1
|
Wei BR, Zhao YJ, Cheng YF, Huang C, Zhang F. Helicobacter pylori infection and Parkinson's Disease: etiology, pathogenesis and levodopa bioavailability. Immun Ageing 2024; 21:1. [PMID: 38166953 PMCID: PMC10759355 DOI: 10.1186/s12979-023-00404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder with an unknown etiology, is primarily characterized by the degeneration of dopamine (DA) neurons. The prevalence of PD has experienced a significant surge in recent years. The unidentified etiology poses limitations to the development of effective therapeutic interventions for this condition. Helicobacter pylori (H. pylori) infection has affected approximately half of the global population. Mounting evidences suggest that H. pylori infection plays an important role in PD through various mechanisms. The autotoxin produced by H. pylori induces pro-inflammatory cytokines release, thereby facilitating the occurrence of central inflammation that leads to neuronal damage. Simultaneously, H. pylori disrupts the equilibrium of gastrointestinal microbiota with an overgrowth of bacteria in the small intestinal known as small intestinal bacterial overgrowth (SIBO). This dysbiosis of the gut flora influences the central nervous system (CNS) through microbiome-gut-brain axis. Moreover, SIBO hampers levodopa absorption and affects its therapeutic efficacy in the treatment of PD. Also, H. pylori promotes the production of defensins to regulate the permeability of the blood-brain barrier, facilitating the entry of harmful factors into the CNS. In addition, H. pylori has been found to induce gastroparesis, resulting in a prolonged transit time for levodopa to reach the small intestine. H. pylori may exploit levodopa to facilitate its own growth and proliferation, or it can inflict damage to the gastrointestinal mucosa, leading to gastrointestinal ulcers and impeding levodopa absorption. Here, this review focused on the role of H. pylori infection in PD from etiology, pathogenesis to levodopa bioavailability.
Collapse
Affiliation(s)
- Bang-Rong Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Feng Cheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chun Huang
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
2
|
Sit WY, Cheng ML, Chen TJ, Chen CJ, Chen BN, Huang DJ, Chen PL, Chen YC, Lo CJ, Wu DC, Hsieh WC, Chang CT, Chen RH, Wang WC. Helicobacter pylori PldA modulates TNFR1-mediated p38 signaling pathways to regulate macrophage responses for its survival. Gut Microbes 2024; 16:2409924. [PMID: 39369445 PMCID: PMC11457642 DOI: 10.1080/19490976.2024.2409924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/16/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Helicobacter pylori, a dominant member of the gastric microbiota was associated with various gastrointestinal diseases and presents a significant challenge due to increasing antibiotic resistance. This study identifies H. pylori's phospholipase A (PldA) as a critical factor in modulating host macrophage responses, facilitating H. pylori 's evasion of the immune system and persistence. PldA alters membrane lipids through reversible acylation and deacylation, affecting their structure and function. We found that PldA incorporates lysophosphatidylethanolamine into macrophage membranes, disrupting their bilayer structure and impairing TNFR1-mediated p38-MK2 signaling. This disruption results in reduced macrophage autophagy and elevated RIP1-dependent apoptosis, thereby enhancing H. pylori survival, a mechanism also observed in multidrug-resistant strains. Pharmacological inhibition of PldA significantly decreases H. pylori viability and increases macrophage survival. In vivo studies corroborate PldA's essential role in H. pylori persistence and immune cell recruitment. Our findings position PldA as a pivotal element in H. pylori pathogenesis through TNFR1-mediated membrane modulation, offering a promising therapeutic target to counteract bacterial resistance.
Collapse
Affiliation(s)
- Wei Yang Sit
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Tsan-Jan Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chia-Jo Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Bo-Nian Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ding-Jun Huang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Pei-Lien Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yun-Ching Chen
- Institute of Biomedical Engineering, National Tsing-Hua University, Hsinchu, Taiwan, ROC
| | - Chi-Jen Lo
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | - Wan-Chen Hsieh
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chung-Ting Chang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| |
Collapse
|
3
|
Zhang S, Shen Y, Liu H, Zhu D, Fang J, Pan H, Liu W. Inflammatory microenvironment in gastric premalignant lesions: implication and application. Front Immunol 2023; 14:1297101. [PMID: 38035066 PMCID: PMC10684945 DOI: 10.3389/fimmu.2023.1297101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Gastric precancerous lesions (GPL) are a major health concern worldwide due to their potential to progress to gastric cancer (GC). Understanding the mechanism underlying the transformation from GPL to GC can provide a fresh insight for the early detection of GC. Although chronic inflammation is prevalent in the GPL, how the inflammatory microenvironment monitored the progression of GPL-to-GC are still elusive. Inflammation has been recognized as a key player in the progression of GPL. This review aims to provide an overview of the inflammatory microenvironment in GPL and its implications for disease progression and potential therapeutic applications. We discuss the involvement of inflammation in the progression of GPL, highlighting Helicobacter pylori (H. pylori) as a mediator for inflammatory microenvironment and a key driver to GC progression. We explore the role of immune cells in mediating the progression of GPL, and focus on the regulation of inflammatory molecules in this disease. Furthermore, we discuss the potential of targeting inflammatory pathways for GPL. There are currently no specific drugs for GPL treatment, but traditional Chinese Medicine (TCM) and natural antioxidants, known as antioxidant and anti-inflammatory properties, exhibit promising effects in suppressing or reversing the progression of GPL. Finally, the challenges and future perspectives in the field are proposed. Overall, this review highlights the central role of the inflammatory microenvironment in the progression of GPL, paving the way for innovative therapeutic approaches in the future.
Collapse
Affiliation(s)
- Shengxiong Zhang
- Rehabilitation Department, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, China
- Department of Spleen and Stomach, GuangZhou Tianhe District Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Shen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huafeng Pan
- Science and Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Holland RL, Bosi KD, Seeger AY, Blanke SR. Restoration of mitochondrial structure and function within Helicobacter pylori VacA intoxicated cells. ADVANCES IN MICROBIOLOGY 2023; 13:399-419. [PMID: 37654621 PMCID: PMC10470862 DOI: 10.4236/aim.2023.138026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The Helicobacter pylori vacuolating cytotoxin (VacA) is an intracellular, mitochondrial-targeting exotoxin that rapidly causes mitochondrial dysfunction and fragmentation. Although VacA targeting of mitochondria has been reported to alter overall cellular metabolism, there is little known about the consequences of extended exposure to the toxin. Here, we describe studies to address this gap in knowledge, which have revealed that mitochondrial dysfunction and fragmentation are followed by a time-dependent recovery of mitochondrial structure, mitochondrial transmembrane potential, and cellular ATP levels. Cells exposed to VacA also initially demonstrated a reduction in oxidative phosphorylation, as well as increase in compensatory aerobic glycolysis. These metabolic alterations were reversed in cells with limited toxin exposure, congruent with the recovery of mitochondrial transmembrane potential and the absence of cytochrome c release from the mitochondria. Taken together, these results are consistent with a model that mitochondrial structure and function are restored in VacA-intoxicated cells.
Collapse
Affiliation(s)
- Robin L. Holland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Kristopher D. Bosi
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Ami Y. Seeger
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Steven R. Blanke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Biomedical and Translational Sciences Department, Carle Illinois College of Medicine, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
5
|
Fuchs S, Gong R, Gerhard M, Mejías-Luque R. Immune Biology and Persistence of Helicobacter pylori in Gastric Diseases. Curr Top Microbiol Immunol 2023; 444:83-115. [PMID: 38231216 DOI: 10.1007/978-3-031-47331-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori is a prevalent pathogen, which affects more than 40% of the global population. It colonizes the human stomach and persists in its host for several decades or even a lifetime, if left untreated. The persistent infection has been linked to various gastric diseases, including gastritis, peptic ulcers, and an increased risk for gastric cancer. H. pylori infection triggers a strong immune response directed against the bacterium associated with the infiltration of innate phagocytotic immune cells and the induction of a Th1/Th17 response. Even though certain immune cells seem to be capable of controlling the infection, the host is unable to eliminate the bacteria as H. pylori has developed remarkable immune evasion strategies. The bacterium avoids its killing through innate recognition mechanisms and manipulates gastric epithelial cells and immune cells to support its persistence. This chapter focuses on the innate and adaptive immune response induced by H. pylori infection, and immune evasion strategies employed by the bacterium to enable persistent infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Ruolan Gong
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany.
| |
Collapse
|
6
|
Oster P, Vaillant L, McMillan B, Velin D. The Efficacy of Cancer Immunotherapies Is Compromised by Helicobacter pylori Infection. Front Immunol 2022; 13:899161. [PMID: 35677057 PMCID: PMC9168074 DOI: 10.3389/fimmu.2022.899161] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infects the gastric mucosa of a large number of humans. Although asymptomatic in the vast majority of cases, H pylori infection can lead to the development of peptic ulcers gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Using a variety of mechanisms, H pylori locally suppresses the function of the host immune system to establish chronic infection. Systemic immunomodulation has been observed in both clinical and pre-clinical studies, which have demonstrated that H pylori infection is associated with reduced incidence of inflammatory diseases, such as asthma and Crohn’s disease. The introduction of immunotherapies in the arsenal of anti-cancer drugs has revealed a new facet of H pylori-induced immune suppression. In this review, we will describe the intimate interactions between H pylori and its host, and formulate hypothtyeses describing the detrimental impact of H pylori infection on the efficacy of cancer immunotherapies.
Collapse
|
7
|
Wu J, Zhu X, Guo X, Yang Z, Cai Q, Gu D, Luo W, Yuan C, Xiang Y. Helicobacter urease suppresses cytotoxic CD8 + T cell responses through activating Myh9-dependent induction of PD-L1. Int Immunol 2021; 33:491-504. [PMID: 34297096 DOI: 10.1093/intimm/dxab044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/23/2021] [Indexed: 11/14/2022] Open
Abstract
As a key virulence factor for persistent colonization, Urease B subunit (UreB) is considered to be an ideal vaccine antigen against Helicobacter pylori (H. pylori) infection. However, the role and molecular mechanisms of UreB involved in immune microenvironment dysregulation still remains largely unknown. In the present study, we evaluated the effects of UreB on macrophage activation and found that UreB induced PD-L1 accumulation on Bone marrow-derived macrophages (BMDMs). Co-culture assays further revealed that UreB-induced PD-L1 expression on BMDMs significantly decreased the proliferation and secretion of cytolytic molecules (granzyme B and perforin) of splenic CD8 + T cells isolated from inactivated H. pylori-immunized mice. More importantly, myosin heavy chain 9 (Myh9) was confirmed to be a direct membrane receptor of UreB via using LC-MS/MS and Co-immunoprecipitation and required for PD-L1 upregulation on BMDMs. Molecular studies further demonstrated that the interaction between UreB and Myh9 decreased GCN2 autophosphorylation and enhanced intracellular pool of amino acids, leading to the upregulation of S6K phosphorylation, a commonly used marker for monitoring activation of mTORC1 signaling activity. Furthermore, blocking mTORC1 activation with its inhibitor Temsirolimus reversed UreB-induced PD-L1 upregulation and the subsequently inhibitory effects of BMDMs on activation of cytotoxic CD8 + T cell responses. Overall, our data unveil a novel immunosuppressive mechanism of UreB during H. pylori infection, which may provide valuable clue for the optimization of H. pylori vaccine.
Collapse
Affiliation(s)
- Jian Wu
- Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, P.R. China
| | - Xiaowen Zhu
- Department of Gastroenterology, Affiliated Taihe Hospital of Hubei university of Medicine, Shiyan 442099, P.R. China
| | - Xia Guo
- Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, P.R. China
| | - Ze Yang
- Blood Transfusion Department, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, P.R. China
| | - Qinzhen Cai
- Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, P.R. China
| | - Dongmei Gu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wei Luo
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, P.R. China
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, P.R. China
| |
Collapse
|
8
|
Gonciarz W, Walencka M, Moran AP, Hinc K, Obuchowski M, Chmiela M. Upregulation of MUC5AC production and deposition of LEWIS determinants by HELICOBACTER PYLORI facilitate gastric tissue colonization and the maintenance of infection. J Biomed Sci 2019; 26:23. [PMID: 30841890 PMCID: PMC6402143 DOI: 10.1186/s12929-019-0515-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori bacteria colonize human gastric mucosa, cause chronic inflammation, peptic ulcers and gastric cancer. Colonization is mediated by H. pylori adhesins, which preferentially bind mucin 5 (MUC5AC) and Lewis (Le) determinants. The aim of this study was to evaluate the influence of H. pylori and their components on MUC5AC production and deposition of LeX/LeY in gastric epithelial cells in relation to bacterial adhesion using Caviae porcellus primary gastric epithelial cells and an in vivo model of experimental H. pylori infection in these animals. Methods MUCA5C and LeX/LeY were induced in vitro by live H. pylori reference strain CCUG 17874 (2 × 107 CFU/ml), H. pylori glycine acid extract (GE), 10 μg/ml; cytotoxin associated gene A (CagA) protein, 1 μl/ml; UreA urease subunit, 5 μg/ml; lipopolysaccharide (LPS) 25 ng/ml and imaged by fluorescence microscopy after anti-MUC5AC or anti-LeX/LeY FITC antibody staining. Bacterial adhesion was imaged by using anti-H. pylori FITC antibodies. The animals were inoculated per os with H. pylori (3 times in 2 days intervals, 1 × 1010 CFU/ml). After 7 or 28 days an infection and inflammation were assessed by histological, serological and molecular methods. Gastric tissue sections of infected and control animals were screend for MUCA5C and LeX, and H. pylori adhesion as above. Results MUC5AC production and deposition of Lewis determinants, especially LeX were upregulated in the milieu of live H. pylori as well as GE, CagA, UreA or LPS in vitro and in vivo during infection, more effectively in the acute (7 days) than in the chronic (28 days) phase of infection. This was related to enhanced adhesion of H. pylori, which was abrogated by anti-MUC5AC and anti-LeX or anti-LeY antibody treatment. Conclusions Modulation of MUCA5C production and LeX/LeY deposition in the gastric mucosa by H. pylori can significantly increase gastric tissue colonization during H. pylori infection.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Division of Gastroimmunology, Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Maria Walencka
- Division of Gastroimmunology, Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Anthony P Moran
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Krzysztof Hinc
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, 80-210, Gdańsk, Poland
| | - Michał Obuchowski
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, 80-210, Gdańsk, Poland
| | - Magdalena Chmiela
- Division of Gastroimmunology, Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland.
| |
Collapse
|
9
|
Kouitcheu Mabeku LB, Noundjeu Ngamga ML, Leundji H. Potential risk factors and prevalence of Helicobacter pylori infection among adult patients with dyspepsia symptoms in Cameroon. BMC Infect Dis 2018; 18:278. [PMID: 29907086 PMCID: PMC6003128 DOI: 10.1186/s12879-018-3146-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/11/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Helicobacter pylori is a Gram negative bacterium that colonizes the stomach of approximately two-thirds of the human population and it is involved in the pathogenesis of gastroduodenal diseases. This study sought to determine potential risk factors associated with seroprevalence of H. pylori among dyspepsia patients in Cameroon for a better management of the disease. METHODS The study was carried out from August to December 2014 at Laquintinie Hospital and District Hospital of Bonassama in Douala metropolis. 205 patients (127 women and 78 men; mean age, 53.79 ± 11.11 years; range, 35-75 years) were enrolled. Each subject gave a written consent. The study was approved by the local Ethical Committee of Medical Sciences. A structured questionnaire was used to collect information on sociodemographic parameters and predisposing risk factors for Helicobacter pylori infection. For each patient, body mass index (BMI) and direct inquiry about dyspeptic symptoms were done. Blood samples were tested for H. pylori antibodies, and ABO/Rhesus blood group antigen typing was performed. RESULTS The overall prevalence was 64.39%. All patients with upper abdominal pains and frequent burping were H. pylori seropositive. We found that infection takes place early in childhood and adolescence, and reaches its peak at adulthood at 35 to 44 years. Sixty-two percent of women over 68 of men were infected. 80.39% of patients with family history of gastric cancer were seropositive, while 19.60% were seronegative (p = 0.001). Prevalence of 79.09 and 47.4% was recorded respectively for subjects with low, middle and high income levels (p = 0.001). H. pylori infection rate was 60.48% in blood group O patients compared with 70.37% in other blood groups (p = 0.203). 73% of infected subjects over 59% of uninfected ones currently take NSAIDs (p = 0.0509). Overcrowded households have a higher rate of 65.32% seropositivity in contrast with a lower rate of 33.33% from norm household (p = 0.197). 69.29% of obese and overweight patients versus 58.24% of subjects with normal weight were seropositive (P = 0.215). CONCLUSION The results of this study demonstrate that low income, family history of gastric cancer, clinical symptoms of nausea/vomiting and flatulence/bloating were risk factors of H. pylori infection in this population.
Collapse
Affiliation(s)
- Laure Brigitte Kouitcheu Mabeku
- Department of Biochemistry, Faculty of Science, Microbiology and Pharmacology Laboratory, University of Dschang, P. O. Box 67, Dschang, Cameroon
| | - Michelle Larissa Noundjeu Ngamga
- Department of Biochemistry, Faculty of Science, Microbiology and Pharmacology Laboratory, University of Dschang, P. O. Box 67, Dschang, Cameroon
| | - Hubert Leundji
- Gastroenterology Department, Laquintinie Hospital of Douala, P. O. Box 4035, Douala, Cameroon
| |
Collapse
|
10
|
Cheng J, Yuan Z, Yang W, Xu C, Cong W, Lin L, Zhao S, Sun W, Bai X, Cui S. Comparative study of macrophages in naked mole rats and ICR mice. Oncotarget 2017; 8:96924-96934. [PMID: 29228582 PMCID: PMC5722534 DOI: 10.18632/oncotarget.19661] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/29/2017] [Indexed: 01/30/2023] Open
Abstract
The domestic and foreign scholars have studied naked mole rats more focused on the respect such as its long life, resistant to low oxygen, little spontaneous tumor, but the study of the immune system is little. In this study, we compared the anatomy and tissue morphology of NMR and ICR mouse spleens and found that the gross appearance of the NNMR spleen differed from ICR. There were more macrophages in NNMR spleens than in ICR spleens. Furthermore, we focused on the differences of macrophages. We compared their phagocytic capabilities and the data showed that NNMR macrophages are more phagocytic than ICR mouse macrophages. We also used polyI:C and LPS to stimulate the NMR and ICR macrophages and then measured the immune response as expression of certain TLR signaling molecules. After stimulation, there was a lower increase in apoptosis of NMR macrophages than ICR macrophages and a non-significant increased expression of TLRs in NMR macrophages than in ICR macrophages. In contrast, NF-κB proteins increased more significantly in NMR’s than in ICR’s and the expression of downstream cytokines in NMR macrophages also increased more than in ICR macrophages. Based on these results, we hypothesize that in addition to being able to eat foreign matter, NMR macrophages can activate the TLRs, start the NF-κB and produce a large number of cytokines to enhance immune response, so as to protect the body from outside interference when the virus or bacteria invading.
Collapse
Affiliation(s)
- Jishuai Cheng
- Laboratory Animal Centre, Second Military Medical University, Shanghai, China
| | - Zheng Yuan
- Department of Science and Technology, Academy of Military Medical Sciences, Beijing, China
| | - Wenjing Yang
- Laboratory Animal Centre, Second Military Medical University, Shanghai, China
| | - Chang Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Wei Cong
- Laboratory Animal Centre, Second Military Medical University, Shanghai, China
| | - Lifang Lin
- Laboratory Animal Centre, Second Military Medical University, Shanghai, China
| | - Shanmin Zhao
- Laboratory Animal Centre, Second Military Medical University, Shanghai, China
| | - Wei Sun
- Laboratory Animal Centre, Second Military Medical University, Shanghai, China
| | - Xiaosong Bai
- Department of Clinical Laboratory, Shi Dong Hospital, Shanghai, China
| | - Shufang Cui
- Laboratory Animal Centre, Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
p53 dependent apoptosis and cell cycle delay induced by heteroleptic complexes in human cervical cancer cells. Biomed Pharmacother 2017; 88:218-231. [DOI: 10.1016/j.biopha.2017.01.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 11/21/2022] Open
|
12
|
Hanafi A, Lee WC, Loke MF, Teh X, Shaari A, Dinarvand M, Lehours P, Mégraud F, Leow AHR, Vadivelu J, Goh KL. Molecular and Proteomic Analysis of Levofloxacin and Metronidazole Resistant Helicobacter pylori. Front Microbiol 2016; 7:2015. [PMID: 28018334 PMCID: PMC5157799 DOI: 10.3389/fmicb.2016.02015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
Antibiotic resistance in bacteria incurs fitness cost, but compensatory mechanisms may ameliorate the cost and sustain the resistance even under antibiotics-free conditions. The aim of this study was to determine compensatory mechanisms of antibiotic resistance in H. pylori. Five strains of levofloxacin-sensitive H. pylori were induced in vitro to develop resistance. In addition, four pairs of metronidazole-sensitive and -resistant H. pylori strains were isolated from patients carrying dual H. pylori populations that consist of both sensitive and resistant phenotypes. Growth rate, virulence and biofilm-forming ability of the sensitive and resistant strains were compared to determine effects of compensatory response. Proteome profiles of paired sensitive and resistant strains were analyzed by liquid chromatography/mass spectrophotometry (LC/MS). Although there were no significant differences in growth rate between sensitive and resistant pairs, bacterial virulence (in terms of abilities to induce apoptosis and form biofilm) differs from pair to pair. These findings demonstrate the complex and strain-specific phenotypic changes in compensation for antibiotics resistance. Compensation for in vitro induced levofloxacin resistance involving mutations of gyrA and gyrB was functionally random. Furthermore, higher protein translation and non-functional protein degradation capabilities in naturally-occuring dual population metronidazole sensitive-resistant strains may be a possible alternative mechanism underlying resistance to metronidazole without mutations in rdxA and frxA. This may explain the lack of mutations in target genes in ~10% of metronidazole resistant strains.
Collapse
Affiliation(s)
- Aimi Hanafi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Woon Ching Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Xinsheng Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Ain Shaari
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Mojdeh Dinarvand
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Philippe Lehours
- Laboratoire de Bactériologie, Université de BordeauxBordeaux, France; Institut National de la Santé et de la Recherche Médicale U853Bordeaux, France
| | - Francis Mégraud
- Laboratoire de Bactériologie, Université de BordeauxBordeaux, France; Institut National de la Santé et de la Recherche Médicale U853Bordeaux, France
| | - Alex Hwong Ruey Leow
- Department of Medicine, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Khean Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Rahman MA, Bishayee K, Sadra A, Huh SO. Oxyresveratrol activates parallel apoptotic and autophagic cell death pathways in neuroblastoma cells. Biochim Biophys Acta Gen Subj 2016; 1861:23-36. [PMID: 27815218 DOI: 10.1016/j.bbagen.2016.10.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/05/2016] [Accepted: 10/29/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Drug resistance from apoptosis is a challenging issue with different cancer types, and there is an interest in identifying other means of inducing cytotoxicity. Here, treatment of neuroblastoma cells with oxyresveratrol (OXYRES), a natural antioxidant, led to dose-dependent cell death and increased autophagic flux along with activation of caspase-dependent apoptosis. METHODS For cell viability, we performed the CCK-8 assay. Protein expression changes were with Western blot and immunocytochemistry. Silencing of proteins was with siRNA. The readouts for cell cycle, mitochondria membrane potential, caspase-3, autophagy and apoptosis were performed with flow cytometry. RESULTS Phosphorylation of p38 MAPK increased with OXYRES treatment and inhibition of p38 reduced autophagy and cell death from OXYRES. In contrast, PI3K/AKT/mTOR signaling decreased in the target cells with OXYRES and inhibition of PI3K or mTOR enhanced OXYRES-mediated cytotoxicity with increased levels of autophagy. Modulation of either of the apoptosis and autophagy flux pathways affected the extent of cell death by OXYRES, but did not affect the indicators of these pathways with respect to each other. Both pathways were independent of ROS generation or p53 activation. CONCLUSION OXYRES led to cell death from autophagy, which was independent of apoptosis induction. The OXYRES effects were due to changes in the activity levels of p38 MAPK and PI3K/AKT/mTOR. GENERAL SIGNIFICANCE With two independent and parallel pathways for cytotoxicity induction in target cells, this study puts forward a potential utility for OXYRES or the pathways it represents as novel means of inducing cell death in neuroblastoma cells.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, South Korea
| | - Kausik Bishayee
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, South Korea
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, South Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, South Korea.
| |
Collapse
|
14
|
Fucosyltransferase-4 and Oligosaccharide Lewis Y Antigen as potentially Correlative Biomarkers of Helicobacter pylori CagA Associated Gastric Cancer. Pathol Oncol Res 2016; 23:173-179. [PMID: 27757838 DOI: 10.1007/s12253-016-0122-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Abstract
H. pylori cytotoxin associated antigen A (CagA) plays a significant role in the progression of gastric cancer but their effect on fucosylation to develop gastric cancer is unknown. Fucosyltransferase IV (FUT4) is the key enzyme for synthesis of LewisY (LeY) carried by glycoproteins and glycolipids on the cell membrane. Herein, we compare the expression of CagA, p-EGFR, FUT4 and LeY in gastritis (n = 128, 176), gastric ulcer (n = 174, 213), and gastric cancer (n = 323, 261) tissue and serum samples, respectively by IHC and ELISA. Moreover, we investigated the potential correlation of CagA with FUT4 and LeY overexpression through EGFR activation. IHC and ELISA results showed higher positive cases of H. pylori CagA (83, 86 %), p-EGFR (81, 72 %), FUT4 (91, 97 %) and LeY (93, 92 %) in gastric cancer, compared to gastritis and gastric ulcer, H. pylori CagA (58, 67 & 59, 73 %), p-EGFR (52, 63 & 35, 47 %), FUT4 (68, 78 & 67, 82 %) and LeY (62,76 & 65, 85 %), respectively. We found a significant high expression (H-Value) of CagA (1.79, 1.66), p-EGFR (1.53, 1.58), FUT4 (2.14, 1.66) and LeY (1.69, 1.61) in gastric cancer tissues and serum, respectively as compared to chronic gastritis and gastric ulcers, CagA (0.64,1.14), p-EGFR (0.856, 0.678), FUT4 (0.949,1.197) and LeY (0.68,1.008) (P < 0.0001), respectively. Furthermore, H. pylori CagA showed significant correlation with p-EGFR (R-0.62, -0.74), FUT4 (R-0.81, -0.76) and LeY (R-0.82, -0.70) in gastric tissues and serum (P < 0.0001). H. pylori CagA plays key role in the development of gastric cancer with overexpression of FUT4/LeY, serve as potentially correlative biomarkers of H. pylori CagA associated gastric cancer.
Collapse
|
15
|
Foegeding NJ, Caston RR, McClain MS, Ohi MD, Cover TL. An Overview of Helicobacter pylori VacA Toxin Biology. Toxins (Basel) 2016; 8:toxins8060173. [PMID: 27271669 PMCID: PMC4926140 DOI: 10.3390/toxins8060173] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022] Open
Abstract
The VacA toxin secreted by Helicobacter pylori enhances the ability of the bacteria to colonize the stomach and contributes to the pathogenesis of gastric adenocarcinoma and peptic ulcer disease. The amino acid sequence and structure of VacA are unrelated to corresponding features of other known bacterial toxins. VacA is classified as a pore-forming toxin, and many of its effects on host cells are attributed to formation of channels in intracellular sites. The most extensively studied VacA activity is its capacity to stimulate vacuole formation, but the toxin has many additional effects on host cells. Multiple cell types are susceptible to VacA, including gastric epithelial cells, parietal cells, T cells, and other types of immune cells. This review focuses on the wide range of VacA actions that are detectable in vitro, as well as actions of VacA in vivo that are relevant for H. pylori colonization of the stomach and development of gastric disease.
Collapse
Affiliation(s)
- Nora J Foegeding
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Rhonda R Caston
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
16
|
Aziz F, Wang X, Liu J, Yan Q. Ginsenoside Rg3 induces FUT4-mediated apoptosis in H. pylori CagA-treated gastric cancer cells by regulating SP1 and HSF1 expressions. Toxicol In Vitro 2016; 31:158-66. [PMID: 26427350 DOI: 10.1016/j.tiv.2015.09.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/17/2015] [Accepted: 09/25/2015] [Indexed: 01/10/2023]
Abstract
Helicobacter pylori (H. pylori) cytotoxin associated antigen A (CagA) plays a significant role in the development of gastric cancer. Ginsenoside Rg3 is a herbal medicine which inhibits cell proliferation and induces apoptosis in various cancer cells. Fucosylation plays important roles in cancer biology as increased fucosylation levels of glycoproteins and glycolipids have been reported in many cancers. Fucosyltransferase IV (FUT4) is an essential enzyme, catalyzes the synthesis of LewisY oligosaccharides and is regulated by specificity protein 1 (SP1) and heat shock factor protein 1 (HSF1) transcription factors. Herein, we studied the mechanism action of Rg3 apoptosis induction in gastric cancer cells. We treated the gastric cancer cells with CagA followed by Rg3, and analyzed their ability to induce apoptosis by evaluating the role of FUT4 as well as SP1 and HSF1 expressions by Western blot, flow cytometry and ELISA. We found that Rg3 significantly induced apoptosis in CagA treated gastric cancer cells, as evidenced by nuclear staining of 4-6-diamidino-2-phenylindole (DAPI) and Annexin-V/PI double-labeling. In addition, Rg3 significantly increased the expression of pro-apoptotic proteins and triggered the activation of caspase-3, -8, and -9 and PARP. Moreover, Rg3-induced apoptotic mechanisms indicated that Rg3 inhibited FUT4 expression through SP1 upregulation and HSF1 downregulation. Hence, Rg3 therapy is an effective strategy for gastric cancer treatment. Furthermore SP1 and HSF1 may serve as potential diagnostic and therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Faisal Aziz
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Xiaoqi Wang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China.
| |
Collapse
|
17
|
Morphological and Cellular Features of Innate Immune Reaction in Helicobacter pylori Gastritis: A Brief Review. Int J Mol Sci 2016; 17:ijms17010109. [PMID: 26784180 PMCID: PMC4730350 DOI: 10.3390/ijms17010109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 12/14/2022] Open
Abstract
Innate and adaptive immunity are both involved in acute and chronic inflammatory processes. The main cellular players in the innate immune system are macrophages, mast cells, dendritic cells, neutrophils, eosinophils, and natural killer (NK), which offer antigen-independent defense against infection. Helicobacter pylori (H. pylori) infection presents peculiar characteristics in gastric mucosa infrequently occurring in other organs; its gastric colonization determines a causal role in both gastric carcinomas and mucosa-associated lymphoid tissue lymphoma. In contrast, an active role for Epstein-Barr virus (EBV) has been identified only in 9% of gastric carcinomas. The aim of the present review is to discuss the role of cellular morphological effectors in innate immunity during H. pylori infection and gastric carcinogenesis.
Collapse
|
18
|
Suppression of cell division-associated genes by Helicobacter pylori attenuates proliferation of RAW264.7 monocytic macrophage cells. Sci Rep 2015; 5:11046. [PMID: 26078204 PMCID: PMC4468580 DOI: 10.1038/srep11046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/07/2015] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori at multiplicity of infection (MOI ≥ 50) have been shown to cause apoptosis in RAW264.7 monocytic macrophage cells. Because chronic gastric infection by H. pylori results in the persistence of macrophages in the host's gut, it is likely that H. pylori is present at low to moderate, rather than high numbers in the infected host. At present, the effect of low-MOI H. pylori infection on macrophage has not been fully elucidated. In this study, we investigated the genome-wide transcriptional regulation of H. pylori-infected RAW264.7 cells at MOI 1, 5 and 10 in the absence of cellular apoptosis. Microarray data revealed up- and down-regulation of 1341 and 1591 genes, respectively. The expression of genes encoding for DNA replication and cell cycle-associated molecules, including Aurora-B kinase (AurkB) were down-regulated. Immunoblot analysis verified the decreased expression of AurkB and downstream phosphorylation of Cdk1 caused by H. pylori infection. Consistently, we observed that H. pylori infection inhibited cell proliferation and progression through the G1/S and G2/M checkpoints. In summary, we suggest that H. pylori disrupts expression of cell cycle-associated genes, thereby impeding proliferation of RAW264.7 cells, and such disruption may be an immunoevasive strategy utilized by H. pylori.
Collapse
|
19
|
Qadri Q, Rasool R, Gulzar GM, Naqash S, Shah ZA. H. pylori infection, inflammation and gastric cancer. J Gastrointest Cancer 2015; 45:126-32. [PMID: 24557546 DOI: 10.1007/s12029-014-9583-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION A strong association between chronic infection, inflammation, and cancer has been suggested. DISCUSSION Helicobacter pylori, a microaerophilic gram negative bacterium, infects about half the world's population. It has been defined as a definitive carcinogen in the pathogenesis of gastric cancer. H. pylori evades the host immune responses and persists in the stomach leading to gastritis gastric atrophy and sometimes gastric cancer. CONCLUSION Chronic H. pylori infection causes gastric cancer via two mechanisms: the presence of virulence factors and the induction of chronic inflammation which ultimately leads to neoplastic transformation.
Collapse
Affiliation(s)
- Qurteeba Qadri
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Jammu and Kashmir, 190011, India,
| | | | | | | | | |
Collapse
|
20
|
Ishaq S, Nunn L. Helicobacter pylori and gastric cancer: a state of the art review. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2015; 8:S6-S14. [PMID: 26171139 PMCID: PMC4495426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/20/2015] [Indexed: 11/15/2022]
Abstract
Gastric cancer is the third most common cause of cancer-related death in the world. It is now well- established that Helicobacter pylori infection predispose individuals toward gastric adenocarcinoma later in life. It has since been classified as a class I carcinogen by the World Health Organization. Research suggests that the oncogenic effects of Helicobacter pylori can occur through a variety of mechanisms, including the indirect inflammatory effects of Helicobacter pylori on the gastric mucosa and the direct epigenetic effects of Helicobacter pylori on individual cells. Whilst infected with Helicobacter pylori, a combination of environmental and host-dependent factors determines the likelihood of developing gastric cancer. Controversy remains regarding the effects of eradication of Helicobacter pylori on the prevention of further progression of gastric lesions and the possibility for regression of atrophic gastritis. The aim of this review is to synthesis different elements that contribute to the step-wise progression of normal gastric mucosa to gastric adenocarcinoma. This review helps clinicians to better identify those infected individuals who are at high risk of developing gastric cancer and implement the necessary investigations and treatment.
Collapse
Affiliation(s)
- Sauid Ishaq
- Gastroenterology department, Russells Hall Hospital, Birmingham City University, Birmingham, UK,SGU Grenada, West Indies
| | - Lois Nunn
- Gastroenterology department, Russells Hall Hospital, Birmingham City University, Birmingham, UK
| |
Collapse
|
21
|
Wang YC, Chen CL, Sheu BS, Yang YJ, Tseng PC, Hsieh CY, Lin CF. Helicobacter pylori infection activates Src homology-2 domain-containing phosphatase 2 to suppress IFN-γ signaling. THE JOURNAL OF IMMUNOLOGY 2014; 193:4149-58. [PMID: 25225672 DOI: 10.4049/jimmunol.1400594] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Helicobacter pylori infection not only induces gastric inflammation but also increases the risk of gastric tumorigenesis. IFN-γ has antimicrobial effects; however, H. pylori infection elevates IFN-γ-mediated gastric inflammation and may suppress IFN-γ signaling as a strategy to avoid immune destruction through an as-yet-unknown mechanism. This study was aimed at investigating the mechanism of H. pylori-induced IFN-γ resistance. Postinfection of viable H. pylori decreased IFN-γ-activated signal transducers and activators of transcription 1 and IFN regulatory factor 1 not only in human gastric epithelial MKN45 and AZ-521 but also in human monocytic U937 cells. H. pylori caused an increase in the C-terminal tyrosine phosphorylation of Src homology-2 domain-containing phosphatase (SHP) 2. Pharmacologically and genetically inhibiting SHP2 reversed H. pylori-induced IFN-γ resistance. In contrast to a clinically isolated H. pylori strain HP238, the cytotoxin-associated gene A (CagA) isogenic mutant strain HP238(CagAm) failed to induce IFN-γ resistance, indicating that CagA regulates this effect. Notably, HP238 and HP238(CagAm) differently caused SHP2 phosphorylation; however, imaging and biochemical analyses demonstrated CagA-mediated membrane-associated binding with phosphorylated SHP2. CagA-independent generation of reactive oxygen species (ROS) contributed to H. pylori-induced SHP2 phosphorylation; however, ROS/SHP2 mediated IFN-γ resistance in a CagA-regulated manner. This finding not only provides an alternative mechanism for how CagA and ROS coregulate SHP2 activation but may also explain their roles in H. pylori-induced IFN-γ resistance.
Collapse
Affiliation(s)
- Yu-Chih Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Ling Chen
- Center of Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Bor-Shyang Sheu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yao-Jong Yang
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Po-Chun Tseng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Yuan Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiou-Feng Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan; and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
22
|
Gobert AP, Verriere T, Asim M, Barry DP, Piazuelo MB, de Sablet T, Delgado AG, Bravo LE, Correa P, Peek RM, Chaturvedi R, Wilson KT. Heme oxygenase-1 dysregulates macrophage polarization and the immune response to Helicobacter pylori. THE JOURNAL OF IMMUNOLOGY 2014; 193:3013-22. [PMID: 25108023 DOI: 10.4049/jimmunol.1401075] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Helicobacter pylori incites a futile inflammatory response, which is the key feature of its immunopathogenesis. This leads to the ability of this bacterial pathogen to survive in the stomach and cause peptic ulcers and gastric cancer. Myeloid cells recruited to the gastric mucosa during H. pylori infection have been directly implicated in the modulation of host defense against the bacterium and gastric inflammation. Heme oxygenase-1 (HO-1) is an inducible enzyme that exhibits anti-inflammatory functions. Our aim was to analyze the induction and role of HO-1 in macrophages during H. pylori infection. We now show that phosphorylation of the H. pylori virulence factor cytotoxin-associated gene A (CagA) in macrophages results in expression of hmox-1, the gene encoding HO-1, through p38/NF (erythroid-derived 2)-like 2 signaling. Blocking phagocytosis prevented CagA phosphorylation and HO-1 induction. The expression of HO-1 was also increased in gastric mononuclear cells of human patients and macrophages of mice infected with cagA(+) H. pylori strains. Genetic ablation of hmox-1 in H. pylori-infected mice increased histologic gastritis, which was associated with enhanced M1/Th1/Th17 responses, decreased regulatory macrophage (Mreg) response, and reduced H. pylori colonization. Gastric macrophages of H. pylori-infected mice and macrophages infected in vitro with this bacterium showed an M1/Mreg mixed polarization type; deletion of hmox-1 or inhibition of HO-1 in macrophages caused an increased M1 and a decrease of Mreg phenotype. These data highlight a mechanism by which H. pylori impairs the immune response and favors its own survival via activation of macrophage HO-1.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; Institut National de la Recherche Agronomique, Unité de Recherche Microbiologie (UR454), 63122 Saint-Genès-Champanelle, France
| | - Thomas Verriere
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Thibaut de Sablet
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Luis E Bravo
- Departamento de Patología, Escuela de Medicina, Universidad del Valle, Cali, Colombia
| | - Pelayo Correa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212; and
| | - Rupesh Chaturvedi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212; and Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
23
|
Vitamin D receptor agonists: suitable candidates as novel therapeutic options in autoimmune inflammatory myopathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:949730. [PMID: 24895631 PMCID: PMC4033351 DOI: 10.1155/2014/949730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/09/2014] [Indexed: 12/14/2022]
Abstract
The primary aim in the treatment of autoimmune inflammatory myopathies (IMs) is to recover muscle function. The presence of immune/inflammatory cell infiltrates within muscle tissues represents the common feature of different IM subtypes, albeit a correlation between muscular damage extent and inflammation degree is often lacking. Treatments for IMs are based on life-long immunosuppressive therapy, with the well known adverse effects; recovery is incomplete for many patients. More effective therapies, with reduced side-effects, are highly desirable. Vitamin D receptor (VDR) agonists emerge to retain pleiotropic anti-inflammatory properties, since they regulate innate and adaptive immunity by switching the immune response from proinflammatory T helper 1 (Th1) type to tolerogenic T helper 2 (Th2) type dominance. In skeletal muscle cells less hypercalcemic VDR ligands target powerful mediators of inflammation, such as TNFα and TNFα driven paths, without affecting immune or muscle cells viability, retaining the potentiality to counteract Th1 driven overreactivity established by the self-enhancing inflammatory loop between immune and skeletal muscle cells. This review summarizes those features of VDR agonists as candidates in future treatment of IM.
Collapse
|
24
|
The expression of Bcl-2 and BID in gastric cancer cells. J Immunol Res 2014; 2014:953203. [PMID: 24741635 PMCID: PMC3987977 DOI: 10.1155/2014/953203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/14/2014] [Indexed: 12/29/2022] Open
Abstract
Background. Bcl-2 and BID play a major role in the process of apoptosis and their dysfunction underlies carcinogenesis. The study objective was to assess the expression of Bcl-2 and BID in gastric cancer cells in correlation with chosen clinicopathological parameters, presence of Helicobacter pylori infection, and patients' survival. Materials and Methods. The study involved 88 patients operated on for gastric cancer. The expressions of Bcl-2 and BID were determined immunohistochemically. Results. Positive Bcl-2 expression was found in 55.7% and, BID in 53.6% of patients. The Bcl-2 expression correlated with stage pT3 and T4 gastric cancer (P < 0.05), with the intestinal type according to Lauren (P < 0.001), ulcerated type according to Bormann's classification (P < 0.01), and with local lymph node metastases (P < 0.05). Conclusion. The Bcl-2 protein plays a key role in the process of gastric cancer formation and is associated with the growth of definite types of gastric cancer.
Collapse
|
25
|
Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE. Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. Endocrinology 2014; 155:347-57. [PMID: 24280059 DOI: 10.1210/en.2013-1205] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vitamin D deficiency is linked to a range of muscle disorders including myalgia, muscle weakness, and falls. Humans with severe vitamin D deficiency and mice with transgenic vitamin D receptor (VDR) ablation have muscle fiber atrophy. However, molecular mechanisms by which vitamin D influences muscle function and fiber size remain unclear. A central question is whether VDR is expressed in skeletal muscle and is able to regulate transcription at this site. To address this, we examined key molecular and morphologic changes in C2C12 cells treated with 25-hydroxyvitamin D (25OHD) and 1,25-dihydroxyvitamin D (1,25(OH)(2)D). As well as stimulating VDR expression, 25(OH)D and 1,25(OH)(2)D dose-dependently increased expression of the classic vitamin D target cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24A1), demonstrating the presence of an autoregulatory vitamin D-endocrine system in these cells. Luciferase reporter studies demonstrated that cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1) was functional in these cells. Both 25OHD and 1,25(OH)(2)D altered C2C12 proliferation and differentiation. These effects were related to the increased expression of genes involved in G(0)/G(1) arrest (retinoblastoma protein [Rb], 1.3-fold; ATM, 1.5-fold, both P < .05), downregulation of mRNAs involved in G(1)/S transition, including myc and cyclin-D1 (0.7- and 0.8-fold, both P < .05) and reduced phosphorylation of Rb protein (0.3-fold, P < .005). After serum depletion, 1,25(OH)(2)D (100nM) suppressed myotube formation with decreased mRNAs for key myogenic regulatory factors (myogenin, 0.5-fold; myf5, 0.4-fold, P < .005) but led to a 1.8-fold increase in cross-sectional size of individual myotubes associated with markedly decreased myostatin expression (0.2-fold, P < .005). These data show that vitamin D signaling alters gene expression in C2C12 cells, with effects on proliferation, differentiation, and myotube size.
Collapse
Affiliation(s)
- Christian M Girgis
- Garvan Institute of Medical Research (C.M.G., N.M., K.C., J.E.G.), Sydney, New South Wales 2010, Australia; Faculty of Medicine (C.M.G., R.J.C.-B., J.E.G.), University of Sydney, Sydney, New South Wales 2008, Australia; The Kolling Institute of Medical Research (R.J.C.-B.) and Royal North Shore Hospital (R.J.C.-B.), Sydney, New South Wales 2065, Australia; Department of Endocrinology and Diabetes (J.E.G.), Westmead Hospital, Sydney, New South Wales 2145, Australia; and St Vincent's Clinical School (J.E.G.), University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | |
Collapse
|
26
|
El-Adawi H, El-Sheekh M, Khalil M, El-Deeb N, Hussein M. Lactic acid bacterial extracts as anti-Helicobacter pylori: a molecular approach. Ir J Med Sci 2013; 182:439-52. [PMID: 23404362 DOI: 10.1007/s11845-013-0909-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 01/15/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection, the main cause of chronic gastritis, increases gastric cancer risk. Antibiotics-based H. pylori eradication treatment is 90% effective. However, it is expensive and causes side effects and antibiotic resistance. Lactic acid bacteria (LAB) could present a low-cost, large-scale alternative solution to prevent or decrease H. pylori colonization. AIM This work aimed to study the inhibitory effects of LAB strains on the growth and pathogenic activity of H. pylori stains. To this end, we have selected the most virulent H. pylori strains (out of 20 mucosal antral biopsies) regarding cellular vacuolization and induction of apoptosis/necrosis. METHOD The selection of H. pylori pathogenic strains (clinically pre-isolated) were based on their impact of VacA activities on Hep-2 cell line, induction of apoptosis and necrosis in Caco-2 cell line. The Inhibitory effect of LAB strains on the invasion was carried out using the Caco-2 and Hela cell lines, where, they were co-cultured with the pathogenic H. pylori in the presence or absence of LAB extracts. The effect of LAB extracts on TNF-α secretion which induced by H. pylori-LPS was carried out by RT-qPCR. RESULTS L. bulgaricus DSMZ 20080, L. acidophilus and L. plantarum (studied previously and reported as high antioxidant candidate strains) showed the highest anti-pylori activities with inhibition ranged from 51.46 to 88.19%, they preventing the adhesion, invasion and DNA fragmentation of cell lines. In addition, they could reduce the TNF-α expression by 62.13%. CONCLUSION LAB extracts could inhibit the bacterial adhesion and invasion, gastric inflammation and DNA fragmentation induced by Helicobacter pylori.
Collapse
Affiliation(s)
- H El-Adawi
- Department of Medical Biotechnology, Genetic Engineering and Biotech Institute, Mubarak City for Scientific Research, Universities and Research District Sector, New Borg El-Arab, P.O.BOX 29134, Alexandria, Egypt.
| | | | | | | | | |
Collapse
|
27
|
Aziz F, Sherwani SK, Akhtar SS, Kazmi SU. Development of an in-house enzyme-linked immunosorbent assay based on surface whole cell antigen for diagnosis of Helicobacter pylori infection in patients with gastroduodenal ulcer disease. World J Microbiol Biotechnol 2013; 30:305-15. [PMID: 23921679 DOI: 10.1007/s11274-013-1448-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/25/2013] [Indexed: 01/01/2023]
Abstract
Helicobacter pylori (H. pylori) is a causative agent of gastritis, gastroduodenal ulcers and gastric adenocarcinoma. More than 50% world population is colonized by H. pylori, which is closely related to the chronic gastritis and gastric ulcer infection. In this study, a total of 214 gastritis patient's serum samples were screened for anti-H. pylori IgG antibody. A 96-well plate coated with 20 μg/ml antigen and hundred-fold diluted patient's serum was allowed to react. After extensive washing with buffer, 1:2,500 diluted conjugated secondary antibody was added. Later substrate was added to observe positivity by measuring the intensity of color. Statistical analyses were performed, and p value of <0.01 was taken as significant; 84% male patients and 89% female patients, respectively, tested positive for H. pylori, while agewise distribution was 35-45 years males (40%) and 35-55 years females (52%) were found highest number of H. pylori infected patients. In-house ELISA based on surface whole cell antigen (wELISA) showed a sensitivity of 93%, specificity of 100%, accuracy 94% and κ value 0.86 with significant correlation R-0.77020; p < 0.0001. We conclude that H. pylori local isolates surface antigen was satisfactory for diagnosis as different parameters were adjusted according to the local H. pylori isolates. Fluctuations in serum antibody titer predict the variation in an individual's response of the host against H. pylori. In-house wELISA could provide a reliable and a clinically useful method for the diagnosis of H. pylori infection in patients of Karachi, Pakistan.
Collapse
Affiliation(s)
- Faisal Aziz
- Immunology and Infectious Diseases Research Laboratory (IIDRL), Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan,
| | | | | | | |
Collapse
|
28
|
Luo JJ, Li CY, Liu S, Yu W, Tang SY, Cai HL, Zhang Y. Overexpression of Helicobacter pylori VacA N-terminal fragment induces proinflammatory cytokine expression and apoptosis in human monocytic cell line through activation of NF-κB. Can J Microbiol 2013; 59:523-33. [PMID: 23898995 DOI: 10.1139/cjm-2013-0021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vacuolating cytotoxin (VacA) is an important virulence factor in the pathogenesis of Helicobacter pylori-related diseases. The aim of this study was to investigate the function of the amino-terminal 476 residue fragment (p52) of VacA and the possible molecular mechanisms responsible for its induction of proinflammatory cytokines secretion and apoptosis. Human acute monocytic leukemia cell line THP-1 was used as an in vitro model to study proinflammatory cytokines secretion and apoptosis induced by transfection of a recombinant plasmid encoding the amino-terminal 476 residue fragment (p52) of VacA. The results showed that VacA p52 overexpression induced the production of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), nitric oxide, and reactive oxygen species in THP-1 cells in a time-dependent manner. VacA p52 overexpression also promoted THP-1 cells apoptosis. In addition, VacA p52 triggered the activation of nuclear factor kappa B (NF-κB), indicating a possible mechanism for its induction of proinflammatory cytokines secretion and cell apoptosis. Our study demonstrated that the induction of cytokines secretion and apoptosis by VacA p52 in THP-1 cells could be mediated through activation of nuclear factor kappa B.
Collapse
Affiliation(s)
- Jing-Jing Luo
- Institute of Pathogenic Biology, University of South China, Hengyang 421001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Helicobacter pylori colonization ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism. PLoS One 2012; 7:e50069. [PMID: 23166823 PMCID: PMC3499487 DOI: 10.1371/journal.pone.0050069] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023] Open
Abstract
Background There is an inverse secular trend between the incidence of obesity and gastric colonization with Helicobacter pylori, a bacterium that can affect the secretion of gastric hormones that relate to energy homeostasis. H. pylori strains that carry the cag pathogenicity island (PAI) interact more intimately with gastric epithelial cells and trigger more extensive host responses than cag− strains. We hypothesized that gastric colonization with H. pylori strains differing in cag PAI status exert distinct effects on metabolic and inflammatory phenotypes. Methodology/Principal Findings To test this hypothesis, we examined metabolic and inflammatory markers in db/db mice and mice with diet-induced obesity experimentally infected with isogenic forms of H. pylori strain 26695: the cag PAI wild-type and its cag PAI mutant strain 99–305. H. pylori colonization decreased fasting blood glucose levels, increased levels of leptin, improved glucose tolerance, and suppressed weight gain. A response found in both wild-type and mutant H. pylori strain-infected mice included decreased white adipose tissue macrophages (ATM) and increased adipose tissue regulatory T cells (Treg) cells. Gene expression analyses demonstrated upregulation of gastric PPAR γ-responsive genes (i.e., CD36 and FABP4) in H. pylori-infected mice. The loss of PPAR γ in immune and epithelial cells in mice impaired the ability of H. pylori to favorably modulate glucose homeostasis and ATM infiltration during high fat feeding. Conclusions/Significance Gastric infection with some commensal strains of H. pylori ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism and modulates macrophage and Treg cell infiltration into the abdominal white adipose tissue.
Collapse
|
30
|
Yue L, Durand M, Lebeau Jacob MC, Hogan P, McManus S, Roux S, de Brum-Fernandes AJ. Prostaglandin D2 induces apoptosis of human osteoclasts by activating the CRTH2 receptor and the intrinsic apoptosis pathway. Bone 2012; 51:338-46. [PMID: 22705147 DOI: 10.1016/j.bone.2012.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 12/11/2022]
Abstract
Prostaglandin D(2) (PGD(2)) is a lipid mediator synthesized from arachidonic acid that directly activates two specific receptors, the D-type prostanoid (DP) receptor and chemoattractant receptor homologous molecule expressed on T-helper type 2 cells (CRTH2). PGD(2) can affect bone metabolism by influencing both osteoblast and osteoclast (OC) functions, both cells involved in bone remodeling and in in vivo fracture repair as well. The objective of the present study was to determine the effects of PGD(2), acting through its two specific receptors, on human OC apoptosis. Human OCs were differentiated in vitro from peripheral blood mononuclear cells in the presence of receptor activator for nuclear factor κB ligand (RANKL) and macrophage-colony stimulating factor (M-CSF), and treated with PGD(2), its specific agonists and antagonists. Treatment with PGD(2) for 24hours in the presence of naproxen (10μM) to inhibit endogenous prostaglandin production increased the percentage of apoptotic OCs in a dose-dependent manner, as did the specific CRTH2 agonist compound DK-PGD(2) but not the DP agonist compound BW 245C. In the absence of naproxen, the CRTH2 antagonist compound CAY 10471 reduced OC apoptosis rate but the DP antagonist BW A868C had no effect. The induction of PGD(2)-CRTH2 dependent apoptosis was associated with the activation of caspase-9, but not caspase-8, leading to caspase-3 cleavage. These data show that PGD(2) induces human OC apoptosis through activation of CRTH2 and the apoptosis intrinsic pathway.
Collapse
Affiliation(s)
- Li Yue
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
31
|
Koch M, Mollenkopf HJ, Klemm U, Meyer TF. Induction of microRNA-155 is TLR- and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis. Proc Natl Acad Sci U S A 2012; 109:E1153-62. [PMID: 22509021 PMCID: PMC3358876 DOI: 10.1073/pnas.1116125109] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Helicobacter pylori is a gastric pathogen responsible for a high disease burden worldwide. Deregulated inflammatory responses, possibly involving macrophages, are implicated in H. pylori-induced pathology, and microRNAs, such as miR-155, have recently emerged as crucial regulators of innate immunity and inflammatory responses. miR-155 is regulated by Toll-like receptor (TLR) ligands in monocyte-derived cells and has been shown to be induced in macrophages during H. pylori infection. Here, we investigated the regulation of miR-155 expression in primary murine bone marrow-derived macrophages (BMMs) during H. pylori infection and examined the downstream mRNA targets of this microRNA using microarray analysis. We report TLR2/4- and NOD1/2-independent up-regulation of miR-155, which was found to be dependent on the major H. pylori pathogenicity determinant, the type IV secretion system (T4SS). miR-155 expression was dependent on NF-κB signaling but was independent of CagA. Microarray analysis identified known gene targets of miR-155 in BMMs during H. pylori infection that are proapoptotic. We also identified and validated miR-155 binding sites in the 3' UTRs of the targets, Tspan14, Lpin1, and Pmaip1. We observed that H. pylori-infected miR-155(-/-) BMMs were significantly more susceptible to cisplatin DNA damage-induced apoptosis than were wild-type BMMs. Thus, our data suggest a function for the prototypical H. pylori pathogenicity factor, the T4SS, in the up-regulation of miR-155 in BMMs. We propose the antiapoptotic effects of miR-155 could enhance macrophage resistance to apoptosis induced by DNA damage during H. pylori infection.
Collapse
Affiliation(s)
| | | | - Uwe Klemm
- Core Facility Experimental Animals, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | | |
Collapse
|
32
|
Kim IJ, Blanke SR. Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Front Cell Infect Microbiol 2012; 2:37. [PMID: 22919629 PMCID: PMC3417592 DOI: 10.3389/fcimb.2012.00037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/05/2012] [Indexed: 12/13/2022] Open
Abstract
Virulence mechanisms underlying Helicobacter pylori persistence and disease remain poorly understood, in part, because the factors underlying disease risk are multifactorial and complex. Among the bacterial factors that contribute to the cumulative pathophysiology associated with H. pylori infections, the vacuolating cytotoxin (VacA) is one of the most important. Analogous to a number of H. pylori genes, the vacA gene exhibits allelic mosaicism, and human epidemiological studies have revealed that several families of toxin alleles are predictive of more severe disease. Animal model studies suggest that VacA may contribute to pathogenesis in several ways. VacA functions as an intracellular-acting protein exotoxin. However, VacA does not fit the current prototype of AB intracellular-acting bacterial toxins, which elaborate modulatory effects through the action of an enzymatic domain translocated inside host cells. Rather, VacA may represent an alternative prototype for AB intracellular acting toxins that modulate cellular homeostasis by forming ion-conducting intracellular membrane channels. Although VacA seems to form channels in several different membranes, one of the most important target sites is the mitochondrial inner membrane. VacA apparently take advantage of an unusual intracellular trafficking pathway to mitochondria, where the toxin is imported and depolarizes the inner membrane to disrupt mitochondrial dynamics and cellular energy homeostasis as a mechanism for engaging the apoptotic machinery within host cells. VacA remodeling of the gastric environment appears to be fine-tuned through the action of the Type IV effector protein CagA which, in part, limits the cytotoxic effects of VacA in cells colonized by H. pylori.
Collapse
Affiliation(s)
- Ik-Jung Kim
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana IL, USA
| | | |
Collapse
|
33
|
Rassow J. Helicobacter pylori vacuolating toxin A and apoptosis. Cell Commun Signal 2011; 9:26. [PMID: 22044628 PMCID: PMC3266207 DOI: 10.1186/1478-811x-9-26] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/01/2011] [Indexed: 12/16/2022] Open
Abstract
VacA, the vacuolating cytotoxin A of Helicobacter pylori, induces apoptosis in epithelial cells of the gastic mucosa and in leukocytes. VacA is released by the bacteria as a protein of 88 kDa. At the outer surface of host cells, it binds to the sphingomyelin of lipid rafts. At least partially, binding to the cells is facilitated by different receptor proteins. VacA is internalized by a clathrin-independent mechanism and initially accumulates in GPI-anchored proteins-enriched early endosomal compartments. Together with early endosomes, VacA is distributed inside the cells. Most of the VacA is eventually contained in the membranes of vacuoles. VacA assembles in hexameric oligomers forming an anion channel of low conductivity with a preference for chloride ions. In parallel, a significant fraction of VacA can be transferred from endosomes to mitochondria in a process involving direct endosome-mitochondria juxtaposition. Inside the mitochondria, VacA accumulates in the mitochondrial inner membrane, probably forming similar chloride channels as observed in the vacuoles. Import into mitochondria is mediated by the hydrophobic N-terminus of VacA. Apoptosis is triggered by loss of the mitochondrial membrane potential, recruitment of Bax and Bak, and release of cytochrome c.
Collapse
Affiliation(s)
- Joachim Rassow
- Ruhr-Universität Bochum, Institut für Physiologische Chemie, Medizinische Fakultät, Gebäude MA3, D-44780 Bochum, Germany.
| |
Collapse
|
34
|
Chaturvedi R, de Sablet T, Coburn LA, Gobert AP, Wilson KT. Arginine and polyamines in Helicobacter pylori-induced immune dysregulation and gastric carcinogenesis. Amino Acids 2011; 42:627-40. [PMID: 21874531 DOI: 10.1007/s00726-011-1038-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/13/2011] [Indexed: 02/07/2023]
Abstract
L-arginine (L-Arg) is metabolized by nitric oxide synthase and arginase enzymes. The gastric pathogen Helicobacter pylori causes peptic ulcer disease and gastric cancer. We have shown that alterations in L-Arg availability and metabolism into polyamines contribute significantly to the dysregulation of the host immune response to this infection. Nitric oxide (NO) derived from inducible NO synthase (iNOS) can kill H. pylori. There are multiple mechanisms leading to failure of this process, including competition for L-Arg substrate by H. pylori arginase, and induction of host macrophage arginase II (Arg2) and ornithine decarboxylase (ODC). Generation of spermine by ODC inhibits iNOS translation and NO-mediated H. pylori killing. Expression of ODC is dependent on formation of a unique AP-1 complex, leading to upregulation of c-Myc as a transcriptional enhancer. Macrophage apoptosis is mediated by oxidation of spermine via the enzyme spermine oxidase (SMO) that generates hydrogen peroxide (H(2)O(2)), and thus oxidative stress-induced mitochondrial membrane polarization. Our studies have demonstrated that apoptosis occurs through a pERK → pc-Fos/c-Jun → c-Myc → ODC → SMO pathway. In gastric epithelial cells, activation of oxidative stress by H. pylori is dependent on SMO induction and results in both apoptosis and DNA damage, such that inhibition or knockdown of SMO markedly attenuates these events. In summary, L-Arg metabolism by the arginase-ODC pathway and the activation of SMO leads to H. pylori-induced DNA damage and immune dysregulation through polyamine-mediated oxidative stress and impairment of antimicrobial NO synthesis. Our studies indicate novel targets for therapeutic intervention in H. pylori-associated diseases, including gastritis, ulcer disease, and gastric cancer.
Collapse
Affiliation(s)
- Rupesh Chaturvedi
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, 1030C MRBIV, 2215 Garland Avenue, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
35
|
The Human Gastric Pathogen Helicobacter pylori and Its Association with Gastric Cancer and Ulcer Disease. ACTA ACUST UNITED AC 2011. [DOI: 10.1155/2011/340157] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the momentous discovery in the 1980's that a bacterium, Helicobacter pylori, can cause peptic ulcer disease and gastric cancer, antibiotic therapies and prophylactic measures have been successful, only in part, in reducing the global burden of these diseases. To date, ~700,000 deaths worldwide are still attributable annually to gastric cancer alone. Here, we review H. pylori's contribution to the epidemiology and histopathology of both gastric cancer and peptic ulcer disease. Furthermore, we examine the host-pathogen relationship and H. pylori biology in context of these diseases, focusing on strain differences, virulence factors (CagA and VacA), immune activation and the challenges posed by resistance to existing therapies. We consider also the important role of host-genetic variants, for example, in inflammatory response genes, in determining infection outcome and the role of H. pylori in other pathologies—some accepted, for example, MALT lymphoma, and others more controversial, for example, idiopathic thrombocytic purpura. More recently, intriguing suggestions that H. pylori has protective effects in GERD and autoimmune diseases, such as asthma, have gained momentum. Therefore, we consider the basis for these suggestions and discuss the potential impact for future therapeutic rationales.
Collapse
|
36
|
Domańska G, Motz C, Meinecke M, Harsman A, Papatheodorou P, Reljic B, Dian-Lothrop EA, Galmiche A, Kepp O, Becker L, Günnewig K, Wagner R, Rassow J. Helicobacter pylori VacA toxin/subunit p34: targeting of an anion channel to the inner mitochondrial membrane. PLoS Pathog 2010; 6:e1000878. [PMID: 20442789 PMCID: PMC2861713 DOI: 10.1371/journal.ppat.1000878] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 03/25/2010] [Indexed: 12/13/2022] Open
Abstract
The vacuolating toxin VacA, released by Helicobacter pylori, is an important virulence factor in the pathogenesis of gastritis and gastroduodenal ulcers. VacA contains two subunits: The p58 subunit mediates entry into target cells, and the p34 subunit mediates targeting to mitochondria and is essential for toxicity. In this study we found that targeting to mitochondria is dependent on a unique signal sequence of 32 uncharged amino acid residues at the p34 N-terminus. Mitochondrial import of p34 is mediated by the import receptor Tom20 and the import channel of the outer membrane TOM complex, leading to insertion of p34 into the mitochondrial inner membrane. p34 assembles in homo-hexamers of extraordinary high stability. CD spectra of the purified protein indicate a content of >40% beta-strands, similar to pore-forming beta-barrel proteins. p34 forms an anion channel with a conductivity of about 12 pS in 1.5 M KCl buffer. Oligomerization and channel formation are independent both of the 32 uncharged N-terminal residues and of the p58 subunit of the toxin. The conductivity is efficiently blocked by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), a reagent known to inhibit VacA-mediated apoptosis. We conclude that p34 essentially acts as a small pore-forming toxin, targeted to the mitochondrial inner membrane by a special hydrophobic N-terminal signal.
Collapse
Affiliation(s)
- Grażyna Domańska
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Christian Motz
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Michael Meinecke
- Institut für Biophysik, Universität Osnabrück, Osnabrück, Germany
| | - Anke Harsman
- Institut für Biophysik, Universität Osnabrück, Osnabrück, Germany
| | | | - Boris Reljic
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Antoine Galmiche
- Laboratoire de Biochimie, INSERM ERI12, Hopital Nord, CHU Amiens Picardie, Amiens, France
| | - Oliver Kepp
- INSERM U848, Institute Gustave Roussy, Université Paris Sud, Villejuif, France
| | - Lars Becker
- Institut für Biophysik, Universität Osnabrück, Osnabrück, Germany
| | - Kathrin Günnewig
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Richard Wagner
- Institut für Biophysik, Universität Osnabrück, Osnabrück, Germany
| | - Joachim Rassow
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
37
|
Isomoto H, Moss J, Hirayama T. Pleiotropic actions of Helicobacter pylori vacuolating cytotoxin, VacA. TOHOKU J EXP MED 2010; 220:3-14. [PMID: 20046046 DOI: 10.1620/tjem.220.3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori produces a vacuolating cytotoxin, VacA, and most virulent H. pylori strains secrete VacA. VacA binds to two types of receptor-like protein tyrosine phosphatase (RPTP), RPTPalpha and RPTPbeta, on the surface of host cells. VacA bound to RPTPbeta, relocates and concentrates in lipid rafts in the plasma membrane. VacA causes vacuolization, membrane anion-selective channel and pore formation, and disruption of endosomal and lysosomal activity in host cells. Secreted VacA is processed into p33 and p55 fragments. The p55 domain not only plays a role in binding to target cells but also in the formation of oligomeric structures and anionic membrane channels. Oral administration of VacA to wild-type mice, but not to RPTPbeta knockout mice, resulted in gastric ulcers, in agreement with the clinical effect of VacA. VacA with s1/m1 allele has more potent cytotoxic activity in relation to peptic ulcer disease and appears to be associated with human gastric cancer. VacA activates pro-apoptotic Bcl-2 family proteins, and induces apoptosis via a mitochondria-dependent pathway. VacA can disrupt other signal transduction pathways; VacA activates p38 MAPK, enhancing production of IL-8 and PGE(2), and PI3K/Akt, suppressing GSK-3beta activity. VacA has immunomodulatory actions on T cells and other immune cells, possibly contributing to the chronic infection seen with this organism. H. pylori virulence factors including VacA and CagA, which is encoded by cytotoxin-associated gene A, along with host genetic and environmental factors, constitute a complex network to regulate chronic gastric injury and inflammation, which is involved in a multistep process leading to gastric carcinogenesis.
Collapse
Affiliation(s)
- Hajime Isomoto
- Department of Endoscopy, Nagasaki University Hospital, Nagasaki, Japan
| | | | | |
Collapse
|
38
|
Hwang SY, Cho SH, Cho DY, Lee M, Choo J, Jung KH, Maeng JH, Chai YG, Yoon WJ, Lee EK. Time-lapse, single cell based confocal imaging analysis of caspase activation and phosphatidylserine flipping during cellular apoptosis. Biotech Histochem 2010; 86:181-7. [DOI: 10.3109/10520291003648367] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
39
|
Arkhipov SA, Shkurupiy VA, Ijine DA, Ignatovich NV, Akhromenko ES, Arkhipova VV. Formation and Some Cytophysiological Characteristics of Polynuclear Macrophages in Primary Cultures of Peritoneal Cells. Bull Exp Biol Med 2009; 146:838-41. [DOI: 10.1007/s10517-009-0405-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
The 3'-to-5' exoribonuclease (encoded by HP1248) of Helicobacter pylori regulates motility and apoptosis-inducing genes. J Bacteriol 2009; 191:2691-702. [PMID: 19218383 DOI: 10.1128/jb.01182-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The human gastric pathogen Helicobacter pylori has many virulence factors involved in pathogenesis, but the mechanisms regulating these virulence factors are not yet fully understood. In this study, we cloned HP1248, which is similar in sequence to Escherichia coli vacB, which was previously shown to be associated with the expression of virulence in Shigella and enteroinvasive E. coli. E. coli vacB encodes RNase R. RNase R is involved in the posttranscriptional regulation of mRNA stability. By global transcriptional microarray profiling of an H. pylori HP1248 deletion mutant, we defined six virulence-related genes which were posttranscriptionally downregulated by HP1248, including the motility-related genes HP1192 and flaB, the chemotaxis-related gene cheY, and the apoptosis-inducing genes HP0175, cagA, and gtt. In this study, recombinant HP1248 protein expressed in E. coli showed 3'-to-5' exoribonuclease activity. Motility and apoptosis induction were increased in the H. pylori HP1248 deletion mutant. We also showed that HP1192 is associated with H. pylori motility, possibly through HP1248 regulation. Further, we suggested and studied the possible mechanisms of this specific regulation of virulent genes by HP1248. In addition, the expression level of HP1248 mRNA changed dramatically in response to a variety of altered environmental conditions, including pH and temperature. Hence, HP1248 in H. pylori seems to play a role in environmental sensing and in regulation of virulent phenotypes, such as motility and host apoptosis induction.
Collapse
|
41
|
Oxidative stress by Helicobacter pylori causes apoptosis through mitochondrial pathway in gastric epithelial cells. Apoptosis 2008; 13:1267-80. [PMID: 18766443 DOI: 10.1007/s10495-008-0255-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori is a gram negative bacterium that infects the human stomach of approximately half of the world's population. It produces oxidative stress, and mitochondria are one of the possible targets and the major intracellular source of free radicals. The present study was aimed at determining mitochondrial alterations in H. pylori-infected gastric epithelial cells and its relationship with oxidative stress, one of the recognized causes of apoptotic processes. Cells were treated with a strain of H. pylori for 24 h. Cellular oxidative burst, antioxidant defense analysis, mitochondrial alterations and apoptosis-related processes were measured. Our data provide evidence on how superoxide acts on mitochondria to initiate apoptotic pathways, with these changes occurring in the presence of mitochondrial depolarization and other morphological and functional changes. Treatment of infected cells with Vitamin E prevented increases in intracellular ROS and mitochondrial damage consistent with H. pylori inducing a mitochondrial ROS mediated programmed cell death pathway.
Collapse
|
42
|
Prolonged classical NF-kappaB activation prevents autophagy upon E. coli stimulation in vitro: a potential resolving mechanism of inflammation. Mediators Inflamm 2008; 2008:725854. [PMID: 18566685 PMCID: PMC2430012 DOI: 10.1155/2008/725854] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Accepted: 02/15/2008] [Indexed: 12/19/2022] Open
Abstract
Activation of NF-kappaB is known to prevent apoptosis but may also act as proapoptotic factor in order to eliminate inflammatory cells. Here, we show that classical NF-kappaB activation in RAW 264.7 and bone marrow-derived macrophages upon short E. coli coculture is necessary to promote cell death at late time points. At 48 hours subsequent to short-term, E. coli challenge increased survival of NF-kappaB-suppressed macrophages was associated with pattern of autophagy whereas macrophages with normal NF-kappaB signalling die. Cell death of normal macrophages was indicated by preceding downregulation of autophagy associated genes atg5 and beclin1. Restimulation of macrophages with LPS at 48 hours after E. coli treatment results in augmented proinflammatory cytokine production in NF-kappaB-suppressed macrophages compared to control cells. We thus demonstrate that classical NF-kappaB activation inhibits autophagy and promotes delayed programmed cell death. This mechanism is likely to prevent the recovery of inflammatory cells and thus contributes to the resolution of inflammation.
Collapse
|
43
|
Macrophages are mediators of gastritis in acute Helicobacter pylori infection in C57BL/6 mice. Infect Immun 2008; 76:2235-9. [PMID: 18332213 DOI: 10.1128/iai.01481-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is the etiological agent of human chronic gastritis, a condition seen as a precursor to the development of gastrointestinal ulcers or gastric cancer. This study utilized the murine model of chronic H. pylori infection to characterize the role of macrophages in the induction of specific immune responses and gastritis and in the control of the bacterial burden following H. pylori infection and vaccination. Drug-loaded liposomes were injected intravenously to deplete macrophages from C57BL/6 mice, and effective removal of CD11b+ cells from the spleens and stomachs of mice was confirmed by immunofluorescence microscopy. Transient elimination of macrophages from C57BL/6 mice during the early period of infection reduced the gastric pathology induced by H. pylori SS1 but did not affect the bacterial load in the stomach. These data suggest that macrophages are important to the severity of gastric inflammation during H. pylori infection.
Collapse
|
44
|
Kontogianni K, Messini-Nikolaki N, Christou K, Gourgoulianis K, Tsilimigaki S, Piperakis SM. DNA damage and repair capacity in lymphocytes from obstructive sleep apnea patients. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:722-727. [PMID: 17973309 DOI: 10.1002/em.20351] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Obstructive sleep apnea (OSA) syndrome is a respiratory disease that is linked to heart attacks and high blood pressure. In the present study, we used the Comet assay to compare basal DNA damage and DNA damage induction by hydrogen peroxide, ethanol, and gamma-irradiation in lymphocytes from 35 OSA patients and 35 controls. We also measured the apoptosis and necrosis produced by these agents and the ability of the lymphocytes to repair the induced DNA damage. It was found that lymphocytes isolated from OSA patients had higher basal levels of DNA damage and were more sensitive to the effects of the DNA-damaging agents than lymphocytes from controls. OSA patients also had a reduced capacity to repair the DNA damage induced by the three agents, but apoptosis and necrosis were similar in OSA patients and the controls.
Collapse
Affiliation(s)
- Konstantina Kontogianni
- Faculty of Human Sciences, Department of Pre-School Education, Biology Unit, University of Thessaly, Volos, Greece
| | | | | | | | | | | |
Collapse
|
45
|
Piperakis SM, Kontogianni K, Karanastasi G, Iakovidou-Kritsi Z, Piperakis MM. The use of comet assay in measuring DNA damage and repair efficiency in child, adult, and old age populations. Cell Biol Toxicol 2007; 25:65-71. [PMID: 18038185 DOI: 10.1007/s10565-007-9046-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
In the present study, we used the Comet assay to estimate basal DNA damage in three distinct populations aged 5-10, 40-50, and 60-70 years old. The DNA damage induced by hydrogen peroxide and gamma-irradiation in the lymphocytes of these populations, as well as their repair activity, was also studied. Finally, we measured apoptosis and necrosis after the effect of these agents. Our results indicate that the older population (60-70 years old) showed higher basal levels of DNA damage and was more sensitive to the effects of the DNA-damaging agents than the adult one (40-50 years old), who, in turn, was more sensitive than the younger population (5-10 years old). A decline of the repair efficiency with age to the DNA damage induced by the two agents was also observed. Apoptosis and necrosis were also affected by age.
Collapse
Affiliation(s)
- S M Piperakis
- Biology Unit, Department of Pre-School Education, Faculty of Human Sciences, University of Thessaly, Volos, Greece.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Helicobacter pylori is a spiral-shaped, flagellated, microaerophilic Gram-negative bacterium that colonizes the gastric epithelium of humans. All persons infected with H. pylori have gastritis, and some will develop severe disease such as peptic ulcers or gastric cancer. A characteristic feature of this infection is the pronounced accumulation of phagocytes, particularly neutrophils, in the gastric mucosa. H. pylori thrives in a phagocyte-rich environment, and we describe here how this organism uses an array of novel virulence factors to manipulate chemotaxis, phagocytosis, membrane trafficking and the respiratory burst as a means to evade elimination by the innate immune response.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Inflammation Program and the Department of Medicine, University of Iowa and the VA Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
47
|
Abstract
Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.
Collapse
Affiliation(s)
- Guido Kroemer
- Institut Gustave Roussy, Institut National de la Santé et de la Recherche Médicale Unit "Apoptosis, Cancer and Immunity," Université de Paris-Sud XI, Villejuif, France
| | | | | |
Collapse
|
48
|
Souza HSP, Neves MS, Elia CCS, Tortori CJA, Dines I, Martinusso CA, Madi K, Andrade L, Castelo-Branco MTL. Distinct patterns of mucosal apoptosis in H pylori-associated gastric ulcer are associated with altered FasL and perforin cytotoxic pathways. World J Gastroenterol 2006; 12:6133-41. [PMID: 17036384 PMCID: PMC4088106 DOI: 10.3748/wjg.v12.i38.6133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the level of apoptosis in different mucosal compartments and the differential expression of Fas/Fas-ligand and perforin in H pylori-associated gastric ulcer.
METHODS: Antral specimens from patients with H pylori-related active gastric ulcer (GU), H pylori-related gastritis, and non-infected controls were analysed for densities and distribution of apoptotic cells determined by the TdT-mediated dUDP-biotin nick-end-labelling method. GU patients were submitted to eradication therapy with follow-up biopsy after 60 d. Fas, FasL, and perforin-expressing cells were assessed by immunoperoxidase, and with anti-CD3, anti-CD20 and anti-CD68 by double immunofluorescence and confocal microscopy. Quantitative analysis was performed using a computer-assisted image analyser.
RESULTS: H pylori-infected antrum showed greater surface epithelial apoptosis which decreased after eradication therapy. In the lamina propria, higher rates of mononuclear cell apoptosis were observed in H pylori-gastritis. Co-expression of Fas with T-cell and macrophage markers was reduced in GU. FasL- and perforin-expressing cells were increased in H pylori-infection and correlated with epithelial apoptosis. Perforin-expressing cells were also increased in GU compared with H pylori-gastritis.
CONCLUSION: Epithelial apoptosis is increased in H pylori-infection and correlates to FasL- and perforin-expression by T cells. Expression of perforin is correlated with the tissue damage, and may represent the enhancement of a distinct cytotoxic pathway in GU. Increased expression of FasL not paralleled by Fas on T-cells and macrophages may indicate a reduced susceptibility to the Fas/FasL-mediated apoptosis of lymphoid cells in H pylori-infection.
Collapse
Affiliation(s)
- Heitor-S-P Souza
- Departamento de Clínica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-590, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lasbury ME, Durant PJ, Ray CA, Tschang D, Schwendener R, Lee CH. Suppression of alveolar macrophage apoptosis prolongs survival of rats and mice with pneumocystis pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:6443-53. [PMID: 16709801 DOI: 10.4049/jimmunol.176.11.6443] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The number of alveolar macrophages is decreased in patients or animals with Pneumocystis pneumonia (Pcp). This loss of alveolar macrophages is in part due to apoptosis caused by Pneumocystis infection. The mechanism of apoptosis induction is unknown. Cell-free bronchoalveolar lavage fluids from Pneumocystis-infected rats or mice have the ability to induce apoptosis in normal alveolar macrophages. To characterize the mechanisms by which apoptosis proceeds in alveolar macrophages during Pcp, specific caspase inhibitors are tested for their ability to suppress the apoptosis. In vitro induction of apoptosis can be inhibited by the caspase-9 inhibitor (Z-LEHD-FMK) but not by the inhibitor to caspase-8 or -10. The caspase-9 inhibitor can also inhibit apoptosis of alveolar macrophages in vivo when it is intranasally instilled into dexamethasone-immunosuppressed, Pneumocystis-infected rats or L3T4 cell-depleted, Pneumocystis-infected mice. The number of alveolar macrophages rebounds in caspase-9 inhibitor-treated Pcp animals. Phagocytic activity of alveolar macrophages in treated animals is also recovered, and organism burden in these animals is reduced. Administration of caspase-9 inhibitor also clears the exudate that normally fills the alveoli during Pcp and decreases lung inflammation. Furthermore, caspase-9-treated Pcp animals survive for the entire 70-day period of the study, whereas nontreated Pcp animals die 40-60 days after initiation of infection. Depletion of recovered alveolar macrophages by intranasal administration of clodronate-containing liposomes in caspase-9 inhibitor-treated animals abrogates the effects of the inhibitor. Together, these results indicate that immunomodulation of the host response may be an alternative to current treatments for Pcp.
Collapse
Affiliation(s)
- Mark E Lasbury
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Schwartz JT, Allen LAH. Role of urease in megasome formation and Helicobacter pylori survival in macrophages. J Leukoc Biol 2006; 79:1214-25. [PMID: 16543403 PMCID: PMC1868427 DOI: 10.1189/jlb.0106030] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Previous studies have demonstrated that Helicobacter pylori (Hp) delays its entry into macrophages and persists inside megasomes, which are poorly acidified and accumulate early endosome autoantigen 1. Herein, we explored the role of Hp urease in bacterial survival in murine peritoneal macrophages and J774 cells. Plasmid-free mutagenesis was used to replace ureA and ureB with chloramphenicol acetyltransferase in Hp Strains 11637 and 11916. ureAB null Hp lacked detectable urease activity and did not express UreA or UreB as judged by immunoblotting. Deletion of ureAB had no effect on Hp binding to macrophages or the rate or extent of phagocytosis. However, intracellular survival of mutant organisms was impaired significantly. Immunofluorescence microscopy demonstrated that (in contrast to parental organisms) mutant Hp resided in single phagosomes, which were acidic and accumulated the lysosome marker lysosome-associated membrane protein-1 but not early endosome autoantigen 1. A similar phenotype was observed for spontaneous urease mutants derived from Hp Strain 60190. Treatment of macrophages with bafilomycin A1, NH4Cl, or chloroquine prevented acidification of phagosomes containing mutant Hp. However, only ammonium chloride enhanced bacterial viability significantly. Rescue of ureAB null organisms was also achieved by surface adsorption of active urease. Altogether, our data indicate a role for urease and urease-derived ammonia in megasome formation and Hp survival.
Collapse
Affiliation(s)
- Justin T. Schwartz
- Department of Medicine, University of Iowa and the VA Medical Center, Iowa City
- Department of Microbiology, University of Iowa and the VA Medical Center, Iowa City
| | - Lee-Ann H. Allen
- Department of Medicine, University of Iowa and the VA Medical Center, Iowa City
- Department of Microbiology, University of Iowa and the VA Medical Center, Iowa City
- Inflammation Program, University of Iowa and the VA Medical Center, Iowa City
| |
Collapse
|