1
|
Irani Shemirani M. Transcriptional markers classifying Escherichia coli and Staphylococcus aureus induced sepsis in adults: A data-driven approach. PLoS One 2024; 19:e0305920. [PMID: 38968271 PMCID: PMC11226107 DOI: 10.1371/journal.pone.0305920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024] Open
Abstract
Sepsis is a life-threatening condition mainly caused by gram-negative and gram-positive bacteria. Understanding the type of causative agent in the early stages is essential for precise antibiotic therapy. This study sought to identify a host gene set capable of distinguishing between sepsis induced by gram-negative bacteria; Escherichia coli and gram-positive bacteria; Staphylococcus aureus in community-onset adult patients. In the present study, microarray expression information was used to apply the Least Absolute Shrinkage and Selection Operator (Lasso) technique to select the predictive gene set for classifying sepsis induced by E. coli or S. aureus pathogens. We identified 25 predictive genes, including LILRA5 and TNFAIP6, which had previously been associated with sepsis in other research. Using these genes, we trained a logistic regression classifier to distinguish whether a sample contains an E. coli or S. aureus infection or belongs to a healthy control group, and subsequently assessed its performance. The classifier achieved an Area Under the Curve (AUC) of 0.96 for E. coli and 0.98 for S. aureus-induced sepsis, and perfect discrimination (AUC of 1) for healthy controls from the other conditions in a 10-fold cross-validation. The genes demonstrated an AUC of 0.75 in distinguishing between sepsis patients with E. coli and S. aureus pathogens. These findings were further confirmed in two distinct independent validation datasets which gave high prediction AUC ranging from 0.72-0.87 and 0.62 in distinguishing three groups of participants and two groups of patients respectively. These genes were significantly enriched in the immune system, cytokine signaling in immune system, innate immune system, and interferon signaling. Transcriptional patterns in blood can differentiate patients with E. coli-induced sepsis from those with S. aureus-induced sepsis. These diagnostic markers, upon validation in larger trials, may serve as a foundation for a reliable differential diagnostics assay.
Collapse
Affiliation(s)
- Mahnaz Irani Shemirani
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Burton RJ, Raffray L, Moet LM, Cuff SM, White DA, Baker SE, Moser B, O’Donnell VB, Ghazal P, Morgan MP, Artemiou A, Eberl M. Conventional and unconventional T-cell responses contribute to the prediction of clinical outcome and causative bacterial pathogen in sepsis patients. Clin Exp Immunol 2024; 216:293-306. [PMID: 38430552 PMCID: PMC11097916 DOI: 10.1093/cei/uxae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/04/2024] Open
Abstract
Sepsis is characterized by a dysfunctional host response to infection culminating in life-threatening organ failure that requires complex patient management and rapid intervention. Timely diagnosis of the underlying cause of sepsis is crucial, and identifying those at risk of complications and death is imperative for triaging treatment and resource allocation. Here, we explored the potential of explainable machine learning models to predict mortality and causative pathogen in sepsis patients. By using a modelling pipeline employing multiple feature selection algorithms, we demonstrate the feasibility of identifying integrative patterns from clinical parameters, plasma biomarkers, and extensive phenotyping of blood immune cells. While no single variable had sufficient predictive power, models that combined five and more features showed a macro area under the curve (AUC) of 0.85 to predict 90-day mortality after sepsis diagnosis, and a macro AUC of 0.86 to discriminate between Gram-positive and Gram-negative bacterial infections. Parameters associated with the cellular immune response contributed the most to models predictive of 90-day mortality, most notably, the proportion of T cells among PBMCs, together with expression of CXCR3 by CD4+ T cells and CD25 by mucosal-associated invariant T (MAIT) cells. Frequencies of Vδ2+ γδ T cells had the most profound impact on the prediction of Gram-negative infections, alongside other T-cell-related variables and total neutrophil count. Overall, our findings highlight the added value of measuring the proportion and activation patterns of conventional and unconventional T cells in the blood of sepsis patients in combination with other immunological, biochemical, and clinical parameters.
Collapse
Affiliation(s)
- Ross J Burton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Adult Critical Care, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK
| | - Loïc Raffray
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Department of Internal Medicine, Félix Guyon University Hospital of La Réunion, Saint Denis, Réunion Island, France
| | - Linda M Moet
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Simone M Cuff
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Daniel A White
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Sarah E Baker
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Bernhard Moser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Valerie B O’Donnell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Peter Ghazal
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Matt P Morgan
- Adult Critical Care, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK
| | - Andreas Artemiou
- School of Mathematics, Cardiff University, Cardiff, UK
- Department of Information Technologies, University of Limassol, 3025 Limassol, Cyprus
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Tang A, Shi Y, Dong Q, Wang S, Ge Y, Wang C, Gong Z, Zhang W, Chen W. Prognostic differences in sepsis caused by gram-negative bacteria and gram-positive bacteria: a systematic review and meta-analysis. Crit Care 2023; 27:467. [PMID: 38037118 PMCID: PMC10691150 DOI: 10.1186/s13054-023-04750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Bacteria are the main pathogens that cause sepsis. The pathogenic mechanisms of sepsis caused by gram-negative and gram-positive bacteria are completely different, and their prognostic differences in sepsis remain unclear. METHODS The PubMed, Web of Science, Cochrane Library, and Embase databases were searched for Chinese and English studies (January 2003 to September 2023). Observational studies involving gram-negative (G (-))/gram-positive (G (+)) bacterial infection and the prognosis of sepsis were included. The stability of the results was evaluated by sensitivity analysis. Funnel plots and Egger tests were used to check whether there was publication bias. A meta-regression analysis was conducted on the results with high heterogeneity to identify the source of heterogeneity. A total of 6949 articles were retrieved from the database, and 45 studies involving 5586 subjects were included after screening according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Twenty-seven high-quality studies and 18 moderate-quality studies were identified according to the Newcastle‒Ottawa Scale score. There was no significant difference in the survival rate of sepsis caused by G (-) bacteria and G (+) bacteria (OR 0.95, 95% CI 0.70-1.28). Subgroup analysis according to survival follow-up time showed no significant difference. The serum concentrations of C-reactive protein (CRP) (SMD = 0.39, 95% CI 0.02-0.76), procalcitonin (SMD = 1.95, 95% CI 1.32-2.59) and tumor necrosis factor-alpha (TNF-α) (MD = 0.31, 95% CI 0.25-0.38) in the G (-) bacterial infection group were significantly higher than those in the G (+) bacterial infection group, but there was no significant difference in IL-6 (SMD = 1.33, 95% CI - 0.18-2.84) and WBC count (MD = - 0.15, 95% CI - 0.96-00.66). There were no significant differences between G (-) and G (+) bacteria in D dimer level, activated partial thromboplastin time, thrombin time, international normalized ratio, platelet count, length of stay or length of ICU stay. Sensitivity analysis of the above results indicated that the results were stable. CONCLUSION The incidence of severe sepsis and the concentrations of inflammatory factors (CRP, PCT, TNF-α) in sepsis caused by G (-) bacteria were higher than those caused by G (+) bacteria. The two groups had no significant difference in survival rate, coagulation function, or hospital stay. The study was registered with PROSPERO (registration number: CRD42023465051).
Collapse
Affiliation(s)
- Aling Tang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingqing Dong
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sihui Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yao Ge
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyan Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhimin Gong
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weizhen Zhang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wei Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Sala G, Orsetti C, Meucci V, De Marchi L, Sgorbini M, Bonelli F. Case-Control Study: Endogenous Procalcitonin and Protein Carbonylated Content as a Potential Biomarker of Subclinical Mastitis in Dairy Cows. Vet Sci 2023; 10:670. [PMID: 38133221 PMCID: PMC10747190 DOI: 10.3390/vetsci10120670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Procalcitonin (PCT) and protein carbonylated content (PCC) are promising biomarkers for bacterial infection and inflammation in veterinary medicine. This study examined plasma PCT and PCC levels in healthy cows (H) and cows with subclinical mastitis (SCM). A total of 130 cows (65 H and 65 SCM) were included in this study. Blood samples were collected, and plasma was frozen at -80 °C. PCT levels were determined using a bovine procalcitonin ELISA kit, while PCC was measured following the methodology of Levine et al. Statistical analysis revealed a significant difference in PCT levels between H (75.4 pg/mL) and SCM (107.3 pg/mL) cows (p < 0.001) and significantly lower concentrations of PCC in the SCM group (H: 0.102 nmol/mL/mg, SCM: 0.046 nmol/mL/mg; p < 0.001). The PCT cut-off value for distinguishing healthy and subclinical mastitis animals was >89.8 pg/mL (AUC 0.695), with a sensitivity of 66.2% and specificity of 69.2%. PCT showed potential value as a diagnostic tool to help in decision making for subclinical mastitis cases, while PCC requires further studies to investigate the trend of this biomarker during localized pathology.
Collapse
Affiliation(s)
- Giulia Sala
- Department of Veterinary Sciences, University of Pisa, Via Livornese s.n.c., San Piero a Grado, 56122 Pisa, Italy; (C.O.); (V.M.); (L.D.M.); (M.S.); (F.B.)
- Centro di Ricerche Agro-Ambientali “E. Avanzi”, University of Pisa, San Piero a Grado (PI), 56122 Pisa, Italy
| | - Chiara Orsetti
- Department of Veterinary Sciences, University of Pisa, Via Livornese s.n.c., San Piero a Grado, 56122 Pisa, Italy; (C.O.); (V.M.); (L.D.M.); (M.S.); (F.B.)
- Centro di Ricerche Agro-Ambientali “E. Avanzi”, University of Pisa, San Piero a Grado (PI), 56122 Pisa, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, Via Livornese s.n.c., San Piero a Grado, 56122 Pisa, Italy; (C.O.); (V.M.); (L.D.M.); (M.S.); (F.B.)
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, Via Livornese s.n.c., San Piero a Grado, 56122 Pisa, Italy; (C.O.); (V.M.); (L.D.M.); (M.S.); (F.B.)
| | - Micaela Sgorbini
- Department of Veterinary Sciences, University of Pisa, Via Livornese s.n.c., San Piero a Grado, 56122 Pisa, Italy; (C.O.); (V.M.); (L.D.M.); (M.S.); (F.B.)
- Centro di Ricerche Agro-Ambientali “E. Avanzi”, University of Pisa, San Piero a Grado (PI), 56122 Pisa, Italy
| | - Francesca Bonelli
- Department of Veterinary Sciences, University of Pisa, Via Livornese s.n.c., San Piero a Grado, 56122 Pisa, Italy; (C.O.); (V.M.); (L.D.M.); (M.S.); (F.B.)
- Centro di Ricerche Agro-Ambientali “E. Avanzi”, University of Pisa, San Piero a Grado (PI), 56122 Pisa, Italy
| |
Collapse
|
5
|
Pinheiro da Silva F, Gonçalves ANA, Duarte‐Neto AN, Dias TL, Barbeiro HV, Breda CNS, Breda LCD, Câmara NOS, Nakaya HI. Transcriptome analysis of six tissues obtained post-mortem from sepsis patients. J Cell Mol Med 2023; 27:3157-3167. [PMID: 37731199 PMCID: PMC10568675 DOI: 10.1111/jcmm.17938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Septic shock is a life-threatening clinical condition characterized by a robust immune inflammatory response to disseminated infection. Little is known about its impact on the transcriptome of distinct human tissues. To address this, we performed RNA sequencing of samples from the prefrontal cortex, hippocampus, heart, lung, kidney and colon of seven individuals who succumbed to sepsis and seven uninfected controls. We identified that the lungs and colon were the most affected organs. While gene activation dominated, strong inhibitory signals were also detected, particularly in the lungs. We found that septic shock is an extremely heterogeneous disease, not only when different individuals are investigated, but also when comparing different tissues of the same patient. However, several pathways, such as respiratory electron transport and other metabolic functions, revealed distinctive alterations, providing evidence that tissue specificity is a hallmark of sepsis. Strikingly, we found evident signals of accelerated ageing in our sepsis population.
Collapse
Affiliation(s)
| | | | | | | | - Hermes Vieira Barbeiro
- Laboratório de Emergências Clínicas, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | | | | | | | - Helder I. Nakaya
- Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloBrazil
- Hospital Israelita Albert EinsteinSão PauloBrazil
| |
Collapse
|
6
|
Chen X, Zhou Y, Luo L, Peng X, Xiang T. A predictive model for the identification of the risk of sepsis in patients with Gram-positive bacteria in the intensive care unit. J Thorac Dis 2023; 15:4896-4913. [PMID: 37868898 PMCID: PMC10586955 DOI: 10.21037/jtd-23-1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
Background Gram-positive bacterial infections are very common in the intensive care unit (ICU) and may lead to sepsis. However, there are no models to predict the risk of sepsis in persons with Gram-positive bacterial infections. Therefore, the purpose of this study was to create and validate a nomogram for predicting the risk of sepsis in patients with common gram-positive bacterial infections. Methods Patients infected with three common Gram-positive bacteria who were admitted to the Multiparameter Intelligent Monitoring in Intensive Care IV (MIMIC IV) database were included in this retrospective cohort study. A Cox regression model was used to develop a nomogram for predicting 3-day, 1-week, 2-week, and 1-month sepsis probability. The performance of the nomogram was analyzed using receiver operating characteristic (ROC) curves, calibration curves, and decision curves. Results In total, 19,961 eligible patients were enrolled from MIMIC IV datasets. All participants were allocated to training and validation cohorts at random in a 7:3 ratio. The use of more than 3 types of antibiotics, dementia, ethnicity, aspartate aminotransferase (AST), neutrophils, the use of antifungal drug, ventilation and need for vasopressors were all discovered to be highly correlated with enhanced probability of sepsis in patients with Gram-positive bacteria. A prediction nomogram was constructed using these 8 predictors. The area under the curve (AUC) for predicting 3-day, 1-week, 2-week, and 1-month sepsis risk in the training cohort was 0.857, 0.774, 0.740, and 0.728, respectively, and that in the validation cohort was 0.855, 0.781, 0.742, and 0.742, respectively. The predictive power of our model is better than the SOFA score. The model had good predictive performance in all three classes of Gram-positive bacteria. Based on the calibration and clinical decision curves, the nomogram correctly predicted sepsis in patients with Gram-positive bacteria. Conclusions We were able to build a nomogram to predict the probability of sepsis in patients with Gram-positive bacteria, particularly those infected with Streptococcus spp. and Staphylococcus spp. This model performs effectively, and it might be used clinically to manage patients with Gram-positive bacteria.
Collapse
Affiliation(s)
- Xiaohong Chen
- Emergency Department, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yufeng Zhou
- Emergency Department, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Li Luo
- Emergency Department, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Xiaojing Peng
- Emergency Department, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Tao Xiang
- Emergency Department, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
7
|
Parra-Llorca A, Pinilla-Gonzlez A, Torrejón-Rodríguez L, Lara-Cantón I, Kuligowski J, Collado MC, Gormaz M, Aguar M, Vento M, Serna E, Cernada M. Effects of Sepsis on Immune Response, Microbiome and Oxidative Metabolism in Preterm Infants. CHILDREN (BASEL, SWITZERLAND) 2023; 10:602. [PMID: 36980160 PMCID: PMC10046958 DOI: 10.3390/children10030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
This is a narrative review about the mechanisms involved in bacterial sepsis in preterm infants, which is an illness with a high incidence, morbidity, and mortality. The role of the innate immune response and its relationship with oxidative stress in the pathogenesis are described as well as their potential implementation as early biomarkers. Moreover, we address the impact that all the mechanisms triggered by sepsis have on the dysbiosis and the changes on neonatal microbiota.
Collapse
Affiliation(s)
- Anna Parra-Llorca
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Alejandro Pinilla-Gonzlez
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Laura Torrejón-Rodríguez
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Inmaculada Lara-Cantón
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - María Gormaz
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Marta Aguar
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Máximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Eva Serna
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - María Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| |
Collapse
|
8
|
Avital G, Kuperwaser F, Pountain AW, Lacey KA, Zwack EE, Podkowik M, Shopsin B, Torres VJ, Yanai I. The tempo and mode of gene regulatory programs during bacterial infection. Cell Rep 2022; 41:111477. [PMID: 36223751 PMCID: PMC9741813 DOI: 10.1016/j.celrep.2022.111477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 06/10/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022] Open
Abstract
Innate immune recognition of bacterial pathogens is a key determinant of the ensuing systemic response, and host or pathogen heterogeneity in this early interaction can impact the course of infection. To gain insight into host response heterogeneity, we investigate macrophage inflammatory dynamics using primary human macrophages infected with Group B Streptococcus. Transcriptomic analysis reveals discrete cellular states within responding macrophages, one of which consists of four sub-states, reflecting inflammatory activation. Infection with six additional bacterial species-Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis, Yersinia pseudotuberculosis, Shigella flexneri, and Salmonella enterica-recapitulates these states, though at different frequencies. We show that modulating the duration of infection and the presence of a toxin impacts inflammatory trajectory dynamics. We provide evidence for this trajectory in infected macrophages in an in vivo model of Staphylococcus aureus infection. Our cell-state analysis defines a framework for understanding inflammatory activation dynamics in response to bacterial infection.
Collapse
Affiliation(s)
- Gal Avital
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA,These authors contributed equally
| | - Felicia Kuperwaser
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA,These authors contributed equally
| | - Andrew W. Pountain
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Keenan A. Lacey
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Erin E. Zwack
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA,Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Itai Yanai
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA,Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA,Lead contact,Correspondence:
| |
Collapse
|
9
|
Ferrisse TM, Dias LM, de Oliveira AB, Jordão CC, Mima EGDO, Pavarina AC. Efficacy of Antimicrobial Photodynamic Therapy Mediated by Photosensitizers Conjugated with Inorganic Nanoparticles: Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:2050. [PMID: 36297486 PMCID: PMC9612113 DOI: 10.3390/pharmaceutics14102050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) is a method that does not seem to promote antimicrobial resistance. Photosensitizers (PS) conjugated with inorganic nanoparticles for the drug-delivery system have the purpose of enhancing the efficacy of aPDT. The present study was to perform a systematic review and meta-analysis of the efficacy of aPDT mediated by PS conjugated with inorganic nanoparticles. The PubMed, Scopus, Web of Science, Science Direct, Cochrane Library, SciELO, and Lilacs databases were searched. OHAT Rob toll was used to assess the risk of bias. A random effect model with an odds ratio (OR) and effect measure was used. Fourteen articles were able to be included in the present review. The most frequent microorganisms evaluated were Staphylococcus aureus and Escherichia coli, and metallic and silica nanoparticles were the most common drug-delivery systems associated with PS. Articles showed biases related to blinding. Significant results were found in aPDT mediated by PS conjugated with inorganic nanoparticles for overall reduction of microorganism cultured in suspension (OR = 0.19 [0.07; 0.67]/p-value = 0.0019), E. coli (OR = 0.08 [0.01; 0.52]/p-value = 0.0081), and for Gram-negative bacteria (OR = 0.12 [0.02; 0.56/p-value = 0.0071). This association approach significantly improved the efficacy in the reduction of microbial cells. However, additional blinding studies evaluating the efficacy of this therapy over microorganisms cultured in biofilm are required.
Collapse
Affiliation(s)
- Túlio Morandin Ferrisse
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Luana Mendonça Dias
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Analú Barros de Oliveira
- Department of Morphology, Pediatric Dentistry and Orthodontic, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil
| | - Cláudia Carolina Jordão
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Ewerton Garcia de Oliveira Mima
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Ana Claudia Pavarina
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| |
Collapse
|
10
|
Biomarkers of sepsis in pigs, horses and cattle: from acute phase proteins to procalcitonin. Anim Health Res Rev 2022; 23:82-99. [PMID: 35795920 DOI: 10.1017/s1466252322000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sepsis is a complex clinical syndrome triggered by an inflammatory host response to an infection. It is usually complicated to detect and diagnose, and has severe consequences in human and veterinary health, especially when treatment is not started early. Therefore, efforts to detect sepsis accurately are needed. In addition, its proper diagnosis could reduce the misuse of antibiotics, which is essential fighting against antimicrobial resistance. This case is a particular issue in farm animals, as antibiotics have been traditionally given massively, but now they are becoming increasingly restricted. When sepsis is suspected in animals, the most frequently used biomarkers are acute phase proteins such as C-reactive protein, serum amyloid A and haptoglobin, but their concentrations can increase in other inflammatory conditions. In human patients, the most promising biomarkers to detect sepsis are currently procalcitonin and presepsin, and there is a wide range of other biomarkers under study. However, there is little information on the application of these biomarkers in veterinary species. This review aims to describe the general concepts of sepsis and the current knowledge about the biomarkers of sepsis in pigs, horses, and cattle and to discuss possible advances in the field.
Collapse
|
11
|
Activated polymorphonuclear derived extracellular vesicles are potential biomarkers of periprosthetic joint infection. PLoS One 2022; 17:e0268076. [PMID: 35533148 PMCID: PMC9084519 DOI: 10.1371/journal.pone.0268076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background Extracellular vesicles (EVs) are considered as crucial players in a wide variety of biological processes. Although their importance in joint diseases or infections has been shown by numerous studies, much less is known about their function in periprosthetic joint infection (PJI). Our aim was to investigate activated polymorphonuclear (PMN)-derived synovial EVs in patients with PJI. Questions/Purposes (1) Is there a difference in the number and size of extracellular vesicles between periprosthetic joint aspirates of patients with PJI and aseptic loosening? (2) Are these vesicles morphologically different in the two groups? (3) Are there activated PMN-derived EVs in septic samples evaluated by flow cytometry after CD177 labelling? (4) Is there a difference in the protein composition carried by septic and aseptic vesicles? Methods Thirty-four patients (n = 34) were enrolled into our investigation, 17 with PJI and 17 with aseptic prosthesis loosening. Periprosthetic joint fluid was aspirated and EVs were separated. Samples were analysed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) and flow cytometry (after Annexin V and CD177 labelling). The protein content of the EVs was studied by mass spectrometry (MS). Results NTA showed particle size distribution in both groups between 150 nm and 450 nm. The concentration of EVs was significantly higher in the septic samples (p = 0.0105) and showed a different size pattern as compared to the aseptic ones. The vesicular nature of the particles was confirmed by TEM and differential detergent lysis. In the septic group, FC analysis showed a significantly increased event number both after single and double labelling with fluorochrome conjugated Annexin V (p = 0.046) and Annexin V and anti-CD177 (p = 0.0105), respectively. MS detected a significant difference in the abundance of lactotransferrin (p = 0.00646), myeloperoxidase (p = 0.01061), lysozyme C (p = 0.04687), annexin A6 (p = 0.03921) and alpha-2-HS-glycoprotein (p = 0.03146) between the studied groups. Conclusions An increased number of activated PMN derived EVs were detected in the synovial fluid of PJI patients with a characteristic size distribution and a specific protein composition. The activated PMNs-derived extracellular vesicles can be potential biomarkers of PJI.
Collapse
|
12
|
Zhang W, Zhu Q. Punicalagin suppresses inflammation in ventilator-induced lung injury through protease-activated receptor-2 inhibition-induced inhibition of NLR family pyrin domain containing-3 inflammasome activation. Chem Biol Drug Des 2022; 100:218-229. [PMID: 35434894 DOI: 10.1111/cbdd.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
Punicalagin is recorded to be a potent anti-inflammatory drug, while its effect on inflammation existing in ventilator-induced lung injury (VILI) requires further verification. Rats were pretreated with punicalagin, followed by VILI modeling. Lung histopathological examination was performed with hematoxylin-eosin staining accompanied by the lung injury score. The lung wet/dry (W/D) weight ratio and total bronchoalveolar lavage fluid (BALF) protein level were measured. After transfection with protease-activated receptor-2 (PAR2) overexpression plasmids, mouse alveolar epithelial MLE-12 cells were treated with punicalagin and then subjected to cyclic stretching. Punicalagin's cytotoxicity to MLE-12 cells were measured by MTT assay. The levels of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6), PAR2, NLR family pyrin domain containing-3 (NLRP3), and apoptosis-associated speck-like protein containing a CARD (ASC) in the BALF, lung tissues or cells were analyzed by enzyme-linked immune-sorbent assay (ELISA), qRT-PCR or/and western blot. Punicalagin treatment attenuated VILI-induced lung histopathological changes and counteracted VILI-induced increases in the lung injury score, W/D weight ratio and total protein level in BALF. Also, punicalagin treatment counteracted in vivo VILI/cyclic stretching-induced increases in the levels of PAR2, inflammatory cytokines, NLRP3, and ASC. PAR2 overexpression potentiated the cyclic stretching-induced effects, while punicalagin treatment revoked this PAR2 overexpression-induced potentiation effect. In turn, PAR2 overexpression partly resisted the punicalagin treatment-induced counteractive effects on the cyclic stretching-induced effects. Punicalagin suppresses inflammation in VILI through PAR2 inhibition-induced inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou City, China
| | - Qi Zhu
- Emergency and Critical Care Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou City, China
| |
Collapse
|
13
|
Wang Q, Li X, Tang W, Guan X, Xiong Z, Zhu Y, Gong J, Hu B. Differential Gene Sets Profiling in Gram-Negative and Gram-Positive Sepsis. Front Cell Infect Microbiol 2022; 12:801232. [PMID: 35223539 PMCID: PMC8863667 DOI: 10.3389/fcimb.2022.801232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/11/2022] [Indexed: 12/29/2022] Open
Abstract
Background The host response to bacterial sepsis is reported to be nonspecific regardless of the causative pathogen. However, newer paradigms indicated that the host response of Gram-negative sepsis may be different from Gram-positive sepsis, and the difference has not been clearly clarified. The current study aimed to explore the difference by identifying the differential gene sets using the genome-wide technique. Methods The training dataset GSE6535 and the validation dataset GSE13015 were used for bioinformatics analysis. The distinct gene sets of sepsis with different infections were screened using gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA). The intersection gene sets based on the two algorithms were confirmed through Venn analysis. Finally, the common gene sets between GSE6535 and GSE13015 were determined by GSEA. Results Two immunological gene sets in GSE6535 were identified based on GSVA, which could be used to discriminate sepsis caused by Gram-positive, Gram-negative, or mixed infection. A total of 19 gene sets were obtained in GSE6535 through Venn analysis based on GSVA and GSEA, which revealed the heterogeneity of Gram-negative and Gram-positive sepsis at the molecular level. The result was also verified by analysis of the validation set GSE13015, and 40 common differential gene sets were identified between dataset GSE13015 and dataset GSE6535 by GSEA. Conclusions The identified differential gene sets indicated that host response may differ dramatically depending on the inciting organism. The findings offer new insight to investigate the pathophysiology of bacterial sepsis.
Collapse
Affiliation(s)
- Qingliang Wang
- Department of General Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaojie Li
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenting Tang
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoling Guan
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiyong Xiong
- Department of General Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Zhu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jiao Gong, ; Bo Hu,
| | - Bo Hu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jiao Gong, ; Bo Hu,
| |
Collapse
|
14
|
Talaei K, Garan SA, Quintela BDM, Olufsen MS, Cho J, Jahansooz JR, Bhullar PK, Suen EK, Piszker WJ, Martins NRB, Moreira de Paula MA, Dos Santos RW, Lobosco M. A Mathematical Model of the Dynamics of Cytokine Expression and Human Immune Cell Activation in Response to the Pathogen Staphylococcus aureus. Front Cell Infect Microbiol 2021; 11:711153. [PMID: 34869049 PMCID: PMC8633844 DOI: 10.3389/fcimb.2021.711153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Cell-based mathematical models have previously been developed to simulate the immune system in response to pathogens. Mathematical modeling papers which study the human immune response to pathogens have predicted concentrations of a variety of cells, including activated and resting macrophages, plasma cells, and antibodies. This study aims to create a comprehensive mathematical model that can predict cytokine levels in response to a gram-positive bacterium, S. aureus by coupling previous models. To accomplish this, the cytokines Tumor Necrosis Factor Alpha (TNF-α), Interleukin 6 (IL-6), Interleukin 8 (IL-8), and Interleukin 10 (IL-10) are included to quantify the relationship between cytokine release from macrophages and the concentration of the pathogen, S. aureus, ex vivo. Partial differential equations (PDEs) are used to model cellular response and ordinary differential equations (ODEs) are used to model cytokine response, and interactions between both components produce a more robust and more complete systems-level understanding of immune activation. In the coupled cellular and cytokine model outlined in this paper, a low concentration of S. aureus is used to stimulate the measured cellular response and cytokine expression. Results show that our cellular activation and cytokine expression model characterizing septic conditions can predict ex vivo mechanisms in response to gram-negative and gram-positive bacteria. Our simulations provide new insights into how the human immune system responds to infections from different pathogens. Novel applications of these insights help in the development of more powerful tools and protocols in infection biology.
Collapse
Affiliation(s)
- Kian Talaei
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Steven A Garan
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | - Mette S Olufsen
- Department of Mathematics, North Carolina State University, Raleigh, NC, United States
| | - Joshua Cho
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,College of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Julia R Jahansooz
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Puneet K Bhullar
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States.,Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
| | - Elliott K Suen
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Walter J Piszker
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States.,College of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Nuno R B Martins
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States
| | | | | | - Marcelo Lobosco
- Department of Computer Science, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
15
|
Xu HG, Tian M, Pan SY. Clinical utility of procalcitonin and its association with pathogenic microorganisms. Crit Rev Clin Lab Sci 2021; 59:93-111. [PMID: 34663176 DOI: 10.1080/10408363.2021.1988047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this review, we summarize the relationship of PCT with pathogens, evaluate the clinical utility of PCT in the diagnosis of clinical diseases, condition monitoring and evaluation, and guiding medical decision-making, and explore current knowledge on the mechanisms by which pathogens cause changes in PCT levels. The lipopolysaccharides of the microorganisms stimulate cytokine production in host cells, which in turn stimulates production of serum PCT. Pathogens have different virulence mechanisms that lead to variable host inflammatory responses, and differences in the specific signal transduction pathways result in variable serum PCT concentrations. The mechanisms of signal transduction have not been fully elucidated. Further studies are necessary to ascertain the PCT fluctuation range of each pathogen. PCT levels are helpful in distinguishing between certain pathogens, in deciding if antibiotics are indicated, and in monitoring response to antibiotics.
Collapse
Affiliation(s)
- Hua-Guo Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Tian
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shi-Yang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Ikeda H. Plasma amino acid levels in individuals with bacterial pneumonia and healthy controls. Clin Nutr ESPEN 2021; 44:204-210. [PMID: 34330467 DOI: 10.1016/j.clnesp.2021.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND & AIMS Amino acids play an important role in immune responses and as neurotransmitters. During the course of a bacterial pneumonia episode, from the onset to the recovery phase, immune responses dramatically change, as does the metabolism of amino acids, a concept referred to as immuno-nutrition. We investigated the differences in plasma amino acid levels (PAA) between the acute and recovery phases in individuals with community-acquired pneumonia (CAP) and healthy controls. METHODS Two groups of participants were recruited: Healthy adults aged over 60 years and patients hospitalized with CAP. Samples were collected on Day 0 (the day of admission) and Day 7 (after 6-8 days treatment). RESULTS A total of 93 healthy adults and 60 patients with CAP participated in the study. Of those with CAP, 43 had their amino acids measured on Day 7. Patients with CAP had markedly decreased PAA of 12 amino acids on Day 0. Citrulline, histidine, and tryptophan remained low in male, while aspartic acid, asparagine, ornithine, proline, and threonine were higher on Day 7 in both males and females. Phenylalanine increased at Day 0 and Day7. CONCLUSIONS The findings suggest that the host response against bacterial infection changed the plasma amino acid levels. PAA on Day 7 (representing convalescence) continued to display an amino acid profile distinct from that observed in healthy individuals. Based on these findings, reconsideration for providing amino acids to patients with bacterial pneumonia should be needed depending on stage of the pneumonia from the perspective of immuno-nutrition.
Collapse
Affiliation(s)
- Hideki Ikeda
- Department of Pulmonary Medicine, Sanyudo Hospital, Yonezawa, Japan.
| |
Collapse
|
17
|
Gaborit BJ, Chaumette T, Chauveau M, Asquier-Khati A, Roquilly A, Boutoille D, Josien R, Salomon BL, Asehnoune K. Circulating Treg cells expressing TNF receptor type 2 contributes to sepsis-induced immunosuppression in patients during sepsis shock. J Infect Dis 2021; 224:2160-2169. [PMID: 34019653 DOI: 10.1093/infdis/jiab276] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Septic shock remains a major cause of death that can be complicated by a long-term impairment in immune function defining immunosuppression induced by sepsis (IS). Among Treg cells, the tumor necrosis factor receptor 2 positive (TNFR2 pos) Treg cell subset endorses significant immunosuppressive functions in human tumors and in a sepsis mouse model but have not been investigated during septic shock in humans. METHODS We prospectively enrolled patients with septic shock hospitalized in Intensive Care Unit (ICU). We performed immunophenotyping and functional tests of CD4+T cells, Treg cells and TNFR2 posTregcells, on blood samples collected at 1, 4 and 7 days after admission in ICU. RESULTS We investigated 10 patients with septic shock and compared to 10 healthy controls. Although the proportions of circulating Tregcells and TNFR2 posTregcells subsets were not increased, their CTLA-4 expression and suppressive functions in vitro were increased at 4 days of septic shock. Also, PBMC from healthy donors cultured with serum from septic shock patients had increased CTLA4 expression in TNFR2 pos Treg cells compared to TNFR2 neg Treg cells. CONCLUSION In patients with septic shock, CTLA-4 expression and suppressive function were increased in circulating TNFR2 posTreg cells. We identify TNFR2 posTreg cells as a potential attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Benjamin Jean Gaborit
- Nantes Université, Thérapeutiques Anti-Infectieuses, Nantes, France.,CHU Nantes, Department of Infectious Diseases.,CHU Nantes, INSERM, CIC, Nantes, France
| | - Tanguy Chaumette
- Nantes Université, Thérapeutiques Anti-Infectieuses, Nantes, France
| | - Marie Chauveau
- Nantes Université, Thérapeutiques Anti-Infectieuses, Nantes, France.,CHU Nantes, Department of Infectious Diseases.,CHU Nantes, INSERM, CIC, Nantes, France
| | - Antoine Asquier-Khati
- Nantes Université, Thérapeutiques Anti-Infectieuses, Nantes, France.,CHU Nantes, Department of Infectious Diseases.,CHU Nantes, INSERM, CIC, Nantes, France
| | - Antoine Roquilly
- Nantes Université, Thérapeutiques Anti-Infectieuses, Nantes, France.,CHU Nantes, Surgical Intensive Care Unit, Nantes, France
| | - David Boutoille
- Nantes Université, Thérapeutiques Anti-Infectieuses, Nantes, France.,CHU Nantes, Department of Infectious Diseases.,CHU Nantes, INSERM, CIC, Nantes, France
| | - Régis Josien
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie UMR 1064, ITUN, Nantes, France.,CHU Nantes, Laboratoire d'Immunologie, CIMNA, Nantes, France
| | - Benoit L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Karim Asehnoune
- Nantes Université, Thérapeutiques Anti-Infectieuses, Nantes, France.,CHU Nantes, Surgical Intensive Care Unit, Nantes, France
| |
Collapse
|
18
|
Shi Y, Lin J, Tao X, Qu J, Liao S, Li M, Deng K, Du P, Liu K, Thissen H, Li L, Kingshott P, Wang PY. Harnessing Colloidal Self-Assembled Patterns (cSAPs) to Regulate Bacterial and Human Stem Cell Response at Biointerfaces In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20982-20994. [PMID: 33913681 DOI: 10.1021/acsami.1c02591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The generation of complex physicochemical signals on the surface of biomedical materials is still challenging despite the fact that a broad range of surface modification methods have been developed over the last few decades. Colloidal self-assembled patterns (cSAPs) are combinations of unique colloids differing in size and surface chemistry acting as building blocks that can be programmed to generate surface patterns with exquisite control of complexity. This study reports on producing a variety of pre-modified colloids for the fabrication of cSAPs as well as post-assembly modifications to yield complex surfaces. The surface of cSAPs presents hierarchical micro- and nanostructures, localized hydrophilic/hydrophobic characteristics, and tunable surface functionality imparted by the individual colloids. The selected cSAPs can control bacterial adhesion (S. aureus, P. aeruginosa, and E. coli) and affect the cell cycle of human bone marrow stem cells (hBMSCs). Moreover, in a mouse subcutaneous model, cSAPs with selective [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium (SBMA) modification can reduce the inflammatory response after being challenged with bacteria. This study reveals that functionalized cSAPs are versatile tools for controlling cellular responses at biointerfaces, which is instructive for biomaterials or biodevices.
Collapse
Affiliation(s)
- Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jing Qu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Shumin Liao
- Department of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Mengyao Li
- Department of Otolaryngology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong 519020, China
| | - Ke Deng
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, 3168 Victoria, Australia
| | - Liang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Peter Kingshott
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
19
|
Eslamloo K, Caballero-Solares A, Inkpen SM, Emam M, Kumar S, Bouniot C, Avendaño-Herrera R, Jakob E, Rise ML. Transcriptomic Profiling of the Adaptive and Innate Immune Responses of Atlantic Salmon to Renibacterium salmoninarum Infection. Front Immunol 2020; 11:567838. [PMID: 33193341 PMCID: PMC7656060 DOI: 10.3389/fimmu.2020.567838] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
Bacterial Kidney Disease (BKD), which is caused by a Gram-positive, intracellular bacterial pathogen (Renibacterium salmoninarum), affects salmonids including Atlantic salmon (Salmo salar). However, the transcriptome response of Atlantic salmon to BKD remained unknown before the current study. We used a 44K salmonid microarray platform to characterise the global gene expression response of Atlantic salmon to BKD. Fish (~54 g) were injected with a dose of R. salmoninarum (H-2 strain, 2 × 108 CFU per fish) or sterile medium (control), and then head kidney samples were collected at 13 days post-infection/injection (dpi). Firstly, infection levels of individuals were determined through quantifying the R. salmoninarum level by RNA-based TaqMan qPCR assays. Thereafter, based on the qPCR results for infection level, fish (n = 5) that showed no (control), higher (H-BKD), or lower (L-BKD) infection level at 13 dpi were subjected to microarray analyses. We identified 6,766 and 7,729 differentially expressed probes in the H-BKD and L-BKD groups, respectively. There were 357 probes responsive to the infection level (H-BKD vs. L-BKD). Several adaptive and innate immune processes were dysregulated in R. salmoninarum-infected Atlantic salmon. Adaptive immune pathways associated with lymphocyte differentiation and activation (e.g., lymphocyte chemotaxis, T-cell activation, and immunoglobulin secretion), as well as antigen-presenting cell functions, were shown to be differentially regulated in response to BKD. The infection level-responsive transcripts were related to several mechanisms such as the JAK-STAT signalling pathway, B-cell differentiation and interleukin-1 responses. Sixty-five microarray-identified transcripts were subjected to qPCR validation, and they showed the same fold-change direction as microarray results. The qPCR-validated transcripts studied herein play putative roles in various immune processes including pathogen recognition (e.g., tlr5), antibacterial activity (e.g., hamp and camp), regulation of immune responses (e.g., tnfrsf11b and socs1), T-/B-cell differentiation (e.g., ccl4, irf1 and ccr5), T-cell functions (e.g., rnf144a, il13ra1b and tnfrsf6b), and antigen-presenting cell functions (e.g., fcgr1). The present study revealed diverse immune mechanisms dysregulated by R. salmoninarum in Atlantic salmon, and enhanced the current understanding of Atlantic salmon response to BKD. The identified biomarker genes can be used for future studies on improving the resistance of Atlantic salmon to BKD.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Ruben Avendaño-Herrera
- Facultad Ciencias de la Vida, Viña del Mar, and FONDAP Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Santiago, Chile
| | - Eva Jakob
- Cargill Innovation Center-Colaco, Calbuco, Chile
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
20
|
Monocyte procoagulant responses to anthrax peptidoglycan are reinforced by proinflammatory cytokine signaling. Blood Adv 2020; 3:2436-2447. [PMID: 31416821 DOI: 10.1182/bloodadvances.2019000513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/17/2019] [Indexed: 01/03/2023] Open
Abstract
Disseminated intravascular coagulation is a frequent manifestation during bacterial infections and is associated with negative clinical outcomes. Imbalanced expression and activity of intravascular tissue factor (TF) is central to the development of infection-associated coagulopathies. Recently, we showed that anthrax peptidoglycan (PGN) induces disseminated intravascular coagulation in a nonhuman primate model of anthrax sepsis. We hypothesized that immune recognition of PGN by monocytes is critical for procoagulant responses to PGN and investigated whether and how PGN induces TF expression in primary human monocytes. We found that PGN induced monocyte TF expression in a large cohort of healthy volunteers similar to lipopolysaccharide stimulation. Both immune and procoagulant responses to PGN involve intracellular recognition after PGN internalization, as well as surface signaling through immune Fcγ receptors (FcγRs). In line with our hypothesis, blocking immune receptor function, both signaling and FcγR-mediated phagocytosis, significantly reduced but did not abolish PGN-induced monocyte TF expression, indicating that FcγR-independent internalization contributes to intracellular recognition of PGN. Conversely, when intracellular PGN recognition is abolished, TF expression was sensitive to inhibitors of FcγR signaling, indicating that surface engagement of monocyte immune receptors can promote TF expression. The primary procoagulant responses to PGN were further amplified by proinflammatory cytokines through paracrine and autocrine signaling. Despite intersubject variability in the study cohort, dual neutralization of tumor necrosis factor-α and interleukin-1β provided the most robust inhibition of the procoagulant amplification loop and may prove useful for reducing coagulopathies in gram-positive sepsis.
Collapse
|
21
|
Black LP, Puskarich MA, Henson M, Miller T, Reddy ST, Fernandez R, Guirgis FW. Quantitative and Qualitative Assessments of Cholesterol Association With Bacterial Infection Type in Sepsis and Septic Shock. J Intensive Care Med 2020; 36:808-817. [PMID: 32578468 DOI: 10.1177/0885066620931473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Reduced cholesterol levels are associated with increased organ failure and mortality in sepsis. Cholesterol levels may vary by infection type (gram negative vs positive), possibly reflecting differences in cholesterol-mediated bacterial clearance. METHODS This was a secondary analysis of a combined data set of 2 prospective cohort studies of adult patients meeting Sepsis-3 criteria. Infection types were classified as gram negative, gram positive, or culture negative. We investigated quantitative (levels) and qualitative (dysfunctional high-density lipoprotein [HDL]) cholesterol differences. We used multivariable logistic regression to control for disease severity. RESULTS Among 171 patients with sepsis, infections were gram negative in 67, gram positive in 46, and culture negative in 47. Both gram-negative and gram-positive infections occurred in 11 patients. Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and HDL cholesterol (HDL-C) levels were lower for culture-positive sepsis at enrollment (TC, P < .001; LDL-C, P < .001; HDL-C, P = .011) and persisted after controlling for disease severity. Similarly, cholesterol levels were lower among culture-positive patients at 48 hours (TC, P = .012; LDL-C, P = .029; HDL-C, P = .002). Triglyceride (TG) levels were lower at enrollment (P =.033) but not at 48 hours (P = .212). There were no differences in dysfunctional HDL. Among bacteremic patients, cholesterol levels were lower at enrollment (TC, P = .010; LDL-C, P = .010; HDL-C, P ≤ .001; TG, P = .005) and at 48 hours (LDL-C, P = .027; HDL-C, P < .001; TG, P = .020), except for 48 hour TC (P = .051). In the bacteremia subgroup, enrollment TC and LDL-C were lower for gram-negative versus gram-positive infections (TC, P = .039; LDL-C, P = .023). CONCLUSION Cholesterol levels are significantly lower among patients with culture-positive sepsis and bacteremia.
Collapse
Affiliation(s)
- Lauren Page Black
- Department of Emergency Medicine, 137869University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA
| | - Michael A Puskarich
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, MN, USA.,Department of Emergency Medicine, 5635University of Minnesota, Minneapolis, MN, USA
| | - Morgan Henson
- Department of Emergency Medicine, 137869University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA
| | - Taylor Miller
- Department of Emergency Medicine, 137869University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA
| | - Srinivasa T Reddy
- Department of Medicine, Molecular & Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Rosemarie Fernandez
- Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Experiential Learning and Simulation, University of Florida College of Medicine, Gainesville, FL, USA
| | - Faheem W Guirgis
- Department of Emergency Medicine, 137869University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA
| |
Collapse
|
22
|
Garzón-Tituaña M, Arias MA, Sierra-Monzón JL, Morte-Romea E, Santiago L, Ramirez-Labrada A, Martinez-Lostao L, Paño-Pardo JR, Galvez EM, Pardo J. The Multifaceted Function of Granzymes in Sepsis: Some Facts and a Lot to Discover. Front Immunol 2020; 11:1054. [PMID: 32655547 PMCID: PMC7325996 DOI: 10.3389/fimmu.2020.01054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a serious global health problem. In addition to a high incidence, this syndrome has a high mortality and is responsible for huge health expenditure. The pathophysiology of sepsis is very complex and it is not well-understood yet. However, it is widely accepted that the initial phase of sepsis is characterized by a hyperinflammatory response while the late phase is characterized by immunosuppression and immune anergy, increasing the risk of secondary infections. Granzymes (Gzms) are a family of serine proteases classified according to their cleavage specificity. Traditionally, it was assumed that all Gzms acted as cytotoxic proteases. However, recent evidence suggests that GzmB is the one with the greatest cytotoxic capacity, while the cytotoxicity of others such as GzmA and GzmK is not clear. Recent studies have found that GzmA, GzmB, GzmK, and GzmM act as pro-inflammatory mediators. Specially, solid evidences show that GzmA and GzmK function as extracellular proteases that regulate the inflammatory response irrespectively of its ability to induce cell death. Indeed, studies in animal models indicate that GzmA is involved in the cytokine release syndrome characteristic of sepsis. Moreover, the GZM family also could regulate other biological processes involved in sepsis pathophysiology like the coagulation cascade, platelet function, endothelial barrier permeability, and, in addition, could be involved in the immunosuppressive stage of sepsis. In this review, we provide a comprehensive overview on the contribution of these novel functions of Gzms to sepsis and the new therapeutic opportunities emerging from targeting these proteases for the treatment of this serious health problem.
Collapse
Affiliation(s)
- Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - José L Sierra-Monzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Elena Morte-Romea
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Nanotoxicology and Immunotoxicology Unit (UNATI), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Luis Martinez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| | - José R Paño-Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain.,Aragon I + D Foundation (ARAID), Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
23
|
Biomarkers of inflammation and the etiology of sepsis. Biochem Soc Trans 2020; 48:1-14. [PMID: 32049312 DOI: 10.1042/bst20190029] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
Sepsis is characterized as a life-threatening organ dysfunction syndrome that is caused by a dysregulated host response to infection. The main etiological causes of sepsis are bacterial, fungal, and viral infections. Last decades clinical and preclinical research contributed to a better understanding of pathophysiology of sepsis. The dysregulated host response in sepsis is complex, with both pathogen-related factors contributing to disease, as well as immune-cell mediated inflammatory responses that can lead to adverse outcomes in early or advanced stages of disease. Due to its heterogenous nature, clinical diagnosis remains challenging and sepsis-specific treatment options are still lacking. Classification and early identification of patient subgroups may aid clinical decisions and improve outcome in sepsis patients. The initial clinical presentation is rather similar in sepsis of different etiologies, however, inflammatory profiles may be able to distinguish between different etiologies of infections. In this review, we summarize the role and the discriminating potency of host-derived inflammatory biomarkers in the context of the main etiological types of sepsis.
Collapse
|
24
|
Abstract
Biomarker panels have the potential to advance the field of critical care medicine by stratifying patients according to prognosis and/or underlying pathophysiology. This article discusses the discovery and validation of biomarker panels, along with their translation to the clinical setting. The current literature on the use of biomarker panels in sepsis, acute respiratory distress syndrome, and acute kidney injury is reviewed.
Collapse
Affiliation(s)
- Susan R Conway
- Division of Critical Care Medicine, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Pediatrics, George Washington University School of Medicine, Washington, DC, USA.
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
25
|
Eslamloo K, Kumar S, Caballero-Solares A, Gnanagobal H, Santander J, Rise ML. Profiling the transcriptome response of Atlantic salmon head kidney to formalin-killed Renibacterium salmoninarum. FISH & SHELLFISH IMMUNOLOGY 2020; 98:937-949. [PMID: 31770640 DOI: 10.1016/j.fsi.2019.11.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Renibacterium salmoninarum is a Gram-positive, intracellular bacterial pathogen that causes Bacterial Kidney Disease (BKD) in Atlantic salmon (Salmo salar). The host transcriptomic response to this immune-suppressive pathogen remains poorly understood. To identify R. salmoninarum-responsive genes, Atlantic salmon were intraperitoneally injected with a low (5 × 105 cells/kg, Low-Rs) or high (5 × 107 cells/kg; High-Rs) dose of formalin-killed R. salmoninarum bacterin or phosphate-buffered saline (PBS control); head kidney samples were collected before and 24 h after injection. Using 44K microarray analysis, we identified 107 and 345 differentially expressed probes in response to R. salmoninarum bacterin (i.e. High-Rs vs. PBS control) by Significance Analysis of Microarrays (SAM) and Rank Products (RP), respectively. Twenty-two microarray-identified genes were subjected to qPCR assays, and 17 genes were confirmed as being significantly responsive to the bacterin. There was an up-regulation in expression of genes playing putative roles as immune receptors and antimicrobial effectors. Genes with putative roles as pathogen recognition (e.g. clec12b and tlr5) or immunoregulatory (e.g. tnfrsf6b and tnfrsf11b) receptors were up-regulated in response to R.salmoninarum bacterin. Also, chemokines and a chemokine receptor showed opposite regulation [up-regulation of effectors (i.e. ccl13 and ccl) and down-regulation of cxcr1] in response to the bacterin. The present study identified and validated novel biomarker genes (e.g. ctsl1, lipe, cldn4, ccny) that can be used to assess Atlantic salmon response to R. salmoninarum, and will be valuable in the development of tools to combat BKD.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Hajarooba Gnanagobal
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
26
|
Korpelainen S, Hämäläinen S, Vänskä M, Koivula I, Pulkki K, Jantunen E, Juutilainen A, Purhonen AK. Plasma level of interleukin-18 and complicated course of febrile neutropenia in hematological patients after intensive chemotherapy. Cytokine 2020; 129:155021. [PMID: 32087594 DOI: 10.1016/j.cyto.2020.155021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 02/03/2023]
Abstract
In search of a biomarker for complicated course of febrile neutropenia (FN), plasma IL-18 was measured in 92 hematological patients after intensive chemotherapy at the beginning of FN (days 0-3). Complicated course was defined as blood culture positivity or septic shock. IL-18 varied according to background hematological malignancy and showed an inverse correlation with leukocyte count. IL-18 was not associated with complicated course of FN, defined as blood culture positivity or septic shock, in the whole study group, but an association was observed on d1 and d2 after the onset of FN in the subgroup of autologous stem cell transplant recipients with non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Sini Korpelainen
- Institute of Clinical Medicine/School of Medicine/Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Siun Sote - Hospital District of North Carelia, Joensuu, Finland
| | - Sari Hämäläinen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Matti Vänskä
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Irma Koivula
- Institute of Clinical Medicine/School of Medicine/Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Kari Pulkki
- Eastern Finland Laboratory Centre, Kuopio, Finland; Laboratory Division, Turku University Hospital, and Clinical Chemistry, Faculty of Medicine, University of Turku, Turku, Finland
| | - Esa Jantunen
- Institute of Clinical Medicine/School of Medicine/Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Siun Sote - Hospital District of North Carelia, Joensuu, Finland; Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Auni Juutilainen
- Institute of Clinical Medicine/School of Medicine/Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Anna-Kaisa Purhonen
- Institute of Clinical Medicine/School of Medicine/Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Kuopio University Hospital, Kuopio, Finland; Eksote - Hospital District of South Carelia, Valto Käkelän katu 3, 53130 Lappeenranta, Finland.
| |
Collapse
|
27
|
Komori A, Abe T, Kushimoto S, Ogura H, Shiraishi A, Saitoh D, Fujishima S, Mayumi T, Naito T, Hifumi T, Shiino Y, Nakada TA, Tarui T, Otomo Y, Okamoto K, Umemura Y, Kotani J, Sakamoto Y, Sasaki J, Shiraishi SI, Takuma K, Tsuruta R, Hagiwara A, Yamakawa K, Masuno T, Takeyama N, Yamashita N, Ikeda H, Ueyama M, Fujimi S, Gando S. Characteristics and outcomes of bacteremia among ICU-admitted patients with severe sepsis. Sci Rep 2020; 10:2983. [PMID: 32076046 PMCID: PMC7031517 DOI: 10.1038/s41598-020-59830-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The clinical implications of bacteremia among septic patients remain unclear, although a vast amount of data have been accumulated on sepsis. We aimed to compare the clinical characteristics and outcomes of severe sepsis patients with and without bacteremia. This secondary analysis of a multicenter, prospective cohort study included 59 intensive care units (ICUs) in Japan between January 2016 and March 2017. The study cohort comprised 1,184 adults (aged ≥ 16 years) who were admitted to an ICU with severe sepsis and diagnosed according to the Sepsis-2 criteria. Of 1,167 patients included in the analysis, 636 (54.5%) had bacteremia. Those with bacteremia had significantly higher rates of septic shock (66.4% vs. 58.9%, p = 0.01) and higher sepsis severity scores, including the Acute Physiology and Chronic Health Evaluation (APACHE) II and the Sequential Organ Failure Assessment (SOFA). No significant difference in in-hospital mortality was seen between patients with and without bacteremia (25.6% vs. 21.0%, p = 0.08). In conclusion, half of severe sepsis patients in ICUs have bacteremia. Although patients with bacteremia had more severe state, between-group differences in patient-centered outcomes, such as in-hospital mortality, have not been fully elucidated.
Collapse
Affiliation(s)
- Akira Komori
- Department of General Medicine, Juntendo University, Tokyo, Japan
| | - Toshikazu Abe
- Department of General Medicine, Juntendo University, Tokyo, Japan. .,Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan. .,Department of Health Services Research, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Daizoh Saitoh
- Division of Traumatology, Research Institute, National Defense Medical College, Tokorozawa, Japan
| | - Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiko Mayumi
- Department of Emergency Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Toshio Naito
- Department of General Medicine, Juntendo University, Tokyo, Japan
| | - Toru Hifumi
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Yasukazu Shiino
- Department of Acute Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takehiko Tarui
- Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Yasuhiro Otomo
- Trauma and Acute Critical Care Center, Medical Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohji Okamoto
- Department of Surgery, Center for Gastroenterology and Liver Disease, Kitakyushu City Yahata Hospital, Kitakyushu, Japan
| | - Yutaka Umemura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Joji Kotani
- Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichiro Sakamoto
- Emergency and Critical Care Medicine, Saga University Hospital, Saga, Japan
| | - Junichi Sasaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shin-Ichiro Shiraishi
- Department of Emergency and Critical Care Medicine, Aizu Chuo Hospital, Aizuwakamatsu, Japan
| | - Kiyotsugu Takuma
- Emergency & Critical Care Center, Kawasaki Municipal Kawasaki Hospital, Kawasaki, Japan
| | - Ryosuke Tsuruta
- Advanced Medical Emergency & Critical Care Center, Yamaguchi University Hospital, Ube, Japan
| | - Akiyoshi Hagiwara
- Department of Emergency Medicine, Niizashiki Chuo General Hospital, Niiza, Japan
| | - Kazuma Yamakawa
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Tomohiko Masuno
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Naoshi Takeyama
- Advanced Critical Care Center, Aichi Medical University Hospital, Nagakute, Japan
| | - Norio Yamashita
- Advanced Emergency Medical Service Center, Kurume University Hospital, Kurume, Japan
| | - Hiroto Ikeda
- Department of Emergency Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Masashi Ueyama
- Department of Trauma, Critical Care Medicine, and Burn Center, Japan Community Healthcare Organization, Chukyo Hospital, Nagoya, Japan
| | - Satoshi Fujimi
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Satoshi Gando
- Division of Acute and Critical Care Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Acute and Critical Care Medicine, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | | |
Collapse
|
28
|
Fu Z, Wang S, Li J, Zhang Y, Li H, Li G, Wan X, Zhang Y. Biological role of GITR/GITRL in attributes and immune responses of macrophage. J Leukoc Biol 2019; 107:309-321. [PMID: 31833599 DOI: 10.1002/jlb.3a0919-387rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoid-induced tumor necrosis factor receptor family-related protein ligand (GITRL), a member of the tumor necrosis factor superfamily, is expressed in APCs and acts as a costimulatory molecule in the immune system. Although the glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR)/GITRL system has been modulated to promote or decrease T cell-related responses in multiple diseases, studies in macrophages are limited. To address this issue, we compared the expression of GITRL in various types of macrophages and analyzed whether GITRL can affect the fundamental properties and major functions of these cells. Our results demonstrated that M1 polarized macrophages had the highest GITRL levels. Furthermore, GITRL overexpression skewed macrophage polarization toward the M1 phenotype, accelerating proliferation and migration and regulating phagocytosis and killing function. Moreover, GITRL-silenced cells showed a loss of these functions, further confirming its vital role. We also developed an acute peritonitis mouse model, in which macrophages were driven to differentiate into a proinflammatory phenotype with GITRL up-regulation, triggering a positive feedback loop. Our results provide molecular insight into how the GITR/GITRL system modulates innate immune responses, suggesting that manipulation of the GITR/GITRL system to treat diseases depends not only on T cell regulation but also on macrophage participation.
Collapse
Affiliation(s)
- Zhuo Fu
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Shuang Wang
- Department of Dermatology, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, P.R. China
| | - Yunfeng Zhang
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Han Li
- Department of Infection Control, the First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Xue Wan
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yu Zhang
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
29
|
Yang CY, Lee CH, Hsieh CC, Hong MY, Chen MJ, Lee CC. Differential effects of inappropriate empirical antibiotic therapy in adults with community-onset gram-positive and gram-negative aerobe bacteremia. J Infect Chemother 2019; 26:222-229. [PMID: 31575500 DOI: 10.1016/j.jiac.2019.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 10/25/2022]
Abstract
Bacteremia is associated with high morbidity and mortality, which contribute substantially to health care costs. A beneficial influence of appropriate empirical antimicrobial therapy (EAT) on patient outcome is evidenced; However, the evidence highlighting a comparison of clinical manifestations and of the effects of inappropriate EAT between Gram-positive and Gram-negative bacteremia is insufficient. In a retrospective 6-year cohort study, the total 2053 adults (Gram-positive, 566; Gram-negative 1487) presenting with community-onset monomicrobial aerobes bacteremia were recruited. Inappropriate EAT was defined as the first dose of an appropriate antimicrobial agent not being administered within the first 24 h after blood cultures were drawn. Although the bacteremia severity (a Pitt bacteremia score) at onset, comorbidity severity (the McCabe-Johnson classification), and 28-day mortality rate were similar in the two groups. Furthermore, after adjustment of independent predictors of 28-day mortality respectively recognized by the multivariate regression model in Gram-negative and Gram-positive groups, the Kaplan-Meier curve and Cox regression analysis revealed a significant difference (adjust odds ratio [AOR], 2.68; P < 0.001) between appropriate and inappropriate EAT in the Gram-negative group, but not in the Gram-positive group (AOR, 1.54; P = 0.06). Conclusively, patients with Gram-positive and Gram-negative bacteremia exhibited the similar presentation in bacteremia severity, but a greater impact of inappropriate EAT on survival of patients with Gram-negative aerobe bacteremia was evidenced.
Collapse
Affiliation(s)
- Chao-Yung Yang
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hsun Lee
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Chih-Chia Hsieh
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Yuan Hong
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Ju Chen
- Department of Senior Service, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| | - Ching-Chi Lee
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Adult Critical Care Medicine, Tainan Sin-Lau Hospital, Tainan, Taiwan; Graduate Institute of Medical Sciences, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan.
| |
Collapse
|
30
|
Maskarinec G, Hullar MAJ, Monroe KR, Shepherd JA, Hunt J, Randolph TW, Wilkens LR, Boushey CJ, Le Marchand L, Lim U, Lampe JW. Fecal Microbial Diversity and Structure Are Associated with Diet Quality in the Multiethnic Cohort Adiposity Phenotype Study. J Nutr 2019; 149:1575-1584. [PMID: 31187868 PMCID: PMC6862930 DOI: 10.1093/jn/nxz065] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/07/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Variation in gut microbial community structure is partly attributed to variations in diet. A priori dietary indexes capture diet quality and have been associated with chronic disease risk. OBJECTIVES The aim of this study was to examine the association of diet quality, as assessed by the Healthy Eating Index, Alternative Healthy Eating Index-2010, alternate Mediterranean Diet, and the Dietary Approaches to Stop Hypertension Trial, with measures of fecal microbial community structure assessed in the Adiposity Phenotype Study (APS), an ethnically diverse study population with varied food intakes. METHODS Multiethnic Cohort Study members completed a validated quantitative food frequency questionnaire (QFFQ) at cohort entry (1993-1996) and, for the APS subset, at clinic visit (2013-2015), when they also provided a stool sample. DNA was extracted from stool, and the V1-V3 region of the 16S rRNA gene was amplified and sequenced. Dietary index scores were computed based on the QFFQ and an extensive nutritional database. Using linear regression adjusted for relevant covariates, we estimated associations of dietary quality with microbiome measures and computed adjusted mean values of microbial measures by tertiles of dietary index scores. RESULTS The 858 men and 877 women of white, Japanese American, Latino, Native Hawaiian, and African American ancestry had a mean age of 69.2 years at stool collection. Alpha diversity according to the Shannon index increased by 1-2% across tertiles of all 4 diet indexes measured at clinic visit. The mean relative abundance of the phylum Actinobacteria was 13-19% lower with higher diet quality across all 4 indexes (difference between tertile 3 and tertile 1 divided by tertile 1). Of the 104 bacterial genera tested, 21 (primarily from the phylum Firmicutes) were positively associated with at least 1 index after Bonferroni adjustment. CONCLUSION Diet quality was strongly associated with fecal microbial alpha diversity and beta diversity and several genera previously associated with human health.
Collapse
Affiliation(s)
| | - Meredith A J Hullar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kristine R Monroe
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | | | - Jeani Hunt
- School of Public Health, University of Washington, Seattle, WA
| | - Timothy W Randolph
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | | - Unhee Lim
- University of Hawaii Cancer Center, Honolulu, HI
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- School of Public Health, University of Washington, Seattle, WA
| |
Collapse
|
31
|
Bølling AK, Olderbø BP, Samuelsen JT, Rukke HV. Establishing a macrophage model with relevance for oral methacrylate monomer exposures: Attenuated Staphylococcus aureus-induced cytokine release from human macrophages. Dent Mater 2019; 35:e235-e248. [PMID: 31378308 DOI: 10.1016/j.dental.2019.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/31/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Leakage of unpolymerized methacrylate monomers after placement of methacrylate-containing polymeric dental materials leads to human exposure. Based on studies using murine macrophages and LPS from Escherichia coli (E. coli), dental monomers like 2-hydroxyethyl methacrylate (HEMA) are known to inhibit lipopolysaccharide (LPS) induced cytokine release. The aim of this study was to establish a model system with relevance for human oral monomer exposure using exposure to live gram-positive bacteria, and to confirm the HEMA-induced effects on cytokine release in this model. METHODS The human THP-1 monocyte cell line was differentiated to macrophages using phorbol 12-myristate 13-acetate (PMA), before exposure to 0.5-2mM HEMA and live Staphylococcus aureus (S. aureus) in various multiplicity of infections (MOI). Cytokine release and cytotoxicity were determined after (i) 2-24h pre-exposure to HEMA followed by 2-4h S. aureus exposure and (ii) 2-4h simultaneous exposure. The 24h pre-exposure regime was also tested in primary human airway macrophages and for phagocytosis of S. aureus in THP-1 macrophages. RESULTS HEMA attenuated the cytokine release more strongly in the pre-exposure than combined exposure regime, with a maximal reduction of 95% in the S. aureus-induced cytokine release. A MOI of 0.1 (corresponding to a bacteria-macrophage ratio of 1:10) was determined to be optimal in the THP-1 macrophages as it induced sufficient cytokine release and negligible cytotoxicity. Attenuated release of S. aureus-induced interleukin (IL)-1β after HEMA exposure was confirmed in primary airway macrophages, while HEMA increased the phagocytosis of S. aureus in THP-1 cells. CONCLUSION The model was successfully established and attenuated bacteria-induced cytokine release after HEMA exposure confirmed.
Collapse
Affiliation(s)
- A K Bølling
- Nordic Institute of Dental Materials, Sognsveien 70A, N-0855 Oslo, Norway; Norwegian Institute of Public Health, Domain of Infection Control and Environmental Health, P.O. Box 4404, N-0403 Oslo, Norway.
| | - B P Olderbø
- Nordic Institute of Dental Materials, Sognsveien 70A, N-0855 Oslo, Norway
| | - J T Samuelsen
- Nordic Institute of Dental Materials, Sognsveien 70A, N-0855 Oslo, Norway
| | - H V Rukke
- Nordic Institute of Dental Materials, Sognsveien 70A, N-0855 Oslo, Norway
| |
Collapse
|
32
|
Bassetti M, Russo A, Righi E, Dolso E, Merelli M, D'Aurizio F, Sartor A, Curcio F. Role of procalcitonin in predicting etiology in bacteremic patients: Report from a large single-center experience. J Infect Public Health 2019; 13:40-45. [PMID: 31248812 DOI: 10.1016/j.jiph.2019.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/29/2019] [Accepted: 06/08/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Procalcitonin (PCT) is routinely used for an early recognition of severe infections and for promoting appropriate use of antibiotics. However, limited data correlating values of PCT with etiology of infection has been reported. METHODS During 2016, all positive blood cultures (BC) were retrospectively extracted in a 1100-beds Italian tertiary-care hospital. PCT and C-reactive protein (CRP) values were recorded within 24h from BC collection. Primary endpoint of the study was to investigate the correlation between PCT and CRP values and the occurrence of bloodstream infections (BSI) caused by bacteria or fungi. RESULTS During the study period, 1296 positive BC were included: 712 (54.9%) due to Gram-positive (GP), 525 (40.5%) due to Gram-negative (GN) strains, and 59 (4.6%) caused by fungi. Among GN isolates, enterobacteriaceae were reported in 453 (86.3%) cases. PCT values were higher in patients with GN etiology (26.1±14.2ng/mL) compared to GP (6.9±4.5) and fungi (3.3±2.4). Mean values for CRP in GN, GP, and fungi were not different. Receiver Operating Characteristic (ROC) curves showed an area under curve (AUC) of 0.71 for PCT and 0.51 for CRP among GN isolates; an AUC of 0.7 for PCT and 0.52 for CRP among enterobacteriaceae. Lower AUC for PCT were reported for GP and fungi. CONCLUSIONS PCT showed moderate performance in early detection (within 24h) of Gram-negative infections, especially those caused by enterobacteriaceae. Further prospective studies are mandatory to confirm these observations.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy.
| | - Alessandro Russo
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Elda Righi
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Elisabetta Dolso
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Maria Merelli
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Federica D'Aurizio
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Assunta Sartor
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Francesco Curcio
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| |
Collapse
|
33
|
Serdar M, Kempe K, Rizazad M, Herz J, Bendix I, Felderhoff-Müser U, Sabir H. Early Pro-inflammatory Microglia Activation After Inflammation-Sensitized Hypoxic-Ischemic Brain Injury in Neonatal Rats. Front Cell Neurosci 2019; 13:237. [PMID: 31178702 PMCID: PMC6543767 DOI: 10.3389/fncel.2019.00237] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Perinatal asphyxia, leading to neonatal encephalopathy, is one of the leading causes for child mortality and long-term morbidities. Neonatal encephalopathy rates are significantly increased in newborns with perinatal infection. Therapeutic hypothermia is only neuroprotective in 50% of cooled asphyxiated newborns. As shown experimentally, cooling has failed to be neuroprotective after inflammation-sensitized hypoxic ischemic (HI) brain injury. Microglia are thought to be key players after inflammation-sensitized HI brain injury. We performed this study investigating early microglia phenotype polarization in our newborn animal model of inflammation-sensitized HI brain injury, better understanding the underlying pathophysiological processes. Methods: Seven days old Wistar rat pups were injected with either vehicle (NaCl 0.9%) or E. coli lipopolysaccharide (LPS), followed by left carotid ligation combined with global hypoxia inducing a mild unilateral hypoxic-ischemic injury. Pups were randomized to (1) Sham group (n = 41), (2) LPS only group (n = 37), (3) Veh/HI group (n = 56), and (4) LPS/HI group (n = 79). On postnatal days 8 and 14 gene-expression analysis or immunohistochemistry was performed describing early microglia polarization in our model. Results: We confirmed that LPS pre-sensitization significantly increases brain area loss and induced microglia activation and neuronal injury after mild hypoxia-ischemia. Additionally, we show that microglia upregulate pro-inflammatory genes involving NLRP-3 inflammasome gene expression 24 h after inflammation-sensitized hypoxic-ischemic brain injury. Conclusion: These results demonstrate that microglia are early key mediators of the inflammatory response following inflammation-sensitized HI brain injury and that they polarize into a predominant pro-inflammatory phenotype 24 h post HI. This may lead to new treatment options altering microglia phenotype polarization early after HI brain injury.
Collapse
Affiliation(s)
- Meray Serdar
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neuroscience, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karina Kempe
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neuroscience, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mandana Rizazad
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neuroscience, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Josephine Herz
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neuroscience, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neuroscience, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neuroscience, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hemmen Sabir
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neuroscience, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
34
|
Bassetti M, Russo A, Righi E, Dolso E, Merelli M, D’Aurizio F, Sartor A, Curcio F. Role of procalcitonin in bacteremic patients and its potential use in predicting infection etiology. Expert Rev Anti Infect Ther 2018; 17:99-105. [DOI: 10.1080/14787210.2019.1562335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Matteo Bassetti
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Alessandro Russo
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Elda Righi
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Elisabetta Dolso
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Maria Merelli
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Federica D’Aurizio
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Assunta Sartor
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Francesco Curcio
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| |
Collapse
|
35
|
Cabral L, Afreixo V, Meireles R, Vaz M, Frade JG, Chaves C, Caetano M, Almeida L, Paiva JA. Evaluation of Procalcitonin Accuracy for the Distinction Between Gram-Negative and Gram-Positive Bacterial Sepsis in Burn Patients. J Burn Care Res 2018; 40:112-119. [DOI: 10.1093/jbcr/iry058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Luís Cabral
- Department of Plastic Surgery and Burns Unit, Coimbra University Hospital Centre (CHUC), Portugal
- Autonomous Section of Health Sciences (SACS), University of Aveiro, Portugal
| | - Vera Afreixo
- CIDMA—Center for Research and Development in Mathematics and Applications, iBiMED—Institute for Biomedicine, Department of Mathematics, University of Aveiro, Portugal
| | - Rita Meireles
- Department of Plastic Surgery and Burns Unit, Coimbra University Hospital Centre (CHUC), Portugal
| | - Miguel Vaz
- Department of Plastic Surgery and Burns Unit, Coimbra University Hospital Centre (CHUC), Portugal
| | - João-Gonçalo Frade
- Clinical Pathology Department, Coimbra University Hospital Centre (CHUC), Portugal
- Escola Superior de Saúde, Instituto Politécnico de Leiria, Portugal
| | - Catarina Chaves
- Clinical Pathology Department, Coimbra University Hospital Centre (CHUC), Portugal
| | - Marisa Caetano
- Pharmacy Department, Coimbra University Hospital Centre (CHUC), Portugal
| | - Luís Almeida
- MedinUP, Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Portugal
| | - José-Artur Paiva
- Department of Emergency and Intensive Care Medicine, Centro Hospitalar São João, Porto, Portugal
- Grupo de Infecção e Sépsis, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
36
|
Thomas-Rüddel DO, Poidinger B, Kott M, Weiss M, Reinhart K, Bloos F. Influence of pathogen and focus of infection on procalcitonin values in sepsis patients with bacteremia or candidemia. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:128. [PMID: 29753321 PMCID: PMC5949148 DOI: 10.1186/s13054-018-2050-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/23/2018] [Indexed: 12/14/2022]
Abstract
Background This study aimed to evaluate the accuracy of procalcitonin (PCT) serum concentrations to diagnose Gram-negative bacteremia and the association of PCT serum concentrations with more specific pathogens and the focus of infection. Methods Secondary analysis of the prospectively collected patient-level dataset from a cluster randomized quality improvement trial was performed. The trial included sepsis patients with organ dysfunction treated in the participating intensive care units from 2011 to 2015. Test performance for the prediction of Gram-negative bacteremia was assessed by receiver operating curve analysis. Independent effects of specific pathogen groups and foci of infection on PCT concentrations were assessed by linear logistic regression models. Results Blood cultures (BC) and PCT concentrations had been taken in 4858 of 6561 documented patients. PCT was significantly higher in Gram-negative bacteremia compared to Gram-positive bacteremia or candidemia (p < 0.001). The area under the curve was 0.72 (95% confidence interval 0.71–0.74) for the prediction of Gram-negative bacteremia compared to all other blood culture results including negative blood cultures. The optimized cutoff value was 10 ng/ml (sensitivity 69%, specificity 35%). PCT differed significantly between specific groups of pathogens (p < 0.001) with highest concentrations in Escherichia coli, Streptococcus species and other Enterobacteriaceae. PCT was highest in urogenital followed by abdominal infection and lowest in respiratory infection (p < 0.001). In a linear regression model, Streptococci, E. coli and other Enterobacteriaceae detected from BC were associated with three times higher PCT values. Urogenital or abdominal foci of infection were associated with twofold increased PCT values independent of the pathogen. Conclusions Serum PCT concentrations are higher in patients with Gram-negative bacteremia than in patients with Gram-positive bacteremia or candidemia. However, the discriminatory power of this difference is too low to guide therapeutic decisions. Variations in PCT serum concentrations are not determined solely by Gram-negative or Gram-positive bacteria but are also affected by distinct groups of pathogens and different foci of infection. Trial registration ClinicalTrials.gov, NCT01187134. Registered on 23 August 2010. Electronic supplementary material The online version of this article (10.1186/s13054-018-2050-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel O Thomas-Rüddel
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany. .,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| | - Bernhard Poidinger
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Matthias Kott
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Manfred Weiss
- Clinic of Anaesthesiology, University Hospital Medical School, Ulm, Germany
| | - Konrad Reinhart
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Frank Bloos
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | | |
Collapse
|
37
|
A New Venue of TNF Targeting. Int J Mol Sci 2018; 19:ijms19051442. [PMID: 29751683 PMCID: PMC5983675 DOI: 10.3390/ijms19051442] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The first Food and Drug Administration-(FDA)-approved drugs were small, chemically-manufactured and highly active molecules with possible off-target effects, followed by protein-based medicines such as antibodies. Conventional antibodies bind a specific protein and are becoming increasingly important in the therapeutic landscape. A very prominent class of biologicals are the anti-tumor necrosis factor (TNF) drugs that are applied in several inflammatory diseases that are characterized by dysregulated TNF levels. Marketing of TNF inhibitors revolutionized the treatment of diseases such as Crohn’s disease. However, these inhibitors also have undesired effects, some of them directly associated with the inherent nature of this drug class, whereas others are linked with their mechanism of action, being pan-TNF inhibition. The effects of TNF can diverge at the level of TNF format or receptor, and we discuss the consequences of this in sepsis, autoimmunity and neurodegeneration. Recently, researchers tried to design drugs with reduced side effects. These include molecules with more specificity targeting one specific TNF format or receptor, or that neutralize TNF in specific cells. Alternatively, TNF-directed biologicals without the typical antibody structure are manufactured. Here, we review the complications related to the use of conventional TNF inhibitors, together with the anti-TNF alternatives and the benefits of selective approaches in different diseases.
Collapse
|
38
|
Mosevoll KA, Skrede S, Markussen DL, Fanebust HR, Flaatten HK, Aßmus J, Reikvam H, Bruserud Ø. Inflammatory Mediator Profiles Differ in Sepsis Patients With and Without Bacteremia. Front Immunol 2018; 9:691. [PMID: 29681903 PMCID: PMC5897503 DOI: 10.3389/fimmu.2018.00691] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/20/2018] [Indexed: 12/29/2022] Open
Abstract
Systemic levels of cytokines are altered during infection and sepsis. This prospective observational study aimed to investigate whether plasma levels of multiple inflammatory mediators differed between sepsis patients with and those without bacteremia during the initial phase of hospitalization. A total of 80 sepsis patients with proven bacterial infection and no immunosuppression were included in the study. Plasma samples were collected within 24 h of hospitalization, and Luminex® analysis was performed on 35 mediators: 16 cytokines, six growth factors, four adhesion molecules, and nine matrix metalloproteases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs). Forty-two patients (52.5%) and 38 (47.5%) patients showed positive and negative blood cultures, respectively. There were significant differences in plasma levels of six soluble mediators between the two “bacteremia” and “non-bacteremia” groups, using Mann–Whitney U test (p < 0.0014): tumor necrosis factor alpha (TNFα), CCL4, E-selectin, vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and TIMP-1. Ten soluble mediators also significantly differed in plasma levels between the two groups, with p-values ranging between 0.05 and 0.0014: interleukin (IL)-1ra, IL-10, CCL2, CCL5, CXCL8, CXCL11, hepatocyte growth factor, MMP-8, TIMP-2, and TIMP-4. VCAM-1 showed the most robust results using univariate and multivariate logistic regression. Using unsupervised hierarchical clustering, we found that TNFα, CCL4, E-selectin, VCAM-1, ICAM-1, and TIMP-1 could be used to discriminate between patients with and those without bacteremia. Patients with bacteremia were mainly clustered in two separate groups (two upper clusters, 41/42, 98%), with higher levels of the mediators. One (2%) patient with bacteremia was clustered in the lower cluster, which compromised most of the patients without bacteremia (23/38, 61%) (χ2 test, p < 0.0001). Our study showed that analysis of the plasma inflammatory mediator profile could represent a potential strategy for early identification of patients with bacteremia.
Collapse
Affiliation(s)
- Knut Anders Mosevoll
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Steinar Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | | | - Jörg Aßmus
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
39
|
Bilgili B, Haliloğlu M, Aslan MS, Sayan İ, Kasapoğlu US, Cinel İ. Diagnostic Accuracy of Procalcitonin for Differentiating Bacteraemic Gram-Negative Sepsis from Gram-Positive Sepsis. Turk J Anaesthesiol Reanim 2018; 46:38-43. [PMID: 30140499 DOI: 10.5152/tjar.2017.88965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/09/2017] [Indexed: 12/29/2022] Open
Abstract
Objective The identification of bacteraemia in patients with suspected sepsis is crucial for survival. A cheap, fast and reliable biomarker, which can predict the causative pathogen group, may be useful to confirm or exclude the presence of bacteraemia. This study aimed to evaluate the relationship between procalcitonin (PCT) and the causative pathogen in intensive care patients with sepsis and bacteraemia. Methods Patients with diagnosed sepsis, a positive blood culture and measured serum procalcitonin levels during their intensive care unit stay were included in the study. Demographic data, PCT level, leukocyte count, C-reactive protein level, creatinine level, lymphocyte count, leukocyte/lymphocyte ratio and the group of the pathogen that detected in the blood culture were retrospectively recorded. Results Overall, 136 sepsis patients who were diagnosed with bacteraemia were included in the study. The PCT level was 7.31 ng mL-1 in the gram-negative group and 0.46 ng mL-1 in the gram-positive group. For PCT, the sensitivity was 70.83% and the specificity was 84.21%, with the cut-off value being ≤1.3. The area under the receiver operating characteristics curve for PCT was 0.80. Conclusion Patients with gram-negative sepsis had higher PCT values than those with gram-positive sepsis. Our results suggest that PCT value may be a useful tool for distinguishing between gram-negative and gram-positive bacteraemia.
Collapse
Affiliation(s)
- Beliz Bilgili
- Department of Anaesthesiology and Reanimation, Marmara University School of Medicine, İstanbul, Turkey
| | - Murat Haliloğlu
- Department of Intensive Care, Marmara University Pendik Training and Research Hospital, İstanbul, Turkey
| | - Melek Süzer Aslan
- Department of Intensive Care, Marmara University Pendik Training and Research Hospital, İstanbul, Turkey
| | - İsmet Sayan
- Department of Intensive Care, Marmara University Pendik Training and Research Hospital, İstanbul, Turkey
| | - Umut Sabri Kasapoğlu
- Department of Intensive Care, Marmara University Pendik Training and Research Hospital, İstanbul, Turkey
| | - İsmail Cinel
- Department of Anaesthesiology and Reanimation, Marmara University School of Medicine, İstanbul, Turkey
| |
Collapse
|
40
|
Yan ST, Sun LC, Lian R, Tao YK, Zhang HB, Zhang G. Diagnostic and predictive values of procalcitonin in bloodstream infections for nosocomial pneumonia. J Crit Care 2018; 44:424-429. [PMID: 29353119 DOI: 10.1016/j.jcrc.2017.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/05/2017] [Accepted: 12/26/2017] [Indexed: 01/08/2023]
Abstract
PURPOSE We evaluated the diagnostic accuracy of PCT to distinguish between gram-negative (GN) and gram-positive (GP) bloodstream infections nosocomial pneumonia (NP) patients and compared PCT levels with the pneumonia severity index (PSI) for predicting mortality. METHODS Data were collected retrospectively for blood culture-positive NP patients between January 2014 and August 2016. PCT levels were compared between patients with GN versus GP infections. Outcome variables included 28- and 60-day mortality. RESULTS PCT level was higher in GN infections than in GP infections. PCT could differentiate between GN and GP infections with an AUC value of 0.706. At a PCT cutoff of 5.4 ng/mL, the specificity for GN infections were 80.3%. The AUCs for 28- and 60-day mortality were 0.758 and 0.759 for PSI, and 0.620 and 0.634 for PCT. Serum PCT level was less predictive of mortality in GN NP patients compared with that for GP NP patients. There was a significantly positive correlation between PCT and PSI, and the correlation in GP NP patients was better than that in GN NP patients. CONCLUSIONS PCT could differentiate between GN and GP bloodstream infections in patients with NP. However, PCT levels were less predictive of mortality compared with the PSI.
Collapse
Affiliation(s)
- Sheng Tao Yan
- China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Chaoyang District, China
| | - Li Chao Sun
- China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Chaoyang District, China
| | - Rui Lian
- China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Chaoyang District, China
| | - Yong Kang Tao
- China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Chaoyang District, China
| | - Hong Bo Zhang
- China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Chaoyang District, China
| | - Guoqiang Zhang
- China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Chaoyang District, China.
| |
Collapse
|
41
|
Falck M, Osredkar D, Wood TR, Maes E, Flatebø T, Sabir H, Thoresen M. Neonatal Systemic Inflammation Induces Inflammatory Reactions and Brain Apoptosis in a Pathogen-Specific Manner. Neonatology 2018; 113:212-220. [PMID: 29275405 DOI: 10.1159/000481980] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND After neonatal asphyxia, therapeutic hypothermia (HT) is the only proven treatment option. Although established as a neuroprotective therapy, benefit from HT has been questioned when infection is a comorbidity to hypoxic-ischaemic (HI) brain injury. Gram-negative and gram-positive species activate the immune system through different pathogen recognition receptors and subsequent immunological systems. In rodent models, gram-negative (lipopolysaccharide [LPS]) and gram-positive (PAM3CSK4 [PAM]) inflammation similarly increase neuronal vulnerability to HI. Interestingly, while LPS pre-sensitisation negates the neuroprotective effect of HT, HT is highly beneficial after PAM-sensitised HI brain injury. OBJECTIVE We aimed to examine whether systemic gram-positive or gram-negative inflammatory sensitisation affects juvenile rat pups per se, without an HI insult. METHODS Neonatal 7-day-old rats (n = 215) received intraperitoneal injections of vehicle (0.9% NaCl), LPS (0.1 mg/kg), or PAM (1 mg/kg). Core temperature and weight gain were monitored. Brain cytokine expression (IL-6, IL-1β, TNF-α, and IL-10, via PCR), apoptosis (cleaved caspase 3, via Western blots), and microglial activation (Iba1, via immunohistochemistry) were examined. RESULTS LPS induced an immediate drop in core temperature followed by poor weight gain, none of which were seen after PAM. Furthermore, LPS induced brain apoptosis, while PAM did not. The magnitude and temporal profile of brain cytokine expression differed between LPS- and PAM-injected animals. CONCLUSION These findings reveal sepsis-like conditions and neuroinflammation specific to the inflammatory stimulus (gram-positive vs. gram-negative) in the neonatal rat. They emphasise the importance of pre-clinical models being pathogen dependent, and should always be carefully tailored to their clinical scenario.
Collapse
Affiliation(s)
- Mari Falck
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
42
|
Widyarman AS, Drestia AM, Bachtiar EW, Bachtiar BM. The Anti-inflammatory Effects of Glycerol-supplemented Probiotic Lactobacillus reuteri on Infected Epithelial cells In vitro. Contemp Clin Dent 2018; 9:298-303. [PMID: 29875577 PMCID: PMC5968699 DOI: 10.4103/ccd.ccd_53_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: One of the most interesting effects of probiotics is their ability to modulate the immune system through the induction of cytokines and to enhance the host immune response. Aims: The purpose of this study was to evaluate the anti-inflammatory effect of glycerol-supplemented Lactobacillus reuteri on the transcription level of interleukin (IL)-8 and human-beta-defensin (hBD)-2 expressed by epithelial cells after exposure to bacteria. Materials and Methods: The confluent-cultured HaCat cell line (105 cells/mL) was exposed to Streptococcus mutans ATCC-25175 and Porphyromonas gingivalis ATCC-33277 (107 colony-forming units [CFU]/mL) for 24 h and challenged with probiotic L. reuteri ATCC-55730 (107 CFU/mL) supplemented with glycerol. Subsequently, the transcription levels of IL-8 and hBD-2 in HaCat cells were analyzed using reverse-transcription polymerase chain reaction (RT-PCR). In addition, cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. All the obtained data were statistically analyzed using the one-way analysis of variance test, with P < 0.05 set as the level of significance. Results: The MTT assays confirmed no cytotoxic effects of glycerol-supplemented L. reuteri on HaCat cells (viability >90%). mRNA expression of IL-8 and hBD-2 increased after exposure to both bacteria. The presence of glycerol-supplemented L. reuteri significantly reduced the expression of IL-8 and hBD-2 on HaCat cells (P < 0.05). Conclusion: Glycerol-supplemented L. reuteri reduced the expression of IL-8 and hBD-2, and the results may be proof of principle for a probiotic approach to combating inflammation. However, further studies are needed to validate this probiotic effect.
Collapse
Affiliation(s)
- Armelia Sari Widyarman
- Department of Microbiology, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| | - Aradhea Monica Drestia
- Microbiology Center of Research and Education, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| | - Endang Winiati Bachtiar
- Departement of Oral Biology, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia
| | - Boy M Bachtiar
- Departement of Oral Biology, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
43
|
Acar L, Atalan N, Karagedik EH, Ergen A. Tumour Necrosis Factor-alpha and Nuclear Factor-kappa B Gene Variants in Sepsis. Balkan Med J 2017; 35:30-35. [PMID: 28840846 PMCID: PMC5820445 DOI: 10.4274/balkanmedj.2017.0246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: The humoral system is activated and various cytokines are released due to infections in tissues and traumatic damage. Nuclear factor-kappa B dimers are encoded by nuclear factor-kappa B genes and regulate transcription of several crucial proteins of inflammation such as tumour necrosis factor-alpha. Aims: To investigate the possible effect of polymorphisms on tumour necrosis factor-alpha serum levels with clinical and prognostic parameters of sepsis by determining the nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A) gene polymorphisms and tumour necrosis factor-alpha serum levels. Study Design: Case-control study. Methods: Seventy-two patients with sepsis and 104 healthy controls were included in the study. In order to determine the polymorphisms of nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A), polymerase chain reaction–restriction fragment length polymorphism analysis was performed and serum tumour necrosis factor-alpha levels were determined using an enzyme-linked immunosorbent assay. Results: We observed no significant differences in tumour necrosis factor-alpha serum levels between the study groups. In the patient group, an increase in the tumour necrosis factor-alpha serum levels in patients carrying the tumour necrosis factor-alpha (-308 G/A) A allele compared to those without the A allele was found to be statistically significant. Additionally, an increase in the tumour necrosis factor-alpha serum levels in patients carrying tumour necrosis factor-alpha (-308 G/A) AA genotype compared with patients carrying the AG or GG genotypes was statistically significant. No significant differences were found in these 2 polymorphisms between the patient and control groups (p>0.05). Conclusion: Our results showed the AA genotype and the A allele of the tumour necrosis factor-alpha (-308 G/A) polymorphism may be used as a predictor of elevated tumour necrosis factor-alpha levels in patients with sepsis.
Collapse
Affiliation(s)
- Leyla Acar
- Department of Molecular Medicine, İstanbul University Institute of Experimental Medicine, İstanbul, Turkey
| | - Nazan Atalan
- Clinic of Anesthesia and Reanimation, Siyami Ersek Thoracic Cardiovascular Surgery Training and Research Hospital, İstanbul, Turkey
| | - E Hande Karagedik
- Department of Molecular Medicine, İstanbul University Institute of Experimental Medicine, İstanbul, Turkey
| | - Arzu Ergen
- Department of Molecular Medicine, İstanbul University Institute of Experimental Medicine, İstanbul, Turkey
| |
Collapse
|
44
|
Burnham KL, Davenport EE, Radhakrishnan J, Humburg P, Gordon AC, Hutton P, Svoren-Jabalera E, Garrard C, Hill AVS, Hinds CJ, Knight JC. Shared and Distinct Aspects of the Sepsis Transcriptomic Response to Fecal Peritonitis and Pneumonia. Am J Respir Crit Care Med 2017; 196:328-339. [PMID: 28036233 DOI: 10.1164/rccm.201608-1685oc] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Heterogeneity in the septic response has hindered efforts to understand pathophysiology and develop targeted therapies. Source of infection, with different causative organisms and temporal changes, might influence this heterogeneity. OBJECTIVES To investigate individual and temporal variations in the transcriptomic response to sepsis due to fecal peritonitis, and to compare these with the same parameters in community-acquired pneumonia. METHODS We performed genome-wide gene expression profiling in peripheral blood leukocytes of adult patients admitted to intensive care with sepsis due to fecal peritonitis (n = 117) or community-acquired pneumonia (n = 126), and of control subjects without sepsis (n = 10). MEASUREMENTS AND MAIN RESULTS A substantial portion of the transcribed genome (18%) was differentially expressed compared with that of control subjects, independent of source of infection, with eukaryotic initiation factor 2 signaling being the most enriched canonical pathway. We identified two sepsis response signature (SRS) subgroups in fecal peritonitis associated with early mortality (P = 0.01; hazard ratio, 4.78). We defined gene sets predictive of SRS group, and serial sampling demonstrated that subgroup membership is dynamic during intensive care unit admission. We found that SRS is the major predictor of transcriptomic variation; a small number of genes (n = 263) were differentially regulated according to the source of infection, enriched for IFN signaling and antigen presentation. We define temporal changes in gene expression from disease onset involving phagosome formation as well as natural killer cell and IL-3 signaling. CONCLUSIONS The majority of the sepsis transcriptomic response is independent of the source of infection and includes signatures reflecting immune response state and prognosis. A modest number of genes show evidence of specificity. Our findings highlight opportunities for patient stratification and precision medicine in sepsis.
Collapse
Affiliation(s)
- Katie L Burnham
- 1 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Emma E Davenport
- 1 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Peter Humburg
- 1 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Anthony C Gordon
- 2 Section of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London, United Kingdom
| | - Paula Hutton
- 3 Adult Intensive Care Unit, John Radcliffe Hospital, Oxford, United Kingdom; and
| | - Eduardo Svoren-Jabalera
- 4 William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University, London, United Kingdom
| | - Christopher Garrard
- 3 Adult Intensive Care Unit, John Radcliffe Hospital, Oxford, United Kingdom; and
| | - Adrian V S Hill
- 1 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Charles J Hinds
- 4 William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University, London, United Kingdom
| | - Julian C Knight
- 1 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Van Belleghem JD, Clement F, Merabishvili M, Lavigne R, Vaneechoutte M. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci Rep 2017; 7:8004. [PMID: 28808331 PMCID: PMC5556114 DOI: 10.1038/s41598-017-08336-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022] Open
Abstract
The ability of bacteriophages to kill bacteria is well known, as is their potential use as alternatives to antibiotics. As such, bacteriophages reach high doses locally through infection of their bacterial host in the human body. In this study we assessed the gene expression profile of peripheral blood monocytes from six donors for twelve immunity-related genes (i.e. CD14, CXCL1, CXCL5, IL1A, IL1B, IL1RN, IL6, IL10, LYZ, SOCS3, TGFBI and TNFA) induced by Staphylococcus aureus phage ISP and four Pseudomonas aeruginosa phages (i.e. PNM, LUZ19, 14-1 and GE-vB_Pae-Kakheti25). The phages were able to induce clear and reproducible immune responses. Moreover, the overall immune response was very comparable for all five phages: down-regulation of LYZ and TGFBI, and up-regulation of CXCL1, CXCL5, IL1A, IL1B, IL1RN, IL6, SOCS3 and TNFA. The observed immune response was shown to be endotoxin-independent and predominantly anti-inflammatory. Addition of endotoxins to the highly purified phages did not cause an immune response comparable to the one induced by the (endotoxin containing) phage lysate. In addition, the use of an intermediate level of endotoxins tipped the immune response to a more anti-inflammatory response, i.e. up-regulation of IL1RN and a strongly reduced expression of CXCL1 and CXCL5.
Collapse
Affiliation(s)
- Jonas D Van Belleghem
- Laboratory Bacteriology Research, Department of Clinical Chemistry, Microbiology and Immunology, University Ghent, Medical Research Building II, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Frédéric Clement
- Center for Vaccinology, Ghent University Hospital, Ghent, Belgium
| | - Maya Merabishvili
- Laboratory Bacteriology Research, Department of Clinical Chemistry, Microbiology and Immunology, University Ghent, Medical Research Building II, De Pintelaan 185, 9000, Ghent, Belgium
- Laboratory for Molecular and Cellular Technology (LabMCT) Queen Astrid Military Hospital, Bruynstraat 1, 1120, Brussels, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KULeuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, Belgium
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Clinical Chemistry, Microbiology and Immunology, University Ghent, Medical Research Building II, De Pintelaan 185, 9000, Ghent, Belgium
| |
Collapse
|
46
|
Bischoff M, Wonnenberg B, Nippe N, Nyffenegger-Jann NJ, Voss M, Beisswenger C, Sunderkötter C, Molle V, Dinh QT, Lammert F, Bals R, Herrmann M, Somerville GA, Tschernig T, Gaupp R. CcpA Affects Infectivity of Staphylococcus aureus in a Hyperglycemic Environment. Front Cell Infect Microbiol 2017; 7:172. [PMID: 28536677 PMCID: PMC5422431 DOI: 10.3389/fcimb.2017.00172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/20/2017] [Indexed: 11/16/2022] Open
Abstract
Many bacteria regulate the expression of virulence factors via carbon catabolite responsive elements. In Gram-positive bacteria, the predominant mediator of carbon catabolite repression is the catabolite control protein A (CcpA). Hyperglycemia is a widespread disorder that predisposes individuals to an array of symptoms and an increased risk of infections. In hyperglycemic individuals, the bacterium Staphylococcus aureus causes serious, life-threatening infections. The importance of CcpA in regulating carbon catabolite repression in S. aureus suggests it may be important for infections in hyperglycemic individuals. To test this suggestion, hyperglycemic non-obese diabetic (NOD; blood glucose level ≥20 mM) mice were challenged with the mouse pathogenic S. aureus strain Newman and the isogenic ccpA deletion mutant (MST14), and the effects on infectivity were determined. Diabetic NOD mice challenged with the ccpA deletion mutant enhanced the symptoms of infection in an acute murine pneumonia model relative to the parental strain. Interestingly, when diabetic NOD mice were used in footpad or catheter infection models, infectivity of the ccpA mutant decreased relative to the parental strain. These differences greatly diminished when normoglycemic NOD mice (blood glucose level ≤ 10 mM) were used. These data suggest that CcpA is important for infectivity of S. aureus in hyperglycemic individuals.
Collapse
Affiliation(s)
- Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland UniversityHomburg, Germany
| | - Bodo Wonnenberg
- Institute of Anatomy and Cell Biology, Saarland UniversityHomburg, Germany
| | - Nadine Nippe
- Institute of Immunology, University of MunsterMunster, Germany
| | - Naja J Nyffenegger-Jann
- Division of Infection Biology, Department of Biomedicine, University Hospital BaselBasel, Switzerland
| | - Meike Voss
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University HospitalHomburg, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University HospitalHomburg, Germany
| | | | | | - Quoc Thai Dinh
- Department of Experimental Pneumology and Allergology, Saarland University HospitalHomburg, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University HospitalHomburg, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University HospitalHomburg, Germany
| | - Mathias Herrmann
- Institute for Medical Microbiology and Hygiene, Saarland UniversityHomburg, Germany
| | - Greg A Somerville
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-LincolnLincoln, NE, USA
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland UniversityHomburg, Germany
| | - Rosmarie Gaupp
- Institute for Medical Microbiology and Hygiene, Saarland UniversityHomburg, Germany
| |
Collapse
|
47
|
Goh C, Knight JC. Enhanced understanding of the host-pathogen interaction in sepsis: new opportunities for omic approaches. THE LANCET. RESPIRATORY MEDICINE 2017; 5:212-223. [PMID: 28266329 DOI: 10.1016/s2213-2600(17)30045-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/14/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022]
Abstract
Progress in sepsis research has been severely hampered by a heterogeneous disease phenotype, limiting the interpretation of clinical trials and the development of effective therapeutic interventions. Application of omics-based methodologies is advancing understanding of the dysregulated host immune response to infection in sepsis. However, the frequently elusive nature of the infecting organism in sepsis has limited efforts to understand the effect of disease heterogeneity involving the pathogen. Recent advances in nucleic acid sequencing-based pathogen analysis provide the opportunity for more accurate and comprehensive microbiological diagnosis. In this Review, we explore how better understanding of the host-pathogen interaction can substantially enhance, and in turn benefit from, current and future application of omics-based approaches to understand the host response in sepsis. We illustrate this using recent work accounting for heterogeneity involving the pathogen. We propose that there is a timely opportunity to further resolve sepsis heterogeneity by considering host-pathogen interactions, enabling progress towards a precision medicine approach.
Collapse
Affiliation(s)
- Cyndi Goh
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
48
|
Raymond SL, Stortz JA, Mira JC, Larson SD, Wynn JL, Moldawer LL. Immunological Defects in Neonatal Sepsis and Potential Therapeutic Approaches. Front Pediatr 2017; 5:14. [PMID: 28224121 PMCID: PMC5293815 DOI: 10.3389/fped.2017.00014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Despite advances in critical care medicine, neonatal sepsis remains a major cause of morbidity and mortality worldwide, with the greatest risk affecting very low birth weight, preterm neonates. The presentation of neonatal sepsis varies markedly from its presentation in adults, and there is no clear consensus definition of neonatal sepsis. Previous work has demonstrated that when neonates become septic, death can occur rapidly over a matter of hours or days and is generally associated with inflammation, organ injury, and respiratory failure. Studies of the transcriptomic response by neonates to infection and sepsis have led to unique insights into the early proinflammatory and host protective responses to sepsis. Paradoxically, this early inflammatory response in neonates, although lethal, is clearly less robust relative to children and adults. Similarly, the expression of genes involved in host protective immunity, particularly neutrophil function, is also markedly deficient. As a result, neonates have both a diminished inflammatory and protective immune response to infection which may explain their increased risk to infection, and their reduced ability to clear infections. Such studies imply that novel approaches unique to the neonate will be required for the development of both diagnostics and therapeutics in this high at-risk population.
Collapse
Affiliation(s)
- Steven L Raymond
- Department of Surgery, University of Florida College of Medicine , Gainesville, FL , USA
| | - Julie A Stortz
- Department of Surgery, University of Florida College of Medicine , Gainesville, FL , USA
| | - Juan C Mira
- Department of Surgery, University of Florida College of Medicine , Gainesville, FL , USA
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine , Gainesville, FL , USA
| | - James L Wynn
- Department of Pediatrics, University of Florida College of Medicine , Gainesville, FL , USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine , Gainesville, FL , USA
| |
Collapse
|
49
|
Lorente L, Martín MM, Pérez-Cejas A, Barrios Y, Solé-Violán J, Ferreres J, Labarta L, Díaz C, Jiménez A. Association between Interleukin-6 Promoter Polymorphism (-174 G/C), Serum Interleukin-6 Levels and Mortality in Severe Septic Patients. Int J Mol Sci 2016; 17:ijms17111861. [PMID: 27834822 PMCID: PMC5133861 DOI: 10.3390/ijms17111861] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 12/29/2022] Open
Abstract
The association between interleukin (IL)-6 promoter polymorphism (-174 G/C), circulating IL-6 levels and mortality in septic patients has scarcely been addressed, and then only in studies of small sample size, and a direct association among them has not been previously reported. Therefore, the purpose of our study was to determine whether this association exists. An observational, prospective and multicenter study including severe septic patients was undertaken and serum IL-6 levels at severe sepsis diagnosis and IL-6 promoter polymorphism (-174 G/C) were determined. The end-point of the study was 30-day mortality. The study included 263 patients with the following genotypes of IL-6 promoter polymorphism (-174 G/C): 123 (46.8%) GG, 110 (41.8%) GC and 30 (11.4%) CC. CC homozygous patients showed lower sepsis-related organ failure assessment (SOFA) score, serum IL-6 levels and mortality at 30 days compared to those with other genotypes (GC or GG). On regression analysis, CC homozygous patients showed lower 30-day mortality than those with genotype GG (odds ratio = 0.21; 95% CI = 0.053−0.838; p = 0.03) or GC (hazard ratio = 0.28; 95% CI = 0.074−1.037; p = 0.06). The most important results of our study were that CC might be a favorable genotype in septic patients showing lower serum IL-6 levels and lower risk of death within 30 days.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320 Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Crta Rosario s/n, 38010 Santa Cruz de Tenerife, Spain.
| | - Antonia Pérez-Cejas
- Laboratory Deparment, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320 Santa Cruz de Tenerife, Spain.
| | - Ysamar Barrios
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320 Santa Cruz de Tenerife, Spain.
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain.
| | - José Ferreres
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda, Blasco Ibáñez nº17, 46004 Valencia, Spain.
| | - Lorenzo Labarta
- Intensive Care Unit, Hospital San Jorge de Huesca, Avenida Martínez de Velasco nº36, 22004 Huesca, Spain.
| | - César Díaz
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain.
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna-38320, 38320 Santa Cruz de Tenerife, Spain.
| |
Collapse
|
50
|
Efron PA, Tsujimoto H, Bahjat FR, Ungaro R, Debernardis J, Tannahill C, Baker HV, Edwards CK, Moldawer LL. Differential maturation of murine bone-marrow derived dendritic cells with lipopolysaccharide and tumor necrosis factor-α. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110030301] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dendritic cells (DCs) play a key role in the interface between the innate and acquired immune systems. In response to both exogenous as well as endogenous signals, DCs undergo a programmed maturation to become an efficient, antigen-presenting cell. Yet little is known regarding the differential responses by endogenous versus exogenous stimuli on DC maturation. In the present report, we have compared the phenotypic, functional, and genome-wide expression responses associated with maturation by bone marrow derived DCs to either an endogenous danger signal, tumor necrosis factor-α (TNF-α), or a microbial product, bacterial lipopolysaccharide (LPS). Examination of the cell surface expression of DCs as well as cytokine production demonstrated that patterns of DC maturation varied dramatically depending upon the stimulus. Whereas LPS was highly effective in terms of inducing phenotypic and functional maturation, TNF-α exposure produced a phenotypically distinct DC. Gene expression patterns in DCs 6 and 24 h after LPS and TNF-α exposure revealed that these activation signals produce fundamentally different genomic responses. Supervised analysis revealed that the expression of 929 probe sets discriminated among the treatment groups, and the patterns of gene expression in TNF-α stimulated DCs were more similar to unstimulated cells at both 6 and 24 h post-stimulation than to LPS-stimulated cells at the same time points. These findings reveal that DCs are capable of a varying phenotypic response to different antigens and endogenous signals.
Collapse
Affiliation(s)
- Philip A. Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Hironori Tsujimoto
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Frances R. Bahjat
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ricardo Ungaro
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Justin Debernardis
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Cynthia Tannahill
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Henry V. Baker
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Carl K. Edwards
- Division of Inflammation, Amgen Inc., Thousand Oaks, California, USA
| | - Lyle L. Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA,
| |
Collapse
|