1
|
Dasgupta P, Vinil K, Kanaujia SP. Evolutionary trends indicate a coherent organization of sap operons. Res Microbiol 2024; 175:104228. [PMID: 38972435 DOI: 10.1016/j.resmic.2024.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Human hosts possess a complex network of immune responses against microbial pathogens. The production of antimicrobial peptides (AMPs), which target the pathogen cell membranes and inhibit them from inhabiting the hosts, is one such mechanism. However, pathogens have evolved systems that encounter these host-produced AMPs. The Sap (sensitivity to antimicrobial peptides) transporter uptakes AMPs inside the microbial cell and proteolytically degrades them. The Sap transporters comprise five subunits encoded by genes in an operon. Despite its ubiquitous nature, its subunits are not found to be in tandem with many organisms. In this study, a total of 421 Sap transporters were analyzed for their operonic arrangement. Out of 421, a total of 352 operons were found to be in consensus arrangement, while the remaining 69 show a varying arrangement of genes. The analysis of the intergenic distance between the subunits of the sap operon suggests a signature pattern with sapAB (-4), sapBC (-14), sapCD (-1), and sapDF (-4 to 1). An evolutionary analysis of these operons favors the consensus arrangement of the Sap transporter systems, substantiating its prevalence in most of the Gram-negative pathogens. Overall, this study provides insight into bacterial evolution, favoring the maintenance of the genetic organization of essential pathogenicity factors.
Collapse
Affiliation(s)
- Pratik Dasgupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Kavya Vinil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| |
Collapse
|
2
|
Kumaresan V, Kamaraj Y, Subramaniyan S, Punamalai G. Understanding the Dynamics of Human Defensin Antimicrobial Peptides: Pathogen Resistance and Commensal Induction. Appl Biochem Biotechnol 2024; 196:6993-7024. [PMID: 38478321 DOI: 10.1007/s12010-024-04893-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 11/21/2024]
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are petite molecules with inherent microbicidal properties that are synthesized by the host's innate immune response. These peptides serve as an initial barrier against pathogenic microorganisms, effectively eliminating them. Human defensin (HD) AMPs represent a prominent group of peptides involved in the innate immune response of humans. These peptides are primarily produced by neutrophils and epithelial cells, serving as a crucial defense mechanism against invading pathogens. The extensive research conducted has focused on the broad spectrum of antimicrobial activities and multifaceted immunomodulatory functions exhibited by human defensin AMPs. During the process of co-evolution between hosts and bacterial pathogens, bacteria have developed the ability to recognize and develop an adaptive response to AMPs to counterattack their bactericidal activity by different antibiotic-resistant mechanisms. However, numerous non-pathogenic commensal bacteria elicit the upregulation of defensins as a means to surmount the resistance mechanisms implemented by pathogens. The precise mechanism underlying the induction of HD by commensal organisms remains to be fully understood. This review summarizes the most recent research on the expression of human defensin by pathogens and discusses the various defense mechanisms used by pathogens to counter host AMP production. We also mention recent developments in the commensal induction of defensin AMPs. A better knowledge of the pathogens' defensin AMP resistance mechanisms and commensals' induction of AMP expression may shed light on the creation of fresh antibacterial tactics to get rid of bacterial infection.
Collapse
Affiliation(s)
- Veenayohini Kumaresan
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India
| | - Yoganathan Kamaraj
- Biofuel Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Satheeshkumar Subramaniyan
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India
| | - Ganesh Punamalai
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India.
| |
Collapse
|
3
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
4
|
Nagappan S, Apoorva S, Shome A, Bishnoi S, Shrivastava S, Mahawar M. Sensitivity to antimicrobial peptide A (SapA) contributes to the survival of Salmonella typhimurium against antimicrobial peptides, neutrophils and virulence in mice. Arch Microbiol 2024; 206:302. [PMID: 38874634 DOI: 10.1007/s00203-024-04032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Host-generated antimicrobial peptides (AMPs) play a pivotal role in defense against bacterial pathogens. AMPs kill invading bacteria majorly by disrupting the bacterial cell walls. AMPs are actively synthesized and released into the lumen of the gastrointestinal tract to limit colonization of enteric pathogens like Salmonella typhimurium (S. typhimurium). However, S. typhimurium has evolved several resistance mechanisms to defend AMPs. The multicomponent SapABCDF uptake transporter is one such system that helps in resisting AMPs. In the current study, we analyzed the role of S. typhimurium SapA against stress survival and virulence of this bacterium. ∆sapA mutant strain showed hypersensitivity to AMPs, like melittin and mastoparan. Further, ∆sapA mutant showed more than 22 folds (p = 0.019) hypersensitivity to neutrophils as compared to the WT strain of S. typhimurium. In addition, ∆sapA strain showed defective survival in mice. In conclusion, the results of the current study suggest that the SapA is essential for survival against AMPs and virulence of S. typhimurium.
Collapse
Affiliation(s)
- Sabapathi Nagappan
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Shekhar Apoorva
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Arijit Shome
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Shikha Bishnoi
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Manish Mahawar
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India.
| |
Collapse
|
5
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
6
|
Ra YE, Bang YJ. Balancing Act of the Intestinal Antimicrobial Proteins on Gut Microbiota and Health. J Microbiol 2024; 62:167-179. [PMID: 38630349 DOI: 10.1007/s12275-024-00122-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 05/15/2024]
Abstract
The human gut houses a diverse and dynamic microbiome critical for digestion, metabolism, and immune development, exerting profound effects on human health. However, these microorganisms pose a potential threat by breaching the gut barrier, entering host tissues, and triggering infections, uncontrolled inflammation, and even sepsis. The intestinal epithelial cells form the primary defense, acting as a frontline barrier against microbial invasion. Antimicrobial proteins (AMPs), produced by these cells, serve as innate immune effectors that regulate the gut microbiome by directly killing or inhibiting microbes. Abnormal AMP production, whether insufficient or excessive, can disturb the microbiome equilibrium, contributing to various intestinal diseases. This review delves into the complex interactions between AMPs and the gut microbiota and sheds light on the role of AMPs in governing host-microbiota interactions. We discuss the function and mechanisms of action of AMPs, their regulation by the gut microbiota, microbial evasion strategies, and the consequences of AMP dysregulation in disease. Understanding these complex interactions between AMPs and the gut microbiota is crucial for developing strategies to enhance immune responses and combat infections within the gut microbiota. Ongoing research continues to uncover novel aspects of this intricate relationship, deepening our understanding of the factors shaping gut health. This knowledge has the potential to revolutionize therapeutic interventions, offering enhanced treatments for a wide range of gut-related diseases.
Collapse
Affiliation(s)
- Ye Eun Ra
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ye-Ji Bang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
7
|
Rivera K, Tanaka KJ, Buechel ER, Origel O, Harrison A, Mason KM, Pinkett HW. Antimicrobial Peptide Recognition Motif of the Substrate Binding Protein SapA from Nontypeable Haemophilus influenzae. Biochemistry 2024; 63:294-311. [PMID: 38189237 PMCID: PMC10851439 DOI: 10.1021/acs.biochem.3c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen associated with respiratory diseases, including otitis media and exacerbations of chronic obstructive pulmonary disease. NTHi exhibits resistance to killing by host antimicrobial peptides (AMPs) mediated by SapA, the substrate binding protein of the sensitivity to antimicrobial peptides (Sap) transporter. However, the specific mechanisms by which SapA selectively binds various AMPs such as defensins and cathelicidin are unknown. In this study, we report mutational analyses of both defensin AMPs and the SapA binding pocket to define the specificity of AMP recognition. Bactericidal assays revealed that NTHi lacking SapA are more susceptible to human beta defensins and LL-37, while remaining highly resistant to a human alpha defensin. In contrast to homologues, our research underscores the distinct specificity of NTHi SapA, which selectively recognizes and binds to peptides containing the charged-hydrophobic motif PKE and RRY. These findings provide valuable insight into the divergence of SapA among bacterial species and NTHi SapA's ability to selectively interact with specific AMPs to mediate resistance.
Collapse
Affiliation(s)
- Kristen
G. Rivera
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Kari J. Tanaka
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan R. Buechel
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Octavio Origel
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Alistair Harrison
- The
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute
at Nationwide Children’s Hospital and College of Medicine,
Department of Pediatrics, The Ohio State
University, Columbus, Ohio 43205, United States
| | - Kevin M. Mason
- The
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute
at Nationwide Children’s Hospital and College of Medicine,
Department of Pediatrics, The Ohio State
University, Columbus, Ohio 43205, United States
| | - Heather W. Pinkett
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Savitskaya A, Masso-Silva J, Haddaoui I, Enany S. Exploring the arsenal of antimicrobial peptides: Mechanisms, diversity, and applications. Biochimie 2023; 214:216-227. [PMID: 37499896 DOI: 10.1016/j.biochi.2023.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Antimicrobial peptides (AMPs) are essential for defence against pathogens in all living organisms and possessed activities against bacteria, fungi, viruses, parasites and even cancer cells. AMPs are short peptides containing 12-100 amino acids conferring a net positive charge and an amphiphilic property in most cases. Although, anionic AMPs also exist. AMPs can be classified based on the types of secondary structures, charge, hydrophobicity, amino acid composition, length, etc. Their mechanism of action usually includes a membrane disruption process through pore formation (three different models have been described, barrel-stave, toroidal or carpet model) but AMPs can also penetrate and impair intracellular functions. Besides their activity against pathogens, they have also shown immunomodulatory properties in complex scenarios through many different interactions. The aim of this review to summarize knowledge about AMP's and discuss the potential application of AMPs as therapeutics, the challenges due to their limitations, including their susceptibility to degradation, the potential generation of AMP resistance, cost, etc. We also discuss the current FDA-approved drugs based on AMPs and strategies to circumvent natural AMPs' limitations.
Collapse
Affiliation(s)
- Anna Savitskaya
- Institute of Bioorganic Chemistry of Russian Academy of Science, Moscow, Russian Federation
| | - Jorge Masso-Silva
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, University of California San Diego, La Jolla, CA, USA
| | - Imen Haddaoui
- National Research Institute of Rural Engineering, Water and Forestry, University of Carthage, LR Valorization of Unconventional Waters, Ariana, Tunisia
| | - Shymaa Enany
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Biomedical Research Department, Armed Force College of Medicine, Cairo, Egypt.
| |
Collapse
|
9
|
Patyra E, Kwiatek K. Insect Meals and Insect Antimicrobial Peptides as an Alternative for Antibiotics and Growth Promoters in Livestock Production. Pathogens 2023; 12:854. [PMID: 37375544 DOI: 10.3390/pathogens12060854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The extensive use of antibiotics in animal production has led to the development of antibiotic-resistant microorganisms and the search for alternative antimicrobial agents in animal production. One such compound may be antimicrobial peptides (AMPs), which are characterized by, among others, a wide range of biocidal activity. According to scientific data, insects produce the largest number of antimicrobial peptides, and the changing EU legislation has allowed processed animal protein derived from insects to be used in feed for farm animals, which, in addition to a protein supplement, may prove to be an alternative to antibiotics and antibiotic growth promoters due to their documented beneficial impact on livestock health. In animals that were fed feeds with the addition of insect meals, changes in their intestinal microbiota, strengthened immunity, and increased antibacterial activity were confirmed to be positive effects obtained thanks to the insect diet. This paper reviews the literature on sources of antibacterial peptides and the mechanism of action of these compounds, with particular emphasis on insect antibacterial peptides and their potential impact on animal health, and legal regulations related to the use of insect meals in animal nutrition.
Collapse
Affiliation(s)
- Ewelina Patyra
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland
| |
Collapse
|
10
|
Akhtar AA, Turner DP. The role of bacterial ATP-binding cassette (ABC) transporters in pathogenesis and virulence: Therapeutic and vaccine potential. Microb Pathog 2022; 171:105734. [PMID: 36007845 DOI: 10.1016/j.micpath.2022.105734] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is found in all domains of life, facilitating critical biological processes through the translocation of a wide variety of substrates from, ions to proteins, across cellular membranes in an ATP-coupled process. The role of ABC transporters in eukaryotes has been well established: the facilitation of genetic diseases and multi-drug resistance (MDR) in cancer patients. In contrast, the role of ABC transporters in prokaryotes has been ambiguous due to their diverse functions and the sheer number of organisms in which they reside. This review examines the role of bacterial ABC transporters in pathogenesis and virulence, and their potential for therapeutic and vaccine application. We demonstrate how ABC transporters play a vital role in the virulence and pathogenesis of several pathogenic bacteria through the import of essential molecules, such as metal ions, amino acids, peptides, vitamins and osmoprotectants, as well as, the export of virulent determinants involved in glycoconjugate biosynthesis and Type I secretion. Furthermore, ABC exporters facilitate the persistence of pathogenic bacteria through the export of toxic xenobiotic substances, thus, contributing to the development of antimicrobial resistance. We also show that ABC transporters display considerable potential for therapeutic application through immunisation and resistance reversal. In conclusion, bacterial ABC transporters play an immense role in virulence and pathogenesis and display desirable traits for clinical use, therefore, potentially aiding in the battle against MDR.
Collapse
Affiliation(s)
- Armaan A Akhtar
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| | - David Pj Turner
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
11
|
Blair JMA, Zeth K, Bavro VN, Sancho-Vaello E. The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Rev 2022; 46:6617596. [PMID: 35749576 PMCID: PMC9629497 DOI: 10.1093/femsre/fuac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance is a global issue that threatens our progress in healthcare and life expectancy. In recent years, antimicrobial peptides (AMPs) have been considered as promising alternatives to the classic antibiotics. AMPs are potentially superior due to their lower rate of resistance development, since they primarily target the bacterial membrane ('Achilles' heel' of the bacteria). However, bacteria have developed mechanisms of AMP resistance, including the removal of AMPs to the extracellular space by efflux pumps such as the MtrCDE or AcrAB-TolC systems, and the internalization of AMPs to the cytoplasm by the Sap transporter, followed by proteolytic digestion. In this review, we focus on AMP transport as a resistance mechanism compiling all the experimental evidence for the involvement of efflux in AMP resistance in Gram-negative bacteria and combine this information with the analysis of the structures of the efflux systems involved. Finally, we expose some open questions with the aim of arousing the interest of the scientific community towards the AMPs-efflux pumps interactions. All the collected information broadens our understanding of AMP removal by efflux pumps and gives some clues to assist the rational design of AMP-derivatives as inhibitors of the efflux pumps.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Enea Sancho-Vaello
- Corresponding author. College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. E-mail:
| |
Collapse
|
12
|
Rodríguez-Arce I, Morales X, Ariz M, Euba B, López-López N, Esparza M, Hood DW, Leiva J, Ortíz-de-Solórzano C, Garmendia J. Development and multimodal characterization of an elastase-induced emphysema mouse disease model for the COPD frequent bacterial exacerbator phenotype. Virulence 2021; 12:1672-1688. [PMID: 34252004 PMCID: PMC8276669 DOI: 10.1080/21505594.2021.1937883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 11/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients undergo infectious exacerbations whose frequency identifies a clinically meaningful phenotype. Mouse models have been mostly used to separately study both COPD and the infectious processes, but a reliable model of the COPD frequent exacerbator phenotype is still lacking. Accordingly, we first established a model of single bacterial exacerbation by nontypeable Haemophilus influenzae (NTHi) infection on mice with emphysema-like lesions. We characterized this single exacerbation model combining both noninvasive in vivo imaging and ex vivo techniques, obtaining longitudinal information about bacterial load and the extent of the developing lesions and host responses. Bacterial load disappeared 48 hours post-infection (hpi). However, lung recovery, measured using tests of pulmonary function and the disappearance of lung inflammation as revealed by micro-computed X-ray tomography, was delayed until 3 weeks post-infection (wpi). Then, to emulate the frequent exacerbator phenotype, we performed two recurrent episodes of NTHi infection on the emphysematous murine lung. Consistent with the amplified infectious insult, bacterial load reduction was now observed 96 hpi, and lung function recovery and disappearance of lesions on anatomical lung images did not happen until 12 wpi. Finally, as a proof of principle of the use of the model, we showed that azithromycin successfully cleared the recurrent infection, confirming this macrolide utility to ameliorate infectious exacerbation. In conclusion, we present a mouse model of recurrent bacterial infection of the emphysematous lung, aimed to facilitate investigating the COPD frequent exacerbator phenotype by providing complementary, dynamic information of both infectious and inflammatory processes.
Collapse
Affiliation(s)
- Irene Rodríguez-Arce
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Xabier Morales
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Mikel Ariz
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Begoña Euba
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Nahikari López-López
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Maider Esparza
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Derek W. Hood
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| | - José Leiva
- Instituto De Investigación Sanitaria De Navarra (IdiSNA), Pamplona, Spain
- Servicio De Microbiología, Clínica Universidad De Navarra, Pamplona, Spain
| | - Carlos Ortíz-de-Solórzano
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Instituto De Investigación Sanitaria De Navarra (IdiSNA), Pamplona, Spain
| | - Junkal Garmendia
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro De Investigación Biomédica En Red De Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
13
|
Lukacik P, Owen CD, Harris G, Bolla JR, Picaud S, Alibay I, Nettleship JE, Bird LE, Owens RJ, Biggin PC, Filippakopoulos P, Robinson CV, Walsh MA. The structure of nontypeable Haemophilus influenzae SapA in a closed conformation reveals a constricted ligand-binding cavity and a novel RNA binding motif. PLoS One 2021; 16:e0256070. [PMID: 34653190 PMCID: PMC8519434 DOI: 10.1371/journal.pone.0256070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a significant pathogen in respiratory disease and otitis media. Important for NTHi survival, colonization and persistence in vivo is the Sap (sensitivity to antimicrobial peptides) ABC transporter system. Current models propose a direct role for Sap in heme and antimicrobial peptide (AMP) transport. Here, the crystal structure of SapA, the periplasmic component of Sap, in a closed, ligand bound conformation, is presented. Phylogenetic and cavity volume analysis predicts that the small, hydrophobic SapA central ligand binding cavity is most likely occupied by a hydrophobic di- or tri- peptide. The cavity is of insufficient volume to accommodate heme or folded AMPs. Crystal structures of SapA have identified surface interactions with heme and dsRNA. Heme binds SapA weakly (Kd 282 μM) through a surface exposed histidine, while the dsRNA is coordinated via residues which constitute part of a conserved motif (estimated Kd 4.4 μM). The RNA affinity falls within the range observed for characterized RNA/protein complexes. Overall, we describe in molecular-detail the interactions of SapA with heme and dsRNA and propose a role for SapA in the transport of di- or tri-peptides.
Collapse
Affiliation(s)
- Petra Lukacik
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - C. David Owen
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Jani Reddy Bolla
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Sarah Picaud
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Irfan Alibay
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Joanne E. Nettleship
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Louise E. Bird
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Raymond J. Owens
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Martin A. Walsh
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Cardoso P, Glossop H, Meikle TG, Aburto-Medina A, Conn CE, Sarojini V, Valery C. Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophys Rev 2021; 13:35-69. [PMID: 33495702 PMCID: PMC7817352 DOI: 10.1007/s12551-021-00784-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
The global public health threat of antimicrobial resistance has led the scientific community to highly engage into research on alternative strategies to the traditional small molecule therapeutics. Here, we review one of the most popular alternatives amongst basic and applied research scientists, synthetic antimicrobial peptides. The ease of peptide chemical synthesis combined with emerging engineering principles and potent broad-spectrum activity, including against multidrug-resistant strains, has motivated intense scientific focus on these compounds for the past decade. This global effort has resulted in significant advances in our understanding of peptide antimicrobial activity at the molecular scale. Recent evidence of molecular targets other than the microbial lipid membrane, and efforts towards consensus antimicrobial peptide motifs, have supported the rise of molecular engineering approaches and design tools, including machine learning. Beyond molecular concepts, supramolecular chemistry has been lately added to the debate; and helped unravel the impact of peptide self-assembly on activity, including on biofilms and secondary targets, while providing new directions in pharmaceutical formulation through taking advantage of peptide self-assembled nanostructures. We argue that these basic research advances constitute a solid basis for promising industry translation of rationally designed synthetic peptide antimicrobials, not only as novel drugs against multidrug-resistant strains but also as components of emerging antimicrobial biomaterials. This perspective is supported by recent developments of innovative peptide-based and peptide-carrier nanobiomaterials that we also review.
Collapse
Affiliation(s)
- Priscila Cardoso
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- School of Science, RMIT University, Melbourne, Australia
| | - Hugh Glossop
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Celine Valery
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
15
|
|
16
|
Hsu CR, Chang IW, Hsieh PF, Lin TL, Liu PY, Huang CH, Li KT, Wang JT. A Novel Role for the Klebsiella pneumoniae Sap (Sensitivity to Antimicrobial Peptides) Transporter in Intestinal Cell Interactions, Innate Immune Responses, Liver Abscess, and Virulence. J Infect Dis 2020; 219:1294-1306. [PMID: 30476200 PMCID: PMC6452313 DOI: 10.1093/infdis/jiy615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022] Open
Abstract
Klebsiella pneumoniae is an important human pathogen causing hospital-acquired and community-acquired infections. Systemic K. pneumoniae infections may be preceded by gastrointestinal colonization, but the basis of this bacterium’s interaction with the intestinal epithelium remains unclear. Here, we report that the K. pneumoniae Sap (sensitivity to antimicrobial peptides) transporter contributes to bacterial–host cell interactions and in vivo virulence. Gene deletion showed that sapA is required for the adherence of a K. pneumoniae blood isolate to intestinal epithelial, lung epithelial, urinary bladder epithelial, and liver cells. The ΔsapA mutant was deficient for translocation across intestinal epithelial monolayers, macrophage interactions, and induction of proinflammatory cytokines. In a mouse gastrointestinal infection model, ΔsapA yielded significantly decreased bacterial loads in liver, spleen and intestine, reduced liver abscess generation, and decreased mortality. These findings offer new insights into the pathogenic interaction of K. pneumoniae with the host gastrointestinal tract to cause systemic infection.
Collapse
Affiliation(s)
- Chun-Ru Hsu
- Department of Medical Research, I-Shou University, Kaohsiung, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - I-Wei Chang
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.,Department of Pathology, College of Medicine, Taipei Medical University.,Department of Pathology, Taipei Medical University Hospital
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine
| | - Pei-Yin Liu
- Department of Microbiology, National Taiwan University College of Medicine
| | - Chen-Hsiu Huang
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Kun-Tzu Li
- Department of Medical Research, I-Shou University, Kaohsiung, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine.,Internal Medicine, National Taiwan University Hospital, Taipei
| |
Collapse
|
17
|
High concentrations of middle ear antimicrobial peptides and proteins and proinflammatory cytokines are associated with detection of middle ear pathogens in children with recurrent acute otitis media. PLoS One 2019; 14:e0227080. [PMID: 31877198 PMCID: PMC6932785 DOI: 10.1371/journal.pone.0227080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Recurrent and chronic otitis media (OM) are often refractory to antibiotics due to bacterial persistence in biofilm within the middle ear. In vitro and in vivo studies have demonstrated that antimicrobial proteins and peptides (AMPs) are bactericidal against otopathogens, indicating potential therapeutic value for recalcitrant OM. We measured concentrations of 6 AMPs and 14 cytokines in middle ear effusion (MEE) from 67 children undergoing ventilation tube insertion for recurrent acute OM. Sixty one percent of children had bacterial otopathogens detected in their MEE, 39% by PCR and 22% by PCR and culture. Groups were defined as: PCR-negative/culture-negative (absence of bacterial otopathogen), n = 26; PCR-positive/culture-negative (presence of nonculturable bacterial otopathogen), n = 26; PCR-positive/culture-positive (presence of culturable bacterial otopathogen), n = 15. Age, antibiotic usage, day-care attendance, presence of respiratory viruses in MEE and number of AOM episodes were similar between groups. AMP and cytokine concentrations were higher in children with bacterial otopathogens in their MEE compared to those with no bacterial otopathogens. Median concentrations of AMPs (except HBD2) were 3 to 56-fold higher in MEE from children with bacterial otopathogens detected in their MEE (P ≤ 0.01). Similarly, median cytokine concentrations (except TGFβ) were >16-fold higher in MEE with bacterial otopathogens detected (P ≤ 0.001). This is the first study to measure AMPs in MEE and together with the cytokine data, results suggest that elevated AMPs and cytokines in MEE are a marker of inflammation and bacterial persistence. AMPs may play an important role in OM pathogenesis.
Collapse
|
18
|
Rodríguez-Arce I, Al-Jubair T, Euba B, Fernández-Calvet A, Gil-Campillo C, Martí S, Törnroth-Horsefield S, Riesbeck K, Garmendia J. Moonlighting of Haemophilus influenzae heme acquisition systems contributes to the host airway-pathogen interplay in a coordinated manner. Virulence 2019; 10:315-333. [PMID: 30973092 PMCID: PMC6550540 DOI: 10.1080/21505594.2019.1596506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 01/30/2023] Open
Abstract
Nutrient iron sequestration is the most significant form of nutritional immunity and causes bacterial pathogens to evolve strategies of host iron scavenging. Cigarette smoking contains iron particulates altering lung and systemic iron homeostasis, which may enhance colonization in the lungs of patients suffering chronic obstructive pulmonary disease (COPD) by opportunistic pathogens such as nontypeable. NTHi is a heme auxotroph, and the NTHi genome contains multiple heme acquisition systems whose role in pulmonary infection requires a global understanding. In this study, we determined the relative contribution to NTHi airway infection of the four heme-acquisition systems HxuCBA, PE, SapABCDFZ, and HbpA-DppBCDF that are located at the bacterial outer membrane or the periplasm. Our computational studies provided plausible 3D models for HbpA, SapA, PE, and HxuA interactions with heme. Generation and characterization of single mutants in the hxuCBA, hpe, sapA, and hbpA genes provided evidence for participation in heme binding-storage and inter-bacterial donation. The hxuA, sapA, hbpA, and hpe genes showed differential expression and responded to heme. Moreover, HxuCBA, PE, SapABCDFZ, and HbpA-DppBCDF presented moonlighting properties related to resistance to antimicrobial peptides or glutathione import, together likely contributing to the NTHi-host airway interplay, as observed upon cultured airway epithelia and in vivo lung infection. The observed multi-functionality was shown to be system-specific, thus limiting redundancy. Together, we provide evidence for heme uptake systems as bacterial factors that act in a coordinated and multi-functional manner to subvert nutritional- and other sources of host innate immunity during NTHi airway infection.
Collapse
Affiliation(s)
| | - Tamim Al-Jubair
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Begoña Euba
- Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | | | - Sara Martí
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento Microbiología, Hospital Universitari Bellvitge, University of Barcelona, IDIBELL, Barcelona, Spain
| | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
19
|
Abdi M, Mirkalantari S, Amirmozafari N. Bacterial resistance to antimicrobial peptides. J Pept Sci 2019; 25:e3210. [DOI: 10.1002/psc.3210] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Milad Abdi
- Student Research Committee, Faculty of MedicineIran University of Medical Sciences Tehran Iran
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Shiva Mirkalantari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Nour Amirmozafari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| |
Collapse
|
20
|
Engel J, Veksler-Lublinsky I, Ziv-Ukelson M. Constrained Gene Block Discovery and Its Application to Prokaryotic Genomes. J Comput Biol 2019; 26:745-766. [PMID: 31140838 DOI: 10.1089/cmb.2019.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent advances in Next Generation Sequencing techniques, combined with global efforts to study infectious diseases, yield huge and rapidly-growing databases of microbial genomes. These big new data statistically empower genomic-context based approaches to functional analysis: the idea is that groups of genes that are clustered locally together across many genomes usually express protein products that interact in the same biological pathway (e.g., operons). The problem of finding such conserved "gene blocks" in a given genomic data has been studied extensively. In this work, we propose a new gene block discovery problem variant: find conserved gene blocks abiding by a user specification of biological functional constraints. We take advantage of the biological constraints to efficiently prune the search space. This is achieved by modeling the new problem as a special constrained variant of the well-studied "Closed Frequent Itemset Mining" problem, generalized here to handle item duplications. We exemplify the application of the tool we developed for this problem with two different case studies related to microbial ATP (adenosine triphosphate)-binding cassette (ABC) transporters.
Collapse
Affiliation(s)
- Jonathan Engel
- 1Department of Computer Science, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Isana Veksler-Lublinsky
- 2Department of Software and Information Systems Engineering, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Ziv-Ukelson
- 1Department of Computer Science, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
21
|
Hardison RL, Heimlich DR, Harrison A, Beatty WL, Rains S, Moseley MA, Thompson JW, Justice SS, Mason KM. Transient Nutrient Deprivation Promotes Macropinocytosis-Dependent Intracellular Bacterial Community Development. mSphere 2018; 3:3/5/e00286-18. [PMID: 30209128 PMCID: PMC6135960 DOI: 10.1128/msphere.00286-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nutrient limitation restricts bacterial growth in privileged sites such as the middle ear. Transient heme-iron restriction of nontypeable Haemophilus influenzae (NTHI), the major causative agent of chronic and recurrent otitis media (OM), promotes new and diverse phenotypes that can influence planktonic, biofilm, and intracellular lifestyles of NTHI. However, the bacterial responses to nutrient restriction that impact intracellular fate and survival of NTHI are unknown. In this work, we provide evidence for the role of transient heme-iron restriction in promoting the formation of intracellular bacterial communities (IBCs) of NTHI both in vitro and in vivo in a preclinical model of OM. We show that transient heme-iron restriction of NTHI results in significantly increased invasion and intracellular populations that escape or evade the endolysosomal pathway for increased intracellular survival. In contrast, NTHI continuously exposed to heme-iron traffics through the endolysosomal pathway for degradation. The use of pharmacological inhibitors revealed that prior heme-iron status does not appear to influence NTHI internalization through endocytic pathways. However, inhibition of macropinocytosis altered the intracellular fate of transiently restricted NTHI for degradation in the endolysosomal pathway. Furthermore, prevention of macropinocytosis significantly reduced the number of IBCs in cultured middle ear epithelial cells, providing evidence for the feasibility of this approach to reduce OM persistence. These results reveal that microenvironmental cues can influence the intracellular fate of NTHI, leading to new mechanisms for survival during disease progression.IMPORTANCE Otitis media is the most common bacterial infection in childhood. Current therapies are limited in the prevention of chronic or recurrent otitis media which leads to increased antibiotic exposure and represents a significant socioeconomic burden. In this study, we delineate the effect of nutritional limitation on the intracellular trafficking pathways used by nontypeable Haemophilus influenzae (NTHI). Moreover, transient limitation of heme-iron led to the development of intracellular bacterial communities that are known to contribute to persistence and recurrence in other diseases. New approaches for therapeutic interventions that reduce the production of intracellular bacterial communities and promote trafficking through the endolysosomal pathway were revealed through the use of pharmacological inhibition of macropinocytosis. This work demonstrates the importance of an intracellular niche for NTHI and provides new approaches for intervention for acute, chronic, and recurring episodes of otitis media.
Collapse
Affiliation(s)
- Rachael L Hardison
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Derek R Heimlich
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Alistair Harrison
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sarah Rains
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - M Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - J Will Thompson
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Sheryl S Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kevin M Mason
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
The Opp (AmiACDEF) Oligopeptide Transporter Mediates Resistance of Serotype 2 Streptococcus pneumoniae D39 to Killing by Chemokine CXCL10 and Other Antimicrobial Peptides. J Bacteriol 2018; 200:JB.00745-17. [PMID: 29581408 DOI: 10.1128/jb.00745-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs), including chemokines, are produced during infections to kill pathogenic bacteria. To fill in gaps in knowledge about the sensitivities of Streptococcus pneumoniae and related Streptococcus species to chemokines and AMPs, we performed a systematic, quantitative study of inhibition by chemokine CXCL10 and the AMPs LL-37 and nisin. In a standard Tris-glucose buffer (TGS), all strains assayed lacked metabolic activity, as determined by resazurin (alamarBlue) reduction, and were extremely sensitive to CXCL10 and AMPs (50% inhibitory concentration [IC50], ∼0.04 μM). In TGS, changes in sensitivities caused by mutations were undetectable. In contrast, strains that retained reductive metabolic activity in a different assay buffer (NPB [10 mM sodium phosphate {pH 7.4}, 1% {vol/vol} brain heart infusion {BHI} broth]) were less sensitive to CXCL10 and AMPs than in TGS. In NPB, mutants known to respond to AMPs, such as Δdlt mutants lacking d-alanylation of teichoic acids, exhibited the expected increased sensitivity. S. pneumoniae serotype 2 strain D39 was much (∼10-fold) less sensitive to CXCL10 killing in NPB than serotype 4 strain TIGR4, and the sensitivity of TIGR4 was unaffected by the absence of capsule. Candidate screening of strain D39 revealed that mutants lacking Opp (ΔamiACDEF) oligopeptide permease were significantly more resistant to CXCL10 than the wild-type strain. This increased resistance could indicate that Opp is a target for CXCL10 binding or that it transports CXCL10 into cells. Finally, ΔftsX or ΔftsE mutants of Bacillus subtilis or amino acid changes that interfere with FtsX function in S. pneumoniae did not impart resistance to CXCL10, in contrast to previous results for Bacillus anthracis, indicating that FtsX is not a general target for CXCL10 binding.IMPORTANCES. pneumoniae (pneumococcus) is a human commensal bacterium and major opportunistic respiratory pathogen that causes serious invasive diseases, killing millions of people worldwide annually. Because of its increasing antibiotic resistance, S. pneumoniae is now listed as a "superbug" for which new antibiotics are urgently needed. This report fills in knowledge gaps and resolves inconsistencies in the scientific literature about the sensitivity of S. pneumoniae and related Streptococcus pathogens to chemokines and AMPs. It also reveals a new mechanism by which S. pneumoniae can acquire resistance to chemokine CXCL10. This mechanism involves the Opp (AmiACDEF) oligopeptide transporter, which plays additional pleiotropic roles in pneumococcal physiology, quorum sensing, and virulence. Taking the results together, this work provides new information about the way chemokines kill pneumococcal cells.
Collapse
|
23
|
Tanaka KJ, Song S, Mason K, Pinkett HW. Selective substrate uptake: The role of ATP-binding cassette (ABC) importers in pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:868-877. [PMID: 28847505 PMCID: PMC5807212 DOI: 10.1016/j.bbamem.2017.08.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023]
Abstract
The uptake of nutrients, including metals, amino acids and peptides are required for many biological processes. Pathogenic bacteria scavenge these essential nutrients from microenvironments to survive within the host. Pathogens must utilize a myriad of mechanisms to acquire these essential nutrients from the host while mediating the effects of toxicity. Bacteria utilize several transport proteins, including ATP-binding cassette (ABC) transporters to import and expel substrates. ABC transporters, conserved across all organisms, are powered by the energy from ATP to move substrates across cellular membranes. In this review, we will focus on nutrient uptake, the role of ABC importers at the host-pathogen interface, and explore emerging therapies to combat pathogenesis. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Kari J Tanaka
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Saemee Song
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Kevin Mason
- The Research Institute at Nationwide Children's Hospital and The Ohio State University, College of Medicine, Department of Pediatrics, Center for Microbial Pathogenesis, Columbus, OH, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
24
|
Role of sapA and yfgA in Susceptibility to Antibody-Mediated Complement-Dependent Killing and Virulence of Salmonella enterica Serovar Typhimurium. Infect Immun 2017; 85:IAI.00419-17. [PMID: 28674031 PMCID: PMC5563563 DOI: 10.1128/iai.00419-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 01/18/2023] Open
Abstract
The ST313 pathovar of Salmonella enterica serovar Typhimurium contributes to a high burden of invasive disease among African infants and HIV-infected adults. It is characterized by genome degradation (loss of coding capacity) and has increased resistance to antibody-dependent complement-mediated killing compared with enterocolitis-causing strains of S. Typhimurium. Vaccination is an attractive disease-prevention strategy, and leading candidates focus on the induction of bactericidal antibodies. Antibody-resistant strains arising through further gene deletion could compromise such a strategy. Exposing a saturating transposon insertion mutant library of S. Typhimurium to immune serum identified a repertoire of S. Typhimurium genes that, when interrupted, result in increased resistance to serum killing. These genes included several involved in bacterial envelope biogenesis, protein translocation, and metabolism. We generated defined mutant derivatives using S. Typhimurium SL1344 as the host. Based on their initial levels of enhanced resistance to killing, yfgA and sapA mutants were selected for further characterization. The S. Typhimurium yfgA mutant lost the characteristic Salmonella rod-shaped appearance, exhibited increased sensitivity to osmotic and detergent stress, lacked very long lipopolysaccharide, was unable to invade enterocytes, and demonstrated decreased ability to infect mice. In contrast, the S. Typhimurium sapA mutants had similar sensitivity to osmotic and detergent stress and lipopolysaccharide profile and an increased ability to infect enterocytes compared with the wild type, but it had no increased ability to cause in vivo infection. These findings indicate that increased resistance to antibody-dependent complement-mediated killing secondary to genetic deletion is not necessarily accompanied by increased virulence and suggest the presence of different mechanisms of antibody resistance.
Collapse
|
25
|
Cardoso MH, de Almeida KC, Cândido EDS, Murad AM, Dias SC, Franco OL. Comparative NanoUPLC-MS E analysis between magainin I-susceptible and -resistant Escherichia coli strains. Sci Rep 2017. [PMID: 28646205 PMCID: PMC5482854 DOI: 10.1038/s41598-017-04181-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In recent years the antimicrobial peptides (AMPs) have been prospected and designed as new alternatives to conventional antibiotics. Indeed, AMPs have presented great potential toward pathogenic bacterial strains by means of complex mechanisms of action. However, reports have increasingly emerged regarding the mechanisms by which bacteria resist AMP administration. In this context, we performed a comparative proteomic study by using the total bacterial lysate of magainin I-susceptible and –resistant E. coli strains. After nanoUPLC-MSE analyses we identified 742 proteins distributed among the experimental groups, and 25 proteins were differentially expressed in the resistant strains. Among them 10 proteins involved in bacterial resistance, homeostasis, nutrition and protein transport were upregulated, while 15 proteins related to bacterial surface modifications, genetic information and β-lactams binding-protein were downregulated. Moreover, 60 exclusive proteins were identified in the resistant strains, among which biofilm and cell wall formation and multidrug efflux pump proteins could be observed. Thus, differentially from previous studies that could only associate single proteins to AMP bacterial resistance, data here reported show that several metabolic pathways may be related to E. coli resistance to AMPs, revealing the crucial role of multiple “omics” studies in order to elucidate the global molecular mechanisms involved in this resistance.
Collapse
Affiliation(s)
- Marlon H Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, 70.790-160, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília-DF, 70.910-900, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS, 79.117-900, Brazil
| | - Keyla C de Almeida
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, 70.790-160, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília-DF, 70.910-900, Brazil
| | - Elizabete de S Cândido
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, 70.790-160, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS, 79.117-900, Brazil
| | - André M Murad
- Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Biologia Sintética, Parque Estação Biológica, Brasília-DF, 70.770-917, Brazil
| | - Simoni C Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, 70.790-160, Brazil
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, 70.790-160, Brazil. .,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília-DF, 70.910-900, Brazil. .,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS, 79.117-900, Brazil.
| |
Collapse
|
26
|
Xie F, Wang Y, Li G, Liu S, Cui N, Liu S, Langford PR, Wang C. The SapA Protein Is Involved in Resistance to Antimicrobial Peptide PR-39 and Virulence of Actinobacillus pleuropneumoniae. Front Microbiol 2017; 8:811. [PMID: 28539918 PMCID: PMC5423912 DOI: 10.3389/fmicb.2017.00811] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial peptides are essential to the innate immune defense of the mammal against bacterial infection. However, pathogenic bacteria have evolved multiple strategies to resist and evade antimicrobial peptides, which is vital to bacterial survival and colonization in hosts. PR-39 is a linear porcine antimicrobial peptide containing 39 amino acid residues with a high proline content. Resistance to antimicrobial peptide PR-39 has been observed in Actinobacillus pleuropneumoniae. However, little is known about the factors required for this resistance. In the present study, PR-39 exposure increased the expression of the sapA gene in A. pleuropneumoniae. The sapA gene, which encodes a putative peptide transport periplasmic protein, was deleted from this bacterium. The ΔsapA mutant showed increased sensitivity to PR-39 compared to the wild-type MD12 and complemented PΔsapA strains. However, the ΔsapA mutant did not exhibit any alterations in outer membrane integrity. Scanning electron microscopy showed that the ΔsapA mutant displayed morphological defects, as indicated by a deformed and sunken shape after PR-39 treatment. In addition, disruption of the SapA protein led to reduced colonization and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model. Collectively, these data suggest that SapA acts as one mechanism for A. pleuropneumoniae to counteract PR-39-mediated killing. To the best of our knowledge, this is the first study to show a mechanism underlying antimicrobial peptide resistance in A. pleuropneumoniae.
Collapse
Affiliation(s)
- Fang Xie
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Yalei Wang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural SciencesShanghai, China
| | - Gang Li
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Shuanghong Liu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Ning Cui
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Siguo Liu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College LondonLondon, UK
| | - Chunlai Wang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| |
Collapse
|
27
|
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are small naturally occurring microbicidal molecules produced by the host innate immune response that function as a first line of defense to kill pathogenic microorganisms by inducing deleterious cell membrane damage. AMPs also possess signaling and chemoattractant activities and can modulate the innate immune response to enhance protective immunity or suppress inflammation. Human pathogens have evolved defense molecules and strategies to counter and survive the AMPs released by host immune cells such as neutrophils and macrophages. Here, we review the various mechanisms used by human bacterial pathogens to resist AMP-mediated killing, including surface charge modification, active efflux, alteration of membrane fluidity, inactivation by proteolytic digestion, and entrapment by surface proteins and polysaccharides. Enhanced understanding of AMP resistance at the molecular level may offer insight into the mechanisms of bacterial pathogenesis and augment the discovery of novel therapeutic targets and drug design for the treatment of recalcitrant multidrug-resistant bacterial infections.
Collapse
|
28
|
Sugiyama Y, Nakamura A, Matsumoto M, Kanbe A, Sakanaka M, Higashi K, Igarashi K, Katayama T, Suzuki H, Kurihara S. A Novel Putrescine Exporter SapBCDF of Escherichia coli. J Biol Chem 2016; 291:26343-26351. [PMID: 27803167 DOI: 10.1074/jbc.m116.762450] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/24/2016] [Indexed: 11/06/2022] Open
Abstract
Recent research has suggested that polyamines (putrescine, spermidine, and spermine) in the intestinal tract impact the health of animals either negatively or positively. The concentration of polyamines in the intestinal tract results from the balance of uptake and export of the intestinal bacteria. However, the mechanism of polyamine export from bacterial cells to the intestinal lumen is still unclear. In Escherichia coli, PotE was previously identified as a transporter responsible for putrescine excretion in an acidic growth environment. We observed putrescine concentration in the culture supernatant was increased from 0 to 50 μm during growth of E. coli under neutral conditions. Screening for the unidentified putrescine exporter was performed using a gene knock-out collection of E. coli, and deletion of sapBCDF significantly decreased putrescine levels in the culture supernatant. Complementation of the deletion mutant with the sapBCDF genes restored putrescine levels in the culture supernatant. Additionally, the ΔsapBCDF strain did not facilitate uptake of putrescine from the culture supernatant. Quantification of stable isotope-labeled putrescine derived from stable isotope-labeled arginine supplemented in the medium revealed that SapBCDF exported putrescine from E. coli cells to the culture supernatant. It was previously reported that SapABCDF of Salmonella enterica sv. typhimurium and Haemophilus influenzae conferred resistance toantimicrobial peptides; however, the E. coli ΔsapBCDF strain did not affect resistance to antimicrobial peptide LL-37. These results strongly suggest that the natural function of the SapBCDF proteins is the export of putrescine.
Collapse
Affiliation(s)
- Yuta Sugiyama
- From the Division of Applied Life Science, Graduate School of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836
| | - Atsuo Nakamura
- the Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd., Tokyo 190-0182
| | - Mitsuharu Matsumoto
- the Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd., Tokyo 190-0182
| | - Ayaka Kanbe
- the Division of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585
| | - Mikiyasu Sakanaka
- From the Division of Applied Life Science, Graduate School of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836
| | - Kyohei Higashi
- the Division of Biopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675
| | - Kazuei Igarashi
- the Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba 260-0856, and
| | - Takane Katayama
- From the Division of Applied Life Science, Graduate School of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836.,the Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideyuki Suzuki
- the Division of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585
| | - Shin Kurihara
- From the Division of Applied Life Science, Graduate School of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836,
| |
Collapse
|
29
|
Type IV Pilus Expression Is Upregulated in Nontypeable Haemophilus influenzae Biofilms Formed at the Temperature of the Human Nasopharynx. J Bacteriol 2016; 198:2619-30. [PMID: 27044626 DOI: 10.1128/jb.01022-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/28/2016] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Nontypeable Haemophilus influenzae (NTHI), a commensal of the human nasopharynx (hNP), is a common cause of biofilm-associated diseases of the respiratory tract. However, NTHI biofilm biology at the average hNP temperature, i.e., 34°C, has not been well studied. Here we grew NTHI biofilms at 34°C and 37°C, to evaluate relative biofilm growth, expression, and function of the type IV pilus (Tfp), a critical adhesin important for NTHI biofilm formation. The kinetics and regulation of Tfp expression in NTHI biofilms are unclear, especially at 34°C. Tfp expression, as estimated by pilA promoter activity, was distributed throughout the biofilms, with a unique pattern that was dependent on temperature, time in culture, and position within the maturing biofilm. Tfp expression was required for the formation of the characteristic tower structures of NTHI biofilms and was significantly upregulated in NTHI biofilms formed at 34°C versus 37°C. This increase correlated with significantly greater twitching motility at 34°C than at 37°C. Treatment with antisera targeting the major subunit of Tfp (PilA) significantly inhibited NTHI biofilm formation at both temperatures, confirming the importance of this critical adhesin in biofilm formation. Additionally, treatment of preestablished biofilms with antisera against PilA significantly decreased biofilm biomass and mean thickness at both temperatures. These results demonstrated a pivotal role for Tfp in NTHI biofilm formation and stability at the temperature of the hNP, and they underscore the utility of PilA as a vaccine candidate for treatment and/or prevention of NTHI biofilm-associated diseases. IMPORTANCE NTHI is an important cause of chronic respiratory tract infections, including otitis media, chronic rhinosinusitis, and exacerbations of chronic obstructive pulmonary disease and cystic fibrosis. The chronic and recurrent nature of these diseases is attributed to the presence of bacterial biofilms, which are highly resistant to antimicrobials. We characterized NTHI biofilm growth and expression of PilA, the major subunit of the Tfp, at the temperature of the hNP, which is the commensal habitat of NTHI. Our results expand the current understanding of the role of Tfp during biofilm formation and maturation at the temperature of both the hNP and the middle ear, and they strengthen support for PilA as a vaccine candidate for the prevention and treatment of NTHI biofilm-associated diseases.
Collapse
|
30
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150292. [PMID: 27160595 PMCID: PMC4874390 DOI: 10.1098/rstb.2015.0292] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016. [PMID: 27160595 DOI: 10.1098/rstb.2015.0292.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Transformed Recombinant Enrichment Profiling Rapidly Identifies HMW1 as an Intracellular Invasion Locus in Haemophilus influenza. PLoS Pathog 2016; 12:e1005576. [PMID: 27124727 PMCID: PMC4849778 DOI: 10.1371/journal.ppat.1005576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022] Open
Abstract
Many bacterial species actively take up and recombine homologous DNA into their genomes, called natural competence, a trait that offers a means to identify the genetic basis of naturally occurring phenotypic variation. Here, we describe “transformed recombinant enrichment profiling” (TREP), in which natural transformation is used to generate complex pools of recombinants, phenotypic selection is used to enrich for specific recombinants, and deep sequencing is used to survey for the genetic variation responsible. We applied TREP to investigate the genetic architecture of intracellular invasion by the human pathogen Haemophilus influenzae, a trait implicated in persistence during chronic infection. TREP identified the HMW1 adhesin as a crucial factor. Natural transformation of the hmw1 operon from a clinical isolate (86-028NP) into a laboratory isolate that lacks it (Rd KW20) resulted in ~1,000-fold increased invasion into airway epithelial cells. When a distinct recipient (Hi375, already possessing hmw1 and its paralog hmw2) was transformed by the same donor, allelic replacement of hmw2AHi375 by hmw1A86-028NP resulted in a ~100-fold increased intracellular invasion rate. The specific role of hmw1A86-028NP was confirmed by mutant and western blot analyses. Bacterial self-aggregation and adherence to airway cells were also increased in recombinants, suggesting that the high invasiveness induced by hmw1A86-028NP might be a consequence of these phenotypes. However, immunofluorescence results found that intracellular hmw1A86-028NP bacteria likely invaded as groups, instead of as individual bacterial cells, indicating an emergent invasion-specific consequence of hmw1A-mediated self-aggregation. Many bacteria are naturally competent, actively taking up DNA from their surroundings and incorporating it into their genomes by homologous recombination. This cellular process has had a large impact on the evolution of these species, for example by enabling pathogens to acquire virulence factors and antibiotic resistances from their relatives. But natural competence can also be exploited by researchers to identify the underlying genetic variation responsible for naturally varying phenotypic traits, similar to how eukaryotic geneticists use meiotic recombination during sexual reproduction to create genetically admixed populations. Here we exploited natural competence, phenotypic selection, and deep sequencing to rapidly identify the hmw1 locus as a major contributor to intracellular invasion of airway epithelial cells by the human pathogen Haemophilus influenzae, a trait that likely allows bacterial cells to evade the immune system and therapeutic interventions during chronic infections. Genetic variation in this locus can strongly modulate bacterial intracellular invasion rates, and possession of a certain allele favors adhesion and self-aggregation, which appear to prompt bacteria to invade airway cells as groups, rather than as individuals. Overall, our findings indicate that targeting HMW1 could block the ability of H. influenzae to invade airway cells, which would make antibiotic therapy to treat chronic lung infections more effective. Furthermore, our new approach to identifying the genetic basis of natural phenotypic variation is applicable to a wide-range of phenotypically selectable traits within the widely distributed naturally competent bacterial species, including pathogenesis traits in many human pathogens.
Collapse
|
33
|
Kress-Bennett JM, Hiller NL, Eutsey RA, Powell E, Longwell MJ, Hillman T, Blackwell T, Byers B, Mell JC, Post JC, Hu FZ, Ehrlich GD, Janto BA. Identification and Characterization of msf, a Novel Virulence Factor in Haemophilus influenzae. PLoS One 2016; 11:e0149891. [PMID: 26977929 PMCID: PMC4792463 DOI: 10.1371/journal.pone.0149891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 02/05/2016] [Indexed: 12/11/2022] Open
Abstract
Haemophilus influenzae is an opportunistic pathogen. The emergence of virulent, non-typeable strains (NTHi) emphasizes the importance of developing new interventional targets. We screened the NTHi supragenome for genes encoding surface-exposed proteins suggestive of immune evasion, identifying a large family containing Sel1-like repeats (SLRs). Clustering identified ten SLR-containing gene subfamilies, each with various numbers of SLRs per gene. Individual strains also had varying numbers of SLR-containing genes from one or more of the subfamilies. Statistical genetic analyses of gene possession among 210 NTHi strains typed as either disease or carriage found a significant association between possession of the SlrVA subfamily (which we have termed, macrophage survival factor, msf) and the disease isolates. The PittII strain contains four chromosomally contiguous msf genes. Deleting all four of these genes (msfA1-4) (KO) resulted in a highly significant decrease in phagocytosis and survival in macrophages; which was fully complemented by a single copy of the msfA1 gene. Using the chinchilla model of otitis media and invasive disease, the KO strain displayed a significant decrease in fitness compared to the WT in co-infections; and in single infections, the KO lost its ability to invade the brain. The singly complemented strain showed only a partial ability to compete with the WT suggesting gene dosage is important in vivo. The transcriptional profiles of the KO and WT in planktonic growth were compared using the NTHi supragenome array, which revealed highly significant changes in the expression of operons involved in virulence and anaerobiosis. These findings demonstrate that the msfA1-4 genes are virulence factors for phagocytosis, persistence, and trafficking to non-mucosal sites.
Collapse
Affiliation(s)
- Jennifer M. Kress-Bennett
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - N. Luisa Hiller
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Rory A. Eutsey
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Evan Powell
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Mark J. Longwell
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Todd Hillman
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Tenisha Blackwell
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Barbara Byers
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Joshua C. Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - J. Christopher Post
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
| | - Fen Z. Hu
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
| | - Benjamin A. Janto
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
34
|
Moon SK, Lim DJ. Intratympanic Gene Delivery of Antimicrobial Molecules in Otitis Media. Curr Allergy Asthma Rep 2015; 15:14. [PMID: 26130474 DOI: 10.1007/s11882-015-0517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Otitis media (OM) in children is clinically important because of its detrimental effects on the development of language and motor coordination and is the most common reason for prescription of antibiotics. A recent bacteriological change in OM pathogens such as emergence of antibiotic resistance and vaccination-mediated pathogenic shift urges us to develop a new non-antibiotic strategy. The middle ear epithelium abundantly secretes a variety of antimicrobial molecules suppressing the viability of the common OM pathogens. Recently, we have demonstrated that the adenoviral vector is able to deliver the β-defensin 2 gene to the middle ear epithelial cells in vitro and in vivo, and adenovirus-mediated overexpression of β-defensin 2 is protective for experimental OM. There are many hurdles limiting successful clinical application of gene delivery to the respiratory epithelium of the tubotympanum; however, intratympanic gene therapy with β-defensin 2 is a promising alternative or adjuvant strategy for the management of OM.
Collapse
Affiliation(s)
- Sung K Moon
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, 2100 W. 3rd Street, Los Angeles, CA, 90057, USA,
| | | |
Collapse
|
35
|
Chen F, Hu H, Li Z, Huang J, Cai X, Wang C, He Q, Cao J. Deletion of HAPS_2096 Increases Sensitivity to Cecropin B in Haemophilus parasuis. J Mol Microbiol Biotechnol 2015; 25:284-91. [PMID: 26304836 DOI: 10.1159/000434752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cecropin B (CB) is a very effective natural antimicrobial peptide that has shown great potential for future antimicrobial drug development. HAPS_2096 is a Haemophilus parasuis gene that encodes the periplasmic substrate-binding protein of an ATP-binding cassette-type amino acid transporter. In this research, we constructed and verified an HAPS_2096 deletion mutant and a complementary HAPS_2096 mutant of H. parasuis JS0135. A bactericidal assay revealed that the HAPS_2096 deletion mutant was significantly more sensitive than the wild-type strain to 0.25-0.5 µg/ml CB. However, the gene complementation alleviated the CB sensitivity of the mutant. Immunoelectron microscopy observation following a 30-min treatment with a sublethal concentration of CB (0.25 μg/ml) revealed more extensive morphological damage in the mutant strain than in the wild-type strain. Hence, our results suggest that the HAPS_2096 gene contributes to H. parasuis resistance to CB.
Collapse
Affiliation(s)
- Fanjie Chen
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Therapeutic Transcutaneous Immunization with a Band-Aid Vaccine Resolves Experimental Otitis Media. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:867-74. [PMID: 26018536 DOI: 10.1128/cvi.00090-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/14/2015] [Indexed: 12/30/2022]
Abstract
Transcutaneous immunization (TCI) is a noninvasive strategy to induce protective immune responses. We describe TCI with a band-aid vaccine placed on the postauricular skin to exploit the unique organization of the stratum corneum and to promote the development of immune responses to resolve active experimental otitis media due to nontypeable Haemophilus influenzae (NTHI). This therapeutic immunization strategy induced significantly earlier resolution of middle ear fluid and rapid eradication of both planktonic and mucosal biofilm-resident NTHI within 7 days after receipt of the first immunizing band-aid vaccine. Efficacy was ascribed to the homing of immunogen-bearing cutaneous dendritic cells to the nasal-associated lymphoid tissue, induction of polyfunctional CD4(+) T cells, and the presence of immunogen-specific IgM and IgG within the middle ear. TCI using band-aid vaccines could expand the use of traditional parenteral preventative vaccines to include treatment of active otitis media, in addition to other diseases of the respiratory tract due to NTHI.
Collapse
|
37
|
Mucosal physical and chemical innate barriers: Lessons from microbial evasion strategies. Semin Immunol 2015; 27:111-8. [PMID: 25936225 DOI: 10.1016/j.smim.2015.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/13/2015] [Indexed: 12/24/2022]
Abstract
The innate immune system has evolved since millions of years under a selective pressure. Among the different host mechanisms selected and conserved as a first line of defense, the gastrointestinal mucus layer constitutes an efficient physical and chemical barrier against invading microbes. Mucin glycoproteins and antimicrobial peptides are the major components of the mucus barrier, and evidences prove that they form an effective protection against most microbes. However, successful pathogens have evolved evasion strategies to circumvent this defense barrier. Here, we discuss the interactions between pathogens, mucins, and antimicrobial peptides, and the mechanisms that pathogens have developed to evade the innate defense systems of the intestinal mucosal barrier.
Collapse
|
38
|
Bauer ME, Shafer WM. On the in vivo significance of bacterial resistance to antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3101-11. [PMID: 25701234 DOI: 10.1016/j.bbamem.2015.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 12/17/2022]
Abstract
Antimicrobial peptides (AMPs) are at the front-line of host defense during infection and play critical roles both in reducing the microbial load early during infection and in linking innate to adaptive immunity. However, successful pathogens have developed mechanisms to resist AMPs. Although considerable progress has been made in elucidating AMP-resistance mechanisms of pathogenic bacteria in vitro, less is known regarding the in vivo significance of such resistance. Nevertheless, progress has been made in this area, largely by using murine models and, in two instances, human models of infection. Herein, we review progress on the use of in vivo infection models in AMP research and discuss the AMP resistance mechanisms that have been established by in vivo studies to contribute to microbial infection. We posit that in vivo infection models are essential tools for investigators to understand the significance to pathogenesis of genetic changes that impact levels of bacterial susceptibility to AMPs. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Margaret E Bauer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive MS-420, Indianapolis, IN 46254, USA.
| | - William M Shafer
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA 30033, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
39
|
Novotny LA, Jurcisek JA, Ward MO, Jordan ZB, Goodman SD, Bakaletz LO. Antibodies against the majority subunit of type IV Pili disperse nontypeable Haemophilus influenzae biofilms in a LuxS-dependent manner and confer therapeutic resolution of experimental otitis media. Mol Microbiol 2015; 96:276-92. [PMID: 25597921 DOI: 10.1111/mmi.12934] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2015] [Indexed: 12/12/2022]
Abstract
Despite resulting in a similar overall outcome, unlike antibodies directed against the DNABII protein, integration host factor (IHF), which induce catastrophic structural collapse of biofilms formed by nontypeable Haemophilus influenzae (NTHI), those directed against a recombinant soluble form of PilA [the majority subunit of Type IV pili (Tfp) produced by NTHI], mediated gradual 'top-down' dispersal of NTHI from biofilms. This dispersal occurred via a mechanism that was dependent upon expression of both PilA (and by inference, Tfp) and production of AI-2 quorum signaling molecules by LuxS. The addition of rsPilA to a biofilm-targeted therapeutic vaccine formulation comprised of IHF plus the powerful adjuvant dmLT and delivered via a noninvasive transcutaneous immunization route induced an immune response that targeted two important determinants essential for biofilm formation by NTHI. This resulted in significantly earlier eradication of NTHI from both planktonic and adherent populations in the middle ear, disruption of mucosal biofilms already resident within middle ears prior to immunization and rapid resolution of signs of disease in an animal model of experimental otitis media. These data support continued development of this novel combinatorial immunization approach for resolution and/or prevention of multiple diseases of the respiratory tract caused by NTHI.
Collapse
Affiliation(s)
- Laura A Novotny
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA; The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Mucosal immune responses within the middle ear and eustachian tube generally provide an effective and efficient response to the presence of microbial pathogens, with approximately 80% of clinically recognizable middle ear infections resolved within 7 days. Particularly for young children aged less than 3 years of age, the proximity and direct connection of the middle ear, via the eustachian tube, to the nasopharynx provide increased risk of commensal bacteria and upper respiratory tract viruses infecting the middle ear. Mucosal immunological defense in the middle ear and eustachian tube utilizes a number of mechanisms, including physicochemical barriers of mucus and the mucosal epithelial cells and innate immune responses such as inflammation, cellular infiltration, effusion, and antimicrobial protein secretions, in addition to adaptive host immune responses. Recent advances in otopathogen recognition via microbial pattern recognition receptors and elucidation of complex signaling cascades have improved understanding of the coordination and regulation of the middle ear mucosal response. These advances support vaccine development aiming to reduce the risk of otitis media in children.
Collapse
|
41
|
Heimlich DR, Harrison A, Mason KM. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease. Antibiotics (Basel) 2014; 3:645-76. [PMID: 26029470 PMCID: PMC4448142 DOI: 10.3390/antibiotics3040645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/10/2023] Open
Abstract
Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host's perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs). As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease.
Collapse
Affiliation(s)
- Derek R. Heimlich
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Alistair Harrison
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Kevin M. Mason
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
- The Ohio State University College of Medicine, Department of Pediatrics, Columbus, OH 43205, USA
| |
Collapse
|
42
|
Santana EA, Harrison A, Zhang X, Baker BD, Kelly BJ, White P, Liu Y, Munson RS. HrrF is the Fur-regulated small RNA in nontypeable Haemophilus influenzae. PLoS One 2014; 9:e105644. [PMID: 25157846 PMCID: PMC4144887 DOI: 10.1371/journal.pone.0105644] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/21/2014] [Indexed: 02/06/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) are Gram-negative commensal bacteria that reside in the nasopharynx. NTHi can also cause multiple upper and lower respiratory tract diseases that include sinusitis, conjunctivitis, bronchitis, and otitis media. In numerous bacterial species the ferric uptake regulator (Fur) acts as a global regulator of iron homeostasis by negatively regulating the expression of iron uptake systems. However in NTHi strain 86-028NP and numerous other bacterial species there are multiple instances where Fur positively affects gene expression. It is known that many instances of positive regulation by Fur occur indirectly through a small RNA intermediate. However, no examples of small RNAs have been described in NTHi. Therefore we used RNA-Seq analysis to analyze the transcriptome of NTHi strain 86-028NPrpsL and an isogenic 86-028NPrpsLΔfur strain to identify Fur-regulated intergenic transcripts. From this analysis we identified HrrF, the first small RNA described in any Haemophilus species. Orthologues of this small RNA exist only among other Pasteurellaceae. Our analysis showed that HrrF is maximally expressed when iron levels are low. Additionally, Fur was shown to bind upstream of the hrrF promoter. RNA-Seq analysis was used to identify targets of HrrF which include genes whose products are involved in molybdate uptake, deoxyribonucleotide synthesis, and amino acid biosynthesis. The stability of HrrF is not dependent on the RNA chaperone Hfq. This study is the first step in an effort to investigate the role small RNAs play in altering gene expression in response to iron limitation in NTHi.
Collapse
Affiliation(s)
- Estevan A. Santana
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Alistair Harrison
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Xinjun Zhang
- School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
| | - Beth D. Baker
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Benjamin J. Kelly
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Biomedical Genomics Core, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Peter White
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Biomedical Genomics Core, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Yunlong Liu
- School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
| | - Robert S. Munson
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
43
|
Woo JI, Kil SH, Brough DE, Lee YJ, Lim DJ, Moon SK. Therapeutic potential of adenovirus-mediated delivery of β-defensin 2 for experimental otitis media. Innate Immun 2014; 21:215-24. [PMID: 24842664 DOI: 10.1177/1753425914534002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Otitis media (OM), one of the most prevalent diseases in young children, is clinically important owing to its high incidence in children and its potential impact on language development and motor coordination. OM is the most common reason for the prescription of antibiotics (accounting for 25% of prescriptions) due to its extremely high incidence. A recent increase in antibiotic resistance among OM pathogens is emerging as a major public health concern globally, which led us to consider non-antibiotic approaches for the management of OM. In this study, we evaluated gene transfer of an antimicrobial peptide, human β-defensin 2 (DEFB4), using an adenoviral vector (Ad5 with deletions of E1/E3/E4) as a potential therapeutic approach. We demonstrated that the transduction of human β-defensin 2 induces the production of human β-defensin 2 and suppresses non-typeable Haemophilus influenzae (NTHi) adhesion to human middle ear epithelial cells. Moreover, intratympanic inoculation of Ad-DEFB4 was found to attenuate NTHi-induced middle ear effusions without eliciting a significant immune response. Most importantly, intratympanic inoculation of Ad-DEFB4 appeared to significantly augment clearance of NTHi from middle ear cavity. Collectively, our results suggest that intratympanic gene delivery of antimicrobial molecules may serve as an alternative/adjuvant approach for the management of OM.
Collapse
Affiliation(s)
- Jeong-Im Woo
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| | - Sung-Hee Kil
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| | | | - Yoo Jin Lee
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| | - David J Lim
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| | - Sung K Moon
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| |
Collapse
|
44
|
Ishak N, Tikhomirova A, Bent SJ, Ehrlich GD, Hu FZ, Kidd SP. There is a specific response to pH by isolates of Haemophilus influenzae and this has a direct influence on biofilm formation. BMC Microbiol 2014; 14:47. [PMID: 24555828 PMCID: PMC3938079 DOI: 10.1186/1471-2180-14-47] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/19/2014] [Indexed: 12/22/2022] Open
Abstract
Background Haemophilus influenzae colonizes the nasopharynx as a commensal. Strain-specific factors allow some strains to migrate to particular anatomical niches, such as the middle ear, bronchi or blood, and induce disease by surviving within the conditions present at these sites in the body. It is established that H. influenzae colonization and in some cases survival is highly dependent on their ability to form a biofilm. Biofilm formation is a key trait in the development of chronic infection by certain isolates. This is exemplified by the contrast between the biofilm-forming strains found in middle ear infections and those isolates that survive within the blood and are rarely associated with biofilm development. Results Screening a group of H. influenzae strains revealed only slight variations in their growth across a range of pH conditions. However, some isolates responded to a pH of 8.0 by the formation of a biofilm. While the type b capsular blood isolate Eagan did not form a biofilm and grew at the same rate regardless of pH 6.8-8.0, transcriptomic analyses demonstrated that at pH 8.0 it uniquely induced a gluconate-uptake and metabolism pathway, which concurrently imports H+. A non-typeable H. influenzae, isolated from the middle ear, induced biofilm formation at pH 8.0, and at this pH it induced a series of iron acquisition genes, consistent with previous studies linking iron homeostasis to biofilm lifestyle. Conclusions Different strains of H. influenzae cope with changes in environmental factors using strain-specific mechanisms. These pathways define the scope and mode of niche-survival for an isolate. The pH is a property that is different from the middle ear (at least pH 8.0) compared to other sites that H. influenzae can colonize and infect. The transcriptional response to increasing pH by H. influenzae varies between strains, and pH is linked to pathways that allow strains to either continue free-living growth or induction of a biofilm. We showed that a biofilm-forming isolate induced iron metabolism pathways, whereas a strain that does not form biofilm at increasing pH induced mechanisms for growth and pH homeostasis based on sugar acid transport.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen P Kidd
- Research Centre for Infectious Diseases, The University of Adelaide, North Terrace Campus, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
45
|
Tavares LS, Silva CSF, de Souza VC, da Silva VL, Diniz CG, Santos MO. Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and antimicrobial peptides. Front Microbiol 2013; 4:412. [PMID: 24427156 PMCID: PMC3876575 DOI: 10.3389/fmicb.2013.00412] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/15/2013] [Indexed: 11/13/2022] Open
Abstract
The increasing number of antibiotic resistant bacteria motivates prospective research toward discovery of new antimicrobial active substances. There are, however, controversies concerning the cost-effectiveness of such research with regards to the description of new substances with novel cellular interactions, or description of new uses of existing substances to overcome resistance. Although examination of bacteria isolated from remote locations with limited exposure to humans has revealed an absence of antibiotic resistance genes, it is accepted that these genes were both abundant and diverse in ancient living organisms, as detected in DNA recovered from Pleistocene deposits (30,000 years ago). Indeed, even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Bacteria can exhibit different strategies for resistance against antibiotics. New genetic information may lead to the modification of protein structure affecting the antibiotic carriage into the cell, enzymatic inactivation of drugs, or even modification of cellular structure interfering in the drug-bacteria interaction. There are still plenty of new genes out there in the environment that can be appropriated by putative pathogenic bacteria to resist antimicrobial agents. On the other hand, there are several natural compounds with antibiotic activity that may be used to oppose them. Antimicrobial peptides (AMPs) are molecules which are wide-spread in all forms of life, from multi-cellular organisms to bacterial cells used to interfere with microbial growth. Several AMPs have been shown to be effective against multi-drug resistant bacteria and have low propensity to resistance development, probably due to their unique mode of action, different from well-known antimicrobial drugs. These substances may interact in different ways with bacterial cell membrane, protein synthesis, protein modulation, and protein folding. The analysis of bacterial transcriptome may contribute to the understanding of microbial strategies under different environmental stresses and allows the understanding of their interaction with novel AMPs.
Collapse
Affiliation(s)
| | - Carolina S. F. Silva
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | | | - Vânia L. da Silva
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | - Cláudio G. Diniz
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | - Marcelo O. Santos
- Department of Biology, University of Juiz de ForaJuiz de Fora, Brazil
| |
Collapse
|
46
|
Haemophilus responses to nutritional immunity: epigenetic and morphological contribution to biofilm architecture, invasion, persistence and disease severity. PLoS Pathog 2013; 9:e1003709. [PMID: 24130500 PMCID: PMC3795038 DOI: 10.1371/journal.ppat.1003709] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/30/2013] [Indexed: 12/18/2022] Open
Abstract
In an effort to suppress microbial outgrowth, the host sequesters essential nutrients in a process termed nutritional immunity. However, inflammatory responses to bacterial insult can restore nutritional resources. Given that nutrient availability modulates virulence factor production and biofilm formation by other bacterial species, we hypothesized that fluctuations in heme-iron availability, particularly at privileged sites, would similarly influence Haemophilus biofilm formation and pathogenesis. Thus, we cultured Haemophilus through sequential heme-iron deplete and heme-iron replete media to determine the effect of transient depletion of internal stores of heme-iron on multiple pathogenic phenotypes. We observed that prior heme-iron restriction potentiates biofilm changes for at least 72 hours that include increased peak height and architectural complexity as compared to biofilms initiated from heme-iron replete bacteria, suggesting a mechanism for epigenetic responses that participate in the changes observed. Additionally, in a co-infection model for human otitis media, heme-iron restricted Haemophilus, although accounting for only 10% of the inoculum (90% heme-iron replete), represented up to 99% of the organisms recovered at 4 days. These data indicate that fluctuations in heme-iron availability promote a survival advantage during disease. Filamentation mediated by a SulA-related ortholog was required for optimal biofilm peak height and persistence during experimental otitis media. Moreover, severity of disease in response to heme-iron restricted Haemophilus was reduced as evidenced by lack of mucosal destruction, decreased erythema, hemorrhagic foci and vasodilatation. Transient restriction of heme-iron also promoted productive invasion events leading to the development of intracellular bacterial communities. Taken together, these data suggest that nutritional immunity, may, in fact, foster long-term phenotypic changes that better equip bacteria for survival at infectious sites. Clinical management of upper and lower respiratory tract diseases caused by nontypeable Haemophilus influenzae (NTHI) is a significant socioeconomic burden. Therapies targeting the pathogenic lifestyle of NTHI remain non-existent due to a lack of understanding of host microenvironmental cues and bacterial responses that dictate NTHI persistence. Iron availability influences bacterial virulence traits and biofilm formation; yet, host sequestration of iron serves to restrict bacterial growth. We predicted that fluctuations in availability of iron-containing compounds, typically associated with infection, would impact NTHI pathogenesis. We demonstrated that transient restriction of heme-iron triggered an epigenetic developmental program that enhanced NTHI biofilm architecture, directly influenced by induced morphological changes in bacterial length. Heme-iron restricted bacteria were primed for survival in the mammalian middle ear, due in part to an observed reduction in host inflammation coinciding with a striking reduction in host mucosal epithelial damage, compared to that observed in response to heme-iron replete NTHI. Moreover, transiently restricted NTHI were more invasive of epithelial cells resulting in formation of intracellular bacterial communities. Our findings significantly advance our understanding of how host immune pressure and nutrient availability influence pathogenic behaviors that impact disease severity.
Collapse
|
47
|
Hempel RJ, Morton DJ, Seale TW, Whitby PW, Stull TL. The role of the RNA chaperone Hfq in Haemophilus influenzae pathogenesis. BMC Microbiol 2013; 13:134. [PMID: 23767779 PMCID: PMC3691723 DOI: 10.1186/1471-2180-13-134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/14/2013] [Indexed: 12/26/2022] Open
Abstract
Background The RNA binding protein Hfq of Haemophilus influenzae is highly homologous to Hfq from other bacterial species. In many of these other bacteria, Hfq affects the expression of a broad range of genes and enhances the ability to respond to stressful environments. However, the role of Hfq in H. influenzae is unknown. Results Deletion mutants of hfq were generated in the nontypeable H. influenzae strains R2866 and 86-028NP to assess the role of Hfq in these well characterized but genotypically and phenotypically divergent clinical isolates. A deletion mutation of hfq had no effect on growth of H. influenzae in nutrient rich media and had no effect on survival in several stressful conditions in vitro. However, the mutation resulted in a reduced ability to utilize heme from hemoglobin. The mutant and wild type strains were assessed for virulence and competitive fitness in models of invasive disease and otitis media. In the chinchilla model of otitis media, the hfq mutant of 86-028NP exhibited impaired competitive fitness when compared to its wild type progenitor but exhibited no apparent defect in virulence. In the infant rat model, deletion of hfq in R2866 resulted in reduced bacterial titers in blood and a shorter duration of infection when compared to the wild type strain in the competitive fitness study. Conclusion We conclude that Hfq is involved in the utilization of essential nutrients and facilitates infection by H. influenzae.
Collapse
Affiliation(s)
- Randy J Hempel
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
48
|
McAuley JL, Tate MD, MacKenzie-Kludas CJ, Pinar A, Zeng W, Stutz A, Latz E, Brown LE, Mansell A. Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease. PLoS Pathog 2013; 9:e1003392. [PMID: 23737748 PMCID: PMC3667782 DOI: 10.1371/journal.ppat.1003392] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 04/16/2013] [Indexed: 12/17/2022] Open
Abstract
The ability for a host to recognize infection is critical for virus clearance and often begins with induction of inflammation. The PB1-F2 of pathogenic influenza A viruses (IAV) contributes to the pathophysiology of infection, although the mechanism for this is unclear. The NLRP3-inflammasome has been implicated in IAV pathogenesis, but whether IAV virulence proteins can be activators of the complex is unknown. We investigated whether PB1-F2-mediated activation of the NLRP3-inflammasome is a mechanism contributing to overt inflammatory responses to IAV infection. We show PB1-F2 induces secretion of pyrogenic cytokine IL-1β by activating the NLRP3-inflammasome, contributing to inflammation triggered by pathogenic IAV. Compared to infection with wild-type virus, mice infected with reverse engineered PB1-F2-deficient IAV resulted in decreased IL-1β secretion and cellular recruitment to the airways. Moreover, mice exposed to PB1-F2 peptide derived from pathogenic IAV had enhanced IL-1β secretion compared to mice exposed to peptide derived from seasonal IAV. Implicating the NLRP3-inflammasome complex specifically, we show PB1-F2 derived from pathogenic IAV induced IL-1β secretion was Caspase-1-dependent in human PBMCs and NLRP3-dependent in mice. Importantly, we demonstrate PB1-F2 is incorporated into the phagolysosomal compartment, and upon acidification, induces ASC speck formation. We also show that high molecular weight aggregated PB1-F2, rather than soluble PB1-F2, induces IL-1β secretion. Furthermore, NLRP3-deficient mice exposed to PB1-F2 peptide or infected with PB1-F2 expressing IAV were unable to efficiently induce the robust inflammatory response as observed in wild-type mice. In addition to viral pore forming toxins, ion channel proteins and RNA, we demonstrate inducers of NLRP3-inflammasome activation may include disordered viral proteins, as exemplified by PB1-F2, acting as host pathogen ‘danger’ signals. Elucidating immunostimulatory PB1-F2 mediation of NLRP3-inflammasome activation is a major step forward in our understanding of the aetiology of disease attributable to exuberant inflammatory responses to IAV infection. Influenza virus is a highly contagious respiratory pathogen that can cause pandemics, resulting in the deaths of millions worldwide. Previously we demonstrated that PB1-F2 protein produced by pathogenic influenza induces overwhelming inflammatory responses to infection, which enhances disease. The way in which PB1-F2 causes this overt inflammation is unclear. Recently, influenza virus was shown to be involved in activating the inflammasome, which plays a pivotal role during inflammatory responses to infection. However, whether virulence factors such as PB1-F2 produced by the virus can play a role in activation of the inflammasome is unknown. Here, we investigated whether PB1-F2 could have a role in activation of the inflammasome. Using detection of the inflammatory cytokine IL-1β as a marker for inflammasome complex activation, we definitively show PB1-F2 from a pathogenic strain rapidly induces activation of the inflammasome in humans and mice. Using macrophages from mice lacking components of the inflammasome complex, induction of inflammation was shown to be Caspase-1 and NLRP3-dependent. Inflammation induced by PB1-F2 was abrogated in NLRP3-deficient mice. To our knowledge, this is the first description of the mechanism of PB1-F2-mediated inflammasome complex activation. Our work provides further understanding of the contribution of PB1-F2 to enhancing inflammation during influenza infections.
Collapse
Affiliation(s)
- Julie L. McAuley
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (JLM); (AM)
| | - Michelle D. Tate
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | - Anita Pinar
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Weiguang Zeng
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrea Stutz
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lorena E. Brown
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- * E-mail: (JLM); (AM)
| |
Collapse
|
49
|
Novotny LA, Clements JD, Bakaletz LO. Kinetic analysis and evaluation of the mechanisms involved in the resolution of experimental nontypeable Haemophilus influenzae-induced otitis media after transcutaneous immunization. Vaccine 2012; 31:3417-26. [PMID: 23092856 DOI: 10.1016/j.vaccine.2012.10.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/31/2012] [Accepted: 10/09/2012] [Indexed: 01/09/2023]
Abstract
Transcutaneous immunization (TCI) is a simple and needle-free method with which to induce protective immune responses. Using a chinchilla model of nontypeable Haemophilus influenzae (NTHI)-induced otitis media (OM), we examined the efficacy afforded by TCI with a novel chimeric immunogen called 'chimV4' which targets two critical adhesins expressed by NTHI, outer membrane protein P5 and the majority subunit of NTHI Type IV pilus, PilA. Experimental OM was first established in cohorts of animals, and then TCI performed via a therapeutic immunization regime by rubbing vaccine formulations on hydrated pinnae. The kinetics of resolution of established experimental disease was evaluated by clinically-relevant assessments of OM, bacterial culture of planktonic and adherent NTHI within the middle ear and gross examination of the relative amount of NTHI mucosal biofilms within the middle ear space. Within seven days after primary TCI, a significant reduction in the signs of OM, significantly fewer NTHI adherent to the middle ear mucosa and significant resolution of mucosal biofilms was detected in animals that received chimV4+ the adjuvant LT(R192G-L211A), compared to animals administered LT(R192G-L211A) alone or saline by TCI (p<0.05) with eradication of NTHI within an additional seven days. The mechanism for rapid disease resolution involved efflux of activated dermal dendritic cells from the pinnae after TCI, secretion of factors chemotactic for CD4(+) T-cells, induction of polyfunctional IFNγ- and IL-17-producing CD4(+) T-cells and secretion of host defense peptide within the middle ear. These data support TCI as a therapeutic intervention against experimental NTHI-induced OM and begin to elucidate the host response to immunization by this noninvasive regimen.
Collapse
Affiliation(s)
- Laura A Novotny
- The Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis and The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH 43205, United States
| | | | | |
Collapse
|
50
|
The Haemophilus influenzae Sap transporter mediates bacterium-epithelial cell homeostasis. Infect Immun 2012; 81:43-54. [PMID: 23071138 DOI: 10.1128/iai.00942-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is a commensal inhabitant of the human nasopharynx and a causative agent of otitis media and other diseases of the upper and lower human airway. During colonization within the host, NTHI must acquire essential nutrients and evade immune attack. We previously demonstrated that the NTHI Sap transporter, an inner membrane protein complex, mediates resistance to antimicrobial peptides and is required for heme homeostasis. We hypothesized that Sap transporter functions are critical for NTHI interaction with the host epithelium and establishment of colonization. Thus, we cocultured the parent or the sapA mutant on polarized epithelial cells grown at an air-liquid interface, as a physiological model of NTHI colonization, to determine the contribution of the Sap transporter to bacterium-host cell interactions. Although SapA-deficient NTHI was less adherent to epithelial cells, we observed a significant increase in invasive bacteria compared to the parent strain. Upon internalization, the sapA mutant appeared free in the cytoplasm, whereas the parent strain was primarily found in endosomes, indicating differential subcellular trafficking. Additionally, we observed reduced inflammatory cytokine production by the epithelium in response to the sapA mutant strain compared to the parental strain. Furthermore, chinchilla middle ears challenged with the sapA mutant demonstrated a decrease in disease severity compared to ears challenged with the parental strain. Collectively, our data suggest that NTHI senses host environmental cues via Sap transporter function to mediate interaction with host epithelial cells. Epithelial cell invasion and modulation of host inflammatory cytokine responses may promote NTHI colonization and access to essential nutrients.
Collapse
|