1
|
Seitzman GD, Keenan JD, Lietman TM, Ruder K, Zhong L, Chen C, Liu Y, Yu D, Abraham T, Hinterwirth A, Doan T. Human Conjunctival Transcriptome in Acanthamoeba Keratitis: An Exploratory Study. Cornea 2024; 43:1272-1277. [PMID: 38771726 PMCID: PMC11371541 DOI: 10.1097/ico.0000000000003545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/26/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE The purpose of this study was to identify conjunctival transcriptome differences in patients with Acanthamoeba keratitis compared with keratitis with no known associated pathogen. METHODS The host conjunctival transcriptome of 9 patients with Acanthamoeba keratitis (AK) is compared with the host conjunctival transcriptome of 13 patients with pathogen-free keratitis. Culture and/or confocal confirmed Acanthamoeba in 8 of 9 participants with AK who underwent metagenomic RNA sequencing as the likely pathogen. Cultures were negative in all 13 cases where metagenomic RNA sequencing did not identify a pathogen. RESULTS Transcriptome analysis identified 36 genes differently expressed between patients with AK and patients with presumed sterile, or pathogen-free, keratitis. Gene enrichment analysis revealed that some of these genes participate in several biologic pathways important for cellular signaling, ion transport and homeostasis, glucose transport, and mitochondrial metabolism. Notable relatively differentially expressed genes with potential relevance to Acanthamoeba infection included CPS1 , SLC35B4 , STEAP2 , ATP2B2 , NMNAT3 , and AKAP12 . CONCLUSIONS This research suggests that the local transcriptome in Acanthamoeba keratitis may be sufficiently robust to be detected in the conjunctiva and that corneas infected with Acanthamoeba may be distinguished from the inflamed cornea where no pathogen was identified. Given the low sensitivity for corneal cultures, identification of differentially expressed genes may serve as a suggestive transcriptional signature allowing for a complementary diagnostic technique to identify this blinding parasite. Knowledge of differentially expressed genes may also direct investigation of disease pathophysiology and suggest novel pathways for therapeutic targets.
Collapse
Affiliation(s)
- Gerami D Seitzman
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
- Department of Ophthalmology, University of California, San Francisco, California
| | - Jeremy D Keenan
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
- Department of Ophthalmology, University of California, San Francisco, California
| | - Thomas M Lietman
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
- Department of Ophthalmology, University of California, San Francisco, California
| | - Kevin Ruder
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
| | - Lina Zhong
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
| | - Cindi Chen
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
| | - YuHeng Liu
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
| | - Danny Yu
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
| | - Thomas Abraham
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
| | - Armin Hinterwirth
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
| | - Thuy Doan
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
- Department of Ophthalmology, University of California, San Francisco, California
| |
Collapse
|
2
|
Alhazmi A, Sidney LE, Hopkinson A, Elsheikha HM. Comparative cytotoxicity of Acanthamoeba castellanii-derived conditioned medium on human corneal epithelial and stromal cells. Acta Trop 2024; 257:107288. [PMID: 38901524 DOI: 10.1016/j.actatropica.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Soluble factors in the secretome of Acanthamoeba castellanii play crucial roles in the pathogenesis of Acanthamoeba keratitis (AK). Investigating the pathological effects of A. castellanii-derived conditioned medium (ACCM) on ocular cells can provide insights into the damage inflicted during AK. This study examined ACCM-induced cytotoxicity in primary human corneal stromal cells (CSCs) and a human SV40 immortalized corneal epithelial cell line (ihCECs) at varying ACCM concentrations (25 %, 50 %, 75 %, and 100 %). MTT, AlamarBlue, Sulforhodamine B, lactate dehydrogenase, and Caspase-3/7 activation assays were used to assess the impact of ACCM on the cell viability, proliferation and apoptosis. Additionally, fluorescent staining was used to reveal actin cytoskeleton changes. ACCM exposure significantly decreased cell viability, increased apoptosis, and disrupted the actin cytoskeleton, particularly at higher concentrations and longer exposures. Proteases were found to mediate these cytopathogenic effects, highlighting the need for characterization of A. castellanii proteases as key virulence factors in AK pathogenesis.
Collapse
Affiliation(s)
- Abdullah Alhazmi
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham NG7 2UH, UK; Faculty of Public Health and Health Informatics, Umm Al Qura University, Makkah, Saudi Arabia
| | - Laura E Sidney
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham NG7 2UH, UK
| | - Andy Hopkinson
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham NG7 2UH, UK
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
3
|
Loufouma Mbouaka A, Lesiak-Markowicz I, Heredero-Bermejo I, Mazumdar R, Walochnik J, Martín-Pérez T. Assessing Acanthamoeba cytotoxicity: comparison of common cell viability assays. Front Microbiol 2023; 14:1175469. [PMID: 37180263 PMCID: PMC10167018 DOI: 10.3389/fmicb.2023.1175469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Background In vitro models for studying interactions between Acanthamoeba and host cells are crucial for understanding the pathomechanism of Acanthamoeba and assessing differences between strains and cell types. The virulence of Acanthamoeba strains is usually assessed and monitored by using cell cytotoxicity assays. The aim of the present study was to evaluate and compare the most widely used cytotoxicity assays for their suitability to assess Acanthamoeba cytopathogenicity. Methods The viability of human corneal epithelial cells (HCECs) after co-culture with Acanthamoeba was evaluated in phase contrast microscopy. Results It was shown that Acanthamoeba is unable to considerably reduce the tetrazolium salt and the NanoLuc® Luciferase prosubstrate to formazan and the luciferase substrate, respectively. This incapacity helped to generate a cell density-dependent signal allowing to accurately quantify Acanthamoeba cytotoxicity. The lactate dehydrogenase (LDH) assay led to an underestimation of the cytotoxic effect of Acanthamoeba on HCECs since their co-incubation negatively affected the lactate dehydrogenase activity. Discussion Our findings demonstrate that cell-based assays using the aqueous soluble tetrazolium-formazan, and the NanoLuc® Luciferase prosubstrate products, in contrast to LDH, are excellent markers to monitor the interaction of Acanthamoeba with human cell lines and to determine and quantify effectively the cytotoxic effect induced by the amoebae. Furthermore, our data indicate that protease activity may have an impact on the outcome and thus the reliability of these tests.
Collapse
Affiliation(s)
- Alvie Loufouma Mbouaka
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Iwona Lesiak-Markowicz
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Irene Heredero-Bermejo
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, Madrid, Spain
| | - Rounik Mazumdar
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Julia Walochnik
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Tania Martín-Pérez
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Wang Y, Jiang L, Zhao Y, Ju X, Wang L, Jin L, Fine RD, Li M. Biological characteristics and pathogenicity of Acanthamoeba. Front Microbiol 2023; 14:1147077. [PMID: 37089530 PMCID: PMC10113681 DOI: 10.3389/fmicb.2023.1147077] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Acanthamoeba is an opportunistic protozoa, which exists widely in nature and is mainly distributed in soil and water. Acanthamoeba usually exists in two forms, trophozoites and cysts. The trophozoite stage is one of growth and reproduction while the cyst stage is characterized by cellular quiescence, commonly resulting in human infection, and the lack of effective monotherapy after initial infection leads to chronic disease. Acanthamoeba can infect several human body tissues such as the skin, cornea, conjunctiva, respiratory tract, and reproductive tract, especially when the tissue barriers are damaged. Furthermore, serious infections can cause Acanthamoeba keratitis, granulomatous amoebic encephalitis, skin, and lung infections. With an increasing number of Acanthamoeba infections in recent years, the pathogenicity of Acanthamoeba is becoming more relevant to mainstream clinical care. This review article will describe the etiological characteristics of Acanthamoeba infection in detail from the aspects of biological characteristic, classification, disease, and pathogenic mechanism in order to provide scientific basis for the diagnosis, treatment, and prevention of Acanthamoeba infection.
Collapse
Affiliation(s)
- Yuehua Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Linzhe Jiang
- General Surgery, Jilin People’s Hospital, Jilin City, China
| | - Yitong Zhao
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Xiaohong Ju
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Le Wang
- Department of Laboratory Medicine, Jilin Hospital of Integrated Chinese and Western Medicine, Jilin City, China
| | - Liang Jin
- Department of Laboratory Medicine, Jilin Hospital of Integrated Chinese and Western Medicine, Jilin City, China
| | - Ryan D. Fine
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York City, NY, United States
| | - Mingguang Li
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
- *Correspondence: Mingguang Li,
| |
Collapse
|
5
|
Alvarado-Ocampo J, Retana-Moreira L, Abrahams-Sandí E. In vitro effects of environmental isolates of Acanthamoeba T4 and T5 over human erythrocytes and platelets. Exp Parasitol 2020; 210:107842. [PMID: 31978393 DOI: 10.1016/j.exppara.2020.107842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Free-living amoebae of the genus Acanthamoeba have been associated with keratitis and encephalitis. Some factors related to their pathogenic potential have been described, including the release of hydrolytic enzymes, and the adhesion and phagocytosis processes. However, other factors such as their effect over the hemodynamics and microcirculation elements have not been fully investigated. This work determines the in vitro activity of potentially pathogenic environmental isolates of Acanthamoeba genotype T4 and T5 over erythrocytes and platelets. The hemolytic activity (dependent and independent of contact), as well as the production of ADP of ten environmental isolates of Acanthamoeba obtained from dental units, combined emergency showers, dust, and hospital water, were measured. Tests were carried out over erythrocytes in suspension and blood agar plates, incubated at 4 °C, room temperature and 37 °C. Erythrophagocytosis and platelet aggregation assays were also performed. Live trophozoites of all of the isolates tested showed a hemolytic activity that was temperature-dependent. Over erythrocytes in suspension, variable hemolysis percentages were obtained: a maximum of 41% and a minimum of 15%. Regarding hemolysis over agar plates, two patterns of hemolysis were observed: double and simple halos. Conditioned medium and crude extracts of trophozoites did not show hemolytic activity. Erythrophagocytosis by Acanthamoeba was also observed; however, no production of ADP was determined by the employed methodology.
Collapse
Affiliation(s)
- Johan Alvarado-Ocampo
- University of Costa Rica, Faculty of Microbiology, Department of Parasitology, San Pedro, San José, Costa Rica; Centro de Investigación en Enfermedades Tropicales, San Pedro, San José, Costa Rica
| | - Lissette Retana-Moreira
- University of Costa Rica, Faculty of Microbiology, Department of Parasitology, San Pedro, San José, Costa Rica; Centro de Investigación en Enfermedades Tropicales, San Pedro, San José, Costa Rica
| | - Elizabeth Abrahams-Sandí
- University of Costa Rica, Faculty of Microbiology, Department of Parasitology, San Pedro, San José, Costa Rica; Centro de Investigación en Enfermedades Tropicales, San Pedro, San José, Costa Rica.
| |
Collapse
|
6
|
Ávila-Blanco ME, Martín-Pérez T, Ventura-Juárez J, Pérez-Serrano J. Experimental keratitis in rats caused by Acanthamoeba griffini: A kinetic histopathological study. Parasite Immunol 2020; 42:e12692. [PMID: 31856305 DOI: 10.1111/pim.12692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/22/2023]
Abstract
The aim of this study was to evaluate the inflammation process that resulted from the inoculation of Wistar Rats with Acanthamoeba griffini, a virulent T3 Acanthamoeba genotype that produces keratitis. Haematoxylin and eosin, periodic acid stain, immunohistochemistry and morphometry were used to analyse tissues from rats of an Acanthamoeba keratitis (AK) model. Two weeks after inoculating the rats with A griffini trophozoites, the thickness of the stroma had diminished, followed by an increase in thickness at 4 weeks. At the latter time, an abundance of inflammatory infiltrate cells was observed, some found to express IL-1β, IL-10 and/or caspase 3. Intercellular adhesion molecule-1 was expressed in corneal blood vessels amid the abundant vascularization characteristic of the development of AK. Through an immunohistochemical technique, trophozoites were detected at 2 and 4 weeks post-inoculation. By 8 weeks, there were a low number of trophozoites and cysts and the corneas of infected rats were similar in thickness to those of the controls. Thus, the rats were capable of healing experimental AK in the present rat model. Diverse immunological mechanisms regulated the inflammatory process in acute AK induced by A griffini in a murine model.
Collapse
Affiliation(s)
- Manuel Enrique Ávila-Blanco
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Tania Martín-Pérez
- Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Javier Ventura-Juárez
- Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Jorge Pérez-Serrano
- Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
7
|
Cirelli C, Mesquita EIS, Chagas IAR, Furst C, Possamai CO, Abrahão JS, dos Santos Silva LK, Grossi MF, Tagliati CA, Costa AO. Extracellular protease profile of Acanthamoeba after prolonged axenic culture and after interaction with MDCK cells. Parasitol Res 2019; 119:659-666. [DOI: 10.1007/s00436-019-06562-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
|
8
|
Huang JM, Chang YT, Lin WC. The Biochemical and Functional Characterization of M28 Aminopeptidase Protein Secreted by Acanthamoeba spp. on Host Cell Interaction. Molecules 2019; 24:molecules24244573. [PMID: 31847255 PMCID: PMC6943430 DOI: 10.3390/molecules24244573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 02/04/2023] Open
Abstract
Acanthamoeba are a free-living protozoan whose pathogenic strain can cause severe human diseases, such as granulomatous encephalitis and keratitis. As such, the pathogenic mechanism between humans and Acanthamoeba is still unknown. In our previous study, we identified the secreted Acanthamoeba M28 aminopeptidase (M28AP) and then suggested that M28AP can degrade human C3b and iC3b for inhibiting the destruction of Acanthamoeba spp. with the human immune response. We constructed the produced the recombinant M28AP from a CHO cell, which is a mammalian expression system, to characterize the biochemical properties of Acanthamoeba M28AP. The recombinant M28AP more rapidly hydrolyzed Leu-AMC than Arg-AMC and could be inhibited by EDTA treatment. We show that recombinant M28AP can be delivered into the individual cell line and cause cell line apoptosis in a co-culture model. In conclusion, we successfully investigated the potential molecular characteristics of M28AP.
Collapse
Affiliation(s)
- Jian-Ming Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Yao-Tsung Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Wei-Chen Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535 (ext. 5584)
| |
Collapse
|
9
|
Quantitative proteomic analysis and functional characterization of Acanthamoeba castellanii exosome-like vesicles. Parasit Vectors 2019; 12:467. [PMID: 31597577 PMCID: PMC6784334 DOI: 10.1186/s13071-019-3725-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Pathogenic protozoans use extracellular vesicles (EVs) for intercellular communication and host manipulation. Acanthamoeba castellanii is a free-living protozoan that may cause severe keratitis and fatal granulomatous encephalitis. Although several secreted molecules have been shown to play crucial roles in the pathogenesis of Acanthamoeba, the functions and components of parasite-derived EVs are far from understood. Methods Purified EVs from A. castellanii were confirmed by electron microscopy and nanoparticle tracking analysis. The functional roles of parasite-derived EVs in the cytotoxicity to and immune response of host cells were examined. The protein composition in EVs from A. castellanii was identified and quantified by LC-MS/MS analysis. Results EVs from A. castellanii fused with rat glioma C6 cells. The parasite-derived EVs induced an immune response from human THP-1 cells and a cytotoxic effect in C6 cells. Quantitative proteomic analysis identified a total of 130 proteins in EVs. Among the identified proteins, hydrolases (50.2%) and oxidoreductases (31.7%) were the largest protein families in EVs. Furthermore, aminopeptidase activities were confirmed in EVs from A. castellanii. Conclusions The proteomic profiling and functional characterization of EVs from A. castellanii provide an in-depth understanding of the molecules packaged into EVs and their potential mechanisms mediating the pathogenesis of this parasite.
Collapse
|
10
|
Samba-Louaka A, Delafont V, Rodier MH, Cateau E, Héchard Y. Free-living amoebae and squatters in the wild: ecological and molecular features. FEMS Microbiol Rev 2019; 43:415-434. [DOI: 10.1093/femsre/fuz011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Free-living amoebae are protists frequently found in water and soils. They feed on other microorganisms, mainly bacteria, and digest them through phagocytosis. It is accepted that these amoebae play an important role in the microbial ecology of these environments. There is a renewed interest for the free-living amoebae since the discovery of pathogenic bacteria that can resist phagocytosis and of giant viruses, underlying that amoebae might play a role in the evolution of other microorganisms, including several human pathogens. Recent advances, using molecular methods, allow to bring together new information about free-living amoebae. This review aims to provide a comprehensive overview of the newly gathered insights into (1) the free-living amoeba diversity, assessed with molecular tools, (2) the gene functions described to decipher the biology of the amoebae and (3) their interactions with other microorganisms in the environment.
Collapse
Affiliation(s)
- Ascel Samba-Louaka
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Marie-Hélène Rodier
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Estelle Cateau
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Yann Héchard
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| |
Collapse
|
11
|
Gonçalves DDS, Ferreira MDS, Liedke SC, Gomes KX, de Oliveira GA, Leão PEL, Cesar GV, Seabra SH, Cortines JR, Casadevall A, Nimrichter L, Domont GB, Junqueira MR, Peralta JM, Guimaraes AJ. Extracellular vesicles and vesicle-free secretome of the protozoa Acanthamoeba castellanii under homeostasis and nutritional stress and their damaging potential to host cells. Virulence 2018; 9:818-836. [PMID: 29560793 PMCID: PMC5955443 DOI: 10.1080/21505594.2018.1451184] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/06/2018] [Indexed: 12/14/2022] Open
Abstract
Acanthamoeba castellanii (Ac) are ubiquitously distributed in nature, and by contaminating medical devices such as heart valves and contact lenses, they cause a broad range of clinical presentations to humans. Although several molecules have been described to play a role in Ac pathogenesis, including parasite host-tissue invasion and escaping of host-defense, little information is available on their mechanisms of secretion. Herein, we describe the molecular components secreted by Ac, under different protein availability conditions to simulate host niches. Ac extracellular vesicles (EVs) were morphologically and biochemically characterized. Dynamic light scattering analysis of Ac EVs identified polydisperse populations, which correlated to electron microscopy measurements. High-performance thin liquid chromatography of Ac EVs identified phospholipids, steryl-esters, sterol and free-fatty acid, the last two also characterized by GC-MS. Secretome composition (EVs and EVs-free supernatants) was also determined and proteins biological functions classified. In peptone-yeast-glucose (PYG) medium, a total of 179 proteins were identified (21 common proteins, 89 exclusive of EVs and 69 in EVs-free supernatant). In glucose alone, 205 proteins were identified (134 in EVs, 14 common and 57 proteins in EVs-free supernatant). From those, stress response, oxidative and protein and amino acid metabolism proteins prevailed. Qualitative differences were observed on carbohydrate metabolism enzymes from Krebs cycle and pentose phosphate shunt. Serine proteases and metalloproteinases predominated. Analysis of the cytotoxicity of Ac EVs (upon uptake) and EVs-free supernatant to epithelial and glioblastoma cells revealed a dose-dependent effect. Therefore, the Ac secretome differs depending on nutrient conditions, and is also likely to vary during infection.
Collapse
Affiliation(s)
- Diego de Souza Gonçalves
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Marina da Silva Ferreira
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susie Coutinho Liedke
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kamilla Xavier Gomes
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Gabriel Afonso de Oliveira
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Pedro Ernesto Lopes Leão
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriele Vargas Cesar
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio H. Seabra
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, Brazil
| | - Juliana Reis Cortines
- Departamento de Virologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto Barbosa Domont
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Magno Rodrigues Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Mauro Peralta
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan J. Guimaraes
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
12
|
Micklewright JJ, Layhadi JA, Fountain SJ. P2Y 12 receptor modulation of ADP-evoked intracellular Ca 2+ signalling in THP-1 human monocytic cells. Br J Pharmacol 2018; 175:2483-2491. [PMID: 29574692 PMCID: PMC5980558 DOI: 10.1111/bph.14218] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE The Gi -coupled, ADP-activated P2Y12 receptor is well characterized as playing a key role in platelet activation via crosstalk with the P2Y1 receptor in ADP-evoked intracellular Ca2+ responses. However, there is limited knowledge on the role of P2Y12 receptors in ADP-evoked Ca2+ responses in other blood cells. Here, we investigated the role of P2Y12 receptor activation in the modulation of ADP-evoked Ca2+ responses in human THP-1 monocytic cells. EXPERIMENTAL APPROACH A combination of intracellular Ca2+ measurements, RT-PCR, immunocytochemistry, leukocyte isolation and siRNA-mediated gene knockdown were used to identify the role of P2Y12 receptor activation. KEY RESULTS ADP-evoked intracellular Ca2+ responses (EC50 2.7 μM) in THP-1 cells were abolished by inhibition of PLC (U73122) or sarco/endoplasmic reticulum Ca2+ -ATPase (thapsigargin). Loss of ADP-evoked Ca2+ responses following treatment with MRS2578 (IC50 200 nM) revealed a major role for P2Y6 receptors in mediating ADP-evoked Ca2+ responses. ADP-evoked responses were attenuated either with pertussis toxin treatment, or P2Y12 receptor inhibition with two chemically distinct antagonists (ticagrelor, IC50 5.3 μM; PSB-0739, IC50 5.6 μM). ADP-evoked responses were suppressed following siRNA-mediated P2Y12 gene knockdown. The inhibitory effects of P2Y12 antagonists were fully reversed following adenylate cyclase inhibition (SQ22536). P2Y12 receptor expression was confirmed in freshly isolated human CD14+ monocytes. CONCLUSIONS AND IMPLICATIONS Taken together, these data suggest that P2Y12 receptor activation positively regulates P2Y6 receptor-mediated intracellular Ca2+ signalling through suppression of adenylate cyclase activity in human monocytic cells.
Collapse
Affiliation(s)
- J J Micklewright
- Biomedical Research Centre, School of Biological SciencesUniversity of East AngliaNorwichUK
| | - J A Layhadi
- Biomedical Research Centre, School of Biological SciencesUniversity of East AngliaNorwichUK
| | - S J Fountain
- Biomedical Research Centre, School of Biological SciencesUniversity of East AngliaNorwichUK
| |
Collapse
|
13
|
Huang JM, Liao CC, Kuo CC, Chen LR, Huang LLH, Shin JW, Lin WC. Pathogenic Acanthamoeba castellanii Secretes the Extracellular Aminopeptidase M20/M25/M40 Family Protein to Target Cells for Phagocytosis by Disruption. Molecules 2017; 22:E2263. [PMID: 29258252 PMCID: PMC6149796 DOI: 10.3390/molecules22122263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Acanthamoeba is free-living protist pathogen capable of causing a blinding keratitis and granulomatous encephalitis. However, the mechanisms of Acanthamoeba pathogenesis are still not clear. Here, our results show that cells co-cultured with pathogenic Acanthamoeba would be spherical and floated, even without contacting the protists. Then, the Acanthamoeba protists would contact and engulf these cells. In order to clarify the contact-independent pathogenesis mechanism in Acanthamoeba, we collected the Acanthamoeba-secreted proteins (Asp) to incubate with cells for identifying the extracellular virulent factors and investigating the cytotoxicity process. The Asps of pathogenic Acanthamoeba express protease activity to reactive Leu amino acid in ECM and induce cell-losing adhesion ability. The M20/M25/M40 superfamily aminopeptidase protein (ACA1_264610), an aminopeptidase be found in Asp, is upregulated after Acanthamoeba and C6 cell co-culturing for 6 h. Pre-treating the Asp with leucine aminopeptidase inhibitor and the specific antibodies of Acanthamoeba M20/M25/M40 superfamily aminopeptidase could reduce the cell damage during Asp and cell co-incubation. These results suggest an important functional role of the Acanthamoeba secreted extracellular aminopeptidases in the Acanthamoeba pathogenesis process. This study provides information regarding clinically pathogenic isolates to target specific molecules and design combined drugs.
Collapse
Affiliation(s)
- Jian-Ming Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chen-Chieh Liao
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chung-Ching Kuo
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Lih-Ren Chen
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
- Physiology Division, Livestock Research Institute, Council of Agriculture, Taichung 41362, Taiwan.
| | - Lynn L H Huang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
| | - Jyh-Wei Shin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan.
| | - Wei-Chen Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan.
| |
Collapse
|
14
|
Acanthamoeba Activates Macrophages Predominantly through Toll-Like Receptor 4- and MyD88-Dependent Mechanisms To Induce Interleukin-12 (IL-12) and IL-6. Infect Immun 2017; 85:IAI.01054-16. [PMID: 28348053 DOI: 10.1128/iai.01054-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
Acanthamoeba castellanii is a ubiquitous free-living amoeba with a worldwide distribution that can occasionally infect humans, causing particularly severe infections in immunocompromised individuals. Dissecting the immunology of Acanthamoeba infections has been considered problematic due to the very low incidence of disease, despite the high exposure rates. While macrophages are acknowledged as playing a significant role in Acanthamoeba infections, little is known about how this facultative parasite influences macrophage activity. Therefore, in this study we investigated the effects of Acanthamoeba on the activation of resting macrophages. Consequently, murine bone marrow-derived macrophages were cocultured with trophozoites of either the laboratory Neff strain or a clinical isolate of A. castellaniiIn vitro real-time imaging demonstrated that trophozoites of both strains often established evanescent contact with macrophages. Both Acanthamoeba strains induced a proinflammatory macrophage phenotype characterized by the significant production of interleukin-12 (IL-12) and IL-6. However, macrophages cocultured with the clinical isolate of Acanthamoeba produced significantly less IL-12 and IL-6 than the Neff strain. The utilization of macrophages derived from MyD88-, TRIF-, Toll-like receptor 2 (TLR2)-, TLR4-, and TLR2/4-deficient mice indicated that Acanthamoeba-induced proinflammatory cytokine production was through MyD88-dependent, TRIF-independent, TLR4-induced events. This study shows for the first time the involvement of TLRs expressed on macrophages in the recognition of and response to Acanthamoeba trophozoites.
Collapse
|
15
|
Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages. Infect Immun 2016; 84:2953-62. [PMID: 27481240 PMCID: PMC5038060 DOI: 10.1128/iai.00345-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/24/2016] [Indexed: 12/11/2022] Open
Abstract
Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response.
Collapse
|
16
|
Huang JM, Lin WC, Li SC, Shih MH, Chan WC, Shin JW, Huang FC. Comparative proteomic analysis of extracellular secreted proteins expressed by two pathogenic Acanthamoeba castellanii clinical isolates and a non-pathogenic ATCC strain. Exp Parasitol 2016; 166:60-7. [PMID: 26995533 DOI: 10.1016/j.exppara.2016.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/15/2016] [Accepted: 03/14/2016] [Indexed: 01/09/2023]
Abstract
Acanthamoeba keratitis (AK) is a serious ocular disease caused by pathogenic Acanthamoeba gaining entry through wounds in the corneal injury; generally, patients at risk for contracting AK wear contact lenses, usually over a long period of time. Moreover, pathogenic Acanthamoeba causes serious consequences: it makes the cornea turbid and difficult to operate on, including procedures such as enucleation of the eyeball. At present, diagnosis of this disease is not straightforward, and treatment is very demanding. We have established the comparative transcriptome and extracellular secreted proteomic database according to the non-pathogenic strain ATCC 30010 and the pathogenic strains NCKU_B and NCKU_D. We identified 44 secreted proteins successfully, 10 consensus secreted proteins and 34 strain-specific secreted proteins. These proteins may provide targets for therapy and immuno-diagnosis of Acanthamoeba infections. This study shows a suitable approach to identify secreted proteins in Acanthamoeba and provides new perspectives for the study of molecules potentially involved in the AK.
Collapse
Affiliation(s)
- Jian-Ming Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chen Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Parasitology, National Cheng Kung University, Tainan, Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Min-Hsiu Shih
- Department of Ophthalmology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wen-Ching Chan
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jyh-Wei Shin
- Department of Parasitology, National Cheng Kung University, Tainan, Taiwan
| | - Fu-Chin Huang
- Department of Ophthalmology, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
17
|
Lorenzo-Morales J, Khan NA, Walochnik J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. ACTA ACUST UNITED AC 2015; 22:10. [PMID: 25687209 PMCID: PMC4330640 DOI: 10.1051/parasite/2015010] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/06/2015] [Indexed: 12/21/2022]
Abstract
Free-living amoebae of the genus Acanthamoeba are causal agents of a severe sight-threatening infection of the cornea known as Acanthamoeba keratitis. Moreover, the number of reported cases worldwide is increasing year after year, mostly in contact lens wearers, although cases have also been reported in non-contact lens wearers. Interestingly, Acanthamoeba keratitis has remained significant, despite our advances in antimicrobial chemotherapy and supportive care. In part, this is due to an incomplete understanding of the pathogenesis and pathophysiology of the disease, diagnostic delays and problems associated with chemotherapeutic interventions. In view of the devastating nature of this disease, here we present our current understanding of Acanthamoeba keratitis and molecular mechanisms associated with the disease, as well as virulence traits of Acanthamoeba that may be potential targets for improved diagnosis, therapeutic interventions and/or for the development of preventative measures. Novel molecular approaches such as proteomics, RNAi and a consensus in the diagnostic approaches for a suspected case of Acanthamoeba keratitis are proposed and reviewed based on data which have been compiled after years of working on this amoebic organism using many different techniques and listening to many experts in this field at conferences, workshops and international meetings. Altogether, this review may serve as the milestone for developing an effective solution for the prevention, control and treatment of Acanthamoeba infections.
Collapse
Affiliation(s)
- Jacob Lorenzo-Morales
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain
| | - Naveed A Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Tripathi T, Alizadeh H. Role of protease-activated receptors 2 (PAR2) in ocular infections and inflammation. ACTA ACUST UNITED AC 2014; 1. [PMID: 26078987 DOI: 10.14800/rci.291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protease-activated receptors (PARs) belong to a unique family of G protein-coupled receptors (GPCRs) that are cleaved at an activation site within the N-terminal exodomain by a variety of proteinases, essentially of the serine (Ser) proteinase family. After cleavage, the new N-terminal sequence functions as a tethered ligand, which binds intramolecularly to activate the receptor and initiate signaling. Cell signals induced through the activation of PARs appear to play a significant role in innate and adoptive immune responses of the cornea, which is constantly exposed to proteinases under physiological or pathophysiological conditions. Activation of PARs interferes with all aspects of the corneal physiology such as barrier function, transports, innate and adoptive immune responses, and functions of corneal nerves. It is not known whether the proteinase released from the microorganism can activate PARs and triggers the inflammatory responses. The role of PAR2 expressed by the corneal epithelial cells and activation by serine protease released from microorganism is discussed here. Recent evidences suggest that activation of PAR2, by the serine proteinases, play an important role in innate and inflammatory responses of the corneal infection.
Collapse
Affiliation(s)
- Trivendra Tripathi
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, and North Texas Eye Research Institute, Fort Worth, Texas, 76107, USA
| | - Hassan Alizadeh
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, and North Texas Eye Research Institute, Fort Worth, Texas, 76107, USA
| |
Collapse
|
19
|
Lloyd D. Encystment in Acanthamoeba castellanii: a review. Exp Parasitol 2014; 145 Suppl:S20-7. [PMID: 24726698 DOI: 10.1016/j.exppara.2014.03.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
Differentiation of Acanthamoeba castellanii trophozoites involves massive turnover of cellular components and remodelling of organelle structure and function so as to produce a cryptobiotic cell, resistant to desiccation, heat, freezing, and chemical treatments. This review presents a summary of a decade of research on the most studied aspects of the biochemistry of this process, with emphasis on problems of biocide and drug resistances, putative new targets, molecular and cell biology of the process of encystment, and the characteristics of the encysted state. As well as the intrinsic pathogenicity of the organism towards the cornea, and the ability of related species to invade the human brain, its propensity for harbouring and transmitting pathogenic bacteria and viruses is considerable and leads to increasing concerns. The long-term survival and resistance of cysts to drugs and biocides adds another layer of complexity to the problem of their elimination.
Collapse
Affiliation(s)
- David Lloyd
- School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AT, UK.
| |
Collapse
|
20
|
Zhao H, Liu H, Zhou J. Characterization of a bioflocculant MBF-5 by Klebsiella pneumoniae and its application in Acanthamoeba cysts removal. BIORESOURCE TECHNOLOGY 2013; 137:226-32. [PMID: 23587824 DOI: 10.1016/j.biortech.2013.03.079] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/09/2013] [Accepted: 03/11/2013] [Indexed: 05/26/2023]
Abstract
This study evaluated the potential of an extracellular, novel biopolymeric flocculant produced by a strain of Klebsiella pneumoniae isolated from a sputum sample for removal of Acanthamoeba cysts, a potent pathogen prevalent in water, soil, air, and dust. The presence of cations did not enhance flocculating activity. The component of MBF-5 was mainly polysaccharide and protein with proportional of 96.8% and 2.1% respectively. Infrared spectrum analysis showed the presence of carboxyl and hydroxyl groups in MBF-5. MBF-5 is nontoxic and can be used for removal of amoebae cysts from water. Conditions for flocculation of kaolin suspension and Acanthamoeba cysts were optimized by response surface methodology (RSM) and determined to be 54.38 mg/L dosage, 26.14°C and pH 3.32 and 129.73 mg/L dosage, 30.75°C and pH 4.36, respectively. The results of this study indicates a possible use of the K. pneumoniae biopolymer as an alternative to typically used chemical flocculants for removal of amoebae cysts from water.
Collapse
Affiliation(s)
- Haijuan Zhao
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | | | | |
Collapse
|
21
|
Edwards-Smallbone J, Pleass RJ, Khan NA, Flynn RJ. Acanthamoeba interactions with the blood–brain barrier under dynamic fluid flow. Exp Parasitol 2012; 132:367-72. [DOI: 10.1016/j.exppara.2012.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/14/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
|
22
|
Siddiqui R, Khan NA. Biology and pathogenesis of Acanthamoeba. Parasit Vectors 2012; 5:6. [PMID: 22229971 PMCID: PMC3284432 DOI: 10.1186/1756-3305-5-6] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 01/10/2012] [Indexed: 12/18/2022] Open
Abstract
Acanthamoeba is a free-living protist pathogen, capable of causing a blinding keratitis and fatal granulomatous encephalitis. The factors that contribute to Acanthamoeba infections include parasite biology, genetic diversity, environmental spread and host susceptibility, and are highlighted together with potential therapeutic and preventative measures. The use of Acanthamoeba in the study of cellular differentiation mechanisms, motility and phagocytosis, bacterial pathogenesis and evolutionary processes makes it an attractive model organism. There is a significant emphasis on Acanthamoeba as a Trojan horse of other microbes including viral, bacterial, protists and yeast pathogens.
Collapse
|
23
|
Elsheikha HM, Khan NA. Protozoa traversal of the blood–brain barrier to invade the central nervous system. FEMS Microbiol Rev 2010; 34:532-53. [DOI: 10.1111/j.1574-6976.2010.00215.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
24
|
Thai Acanthamoeba isolate (T4) induced apoptotic death in neuroblastoma cells via the Bax-mediated pathway. Parasitol Int 2010; 59:512-6. [PMID: 20601106 DOI: 10.1016/j.parint.2010.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 06/05/2010] [Accepted: 06/15/2010] [Indexed: 11/21/2022]
Abstract
A Thai Acanthamoeba isolate named AS recovered from a corneal scraping of a keratitis patient was genotypically determined as T4. AS trophozoites were used for studying Acanthamoeba-induced apoptosis in mouse neuroblastoma NA cells during in vitro co-cultivation. The Acanthamoeba-exposed NA cells showed signs of apoptosis including cell shrinkage, nuclear condensation and DNA fragmentation. The effect was confirmed by DNA laddering electrophoresis. Involvement of caspase enzymes and mitochondrial pro- and anti-apoptotic proteins (Bax and Bcl-2) in AS-induced apoptosis was determined. The use of Z-VAD-FMK, a pan-caspase inhibitor, significantly reduced the apoptotic effect, while Bax/Bcl-2 ratio analysis showed a significant increase in the expression of apoptotic proteins in AS-exposed NA cells. These results strongly indicated that apoptosis induced by AS trophozoites is caspase-dependent and is mediated by over-expression of pro-apoptotic proteins in the mitochondrial pathway. This is the first report on the role of Bax in mediating apoptosis induced by Acanthamoeba.
Collapse
|
25
|
Ferreira GA, Magliano AC, Pral EM, Alfieri SC. Elastase secretion in Acanthamoeba polyphaga. Acta Trop 2009; 112:156-63. [PMID: 19632188 DOI: 10.1016/j.actatropica.2009.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 05/20/2009] [Accepted: 07/18/2009] [Indexed: 10/20/2022]
Abstract
Acanthamoeba species are frequently isolated from soil and water collections. In the environment, the organisms multiply as phagotrophic trophozoites and encyst under adverse conditions. Several species are known to infect man, causing keratitis and opportunistic diseases. The mechanisms underlying tissue damage and invasion by the amoebae are being elucidated and the involvement of secreted peptidases, particularly serine peptidases, has been demonstrated. Here, elastase activity was examined in Acanthamoeba-conditioned medium (ACM), making use of elastin-Congo red (ECR) and synthetic peptide p-nitroanilide substrates. ACM hydrolysed ECR over a broad pH range and optimally at a pH of 7.5 and above. Indicating the activity of serine and metallopeptidases, Congo red release was potently inhibited by PMSF, antipain, chymostatin and 1,10-phenanthroline, partially reduced by elastatinal and EDTA, and unaffected by 1,7-phenanthroline and E-64. Screening with synthetic substrates mainly showed the activity of serine peptidases. ACM efficiently hydrolysed Suc-Ala(2)-Pro-Leu-pNA and Suc-Ala(2)-Pro-Phe-pNA over a broad pH range (7.0-9.5) and was weakly active against Suc-Ala(3)-pNA, a substrate found to be optimally hydrolysed at a pH around 7.0. Following ammonium sulfate precipitation of ACM proteins and FPLC analysis, the majority of the ECR-splitting activity, characterised as serine peptidases, bound to CM-sepharose and co-eluted with part of the Suc-Ala(2)-Pro-Phe-pNA-hydrolysing activity in a gradient of 0-0.6M NaCl. In the corresponding FPLC fractions, serine peptidases resolving in the region of 70-130kDa were detected in gelatin gels. Overall, the results demonstrate that trophozoites secrete elastases, and additionally suggest the high molecular weight serine peptidases as possible elastase candidates.
Collapse
|
26
|
In vitro activity of Acanthamoeba castellanii on human platelets and erythrocytes. Infect Immun 2008; 77:733-8. [PMID: 19015256 DOI: 10.1128/iai.00202-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The effect of Acanthamoeba on human platelets and erythrocytes has not been fully elucidated. This paper reports that cell-free supernatants prepared from A. castellanii can activate human platelets, causing both a significant increase in the cytosolic free-calcium concentration and platelet aggregation. In addition, we demonstrated that platelet activation depends on the activity of ADP constitutively secreted into the medium by trophozoites. This study also showed that A. castellanii can affect human red blood cells, causing hemolysis, and provided evidence that hemolysis occurs in both contact-dependent and contact-independent ways; there are differences in kinetics, hemolytic activity, and calcium dependency between the contact-dependent and contact-independent mechanisms. Partial characterization of contact-independent hemolysis indicated that ADP does not affect the plasma membrane permeability of erythrocytes and that heat treatment of amoebic cell-free supernatant abolishes its hemolytic activity. These findings suggest that some heat-labile molecules released by A. castellanii trophozoites are involved in this phenomenon. Finally, our data suggest that human platelets and erythrocytes may be potential cell targets during Acanthamoeba infection.
Collapse
|
27
|
Abstract
Acanthamoeba granulomatous encephalitis is a rare disease that almost always proves fatal. Death occurs mainly due to neurological complications; however, the pathogenesis and pathophysiology associated with this disease remain incompletely understood. Haematogenous spread is a key step in the development of Acanthamoeba encephalitis, but it is not clear how circulating amoebae breakthrough the blood–brain barrier to gain entry into the central nervous system to produce the disease. This review of the literature describes the parasite factors and immune-mediated mechanisms involved in the blood–brain barrier dysfunction leading to neuropathogenesis.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- School of Biological and Chemical Sciences, Birkbeck College, University of London, London WC1E 7HX, UK
| |
Collapse
|
28
|
Khan NA. Acanthamoeba invasion of the central nervous system. Int J Parasitol 2007; 37:131-8. [PMID: 17207487 DOI: 10.1016/j.ijpara.2006.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 11/09/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022]
Abstract
Pathogenic Acanthamoeba are known to infect the CNS, resulting in fatal granulomatous encephalitis. The mechanisms associated with the pathogenesis remain unclear; however pathophysiological complications involving the CNS most likely include induction of pro-inflammatory responses, invasion of the blood-brain barrier and the connective tissue and neuronal damage leading to brain dysfunction. The routes of entry include the olfactory neuroepithelium pathway and/or lower respiratory tract, followed by haematogenous spread. Skin lesions may provide direct entry into the bloodstream, bypassing the lower respiratory tract. For the haematogenous route, entry of amoebae into the CNS most likely occurs at the sites of the blood-brain barrier. Recent studies have identified several molecular mechanisms associated with Acanthamoeba traversal of the blood-brain barrier and targeting those may help develop therapeutic interventions and/or design preventative strategies.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- School of Biological and Chemical Sciences, Birkbeck College, University of London, London WC1E 7HX, UK.
| |
Collapse
|
29
|
Abstract
Acanthamoeba is an opportunistic protozoan that is widely distributed in the environment and is well recognized to produce serious human infections, including a blinding keratitis and a fatal encephalitis. This review presents our current understanding of the burden of Acanthamoeba infections on human health, their pathogenesis and pathophysiology, and molecular mechanisms associated with the disease, as well as virulence traits of Acanthamoeba that may be targets for therapeutic interventions and/or the development of preventative measures.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- School of Biological and Chemical Sciences, Birkbeck College, University of London, London, UK.
| |
Collapse
|
30
|
Mattana A, Serra C, Mariotti E, Delogu G, Fiori PL, Cappuccinelli P. Acanthamoeba castellanii promotion of in vitro survival and transmission of coxsackie b3 viruses. EUKARYOTIC CELL 2006; 5:665-71. [PMID: 16607014 PMCID: PMC1459673 DOI: 10.1128/ec.5.4.665-671.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 01/18/2006] [Indexed: 11/20/2022]
Abstract
This work was undertaken to determine whether Acanthamoeba could play a role in the survival and transmission of coxsackieviruses and focused on in vitro interactions between Acanthamoeba castellanii and coxsackie B3 viruses (CVB-3). Residual virus titer evaluations and immunofluorescence experiments revealed a remarkable CVB-3 adsorption on amoeba surfaces and accumulation inside cells. The survival of viruses was independent of the dynamics of amoeba replication and encystment. In addition, our results indicated that virus-infected amoebas can release infectious viruses during interaction with human macrophages. On the basis of these data, Acanthamoeba appears to be a potential promoter of the survival of coxsackieviruses and their transmission to human hosts.
Collapse
Affiliation(s)
- A Mattana
- Dipartimento di Scienze del Farmaco, Via Muroni 23/A, 07100 Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Fiori PL, Mattana A, Dessì D, Conti S, Magliani W, Polonelli L. In vitro acanthamoebicidal activity of a killer monoclonal antibody and a synthetic peptide. J Antimicrob Chemother 2006; 57:891-8. [PMID: 16507561 DOI: 10.1093/jac/dkl051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To evaluate the in vitro microbicidal activity against Acanthamoeba castellanii of a murine monoclonal anti-idiotypic antibody (KTmAb) and a synthetic killer mimotope (KP), which mimic a yeast killer toxin (KT) characterized by a wide spectrum of antimicrobial activity through interaction with specific cell wall receptors, mainly constituted by beta-glucans. METHODS Amoebicidal activity was investigated after incubation of trophozoites under different experimental conditions with laminarinase, KTmAb, KP and a scrambled decapeptide (SP). To confirm the specific interaction of KP with beta-glucans, the experiments were also carried out in the presence of laminarin (beta1-3-glucan) or pustulan (beta1-6-glucan); both glucan molecules were co-incubated with KP or SP. RESULTS KTmAb and KP exhibited a time-dependent killing activity, in comparison with SP or heat-inactivated KTmAb; this activity was completely abolished by pre-incubation with laminarin, but not by pustulan. Notably, in vitro amoebicidal activity was observed in the presence of laminarinase, an enzyme that specifically hydrolyses beta-glucans. Furthermore, KP specifically inhibited the growth of Acanthamoeba on infected contact lenses and the remaining adherent KP-treated trophozoites appeared strongly damaged. CONCLUSIONS The results indicate that the expression of beta1-3-glucan receptors in the cell membrane is probably modulated during cell growth of A. castellanii and is critical for the killing activity of KT-like molecules. Our data confirm the broad antimicrobial spectra of KTmAb and KP, emphasize the crucial role of beta1-3-glucan in microbial physiology and suggest the potential use of KTmAb and KP in the prevention and therapy of Acanthamoeba infections or in preventing Acanthamoeba contamination during storage of contact lenses.
Collapse
Affiliation(s)
- Pier Luigi Fiori
- Department of Biomedical Sciences, Division of Experimental and Clinical Microbiology, University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Sissons J, Kim KS, Stins M, Jayasekera S, Alsam S, Khan NA. Acanthamoeba castellanii induces host cell death via a phosphatidylinositol 3-kinase-dependent mechanism. Infect Immun 2005; 73:2704-8. [PMID: 15845472 PMCID: PMC1087316 DOI: 10.1128/iai.73.5.2704-2708.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Granulomatous amoebic encephalitis due to Acanthamoeba castellanii is a serious human infection with fatal consequences, but it is not clear how the circulating amoebae interact with the blood-brain barrier and transmigrate into the central nervous system. We studied the effects of an Acanthamoeba encephalitis isolate belonging to the T1 genotype on human brain microvascular endothelial cells, which constitute the blood-brain barrier. Using an apoptosis-specific enzyme-linked immunosorbent assay, we showed that Acanthamoeba induces programmed cell death in brain microvascular endothelial cells. Next, we observed that Acanthamoeba specifically activates phosphatidylinositol 3-kinase. Acanthamoeba-mediated brain endothelial cell death was abolished using LY294002, a phosphatidylinositol 3-kinase inhibitor. These results were further confirmed using brain microvascular endothelial cells expressing dominant negative forms of phosphatidylinositol 3-kinase. This is the first demonstration that Acanthamoeba-mediated brain microvascular endothelial cell death is dependent on phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- James Sissons
- School of Biological and Chemical Sciences, Birkbeck, College, University of London, London WC1E 7HX, England, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Marciano-Cabral F, Ludwick C, Puffenbarger RA, Cabral GA. Differential Stimulation of Microglial Pro-Inflammatory Cytokines by Acanthamoeba culbertsoni versus Acanthamoeba castellanii. J Eukaryot Microbiol 2004; 51:472-9. [PMID: 15352331 DOI: 10.1111/j.1550-7408.2004.tb00398.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acanthamoeba spp. are opportunistic pathogens that cause granulomatous amebic encephalitis. We compared the highly pathogenic species A. culbertsoni to the relatively less pathogenic species A. castellanii for its capacity to elicit from neonatal rat microglia the gene expression of pro-inflammatory cytokines. Acanthamoeba culbertsoni elicited a robust cytokine gene response by neonatal rat microglia in vitro as compared to A. castellanii. The preponderant cytokine elicited at the mRNA and protein levels was interleukin-1beta. In addition, transmission electron microscopy revealed that microglial cells were capable of phagocytozing A. castellanii. In contrast, A. culbertsoni destroyed microglia. Collectively, these results suggest that a combined action of pro-inflammatory cytokines and destruction of host cells by amebae contribute to the pathology caused by the more pathogenic species.
Collapse
Affiliation(s)
- Francine Marciano-Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0678, USA.
| | | | | | | |
Collapse
|
34
|
Sak K, Boeynaems JM, Everaus H. Involvement of P2Y receptors in the differentiation of haematopoietic cells. J Leukoc Biol 2003; 73:442-7. [PMID: 12660218 DOI: 10.1189/jlb.1102561] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The effects of extracellular nucleotides are mediated by multiple P2X ionotropic receptors and G protein-coupled P2Y receptors. These receptors are ubiquitous, but few physiological roles have been firmly identified. In this review article, we present a survey of the functional expression of P2Y receptors in the different haematopoietic lineages by analyzing the selectivity of these cells for the various adenine and uracil nucleotides as well as the second messenger signaling pathways involved. The pharmacological profiles of metabotropic nucleotide receptors are different among myeloid, megakaryoid, erythroid, and lymphoid cells and change during differentiation. A role of P2Y receptors in the differentiation and maturation of blood cells has been proposed: In particular the P2Y(11)receptor seems to be involved in the granulocytic differentiation of promyelocytes and in the maturation of monocyte-derived dendritic cells. It is suggested that the role of P2Y receptors in the maturation of blood cells may be more important than believed so far.
Collapse
Affiliation(s)
- Katrin Sak
- Hematology-Oncology Clinic, University of Tartu, Estonia.
| | | | | |
Collapse
|