored by BLI. Viruses such as vaccinia, herpes simplex, hepatitis B and C and influenza, have been studied using BLI. This rapidly growing technology is expected to continue to provide much useful information, while drastically reducing the numbers of animals needed in experimental studies.
Collapse
Affiliation(s)
- Pinar Avci
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA
| | - Mahdi Karimi
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,c Department of Medical Nanotechnology , School of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran , Iran.,d Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Magesh Sadasivam
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,e Amity Institute of Nanotechnology, Amity University Uttar Pradesh , Noida , India
| | - Wanessa C Antunes-Melo
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,f University of Sao Paulo , Sao Carlos-SP , Brazil
| | - Elisa Carrasco
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,g Department of Biosciences , Durham University , Durham , United Kingdom
| | - Michael R Hamblin
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA.,h Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
39
|
Zhou Y, Zhou J, Ji Y, Li L, Tan Y, Tian G, Yang R, Wang X. Bioluminescent tracing of a Yersinia pestis pCD1 +-mutant and Yersinia pseudotuberculosis in subcutaneously infected mice. Microbes Infect 2017; 20:166-175. [PMID: 29180033 DOI: 10.1016/j.micinf.2017.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 01/14/2023]
Abstract
Yersinia pestis has evolved from Yersinia pseudotuberculosis serotype O:1b. A typical Y. pestis contains three plasmids: pCD1, pMT1 and pPCP1. However, some isolates only harbor pCD1 (pCD1+-mutant). Y. pestis and Y. pseudotuberculosis share a common plasmid (pCD1 or pYV), but little is known about whether Y. pseudotuberculosis exhibited plague-inducing potential before it was evolved into Y. pestis. Here, the luxCDABE::Tn5::kan was integrated into the chromosome of the pCD1+-mutant, Y. pseudotuberculosis or Escherichia coli K12 to construct stable bioluminescent strains for investigation of their dissemination in mice by bioluminescence imaging technology. After subcutaneous infection, the pCD1+-mutant entered the lymph nodes, followed by the liver and spleen, and, subsequently, the lungs, causing pathological changes in these organs. Y. pseudotuberculosis entered the lymph nodes, but not the liver, spleen and lungs. It also resided in the lymph nodes for several days, but did not cause lymphadenitis or pathological lesions. By contrast, E. coli K12-lux was not isolatable from mouse lymph nodes, liver, spleen and lungs. These results indicate that the pCD1+-mutant can cause typical bubonic and pneumonic plague-like diseases, and Y. pestis has inherited lymphoid tissue tropism from its ancestor rather than acquiring these properties independently.
Collapse
Affiliation(s)
- Yazhou Zhou
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jiyuan Zhou
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yuxin Ji
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lu Li
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yafang Tan
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Guang Tian
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoyi Wang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
40
|
Ur Rahman S, Stanton M, Casey PG, Spagnuolo A, Bensi G, Hill C, Francis KP, Tangney M, Gahan CGM. Development of a Click Beetle Luciferase Reporter System for Enhanced Bioluminescence Imaging of Listeria monocytogenes: Analysis in Cell Culture and Murine Infection Models. Front Microbiol 2017; 8:1797. [PMID: 29018414 PMCID: PMC5622934 DOI: 10.3389/fmicb.2017.01797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that is widely used as a model organism for the analysis of infection biology. In this context, there is a current need to develop improved reporters for enhanced bioluminescence imaging (BLI) of the pathogen in infection models. We have developed a click beetle red luciferase (CBR-luc) based vector (pPL2CBRopt) expressing codon optimized CBR-luc under the control of a highly expressed Listerial promoter (PHELP) for L. monocytogenes and have compared this to a lux-based system expressing bacterial luciferase for BLI of the pathogen using in vitro growth experiments and in vivo models. The CBR-luc plasmid stably integrates into the L. monocytogenes chromosome and can be used to label field isolates and laboratory strains of the pathogen. Growth experiments revealed that CBR-luc labeled L. monocytogenes emits a bright signal in exponential phase that is maintained during stationary phase. In contrast, lux-labeled bacteria produced a light signal that peaked during exponential phase and was significantly reduced during stationary phase. Light from CBR-luc labeled bacteria was more efficient than the signal from lux-labeled bacteria in penetrating an artificial tissue depth assay system. A cell invasion assay using C2Bbe1 cells and a systemic murine infection model revealed that CBR-luc is suited to BLI approaches and demonstrated enhanced sensitivity relative to lux in the context of Listeria infection models. Overall, we demonstrate that this novel CBR reporter system provides efficient, red-shifted light production relative to lux and may have significant applications in the analysis of L. monocytogenes pathogenesis.
Collapse
Affiliation(s)
- Sadeeq Ur Rahman
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Michael Stanton
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - Pat G Casey
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | | | | | - Colin Hill
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | - Mark Tangney
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Cork Cancer Research Centre, University College Cork, Cork, Ireland.,SynBio Centre, University College Cork, Cork, Ireland
| | - Cormac G M Gahan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,SynBio Centre, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
A Perfect Storm: Increased Colonization and Failure of Vaccination Leads to Severe Secondary Bacterial Infection in Influenza Virus-Infected Obese Mice. mBio 2017; 8:mBio.00889-17. [PMID: 28928207 PMCID: PMC5605935 DOI: 10.1128/mbio.00889-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Obesity is a risk factor for developing severe disease following influenza virus infection; however, the comorbidity of obesity and secondary bacterial infection, a serious complication of influenza virus infections, is unknown. To fill this gap in knowledge, lean and obese C57BL/6 mice were infected with a nonlethal dose of influenza virus followed by a nonlethal dose of Streptococcus pneumoniae Strikingly, not only did significantly enhanced death occur in obese coinfected mice compared to lean controls, but also high mortality was seen irrespective of influenza virus strain, bacterial strain, or timing of coinfection. This result was unexpected, given that most influenza virus strains, especially seasonal human A and B viruses, are nonlethal in this model. Both viral and bacterial titers were increased in the upper respiratory tract and lungs of obese animals as early as days 1 and 2 post-bacterial infection, leading to a significant decrease in lung function. This increased bacterial load correlated with extensive cellular damage and upregulation of platelet-activating factor receptor, a host receptor central to pneumococcal invasion. Importantly, while vaccination of obese mice against either influenza virus or pneumococcus failed to confer protection, antibiotic treatment was able to resolve secondary bacterial infection-associated mortality. Overall, secondary bacterial pneumonia could be a widespread, unaddressed public health problem in an increasingly obese population.IMPORTANCE Worldwide obesity rates have continued to increase. Obesity is associated with increased severity of influenza virus infection; however, very little is known about respiratory coinfections in this expanding, high-risk population. Our studies utilized a coinfection model to show that obesity increases mortality from secondary bacterial infection following influenza virus challenge through a "perfect storm" of host factors that lead to excessive viral and bacterial outgrowth. In addition, we found that vaccination of obese mice against either virus or bacteria failed to confer protection against coinfection, but antibiotic treatment did alleviate mortality. Combined, these results represent an understudied and imminent public health concern in a weighty portion of the global population.
Collapse
|
42
|
Kamata H, Yamamoto K, Wasserman GA, Zabinski MC, Yuen CK, Lung WY, Gower AC, Belkina AC, Ramirez MI, Deng JC, Quinton LJ, Jones MR, Mizgerd JP. Epithelial Cell-Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia. Am J Respir Cell Mol Biol 2017; 55:407-18. [PMID: 27064756 DOI: 10.1165/rcmb.2015-0261oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6G(bright)CD11b(bright) neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia.
Collapse
Affiliation(s)
| | - Kazuko Yamamoto
- 1 Pulmonary Center.,2 Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and
| | | | | | - Constance K Yuen
- 4 Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Wing Yi Lung
- 4 Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Adam C Gower
- 5 Clinical and Translational Science Institute, and
| | | | - Maria I Ramirez
- 1 Pulmonary Center.,6 Medicine.,7 Pathology and Laboratory Medicine, and
| | - Jane C Deng
- 4 Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Lee J Quinton
- 1 Pulmonary Center.,6 Medicine.,7 Pathology and Laboratory Medicine, and
| | | | - Joseph P Mizgerd
- 1 Pulmonary Center.,Departments of 3 Microbiology.,6 Medicine.,8 Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
43
|
Moon GS, Narbad A. Monitoring of Bioluminescent Lactobacillus plantarum in a Complex Food Matrix. Korean J Food Sci Anim Resour 2017; 37:147-152. [PMID: 28316482 PMCID: PMC5355579 DOI: 10.5851/kosfa.2017.37.1.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 11/06/2022] Open
Abstract
A bioluminescent Lactobacillus plantarum (pLuc2) strain was constructed. The luminescent signal started to increase during the early exponential phase and reached its maximum in the mid-exponential phase in a batch culture of the strain. The signal detection sensitivity of the strain was the highest in PBS (phosphate buffered saline), followed by milk and MRS broth, indicating that the sensitivity was influenced by the matrix effect. The strain was used in millet seed fermentation which has a complex matrix and native lactic acid bacteria (LAB). The luminescent signal was gradually increased until 9 h during fermentation and abolished at 24 h, indicating that the strain could be specifically tracked in the complex matrix and microflora. Therefore, the bioluminescent labeling system can be used for monitoring LAB in food and dairy sciences and industries.
Collapse
Affiliation(s)
- Gi-Seong Moon
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Arjan Narbad
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich NR4 7UA, UK
| |
Collapse
|
44
|
Bielen K, 's Jongers B, Malhotra-Kumar S, Jorens PG, Goossens H, Kumar-Singh S. Animal models of hospital-acquired pneumonia: current practices and future perspectives. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:132. [PMID: 28462212 DOI: 10.21037/atm.2017.03.72] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lower respiratory tract infections are amongst the leading causes of mortality and morbidity worldwide. Especially in hospital settings and more particularly in critically ill ventilated patients, nosocomial pneumonia is one of the most serious infectious complications frequently caused by opportunistic pathogens. Pseudomonas aeruginosa is one of the most important causes of ventilator-associated pneumonia as well as the major cause of chronic pneumonia in cystic fibrosis patients. Animal models of pneumonia allow us to investigate distinct types of pneumonia at various disease stages, studies that are not possible in patients. Different animal models of pneumonia such as one-hit acute pneumonia models, ventilator-associated pneumonia models and biofilm pneumonia models associated with cystic fibrosis have been extensively studied and have considerably aided our understanding of disease pathogenesis and testing and developing new treatment strategies. The present review aims to guide investigators in choosing appropriate animal pneumonia models by describing and comparing the relevant characteristics of each model using P. aeruginosa as a model etiology for hospital-acquired pneumonia. Key to establishing and studying these animal models of infection are well-defined end-points that allow precise monitoring and characterization of disease development that could ultimately aid in translating these findings to patient populations in order to guide therapy. In this respect, and discussed here, is the development of humanized animal models of bacterial pneumonia that could offer unique advantages to study bacterial virulence factor expression and host cytokine production for translational purposes.
Collapse
Affiliation(s)
- Kenny Bielen
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.,Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Bart 's Jongers
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.,Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Philippe G Jorens
- Department of Critical Care Medicine, Antwerp University Hospital and University of Antwerp, LEMP, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.,Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
45
|
Davis RW, Eggleston H, Johnson F, Nahrendorf M, Bock PE, Peterson T, Panizzi P. In Vivo Tracking of Streptococcal Infections of Subcutaneous Origin in a Murine Model. Mol Imaging Biol 2016; 17:793-801. [PMID: 25921659 DOI: 10.1007/s11307-015-0856-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Generation of plasmin in vivo by Streptococcus pyogenes is thought to localize the active protease complexes to the pathogen surface to aid in tissue dissemination. Here, we chose to follow cutaneous streptococcal infections by the use of non-invasive bioluminescence imaging to determine if this pathogen can be followed by this approach and the extent of bacterial spread in the absence of canonical plasminogen activation by streptokinase. PROCEDURES Mice were injected subcutaneously with either bioluminescent strains of streptococci, namely Xen20 and Xen10 or S. pyogenes ALAB49. Bioluminescence imaging was performed daily and results were correlated with microbiological and histological analyses. RESULTS Comparative analysis of chronologic non-invasive datasets indicated that Xen20 did not disseminate from the initial infection site. Contrary to this, microbiological and histological analyses of Xen20 mice for total bacterial burden indicated sepsis and widespread pathogen involvement. CONCLUSIONS The use of bioluminescence in microbe-based studies requires genomic and pathologic characterization to correlate imaging results with underlying pathology.
Collapse
Affiliation(s)
- Richard W Davis
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA
| | - Heather Eggleston
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA
| | - Frances Johnson
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge St., Boston, MA, 02114, USA
| | - Paul E Bock
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Tiffany Peterson
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA.
| |
Collapse
|
46
|
Delayed Propionibacterium acnes surgical site infections occur only in the presence of an implant. Sci Rep 2016; 6:32758. [PMID: 27615686 PMCID: PMC5018724 DOI: 10.1038/srep32758] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/15/2016] [Indexed: 11/09/2022] Open
Abstract
Whether Propionibacterium acnes (P. acnes) causes surgical-site infections (SSI) after orthopedic surgery is controversial. We previously reported that we frequently find P. acnes in intraoperative specimens, yet none of the patients have clinically apparent infections. Here, we tracked P. acnes for 6 months in a mouse osteomyelitis model. We inoculated P. acnes with an implant into the mouse femur in the implant group; the control group was treated with the bacteria but no implant. We then observed over a 6-month period using optical imaging system. During the first 2 weeks, bacterial signals were detected in the femur in the both groups. The bacterial signal completely disappeared in the control group within 28 days. Interestingly, in the implant group, bacterial signals were still present 6 months after inoculation. Histological and scanning electron-microscope analyses confirmed that P. acnes was absent from the control group 6 months after inoculation, but in the implant group, the bacteria had survived in a biofilm around the implant. PCR analysis also identified P. acnes in the purulent effusion from the infected femurs in the implant group. To our knowledge, this is the first report showing that P. acnes causes SSI only in the presence of an implant.
Collapse
|
47
|
Skare JT, Shaw DK, Trzeciakowski JP, Hyde JA. In Vivo Imaging Demonstrates That Borrelia burgdorferi ospC Is Uniquely Expressed Temporally and Spatially throughout Experimental Infection. PLoS One 2016; 11:e0162501. [PMID: 27611840 PMCID: PMC5017786 DOI: 10.1371/journal.pone.0162501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
Borrelia burgdorferi is a spirochetal bacterium transmitted by the Ixodes tick that causes Lyme disease in humans due to its ability to evade the host immune response and disseminate to multiple immunoprotective tissues. The pathogen undergoes dynamic genetic alterations important for adaptation from the tick vector to the mammalian host, but little is known regarding the changes at the transcriptional level within the distal tissues they colonize. In this study, B. burgdorferi infection and gene expression of the essential virulence determinant ospC was quantitatively monitored in a spatial and temporal manner utilizing reporter bioluminescent borrelial strains with in vivo and ex vivo imaging. Although expressed from a shuttle vector, the PospC-luc construct exhibited a similar expression pattern relative to native ospC. Bacterial burden in skin, inguinal lymph node, heart, bladder and tibiotarsal joint varied between tissues and fluctuated over the course of infection possibly in response to unique cues of each microenvironment. Expression of ospC, when normalized for changes in bacterial load, presented unique profiles in murine tissues at different time points. The inguinal lymph node was infected with a significant B. burgdorferi burden, but showed minimal ospC expression. B. burgdorferi infected skin and heart induced expression of ospC early during infection while the bladder and tibiotarsal joint continued to display PospC driven luminescence throughout the 21 day time course. Localized skin borrelial burden increased dramatically in the first 96 hours following inoculation, which was not paralleled with an increase in ospC expression, despite the requirement of ospC for dermal colonization. Quantitation of bioluminescence representing ospC expression in individual tissues was validated by qRT-PCR of the native ospC transcript. Taken together, the temporal regulation of ospC expression in distal tissues suggests a role for this virulence determinant beyond early infection.
Collapse
Affiliation(s)
- Jonathan T. Skare
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan/College Station, Texas, United States of America
| | - Dana K. Shaw
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan/College Station, Texas, United States of America
| | - Jerome P. Trzeciakowski
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan/College Station, Texas, United States of America
| | - Jenny A. Hyde
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan/College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Böhm ME, Krey VM, Jeßberger N, Frenzel E, Scherer S. Comparative Bioinformatics and Experimental Analysis of the Intergenic Regulatory Regions of Bacillus cereus hbl and nhe Enterotoxin Operons and the Impact of CodY on Virulence Heterogeneity. Front Microbiol 2016; 7:768. [PMID: 27252687 PMCID: PMC4877379 DOI: 10.3389/fmicb.2016.00768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022] Open
Abstract
Bacillus cereus is a food contaminant with greatly varying enteropathogenic potential. Almost all known strains harbor the genes for at least one of the three enterotoxins Nhe, Hbl, and CytK. While some strains show no cytotoxicity, others have caused outbreaks, in rare cases even with lethal outcome. The reason for these differences in cytotoxicity is unknown. To gain insight into the origin of enterotoxin expression heterogeneity in different strains, the architecture and role of 5′ intergenic regions (5′ IGRs) upstream of the nhe and hbl operons was investigated. In silico comparison of 142 strains of all seven phylogenetic groups of B. cereus sensu lato proved the presence of long 5′ IGRs upstream of the nheABC and hblCDAB operons, which harbor recognition sites for several transcriptional regulators, including the virulence regulator PlcR, redox regulators ResD and Fnr, the nutrient-sensitive regulator CodY as well as the master regulator for biofilm formation SinR. By determining transcription start sites, unusually long 5′ untranslated regions (5′ UTRs) upstream of the nhe and hbl start codons were identified, which are not present upstream of cytK-1 and cytK-2. Promoter fusions lacking various parts of the nhe and hbl 5′ UTR in B. cereus INRA C3 showed that the entire 331 bp 5′ UTR of nhe is necessary for full promoter activity, while the presence of the complete 606 bp hbl 5′ UTR lowers promoter activity. Repression was caused by a 268 bp sequence directly upstream of the hbl transcription start. Luciferase activity of reporter strains containing nhe and hbl 5′ IGR lux fusions provided evidence that toxin gene transcription is upregulated by the depletion of free amino acids. Electrophoretic mobility shift assays showed that the branched-chain amino acid sensing regulator CodY binds to both nhe and hbl 5′ UTR downstream of the promoter, potentially acting as a nutrient-responsive roadblock repressor of toxin gene transcription. PlcR binding sites are highly conserved among all B. cereus sensu lato strains, indicating that this regulator does not significantly contribute to the heterogeneity in virulence potentials. The CodY recognition sites are far less conserved, perhaps conferring varying strengths of CodY binding, which might modulate toxin synthesis in a strain-specific manner.
Collapse
Affiliation(s)
- Maria-Elisabeth Böhm
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| | - Viktoria M Krey
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| | - Nadja Jeßberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim Germany
| | - Elrike Frenzel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen Netherlands
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| |
Collapse
|
49
|
Deryabin DG, Efremova LV, Karimov IF, Manukhov IV, Gnuchikh EY, Miroshnikov SA. Comparative sensitivity of the luminescent Photobacterium phosphoreum, Escherichia coli, and Bacillus subtilis strains to toxic effects of carbon-based nanomaterials and metal nanoparticles. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716020053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
50
|
Dynamic capsule restructuring by the main pneumococcal autolysin LytA in response to the epithelium. Nat Commun 2016; 7:10859. [PMID: 26924467 PMCID: PMC4773454 DOI: 10.1038/ncomms10859] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/21/2016] [Indexed: 11/16/2022] Open
Abstract
Bacterial pathogens produce complex carbohydrate capsules to protect against bactericidal immune molecules. Paradoxically, the pneumococcal capsule sensitizes the bacterium to antimicrobial peptides found on epithelial surfaces. Here we show that upon interaction with antimicrobial peptides, encapsulated pneumococci survive by removing capsule from the cell surface within minutes in a process dependent on the suicidal amidase autolysin LytA. In contrast to classical bacterial autolysis, during capsule shedding, LytA promotes bacterial survival and is dispersed circumferentially around the cell. However, both autolysis and capsule shedding depend on the cell wall hydrolytic activity of LytA. Capsule shedding drastically increases invasion of epithelial cells and is the main pathway by which pneumococci reduce surface bound capsule during early acute lung infection of mice. The previously unrecognized role of LytA in removing capsule to combat antimicrobial peptides may explain why nearly all clinical isolates of pneumococci conserve this enzyme despite the lethal selective pressure of antibiotics. Pneumococci produce a carbohydrate capsule that protects them against components of the host immune system but sensitizes them to host antimicrobial peptides. Here, Kietzman et al. show that pneumococci respond to antimicrobial peptides by capsule shedding, which requires the main autolysin LytA.
Collapse
|