1
|
Ghasemi Noghabi P, Shahini N, Salimi Z, Ghorbani S, Bagheri Y, Derakhshanpour F. Elevated serum IL-17 A and CCL20 levels as potential biomarkers in major psychotic disorders: a case-control study. BMC Psychiatry 2024; 24:677. [PMID: 39394574 PMCID: PMC11468266 DOI: 10.1186/s12888-024-06032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/20/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Major psychotic disorders (MPD), including schizophrenia (SCZ) and schizoaffective disorder (SAD), are severe neuropsychiatric conditions with unclear causes. Understanding their pathophysiology is essential for better diagnosis, treatment, and prognosis. Recent research highlights the role of inflammation and the immune system, particularly the Interleukin 17 (IL-17) family, in these disorders. Elevated IL-17 levels have been found in MPD, and human IL-17 A antibodies are available. Changes in chemokine levels, such as CCL20, are also noted in SCZ. This study investigates the relationship between serum levels of IL-17 A and CCL20 in MPD patients and their clinical characteristics. METHOD We conducted a case-control study at the Ibn Sina Psychiatric Hospital (Mashhad, Iran) in 2023. The study involved 101 participants, of which 71 were MPD patients and 30 were healthy controls (HC). The Positive and Negative Symptom Scale (PANSS) was utilized to assess the symptoms of MPD patients. Serum levels of CCL20 and IL-17 A were measured using Enzyme-Linked Immunosorbent Assay (ELISA) kits. We also gathered data on lipid profiles and Fasting Blood Glucose (FBS). RESULTS The mean age of patients was 41.04 ± 9.93 years. The median serum levels of CCL20 and IL-17 A were significantly elevated in MPD patients compared to HC (5.8 (4.1-15.3) pg/mL and 4.2 (3-5) pg/mL, respectively; p < 0.001). Furthermore, CCL20 and IL-17 A levels showed a positive correlation with the severity of MPD. MPD patients also had significantly higher FBS, cholesterol, and Low-Density Lipoprotein (LDL) levels, and lower High-Density Lipoprotein (HDL) levels compared to HC. No significant relationship was found between PANSS components and blood levels of IL17 and CCL20. CONCLUSION The current study revealed that the serum levels of IL-17 A and CCL20 in schizophrenia patients are higher than those in the control group. Metabolic factors such as FBS, cholesterol, HDL, and LDL also showed significant differences between MPD and HC. In conclusion, the findings suggest that these two inflammatory factors could serve as potential therapeutic targets and prognostic biomarkers for schizophrenia.
Collapse
Affiliation(s)
- Parisa Ghasemi Noghabi
- Department of Psychiatry, Faculty of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Najmeh Shahini
- Golestan Research Center of Psychiatry (GRCP), Golestan University of Medical Sciences, Gorgan, Iran
| | - Zanireh Salimi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Ghorbani
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yasser Bagheri
- Clinical Research Development Unit (CRDU), Agh ghala Hospital, Golestan University of Medical Sciences, Gorgan, Iran.
- Immunology department, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Firoozeh Derakhshanpour
- Golestan Research Center of Psychiatry (GRCP), Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
2
|
Qi W, Yu Y, Yang C, Wang X, Jiang Y, Zhang L, Yu Z. Nanospheres as the delivery vehicle: novel application of Toxoplasma gondii ribosomal protein S2 in PLGA and chitosan nanospheres against acute toxoplasmosis. Front Immunol 2024; 15:1475280. [PMID: 39416787 PMCID: PMC11480959 DOI: 10.3389/fimmu.2024.1475280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a zoonotic disease that poses great harm to humans and animals. So far, no effective T. gondii vaccine has been developed to provide fully protection against such parasites. Recently, numerous researches have focused on the use of poly-lactic-co-glycolic acid (PLGA) and chitosan (CS) for the vaccines against T. gondii infections. In this study, we employed PLGA and CS as the vehicles for T. gondii ribosome protein (TgRPS2) delivery. TgRPS2-PLGA and TgRPS2-CS nanospheres were synthesized by double emulsion solvent evaporation and ionic gelation technique as the nano vaccines. Before immunization in animals, the release efficacy and toxicity of the synthesized nanospheres were evaluated in vitro. Then, ICR mice were immunized intramuscularly, and immune protections of the synthesized nanospheres were assessed. The results showed that TgRPS2-PLGA and TgRPS2-CS nanospheres could induce higher levels of IgG and cytokines, activate dendritic cells, and promote the expression of histocompatibility complexes. The splenic lymphocyte proliferation and the enhancement in the proportion of CD4+ and CD8+ T lymphocytes were also observed in immunized animals. In addition, two types of nanospheres could significantly inhabit the replications of T. gondii in cardiac muscles and spleen tissues. All these obtained results in this study demonstrated that the TgRPS2 protein delivered by PLGA or CS nanospheres provided satisfactory immunoprotective effects in resisting T. gondii, and such formulations illustrated potential as prospective preventive agents for toxoplasmosis.
Collapse
Affiliation(s)
- WeiYu Qi
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - YouLi Yu
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Science, Yinchuan, China
| | - ChenChen Yang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - XiaoJuan Wang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - YuChen Jiang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - Li Zhang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - ZhengQing Yu
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Moghaddami R, Mahdipour M, Ahmadpour E. Inflammatory pathways of Toxoplasmagondii infection in pregnancy. Travel Med Infect Dis 2024; 62:102760. [PMID: 39293589 DOI: 10.1016/j.tmaid.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Toxoplasma gondii (T. gondii), an obligate intracellular parasite, is considered as an opportunistic infection and causes toxoplasmosis in humans and animals. Congenital toxoplasmosis can influence pregnancy and cause mild to severe consequences for the fetal and neonatal. During early T. gondii infection, neutrophils as the most abundant white blood cells provide a front line of defense mechanism against infection. The activated dendritic cells are then responsible for initiating an inflammatory response via T-helper 1 (Th1) cells. As part of its robust immune response, the infected host cells produce interferon (IFN-γ). IFN-γ inhibits T. gondii replication and promotes its transformation from an active form to tissue cysts. Although anti- T. gondii antibodies play an important role in infection control, T-helper 2 (Th2) immune response, can facilitate the growth and proliferation of T. gondii in the host cell. In pregnant women infected with T. gondii, the expression of cytokines may vary and in response diverse outcomes are expected. Cytokine profiles serve as valuable indicators for estimating the patho-immunological effects of T. gondii infection. This demonstrates the intricate relationship between pro-inflammatory and anti-inflammatory cytokines, as well as their influence on the various pregnancy outcomes in T. gondii infection.
Collapse
Affiliation(s)
- Reyhaneh Moghaddami
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Fasquelle F, Vreulx AC, Betbeder D. Improved ELISPOT protocol for monitoring Th1/Th17 T-cell response following T.gondii infection. PLoS One 2024; 19:e0301687. [PMID: 38718078 PMCID: PMC11078343 DOI: 10.1371/journal.pone.0301687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/20/2024] [Indexed: 05/12/2024] Open
Abstract
In the monitoring of human Toxoplasma gondii infection, it is crucial to confirm the development of a specific Th1/Th17 immune response memory. The use of a simple, specific, and sensitive assay to follow the T-cell activation is thus required. Current protocols are not always specific as stimulation with peptides is Human Leukocyte Antigen (HLA)-dependent, while stimulation with total-lysis antigens tends to stimulate seronegative donors resulting to false positives. Here, an improved ELISPOT protocol is reported, using peripheral blood mononuclear cells (PBMC) of T.gondii-infected donors, incubated with the inactivated parasite. The results showed that, contrary to standard protocols, a pre-incubation step at high cell density in presence of the inactivated parasite allowed a specific Th1/Th17 response with the secretion of IFN-γ, IL-2, IL-12 and IL-17 cytokines. This protocol allows to evaluate precisely the immune response after a T.gondii infection.
Collapse
|
5
|
Carvalho AM, Costa RS, Lago A, Bacellar O, Beiting DP, Scott P, Carvalho LP, Carvalho EM. In Situ versus Systemic Immune Response in the Pathogenesis of Cutaneous Leishmaniasis. Pathogens 2024; 13:199. [PMID: 38535542 PMCID: PMC10975199 DOI: 10.3390/pathogens13030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 04/01/2024] Open
Abstract
The role of the immune response in the pathogenesis of cutaneous leishmaniasis (CL) due to Leishmania (Viannia) braziliensis is predominantly carried out via blood cells. Here, we evaluate whether cytokine production by peripheral blood mononuclear cells (PBMCs) reflects what has been documented at the lesion site. The participants included 22 CL patients diagnosed with a positive PCR. PBMCs were stimulated for 72 h with a soluble leishmania antigen (SLA). Biopsies obtained from the edge of the ulcers were incubated for the same period. Cytokines in supernatants were assessed via ELISA. TNF, IL-1β, IL-6, IL-17, and granzyme B (GzmB) were higher in the supernatants of biopsies than in PBMCs, but IFN-γ was higher in the supernatants of PBMCs than in biopsies. There was a positive correlation between IFN-γ and TNF in PBMCs, and an inverse correlation between TNF and IL-10 in the cells from the lesion site. A strong correlation between IL-1β, IL-17, and GzmB was observed in the biopsies, and a positive correlation was detected between these cytokines and the lesion size. Our results indicate that the immune response in L. braziliensis lesions is different from that observed in peripheral blood, and our data suggest that in addition to IL-1β and GzmB, IL-17 participates in the pathology of CL.
Collapse
Affiliation(s)
- Augusto M. Carvalho
- Gonçalo Moniz Institute (IGM), Fiocruz, Salvador 40296-710, BA, Brazil; (A.M.C.); (R.S.C.); (L.P.C.)
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador 40110-160, BA, Brazil; (A.L.); (O.B.)
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Ministério da Ciência e Tecnologia e Inovação (MCTI), CNPq, Salvador 40110-160, BA, Brazil
| | - Rúbia S. Costa
- Gonçalo Moniz Institute (IGM), Fiocruz, Salvador 40296-710, BA, Brazil; (A.M.C.); (R.S.C.); (L.P.C.)
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador 40110-160, BA, Brazil; (A.L.); (O.B.)
| | - Alexsandro Lago
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador 40110-160, BA, Brazil; (A.L.); (O.B.)
| | - Olívia Bacellar
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador 40110-160, BA, Brazil; (A.L.); (O.B.)
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Ministério da Ciência e Tecnologia e Inovação (MCTI), CNPq, Salvador 40110-160, BA, Brazil
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA; (D.P.B.); (P.S.)
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA; (D.P.B.); (P.S.)
| | - Lucas P. Carvalho
- Gonçalo Moniz Institute (IGM), Fiocruz, Salvador 40296-710, BA, Brazil; (A.M.C.); (R.S.C.); (L.P.C.)
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador 40110-160, BA, Brazil; (A.L.); (O.B.)
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Ministério da Ciência e Tecnologia e Inovação (MCTI), CNPq, Salvador 40110-160, BA, Brazil
| | - Edgar M. Carvalho
- Gonçalo Moniz Institute (IGM), Fiocruz, Salvador 40296-710, BA, Brazil; (A.M.C.); (R.S.C.); (L.P.C.)
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador 40110-160, BA, Brazil; (A.L.); (O.B.)
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Ministério da Ciência e Tecnologia e Inovação (MCTI), CNPq, Salvador 40110-160, BA, Brazil
| |
Collapse
|
6
|
Khorshidvand Z, Shirian S, Amiri H, Zamani A, Maghsood AH. Immunomodulatory chitosan nanoparticles for Toxoplasma gondii infection: Novel application of chitosan in complex propranolol-hydrochloride as an adjuvant in vaccine delivery. Int J Biol Macromol 2023; 253:127228. [PMID: 37839605 DOI: 10.1016/j.ijbiomac.2023.127228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
The study aimed to investigate the immunomodulatory effects of propranolol hydrochloride (PRO) in combination with chitosan nanoparticles (CS NPs) as an adjuvant to develop an effective vaccine against T. gondii. A total of 105 BALB/c mice were randomly divided into seven equal groups including PBS alone, CS NPs, SAG1 (Surface antigen 1), CS-SAG1 NPs, CS-PRO NPs, SAG1-PRO, and CS-SAG1-PRO NPs. The immunostimulatory effect of each adjuvant used for vaccine delivery was evaluated in a mice immunization model. The results showed that the mice immunized with CS-SAG1-PRO NPs exhibited the highest lymphocyte proliferation rate, along with increased secretion of IFN-γ, TNF-α, IL-6, IL-12, IL-17, and IL-23, as well as elevated levels of protective cytokines such as TGF-β, IL-27, and IL-10. Although, the CS-SAG1-PRO NPs immunized mice showed the highest level of T. gondii specific IgG compared to the other groups, a significant production of IgG2a and IgG1 was observed in the sera of mice immunized with the CS-SAG1-PRO NPs compared to the other group (p <0.001). The higher IgG2a/IgG1 ratio observed in the CS-SAG1-PRO NPs group indicates a bias towards Th1 cell polarization, suggesting the promotion of Th1 cell-mediated immune responses. Considering the combination of the highest lymphocyte proliferation and survival rates, IgG2a/IgG1 ratio, and cytokine levels in the mice immunized with CS-SAG1-PRO NPs, this approach holds promise for immunostimulation and vaccine delivery against T. gondii infection.
Collapse
Affiliation(s)
- Zohreh Khorshidvand
- Department of Parasitology and Mycology, School of Medicine Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran; Shiraz Molecular Pathology Research Center, Dr Daneshbod Lab, Shiraz, Iran
| | - Hanieh Amiri
- Shiraz Molecular Pathology Research Center, Dr Daneshbod Lab, Shiraz, Iran; Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Alireza Zamani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Hossein Maghsood
- Department of Parasitology and Mycology, School of Medicine Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Macedo IS, Lara FA, Barbosa HS, Saraiva EM, Menna-Barreto RFS, Mariante RM. Human neutrophil extracellular traps do not impair in vitro Toxoplasma gondii infection. Front Immunol 2023; 14:1282278. [PMID: 38115994 PMCID: PMC10728484 DOI: 10.3389/fimmu.2023.1282278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Toxoplasma gondii, responsible for causing toxoplasmosis, is a prevalent food and waterborne pathogen worldwide. It commonly infects warm-blooded animals and affects more than a third of the global human population. Once ingested, the parasite enters the host's small intestine and rapidly disseminates throughout the body via the bloodstream, infiltrating various tissues. Leukocyte-driven responses are vital against T. gondii, with neutrophils playing a dual role: swiftly recruited to infection sites, releasing inflammatory mediators, and serving as a replication hub and Trojan horses, aiding parasite spread. Neutrophils from various hosts release extracellular traps (NETs) against the protozoan. However, gaps persist regarding the mechanisms of NETs production to parasite and their significance in infection control. This study investigates the interplay between human neutrophils and T. gondii, exploring dynamics, key molecules, and signaling pathways involved in NETs production upon protozoan challenge. Methods and Results Using confocal and electron microscopy, live cell imaging, pharmacological inhibitors, and DNA quantification assays, we find that human neutrophils promptly release both classical and rapid NETs upon pathogen stimulation. The NETs structure exhibits diverse phenotypes over time and is consistently associated with microorganisms. Mechanisms involve neutrophil elastase and peptidylarginine deiminase, along with intracellular calcium signaling and the PI3K pathway. Unexpectedly, human traps do not diminish viability or infectivity, but potentially aid in capturing parasites for subsequent neutrophil phagocytosis and elimination. Discussion By revealing NETs formation mechanisms and their nuanced impact on T. gondii infection dynamics, our findings contribute to broader insights into host-pathogen relationships.
Collapse
Affiliation(s)
- Isabela S. Macedo
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Flávio A. Lara
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Helene S. Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Elvira M. Saraiva
- Laboratório de Imunobiologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rafael M. Mariante
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Hassouna SS, Allam EA, Sheta E, Khodear GAM, Khedr MI, Khedr SI, Gomaa MM. Vaccination with Toxoplasma lysate antigen or its encapsulated niosomes form immunomodulates adjuvant-induced arthritis through JAK3 downregulation. Inflammopharmacology 2023; 31:3101-3114. [PMID: 37389660 PMCID: PMC10692027 DOI: 10.1007/s10787-023-01267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Inflammatory autoimmune arthritis like that present in rheumatoid arthritis (RA) is treated by medications with many side effects. This study was a trial to benefit from Toxoplasma immune-modulatory effects on its host to treat arthritis in rat model resembling joints affection of RA. To avoid hazards of infection, Toxoplasma lysate antigen (TLA) was given instead of the whole infection, in addition to giving its encapsulated niosomes form, assuming that it would enhance the effect of TLA alone, to compare effects of both on disease activity with that of prednisolone. METHODS Swiss albino rats were divided into 6 groups: normal control group and the remaining 5 groups were injected by CFA adjuvant to induce arthritis; one of those groups was the untreated model. Each of the other groups received one of the following (TLA, TLA-encapsulated niosomes, prednisolone or niosomes) for comparison of their results. Inflammatory markers measured at the end of the experiment were: interleukin 17 (IL-17), IL-10 and CRP by ELISA technique; histopathological assessment of the biopsied hind paw joints was done and also, Janus kinase 3 (JAK3) expression was assessed by immunohistochemistry. RESULTS TLA and TLA-encapsulated niosomes both mitigated the signs of clinical and histopathological arthritis and were having anti-inflammatory effects (decreased CRP, IL-17 and JAK3 expressions, while increased IL-10 levels) with better effects in TLA-encapsulated niosomes-treated RA group, both groups' results were comparable to prednisolone. Niosomes also gave some anti-inflammatory effects but were mild in comparison to TLA and TLA-encapsulated niosomes. CONCLUSION Vaccination with both TLA and TLA-encapsulated niosomes for the first time in adjuvant-induced arthritis ameliorated the disease through diversion of immune system and JAK3 downregulation. Both vaccinations should be further tested to evaluate the possibility of their introduction for disease treatment and in other autoimmune diseases.
Collapse
Affiliation(s)
- Sally S Hassouna
- Internal Medicine Department, Rheumatology and Immunology Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Eman A Allam
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Gehan A M Khodear
- Medical Technology Center, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Marwa I Khedr
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Safaa I Khedr
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maha M Gomaa
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
El Saftawy EA, Turkistani SA, Alghabban HM, Albadawi EA, Ibrahim BEA, Morsy S, Farag MF, Al Hariry NS, Shash RY, Elkazaz A, Amin NM. Effects of Lactobacilli acidophilus and/or spiramycin as an adjunct in toxoplasmosis infection challenged with diabetes. Food Waterborne Parasitol 2023; 32:e00201. [PMID: 37719029 PMCID: PMC10504688 DOI: 10.1016/j.fawpar.2023.e00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 09/19/2023] Open
Abstract
The current study assessed the anti-parasitic impact of probiotics on Toxoplasma gondii infection either solely or challenged with diabetes in Swiss albino mice. The study design encompassed group-A (diabetic), group-B (non-diabetic), and healthy controls (C). Each group was divided into infected-untreated (subgroup-1); infected and spiramycin-treated (subgroup-2); infected and probiotic-treated (subgroup-3); infected and spiramycin+ probiotic-treated (subgroup-4). Diabetic-untreated animals exhibited acute toxoplasmosis and higher cerebral parasite load. Overall, various treatments reduced intestinal pathology, improved body weight, and decreased mortalities; nevertheless, probiotic + spiramycin exhibited significant differences. On day 7 post-infection both PD-1 and IL-17A demonstrated higher scores in the intestine of diabetic-untreated mice compared with non-diabetics and healthy control; whereas, claudin-1 revealed worsening expression. Likewise, on day 104 post-infection cerebral PD-1 and IL-17A showed increased expressions in diabetic animals. Overall, treatment modalities revealed lower scores of PD-1 and IL-17A in non-diabetic subgroups compared with diabetics. Intestinal and cerebral expressions of IL-17A and PD-1 demonstrated positive correlations with cerebral parasite load. In conclusion, toxoplasmosis when challenged with diabetes showed massive pathological features and higher parasite load in the cerebral tissues. Probiotics are a promising adjunct to spiramycin by ameliorating IL-17A and PD-1 in the intestinal and cerebral tissues, improving the intestinal expression of claudin-1, and efficiently reducing the cerebral parasite load.
Collapse
Affiliation(s)
- Enas A. El Saftawy
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Parasitology Department, Faculty of Medicine, Armed Forces College of Medicine, Cairo, Egypt
| | | | - Hadel M. Alghabban
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Saudi Arabia
| | - Emad A. Albadawi
- Department of Anatomy, College of Medicine, Taibah University, Saudi Arabia
| | - Basma EA Ibrahim
- Physiological Sciences Department, Fakeeh College for Medical Sciences, Saudi Arabia
- Faculty of Medicine, Cairo University, Egypt
| | - Suzan Morsy
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Saudi Arabia
- Department of Clinical Pharmacology, Alexandria, Egypt
| | - Mohamed F. Farag
- Medical Physiology Department, Armed Forces College of Medicine, Cairo, Egypt
| | | | - Rania Y. Shash
- Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aly Elkazaz
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha M. Amin
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Sun L, Wang L, Moore BB, Zhang S, Xiao P, Decker AM, Wang HL. IL-17: Balancing Protective Immunity and Pathogenesis. J Immunol Res 2023; 2023:3360310. [PMID: 37600066 PMCID: PMC10439834 DOI: 10.1155/2023/3360310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The biological role of interleukin 17 (IL-17) has been explored during recent decades and identified as a pivotal player in coordinating innate and adaptive immune responses. Notably, IL-17 functions as a double-edged sword with both destructive and protective immunological roles. While substantial progress has implicated unrestrained IL-17 in a variety of infectious diseases or autoimmune conditions, IL-17 plays an important role in protecting the host against pathogens and maintaining physiological homeostasis. In this review, we describe canonical IL-17 signaling mechanisms promoting neutrophils recruitment, antimicrobial peptide production, and maintaining the epithelium barrier integrity, as well as some noncanonical mechanisms involving IL-17 that elicit protective immunity.
Collapse
Affiliation(s)
- Lu Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Lufei Wang
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill School of Dentistry, Chapel Hill, NC, USA
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Shaoping Zhang
- Department of Periodontics, University of Iowa College of Dentistry, Iowa, IA, USA
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Immunological Disease Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ann M. Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Vilela Dos Santos P, de Toledo DNM, Guimarães NS, Perucci LO, de Andrade-Neto VF, Talvani A. Upregulation of IL-33, CCL2, and CXCL16 levels in Brazilian pregnant women infected by Toxoplasma gondii. Acta Trop 2023; 243:106931. [PMID: 37086937 DOI: 10.1016/j.actatropica.2023.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
Congenital toxoplasmosis can cause neurological and eye damage, behavioral alterations, or death in fetuses or babies born to Toxoplasma gondii-infected women. Several pieces of evidence suggest that socioeconomic, environmental, and inflammatory patterns linked to the maternal immune response partly drive the pathogenesis of this disease. However, immunoregulation induced by T. gondii infection during gestation is not completely understood. The aim of this study was to assess the association between T. gondii seropositivity and concentrations of plasma markers (CCL2, CXCL16, IL-17, and IL-33) in Brazilian pregnant women. Inflammatory markers were measured by immunoassays in the plasma of 131 pregnant women (13 to 46 years old). The prevalence of T. gondii infections was 45.8% (n = 60) in this population. The concentrations of CCL2, CXCL16, and IL-33 were higher in T. gondii-seropositive than in seronegative pregnant women, while the opposite was observed for IL-17 levels. In IgG+ women, a strong correlation between IL-17 and IL-33 (r = 0.7508, p = 0.0001) and a moderate correlation between CXCL16/IL-17 (r = 0.7319, p = 0.0001) and CXCL16/CCL2 (r = 0.3519, p = 0.0098) was observed. In uninfected women, a strong correlation was found between IL-17 and CXCL16 (r = 0.6779, p = 0.0001) but moderate between IL-17 and IL-33 (r = 0.4820, p = 0.0001). In summary, our data suggest that plasma upregulation of CCL2, CXCL16, and IL-33 might exert a potential protective role in the mother/fetus/parasite axis and, in addition, multiparous women are more likely to be infected with T. gondii than primiparous women.
Collapse
Affiliation(s)
- Priscilla Vilela Dos Santos
- Immunobiology Laboratory of Inflammation, Department of Biological Sciences/ ICEB, Federal University Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Health and Nutrition, Federal University Ouro Preto, Ouro Preto, MG, Brazil
| | - Débora Nonato Miranda de Toledo
- Immunobiology Laboratory of Inflammation, Department of Biological Sciences/ ICEB, Federal University Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Health and Nutrition, Federal University Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Luiza Oliveira Perucci
- Immunobiology Laboratory of Inflammation, Department of Biological Sciences/ ICEB, Federal University Ouro Preto, Ouro Preto, MG, Brazil
| | - Valter Ferreira de Andrade-Neto
- Laboratory of Malaria Biology and Toxoplasmosis, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - André Talvani
- Immunobiology Laboratory of Inflammation, Department of Biological Sciences/ ICEB, Federal University Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Health and Nutrition, Federal University Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Health Sciences, Infectology and Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
12
|
Brito C, Lourenço C, Magalhães J, Reis S, Borges M. Nanoparticles as a Delivery System of Antigens for the Development of an Effective Vaccine against Toxoplasma gondii. Vaccines (Basel) 2023; 11:vaccines11040733. [PMID: 37112645 PMCID: PMC10142924 DOI: 10.3390/vaccines11040733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Nanoparticles include particles ranging in size from nanometers to micrometers, whose physicochemical characteristics are optimized to make them appropriate delivery vehicles for drugs or immunogens important in the fight and/or prevention of infectious diseases. There has been a rise in the use of nanoparticles in preventive vaccine formulations as immunostimulatory adjuvants, and as vehicles for immunogen delivery to target immune cells. Toxoplasma is important worldwide, and may cause human toxoplasmosis. In immunocompetent hosts, infection is usually asymptomatic, but in immunocompromised patients it can cause serious neurological and ocular consequences, such as encephalitis and retinochoroiditis. Primary infection during pregnancy may cause abortion or congenital toxoplasmosis. Currently, there is no effective human vaccine against this disease. Evidence has emerged from several experimental studies testing nanovaccines showing them to be promising tools in the prevention of experimental toxoplasmosis. For the present study, a literature review was carried out on articles published over the last 10 years through the PubMed database, pertaining to in vivo experimental models of T. gondii infection where nanovaccines were tested and protection and immune responses evaluated. This review aims to highlight the way forward in the search for an effective vaccine for toxoplasmosis.
Collapse
|
13
|
Ferreira PTM, Oliveira-Scussel ACM, Sousa RAP, Gomes BQ, Félix JE, Silva RJ, Millian IB, Assunção TSF, Teixeira SC, Gomes MDLM, Silva MV, Barbosa BF, Rodrigues Junior V, Mineo JR, Oliveira CJF, Ferro EAV, Gomes AO. Macrophage Migration Inhibitory Factor contributes to drive phenotypic and functional macrophages activation in response to Toxoplasma gondii infection. Immunobiology 2023; 228:152357. [PMID: 36857907 DOI: 10.1016/j.imbio.2023.152357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Cytokines are small molecules secreted by numerous cells. Macrophage Migration Inhibitory Factor (MIF) is a cytokine initially described due to its function of inhibiting random macrophage migration. Currently, new functions have been described for MIF, such as stimulating inflammatory functions in response to infections by microorganisms including, Toxoplasma gondii. However, the primordial MIF function related to macrophages has been little addressed. The main purpose of the study was to recapitulate MIF function on macrophages in response to T. gondii infection. To achieve this goal, peritoneal macrophages were collected from C57BL/6WT and Mif1-/- mice after recruitment with thioglycolate. Macrophages were cultured, treated with 4-Iodo-6-phenylpyrimidine (4-IPP), and infected or not by T. gondii for 24 h. Following this, the culture supernatant was collected for cytokine, urea and nitrite analysis. In addition, macrophages were evaluated for phagocytic activity and T. gondii proliferation rates. Results demonstrated that T. gondii infection triggered an increase in MIF production in the WT group as well as an increase in the secretion of IL-10, TNF, IFN-γ, IL-6 and IL-17 in the WT and Mif1-/- macrophages. Regarding the comparison between groups, it was detected that Mif1-/- macrophages secreted more IL-10 compared to WT. On the other hand, the WT macrophages produced greater amounts of TNF, IFN-γ, IL-6 and IL-17. Urea production was more pronounced in Mif1-/- macrophages while nitrite production was higher in WT macrophages. T. gondii showed a greater ability to proliferate in Mif1-/- macrophages and these cells also presented enhanced phagocytic activity. In conclusion, T. gondii infection induces macrophage activation inciting cytokine production. In presence of MIF, T. gondii infected macrophages produce pro-inflammatory cytokines compatible with the M1 activation profile. MIF absence caused a dramatic reduction in pro-inflammatory cytokines that are balanced by increased levels of urea and anti-inflammatory cytokines. These macrophages presented increased phagocytic capacity and shared features activation with the M2 profile.
Collapse
Affiliation(s)
- Paula Tatiane Mutão Ferreira
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Roberto Augusto Pereira Sousa
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Beatriz Quaresemin Gomes
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Jhennifer Estevão Félix
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Rafaela José Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Iliana Balga Millian
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Thais Soares Farnesi Assunção
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcos de Lucca Moreira Gomes
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius Silva
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Bellisa Freitas Barbosa
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - José Roberto Mineo
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Carlo José Freire Oliveira
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Angelica Oliveira Gomes
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Zhou Y, Xiang C, Wang N, Zhang X, Xie Y, Yang H, Guo G, Liu K, Li Y, Shi Y. Acinetobacter baumannii reinforces the pathogenesis by promoting IL-17 production in a mouse pneumonia model. Med Microbiol Immunol 2023; 212:65-73. [PMID: 36463365 DOI: 10.1007/s00430-022-00757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Interleukin-17 (IL-17) is involved in host defense against bacterial infection. Little is known about the role of IL-17 in A. baumannii-infected pneumonia. Our objective was to investigate the role of IL-17 in pulmonary A. baumannii infection in a mouse model. We infected C57BL/6 mice intra-tracheally (i.t.) with A. baumannii to establish pneumonia model and found A. baumannii infection elevated IL-17 expression in lungs. IL-17-deficient (Il17-/-) mice were resistant to pulmonary A. baumannii infection, showing improved mice survival, reduced bacteria burdens, and alleviated lung inflammation. Further, treatment of A. baumannii-infected Il17-/- mice with IL-17 exacerbated the severity of pneumonia. These data suggest a pathogenic role of IL-17 in pulmonary A. baumannii infection. Further, the infiltration and phagocytic function of neutrophils in broncho-alveolar lavage fluid were detected by flow cytometry. The results showed that Il17-/- mice had increased neutrophil infiltration and enhanced phagocytosis in neutrophils at the early time of infection. Treatment of mice with IL-17 suppressed phagocytic function of neutrophils. All data suggest that IL-17 promotes susceptibility of mice to pulmonary A. baumannii infection by suppressing neutrophil phagocytosis at early time of infection. Targeting IL-17 might be a potential therapeutic strategy in controlling the outcome of A. baumannii pneumonia.
Collapse
Affiliation(s)
- Yangyang Zhou
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuanying Xiang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaomin Zhang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Xie
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Yang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Gang Guo
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kaiyun Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Li
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
15
|
Aida M, Yamada R, Matsuo T, Taniguchi I, Nakamura SI, Tsukahara T. Dietary Weizmannia coagulans Strain SANK70258 Ameliorates Coccidial Symptoms and Improves Intestinal Barrier Functions of Broilers by Modulating the Intestinal Immunity and the Gut Microbiota. Pathogens 2023; 12:96. [PMID: 36678444 PMCID: PMC9864622 DOI: 10.3390/pathogens12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
To determine the mechanisms by which Weizmannia coagulans SANK70258 (WC) supplementation improved growth performance and coccidial symptoms, we assessed the gene expressions and the microbiota compositions in the small intestinal tissues and digestas of coccidium-infected broilers previously given WC or lasalocid-A sodium (AM). WC supplementation significantly upregulated the gene expressions related to intestinal immunity and barrier functions, such as IL17A, IL17F, IL10, cathelicidin-2 and pIgR. Body weights, and Claudin-1 and IL10 expressions were positively correlated (r = 0.41, p < 0.05 and r = 0.37, p = 0.06, respectively), whereas lesion scores of the small intestine and IL17A expression were negatively correlated (r = −0.33, p = 0.09). The microbiota analysis detected that genus Alistipes was more abundant in WC-supplemented broilers than in control, and positively correlated with body weights and Claudin-1 expression (r = 0.61, p < 0.05 and r = 0.51, p < 0.05, respectively). Intriguingly, genus Enterococcus was most abundant in WC-supplemented broilers and positively correlated with IL17A expression (r = 0.49, p < 0.05). Interestingly, Escherichia-Shigella was significantly more abundant in the small intestinal digestas of AM-administered broilers than in those of control. To summarize, WC supplementation modulated and immunostimulated the microbiotas of broilers, specifically genera Alistipes and Enterococcus, which led to the improvement of weight gain and coccidial symptoms, without disrupting the intestinal microbiota compositions, as AM did.
Collapse
Affiliation(s)
- Masanori Aida
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama 227-8502, Kanagawa, Japan
| | - Ryouichi Yamada
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama 227-8502, Kanagawa, Japan
| | | | | | - Shin-ichi Nakamura
- Kyoto Institute of Nutrition & Pathology, Ujitawara 610-0231, Kyoto, Japan
| | | |
Collapse
|
16
|
Abstract
IL-17 cytokine family members have diverse biological functions, promoting protective immunity against many pathogens but also driving inflammatory pathology during infection and autoimmunity. IL-17A and IL-17F are produced by CD4+ and CD8+ T cells, γδ T cells, and various innate immune cell populations in response to IL-1β and IL-23, and they mediate protective immunity against fungi and bacteria by promoting neutrophil recruitment, antimicrobial peptide production and enhanced barrier function. IL-17-driven inflammation is normally controlled by regulatory T cells and the anti-inflammatory cytokines IL-10, TGFβ and IL-35. However, if dysregulated, IL-17 responses can promote immunopathology in the context of infection or autoimmunity. Moreover, IL-17 has been implicated in the pathogenesis of many other disorders with an inflammatory basis, including cardiovascular and neurological diseases. Consequently, the IL-17 pathway is now a key drug target in many autoimmune and chronic inflammatory disorders; therapeutic monoclonal antibodies targeting IL-17A, both IL-17A and IL-17F, the IL-17 receptor, or IL-23 are highly effective in some of these diseases. However, new approaches are needed to specifically regulate IL-17-mediated immunopathology in chronic inflammation and autoimmunity without compromising protective immunity to infection.
Collapse
Affiliation(s)
- Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
17
|
Zou Y, Meng JX, Wei XY, Gu XY, Chen C, Geng HL, Yang LH, Zhang XX, Cao HW. CircRNA and miRNA expression analysis in livers of mice with Toxoplasma gondii infection. Front Cell Infect Microbiol 2022; 12:1037586. [PMID: 36389171 PMCID: PMC9646959 DOI: 10.3389/fcimb.2022.1037586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022] Open
Abstract
Toxoplasmosis is an important zoonotic parasitic disease caused by Toxoplasma gondii (T. gondii). However, the functions of circRNAs and miRNAs in response to T. gondii infection in the livers of mice at acute and chronic stages remain unknown. Here, high-throughput RNA sequencing was performed for detecting the expression of circRNAs and miRNAs in livers of mice infected with 20 T. gondii cysts at the acute and chronic stages, in order to understand the potential molecular mechanisms underlying hepatic toxoplasmosis. Overall, 265 and 97 differentially expressed (DE) circRNAs were found in livers at the acute and chronic infection stages in comparison with controls, respectively. In addition, 171 and 77 DEmiRNAs were found in livers at the acute and chronic infection stages, respectively. Functional annotation showed that some immunity-related Gene ontology terms, such as “positive regulation of cytokine production”, “regulation of T cell activation”, and “immune receptor activity”, were enriched at the two infection stages. Moreover, the pathways “Valine, leucine, and isoleucine degradation”, “Fatty acid metabolism”, and “Glycine, serine, and threonine metabolism” were involved in liver disease. Remarkably, DEcircRNA 6:124519352|124575359 was significantly correlated with DEmiRNAs mmu-miR-146a-5p and mmu-miR-150-5p in the network that was associated with liver immunity and pathogenesis of disease. This study revealed that the expression profiling of circRNAs in the livers was changed after T. gondii infection, and improved our understanding of the transcriptomic landscape of hepatic toxoplasmosis in mice.
Collapse
Affiliation(s)
- Yang Zou
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
- College of Life Sciences, Changchun Sci-Tech University, Changchun, China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xin-Yu Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiao-Yi Gu
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Chao Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hong-Li Geng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Li-Hua Yang
- College of Life Sciences, Changchun Sci-Tech University, Changchun, China
- *Correspondence: Li-Hua Yang, ; Xiao-Xuan Zhang, ; Hong-Wei Cao,
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Li-Hua Yang, ; Xiao-Xuan Zhang, ; Hong-Wei Cao,
| | - Hong-Wei Cao
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
- *Correspondence: Li-Hua Yang, ; Xiao-Xuan Zhang, ; Hong-Wei Cao,
| |
Collapse
|
18
|
Falk-Mahapatra R, Gollnick SO. Photodynamic Therapy-Induced Cyclooxygenase 2 Expression in Tumor-Draining Lymph Nodes Regulates B-Cell Expression of Interleukin 17 and Neutrophil Infiltration. Photochem Photobiol 2022; 98:1207-1214. [PMID: 35103990 PMCID: PMC9484206 DOI: 10.1111/php.13601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 11/27/2022]
Abstract
Photodynamic therapy (PDT) is an effective anticancer modality approved by the U.S. Food and Drug Administration (FDA). Antitumor immunity can be augmented during PDT by inducing sterile inflammation in an acute manner, and this process is characterized by interleukin 17 (IL-17)-mediated neutrophil infiltration to tumor-draining lymph nodes (TDLNs). However, the inflammatory factors that influence IL-17 expression in TDLNs are poorly understood. Prior studies have linked the cyclooxygenase 2 (COX2)-driven prostaglandin E2 (PGE2) pathway to IL-17 expression. Here, we report that an immune-activating PDT regimen (imPDT) induces COX2/PGE2 expression in TDLNs, whereby IL-17 expression is facilitated without corresponding effects on the expression of RORγt, the transcriptional driver of the canonical IL-17 pathway. Pharmacologic inhibition with NS398, a COX2 inhibitor, was utilized to demonstrate that imPDT-induced COX2 regulates RORγt-independent expression of IL-17 by B cells and neutrophil entry into TDLNs. Depletion of B cells prior to imPDT significantly reduced neutrophil entry into TDLNs following treatment, and diminishes the efficacy of imPDT, which is dependent upon antitumor immunity. These findings are suggestive of a novel role for B cells in the augmentation of antitumor immunity by imPDT.
Collapse
Affiliation(s)
- Riddhi Falk-Mahapatra
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA
| | - Sandra O. Gollnick
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA,Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA,Corresponding author: (Sandra O. Gollnick)
| |
Collapse
|
19
|
Mantilla Valdivieso EF, Ross EM, Raza A, Naseem MN, Kamran M, Hayes BJ, Jonsson NN, James P, Tabor AE. Transcriptional changes in the peripheral blood leukocytes from Brangus cattle before and after tick challenge with Rhipicephalus australis. BMC Genomics 2022; 23:454. [PMID: 35725367 PMCID: PMC9208207 DOI: 10.1186/s12864-022-08686-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Background Disease emergence and production loss caused by cattle tick infestations have focused attention on genetic selection strategies to breed beef cattle with increased tick resistance. However, the mechanisms behind host responses to tick infestation have not been fully characterised. Hence, this study examined gene expression profiles of peripheral blood leukocytes from tick-naive Brangus steers (Bos taurus x Bos indicus) at 0, 3, and 12 weeks following artificial tick challenge experiments with Rhipicephalus australis larvae. The aim of the study was to investigate the effect of tick infestation on host leukocyte response to explore genes associated with the expression of high and low host resistance to ticks. Results Animals with high (HR, n = 5) and low (LR, n = 5) host resistance were identified after repeated tick challenge. A total of 3644 unique differentially expressed genes (FDR < 0.05) were identified in the comparison of tick-exposed (both HR and LR) and tick-naive steers for the 3-week and 12-week infestation period. Enrichment analyses showed genes were involved in leukocyte chemotaxis, coagulation, and inflammatory response. The IL-17 signalling, and cytokine-cytokine interactions pathways appeared to be relevant in protection and immunopathology to tick challenge. Comparison of HR and LR phenotypes at timepoints of weeks 0, 3, and 12 showed there were 69, 8, and 4 differentially expressed genes, respectively. Most of these genes were related to immune, tissue remodelling, and angiogenesis functions, suggesting this is relevant in the development of resistance or susceptibility to tick challenge. Conclusions This study showed the effect of tick infestation on Brangus cattle with variable phenotypes of host resistance to R. australis ticks. Steers responded to infestation by expressing leukocyte genes related to chemotaxis, cytokine secretion, and inflammatory response. The altered expression of genes from the bovine MHC complex in highly resistant animals at pre- and post- infestation stages also supports the relevance of this genomic region for disease resilience. Overall, this study offers a resource of leukocyte gene expression data on matched tick-naive and tick-infested steers relevant for the improvement of tick resistance in composite cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08686-3.
Collapse
Affiliation(s)
- Emily F Mantilla Valdivieso
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia.
| | - Elizabeth M Ross
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ali Raza
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Muhammad Noman Naseem
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Muhammad Kamran
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ben J Hayes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Nicholas N Jonsson
- University of Glasgow, Institute of Biodiversity Animal Health and Comparative Medicine, Glasgow, G61 1QH, UK.
| | - Peter James
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ala E Tabor
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia. .,The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
20
|
Correia A, Alves P, Fróis-Martins R, Teixeira L, Vilanova M. Protective Effect against Neosporosis Induced by Intranasal Immunization with Neospora caninum Membrane Antigens Plus Carbomer-Based Adjuvant. Vaccines (Basel) 2022; 10:vaccines10060925. [PMID: 35746533 PMCID: PMC9230871 DOI: 10.3390/vaccines10060925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Neospora caninum is an obligate intracellular protozoan responsible for abortion and stillbirths in cattle. We previously developed a mucosal vaccination approach using N. caninum membrane proteins and CpG adjuvant that conferred long-term protection against neosporosis in mice. Here, we have extended this approach by alternatively using the carbomer-based adjuvant Carbigen™ in the immunizing preparation. Immunized mice presented higher proportions and numbers of memory CD4+ and CD8+ T cells. Stimulation of spleen, lungs and liver leukocytes with parasite antigens induced a marked production of IFN-γ and IL-17A and, less markedly, IL-4. This balanced response was also evident in that both parasite-specific IgG1 and IgG2c were raised by immunization, together with specific intestinal IgA. Upon intraperitoneal infection with N. caninum, immunized mice presented lower parasitic burdens than sham-immunized controls. In the infected immunized mice, memory CD4+ T cells predominantly expressed T-bet and RORγt, and CD8+ T cells expressing T-bet were found increased. While spleen, lungs and liver leukocytes of both immunized and sham-immunized infected animals produced high amounts of IFN-γ, only the cells from immunized mice responded with high IL-17A production. Since in cattle both IFN-γ and IL-17A have been associated with protective mechanisms against N. caninum infection, the elicited cytokine profile obtained using CarbigenTM as adjuvant indicates that it could be worth exploring for bovine neosporosis vaccination.
Collapse
Affiliation(s)
- Alexandra Correia
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (A.C.); (P.A.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Pedro Alves
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (A.C.); (P.A.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland;
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Luzia Teixeira
- UMIB—Unidade Multidisciplinar de Investigação Biomédica, ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal;
- ITR—Laboratory for Integrative and Translational Research in Population Health, 4050-290 Porto, Portugal
| | - Manuel Vilanova
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (A.C.); (P.A.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
21
|
Quach SS, Zhu A, Lee RSB, Seymour GJ. Immunomodulation—What to Modulate and Why? Potential Immune Targets. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.883342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite over 50 years of research into the immunology of periodontal disease, the precise mechanisms and the role of many cell types remains an enigma. Progress has been limited by the inability to determine disease activity clinically. Understanding the immunopathogenesis of periodontal disease however is fundamental if immunomodulation is to be used as a therapeutic strategy. It is important for the clinician to understand what could be modulated and why. In this context, potential targets include different immune cell populations and their subsets, as well as various cytokines. The aim of this review is to examine the role of the principal immune cell populations and their cytokines in the pathogenesis of periodontal disease and their potential as possible therapeutic targets.
Collapse
|
22
|
Barakat AM, El Fadaly HAM, Selem RF, Madboli AENA, Abd El-Razik KA, Hassan EA, Alghamdi AH, Elmahallawy EK. Tamoxifen Increased Parasite Burden and Induced a Series of Histopathological and Immunohistochemical Changes During Chronic Toxoplasmosis in Experimentally Infected Mice. Front Microbiol 2022; 13:902855. [PMID: 35707167 PMCID: PMC9189418 DOI: 10.3389/fmicb.2022.902855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The global distribution of breast cancer and the opportunistic nature of the parasite have resulted in many patients with breast cancer becoming infected with toxoplasmosis. However, very limited information is available about the potential effects of tamoxifen on chronic toxoplasmosis and its contribution to the reactivation of the latent infection. The present study investigated the potential effects of tamoxifen on chronic toxoplasmosis in animal models (Swiss albino mice). Following induction of chronic toxoplasmosis and treatment with the drug for 14 and 28 days, the anti-parasitic effects of tamoxifen were evaluated by parasitological assessment and counting of Toxoplasma cysts. In addition, the effects of the drug on the parasite load were evaluated and quantitated using TaqMan real-time quantitative PCR followed by investigation of the major histopathological changes and immunohistochemical findings. Interestingly, tamoxifen increased the parasite burden on animals treated with the drug during 14 and 28 days as compared with the control group. The quantification of the DNA concentrations of Toxoplasma P29 gene after the treatment with the drug revealed a higher parasite load in both treated groups vs. control groups. Furthermore, treatment with tamoxifen induced a series of histopathological and immunohistochemical changes in the kidney, liver, brain, and uterus, revealing the exacerbating effect of tamoxifen against chronic toxoplasmosis. These changes were represented by the presence of multiple T. gondii tissue cysts in the lumen of proximal convoluted tubules associated with complete necrosis in their lining epithelium of the kidney section. Meanwhile, liver tissue revealed multiple T. gondii tissue cysts in hepatic parenchyma which altered the structure of hepatocytes. Moreover, clusters of intracellular tachyzoites were observed in the lining epithelium of endometrium associated with severe endometrial necrosis and appeared as diffuse nuclear pyknosis combined with sever mononuclear cellular infiltration. Brain tissues experienced the presence of hemorrhages in pia mater and multiple T. gondii tissue cysts in brain tissue. The severity of the lesions was maximized by increasing the duration of treatment. Collectively, the study concluded novel findings in relation to the potential role of tamoxifen during chronic toxoplasmosis. These findings are very important for combating the disease, particularly in immunocompromised patients which could be life-threatening.
Collapse
Affiliation(s)
- Ashraf Mohamed Barakat
- Department of Zoonotic Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt
- *Correspondence: Ashraf Mohamed Barakat,
| | | | - Rabab Fawzy Selem
- Department of Parasitology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Abd El-Nasser A. Madboli
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Khaled A. Abd El-Razik
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Ehssan Ahmed Hassan
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Ali H. Alghamdi
- Department of Biology, Faculty of Science, Albaha University, Alaqiq, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
- Ehab Kotb Elmahallawy,
| |
Collapse
|
23
|
Hakimi MA. Epigenetic Reprogramming in Host-Parasite Coevolution: The Toxoplasma Paradigm. Annu Rev Microbiol 2022; 76:135-155. [PMID: 35587934 DOI: 10.1146/annurev-micro-041320-011520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Like many intracellular pathogens, the protozoan parasite Toxoplasma gondii has evolved sophisticated mechanisms to promote its transmission and persistence in a variety of hosts by injecting effector proteins that manipulate many processes in the cells it invades. Specifically, the parasite diverts host epigenetic modulators and modifiers from their native functions to rewire host gene expression to counteract the innate immune response and to limit its strength. The arms race between the parasite and its hosts has led to accelerated adaptive evolution of effector proteins and the unconventional secretion routes they use. This review provides an up-to-date overview of how T. gondii effectors, through the evolution of intrinsically disordered domains, the formation of supramolecular complexes, and the use of molecular mimicry, target host transcription factors that act as coordinating nodes, as well as chromatin-modifying enzymes, to control the fate of infected cells and ultimately the outcome of infection. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France;
| |
Collapse
|
24
|
Humayun M, Ayuso JM, Park KY, Martorelli Di Genova B, Skala MC, Kerr SC, Knoll LJ, Beebe DJ. Innate immune cell response to host-parasite interaction in a human intestinal tissue microphysiological system. SCIENCE ADVANCES 2022; 8:eabm8012. [PMID: 35544643 PMCID: PMC9075809 DOI: 10.1126/sciadv.abm8012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/23/2022] [Indexed: 05/03/2023]
Abstract
Protozoan parasites that infect humans are widespread and lead to varied clinical manifestations, including life-threatening illnesses in immunocompromised individuals. Animal models have provided insight into innate immunity against parasitic infections; however, species-specific differences and complexity of innate immune responses make translation to humans challenging. Thus, there is a need for in vitro systems that can elucidate mechanisms of immune control and parasite dissemination. We have developed a human microphysiological system of intestinal tissue to evaluate parasite-immune-specific interactions during infection, which integrates primary intestinal epithelial cells and immune cells to investigate the role of innate immune cells during epithelial infection by the protozoan parasite, Toxoplasma gondii, which affects billions of people worldwide. Our data indicate that epithelial infection by parasites stimulates a broad range of effector functions in neutrophils and natural killer cell-mediated cytokine production that play immunomodulatory roles, demonstrating the potential of our system for advancing the study of human-parasite interactions.
Collapse
Affiliation(s)
- Mouhita Humayun
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Jose M. Ayuso
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| | - Keon Young Park
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Sheena C. Kerr
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura J. Knoll
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
25
|
Yu Z, He K, Cao W, Aleem MT, Yan R, Xu L, Song X, Li X. Nano vaccines for T. gondii Ribosomal P2 Protein With Nanomaterials as a Promising DNA Vaccine Against Toxoplasmosis. Front Immunol 2022; 13:839489. [PMID: 35265084 PMCID: PMC8899214 DOI: 10.3389/fimmu.2022.839489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Caused by Toxoplasma gondii, toxoplasmosis has aroused great threats to public health around the world. So far, no effective vaccine or drug is commercially available, and the demands for a safe and effective therapeutic strategy have become more and more urgent. In the current study, we constructed a DNA vaccine encoding T. gondii ribosomal P2 protein (TgP2) and denoted as TgP2-pVAX1 plasmid. To improve the immunoprotection, nanomaterial poly-lactic-co-glycolic acid (PLGA) and chitosan were used as the delivery vehicle to construct TgP2-pVAX1/PLGA and TgP2-pVAX1/CS nanospheres. Before vaccinations in BALB/c mice, TgP2-pVAX1 plasmids were transiently transfected into Human Embryonic Kidney (HEK) 293-T cells, and the expression of the eukaryotic plasmids was detected by laser confocal microscopy and Western blotting. Then the immunoprotection of naked DNA plasmids and their two nano-encapsulations were evaluated in the laboratory animal model. According to the investigations of antibody, cytokine, dendritic cell (DC) maturation, molecule expression, splenocyte proliferation, and T lymphocyte proportion, TgP2-pVAX1 plasmid delivered by two types of nanospheres could elicit a mixed Th1/Th2 immune response and Th1 immunity as the dominant. In addition, TgP2-pVAX1/PLGA and TgP2-pVAX1/CS nanospheres have great advantages in enhancing immunity against a lethal dose of T. gondii RH strain challenge. All these results suggested that TgP2-pVAX1 plasmids delivered by PLGA or chitosan nanomaterial could be promising vaccines in resisting toxoplasmosis and deserve further investigations and applications.
Collapse
Affiliation(s)
- ZhengQing Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ke He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - WanDi Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Sana M, Rashid M, Rashid I, Akbar H, Gomez-Marin JE, Dimier-Poisson I. Immune response against toxoplasmosis-some recent updates RH: Toxoplasma gondii immune response. Int J Immunopathol Pharmacol 2022; 36:3946320221078436. [PMID: 35227108 PMCID: PMC8891885 DOI: 10.1177/03946320221078436] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Cytokines, soluble mediators of immunity, are key factors of the innate and adaptive immune system. They are secreted from and interact with various types of immune cells to manipulate host body's immune cell physiology for a counter-attack on the foreign body. A study was designed to explore the mechanism of Toxoplasma gondii (T. gondii) resistance from host immune response. METHODS AND RESULTS The published data on aspect of host (murine and human) immune response against T. gondii was taken from Google scholar and PubMed. Most relevant literature was included in this study. The basic mechanism of immune response starts from the interactions of antigens with host immune cells to trigger the production of cytokines (pro-inflammatory and anti-inflammatory) which then act by forming a cytokinome (network of cytokine). Their secretory equilibrium is essential for endowing resistance to the host against infectious diseases, particularly toxoplasmosis. A narrow balance lying between Th1, Th2, and Th17 cytokines (as demonstrated until now) is essential for the development of resistance against T. gondii as well as for the survival of host. Excessive production of pro-inflammatory cytokines leads to tissue damage resulting in the production of anti-inflammatory cytokines which enhances the proliferation of Toxoplasma. Stress and other infectious diseases (human immunodeficiency virus (HIV)) that weaken the host immunity particularly the cellular component, make the host susceptible to toxoplasmosis especially in pregnant women. CONCLUSION The current review findings state that in vitro harvesting of IL12 from DCs, Np and MΦ upon exposure with T. gondii might be a source for therapeutic use in toxoplasmosis. Current review also suggests that therapeutic interventions leading to up-regulation/supplementation of SOCS-3, IL12, and IFNγ to the infected host could be a solution to sterile immunity against T. gondii infection. This would be of interest particularly in patients passing through immunosuppression owing to any reason like the ones receiving anti-cancer therapy, the ones undergoing immunosuppressive therapy for graft/transplantation, the ones suffering from immunodeficiency virus (HIV) or having AIDS. Another imortant suggestion is to launch the efforts for a vaccine based on GRA6Nt or other similar antigens of T. gondii as a probable tool to destroy tissue cysts.
Collapse
Affiliation(s)
- Madiha Sana
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, 66920The Islamia University of Bahawalpur, Pakistan
| | - Imran Rashid
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haroon Akbar
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jorge E Gomez-Marin
- Grupo Gepamol, Centro de Investigaciones Biomedicas, Universidad del Quindio, Armenia, CO, South America
| | - Isabelle Dimier-Poisson
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| |
Collapse
|
27
|
Fatollahzadeh M, Eskandarian A, Darani HY, Pagheh AS, Ahmadpour E. Evaluation of Th17 immune responses of recombinant DNA vaccine encoding GRA14 and ROP13 genes against Toxoplasma gondii in BALB/c mice. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105150. [PMID: 34801755 DOI: 10.1016/j.meegid.2021.105150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Toxoplasma gondii, a worldwide opportunistic parasite, causes serious diseases in both humans and fetuses with defective immune systems. The development of an effective vaccine is urgently required to prevent and control the spread of toxoplasmosis, caused by the apicomplexan parasite Toxoplasma gondii which is one of the most damaging zoonotic diseases of global importance. Plasmid DNA vaccination is a promising procedure for vaccine development and following the previous studies, pcROP13 + pcGRA14 cocktail DNA vaccine was evaluated for Th17 immune responses. Four groups of BALB/c mice were immunized intramuscularly three times at 2-week intervals. Subsequently, the production of anti- T. gondii antibodies and serum levels of cytokines IL-17, and IL-22 were evaluated against the RH strain of T. gondii. In addition, both the reactive oxygen species (ROS) and parasite load were assessed using ELISA and Q-PCR, respectively. The results of this study showed that high levels of IgG were found in mice immunized with cocktail DNA vaccine (p < 0.05). The cytokines level of Th17, IL-17, and IL-22, increased remarkably in the immunized mice (p < 0.05). Also, significant induction (p < 0.05) was observed in ROS. In addition, immunization with pcROP13 + GRA14 resulted in a considerable decrease in parasite load compared to the control groups (p < 0.05). Based on the results, the pcROP13 + GRA14 cocktail DNA vaccine induced Th17 related cytokines and decreased the parasite load in spleen and brain tissues. Hence, pcGRA14 + pcROP13 cocktails are suitable candidates for DNA-based vaccines and due to the development of protective immune responses against T. gondii infection, future studies may yield promising results using these antigens in vaccine design.
Collapse
Affiliation(s)
- Mohammad Fatollahzadeh
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasali Eskandarian
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hossein Yousofi Darani
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsan Ahmadpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Abstract
Transforming Growth Factor-β is a potent regulator of the immune system, acting at every stage from thymic differentiation, population of the periphery, control of responsiveness, tissue repair and generation of memory. It is therefore a central player in the immune response to infectious pathogens, but its contribution is often clouded by multiple roles acting on different cells in time and space. Hence, context is all-important in understanding when TGF-β is beneficial or detrimental to the outcome of infection. In this review, a full range of infectious agents from viruses to helminth parasites are explored within this framework, drawing contrasts and general conclusions about the importance of TGF-β in these diseases.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
29
|
Rojas-Pirela M, Medina L, Rojas MV, Liempi AI, Castillo C, Pérez-Pérez E, Guerrero-Muñoz J, Araneda S, Kemmerling U. Congenital Transmission of Apicomplexan Parasites: A Review. Front Microbiol 2021; 12:751648. [PMID: 34659187 PMCID: PMC8519608 DOI: 10.3389/fmicb.2021.751648] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Apicomplexans are a group of pathogenic protists that cause various diseases in humans and animals that cause economic losses worldwide. These unicellular eukaryotes are characterized by having a complex life cycle and the ability to evade the immune system of their host organism. Infections caused by some of these parasites affect millions of pregnant women worldwide, leading to various adverse maternal and fetal/placental effects. Unfortunately, the exact pathogenesis of congenital apicomplexan diseases is far from being understood, including the mechanisms of how they cross the placental barrier. In this review, we highlight important aspects of the diseases caused by species of Plasmodium, Babesia, Toxoplasma, and Neospora, their infection during pregnancy, emphasizing the possible role played by the placenta in the host-pathogen interaction.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maria Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ana Isabel Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | | | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Araneda
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
30
|
Evangelista FF, Nishi L, Colli CM, Sant'Ana PDL, Higa LT, Muniz LHG, Falavigna-Guilherme AL. Increased levels of IL-17A in serum and amniotic fluid of pregnant women with acute toxoplasmosis. Acta Trop 2021; 222:106019. [PMID: 34157293 DOI: 10.1016/j.actatropica.2021.106019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
This study detected and compared the levels of Il-17A, IFN-gamma and IL-10 in the amniotic fluid (AF) and serum of pregnant women with acute toxoplasmosis in southern Brazil. It also compared the serum levels of these mediators in pregnant women with acute or chronic toxoplasmosis and with uninfected women. The serological investigations of anti-T. gondii IgM and IgG from the 60 pregnant women were determined by chemiluminescence microparticle immunoassay (CMIA). Twenty patients were uninfected, twenty were in the chronic phase and twenty were in the acute phase of toxoplasmosis. The 20 pregnant women in acute phase all agreed with amniocentesis. Serum and AF cytokines were evaluated by sandwich enzyme-linked immunosorbent assay. The analyzed cytokines showed no significant difference in blood versus amniotic fluid levels of pregnant women in the acute toxoplasmosis. Furthermore, we observed that serum IL-17A was significantly higher in pregnant women in the acute phase of infection compared to pregnant women with chronic toxoplasmosis and seronegative pregnant women. T. gondii DNA was not amplified in any of the samples of amniotic fluid by the nested-PCR reaction. Serum IL-10 levels were also higher in negative pregnant women than in infected pregnant women. Our findings indicate the activation of an inflammatory response to infection by T. gondii and suggest that increased production of IL-17A may be a protective factor against infection of the fetus.
Collapse
|
31
|
Nano DNA Vaccine Encoding Toxoplasma gondii Histone Deacetylase SIR2 Enhanced Protective Immunity in Mice. Pharmaceutics 2021; 13:pharmaceutics13101582. [PMID: 34683874 PMCID: PMC8538992 DOI: 10.3390/pharmaceutics13101582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
The pathogen of toxoplasmosis, Toxoplasma gondii (T. gondii), is a zoonotic protozoon that can affect the health of warm-blooded animals including humans. Up to now, an effective vaccine with completely protection is still inaccessible. In this study, the DNA vaccine encoding T. gondii histone deacetylase SIR2 (pVAX1-SIR2) was constructed. To enhance the efficacy, chitosan and poly (d, l-lactic-co-glycolic)-acid (PLGA) were employed to design nanospheres loaded with the DNA vaccine, denoted as pVAX1-SIR2/CS and pVAX1-SIR2/PLGA nanospheres. The pVAX1-SIR2 plasmids were transfected into HEK 293-T cells, and the expression was evaluated by a laser scanning confocal microscopy. Then, the immune protections of pVAX1-SIR2 plasmid, pVAX1-SIR2/CS nanospheres, and pVAX1-SIR2/PLGA nanospheres were evaluated in a laboratory animal model. The in vivo findings indicated that pVAX1-SIR2/CS and pVAX1-SIR2/PLGA nanospheres could generate a mixed Th1/Th2 immune response, as indicated by the regulated production of antibodies and cytokines, the enhanced maturation and major histocompatibility complex (MHC) expression of dendritic cells (DCs), the induced splenocyte proliferation, and the increased percentages of CD4+ and CD8+ T lymphocytes. Furthermore, this enhanced immunity could obviously reduce the parasite burden in immunized animals through a lethal dose of T. gondii RH strain challenge. All these results propose that pVAX1-SIR2 plasmids entrapped in chitosan or PLGA nanospheres could be the promising vaccines against acute T. gondii infections and deserve further investigations.
Collapse
|
32
|
Yu Z, Cao W, Gao X, Aleem MT, Liu J, Luo J, Yan R, Xu L, Song X, Li X. With Chitosan and PLGA as the Delivery Vehicle, Toxoplasma gondii Oxidoreductase-Based DNA Vaccines Decrease Parasite Burdens in Mice. Front Immunol 2021; 12:726615. [PMID: 34512659 PMCID: PMC8430031 DOI: 10.3389/fimmu.2021.726615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/06/2021] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is an intracellular parasitic protozoan that can cause serious public health problems. However, there is no effectively preventive or therapeutic strategy available for human and animals. In the present study, we developed a DNA vaccine encoding T. gondii oxidoreductase from short-chain dehydrogenase/reductase family (TgSDRO-pVAX1) and then entrapped in chitosan and poly lactic-co-glycolic acid (PLGA) to improve the efficacy. When encapsulated in chitosan (TgSDRO-pVAX1/CS nanospheres) and PLGA (TgSDRO-pVAX1/PLGA nanospheres), adequate plasmids were loaded and released stably. Before animal immunizations, the DNA vaccine was transfected into HEK 293-T cells and examined by western blotting and laser confocal microscopy. Th1/Th2 cellular and humoral immunity was induced in immunized mice, accompanied by modulated secretion of antibodies and cytokines, promoted the maturation and MHC expression of dendritic cells, and enhanced the percentages of CD4+ and CD8+ T lymphocytes. Immunization with TgSDRO-pVAX1/CS and TgSDRO-pVAX1/PLGA nanospheres conferred significant immunity with lower parasite burden in the mice model of acute toxoplasmosis. Furthermore, our results also lent credit to the idea that TgSDRO-pVAX1/CS and TgSDRO-pVAX1/PLGA nanospheres are substitutes for each other. In general, the current study proposed that TgSDRO-pVAX1 with chitosan or PLGA as the delivery vehicle is a promising vaccine candidate against acute toxoplasmosis.
Collapse
Affiliation(s)
- Zhengqing Yu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wandi Cao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xuchen Gao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Tahir Aleem
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ruofeng Yan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lixin Xu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaokai Song
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Li
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
The role of IL-12 in stimulating NK cells against Toxoplasma gondii infection: a mini-review. Parasitol Res 2021; 120:2303-2309. [PMID: 34110502 DOI: 10.1007/s00436-021-07204-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Toxoplasma gondii is an intracellular protozoan parasite that can remarkably infect, survive, and replicate in almost all mammalian cells and can cause severe neurological and ocular damage in immunocompromised individuals. It is known that Natural Killer cells (NK cells), as a type of cytotoxic lymphocyte, have critical protective roles in innate immunity during the T. gondii infection through releasing interferon gamma (IFN-γ). Interleukin 12 (IL-12) is a pivotal critical cytokine for the generation of IFN-γ-producing NK cells. Several studies have shown cytokines' impact on NK cell activation; and IL-2 has an important role with a potent stimulatory factor for NK cells. In this review, we summarized the mechanism of interleukin-12 production stimulation by T. gondii tachyzoites and discussed several factors affecting this mechanism.
Collapse
|
34
|
Yu Z, Ding W, Aleem MT, Su J, Liu J, Luo J, Yan R, Xu L, Song X, Li X. Toxoplasma gondii Proteasome Subunit Alpha Type 1 with Chitosan: A Promising Alternative to Traditional Adjuvant. Pharmaceutics 2021; 13:pharmaceutics13050752. [PMID: 34069589 PMCID: PMC8161231 DOI: 10.3390/pharmaceutics13050752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
As an important zoonotic protozoan, Toxoplasma gondii (T. gondii) has spread around the world, leading to infections in one-third of the population. There is still no effective vaccine or medicine against T. gondii, and recombinant antigens entrapped within nanospheres have benefits over traditional vaccines. In the present study, we first expressed and purified T. gondii proteasome subunit alpha type 1 (TgPSA1), then encapsulated the recombinant TgPSA1 (rTgPSA1) in chitosan nanospheres (CS nanospheres, rTgPSA1/CS nanospheres) and incomplete Freund’s adjuvant (IFA, rTgPSA1/IFA emulsion). Antigens entrapped in CS nanospheres reached an encapsulation efficiency of 67.39%, and rTgPSA1/CS nanospheres showed a more stable release profile compared to rTgPSA1/IFA emulsion in vitro. In vivo, Th1-biased cellular and humoral immune responses were induced in mice and chickens immunized with rTgPSA1/CS nanospheres and rTgPSA1/IFA emulsion, accompanied by promoted production of antibodies, IFN-γ, IL-4, and IL-17, and modulated production of IL-10. Immunization with rTgPSA1/CS nanospheres and rTgPSA1/IFA emulsion conferred significant protection, with prolonged survival time in mice and significantly decreased parasite burden in chickens. Furthermore, our results also indicate that rTgPSA1/CS nanospheres could be used as a substitute for rTgPSA1/IFA emulsion, with the optimal administration route being intramuscular in mass vaccination. Collectively, the results of this study indicate that rTgPSA1/CS nanospheres represent a promising vaccine to protect animals against acute toxoplasmosis.
Collapse
Affiliation(s)
- Zhengqing Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
| | - Wenxi Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
| | - Junzhi Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.L.); (J.L.)
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.L.); (J.L.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
- Correspondence: ; Tel.: +86-025-84399000
| |
Collapse
|
35
|
Yu Z, Chen S, Aleem M, He S, Yang Y, Zhou T, Liu J, Luo J, Yan R, Xu L, Song X, Li X. Histone deacetylase SIR2 in Toxoplasma gondii modulates functions of murine macrophages in vitro and protects mice against acute toxoplasmosis in vivo. Microb Pathog 2021; 154:104835. [PMID: 33731306 DOI: 10.1016/j.micpath.2021.104835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022]
Abstract
Silent information regulator 2 (SIR2) in histone deacetylase (HDAC) is particularly conserved and widely expressed in all eukaryotic cells. HDAC is a crucial post-translational modification protein regulating gene expression. In the present study, a Toxoplasma gondii (T. gondii) silent information regulator 2 (TgSIR2) gene in HDAC was cloned and the modulation effects of recombinant TgSIR2 (rTgSIR2) on murine Ana-1 macrophages were characterized in vitro. The results indicated that rTgSIR2 had a good capacity to eliminate T. gondii by promoting proliferation, apoptosis, and phagocytosis, and modulating the secretion of nitric oxide (NO), pro-inflammatory cytokines, and anti-inflammatory cytokines. In in vivo experiments, animals were immunized with recombinant TgSIR2, followed by a lethal dose of T. gondii RH strain challenge 14 days after the second immunization. As compared to the blank and control group, the animals immunized with rTgSIR2 could generate specific humoral responses, as demonstrated by the significantly high titers of total IgG and subclasses IgG1 and IgG2a. Significant increases of IFN-γ, IL-4, and IL-10 were seen, while no significant changes were detected in IL-17. The percentage of CD4+ and CD8+ T lymphocytes in animals immunized with rTgSIR2 significantly increased. A significantly long survival time was also observed in animals vaccinated with rTgSIR2 14 days after the last immunization. All these results clearly indicate that rTgSIR2 played an essential role in modulating host macrophages and offered the potential to develop a therapeutic strategy against T. gondii.
Collapse
Affiliation(s)
- ZhengQing Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - SiYing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - MuhammadTahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - SuHui He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Yang Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - TianYuan Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - JunLong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China.
| | - JianXun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China.
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
36
|
Li K, Feng X, Hikosaka K, Norose K. Murine Model of Primary Acquired Ocular Toxoplasmosis: Fluorescein Angiography and Multiplex Immune Mediator Profiles in the Aqueous Humor. Invest Ophthalmol Vis Sci 2021; 62:9. [PMID: 33683297 PMCID: PMC7960860 DOI: 10.1167/iovs.62.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To establish a murine model of primary acquired ocular toxoplasmosis (OT) and to investigate the immune mediator profiles in the aqueous humor (AH). Methods C57BL/6 mice were perorally infected with Toxoplasma gondii. The ocular fundus was observed, and fluorescein angiography (FA) was performed. The AH, cerebrospinal fluid (CSF), and serum were collected before infection and at 28 days post-infection (dpi); the immune mediator levels in these samples were analyzed using multiplex bead assay. Results Fundus imaging revealed soft retinochoroidal lesions at 14 dpi; many of these lesions became harder by 28 dpi. FA abnormalities, such as leakage from retinal vessels and dilation and tortuosity of the retinal veins, were observed at 14 dpi. Nearly all these abnormalities resolved spontaneously at 28 dpi. In the AH, interferon-γ, interleukin (IL)-1α, IL-1β, IL-6, IL-10, IL-12(p40), IL-12(p70), CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES, and CXCL1/KC levels increased after infection. All these molecules except IL-1α, IL-4, and IL-13 showed almost the same postinfection patterns in the CSF as they did in the AH. The tumor necrosis factor α, IL-4, and IL-5 levels in the AH and CSF of the T. gondii–infected mice were lower than those in the serum. The postinfection IL-1α, IL-6, CCL2/MCP-1, CCL4/MIP-1β, and granulocyte colony-stimulating factor levels in the AH were significantly higher than those in the CSF and serum. Conclusions A murine model of primary acquired OT induced via the natural infection route was established. This OT model allows detailed ophthalmologic, histopathologic, and immunologic evaluations of human OT. Investigation of AH immune modulators provides new insight into OT immunopathogenesis.
Collapse
Affiliation(s)
- Kexin Li
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Xue Feng
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Kazumi Norose
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| |
Collapse
|
37
|
Cruz-Chan JV, Villanueva-Lizama LE, Versteeg L, Damania A, Villar MJ, González-López C, Keegan B, Pollet J, Gusovsky F, Hotez PJ, Bottazzi ME, Jones KM. Vaccine-linked chemotherapy induces IL-17 production and reduces cardiac pathology during acute Trypanosoma cruzi infection. Sci Rep 2021; 11:3222. [PMID: 33547365 PMCID: PMC7865072 DOI: 10.1038/s41598-021-82930-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023] Open
Abstract
Chagas disease resulting from Trypanosoma cruzi infection leads to a silent, long-lasting chronic neglected tropical disease affecting the poorest and underserved populations around the world. Antiparasitic treatment with benznidazole does not prevent disease progression or death in patients with established cardiac disease. Our consortium is developing a therapeutic vaccine based on the T. cruzi flagellar—derived antigen Tc24-C4 formulated with a Toll-like receptor 4 agonist adjuvant, to complement existing chemotherapy and improve treatment efficacy. Here we demonstrate that therapeutic treatment of acutely infected mice with a reduced dose of benznidazole concurrently with vaccine treatment – also known as “vaccine-linked chemotherapy”—induced a TH17 like immune response, with significantly increased production of antigen specific IL-17A, IL-23 and IL-22, and CD8 + T lymphocytes, as well as significantly increased T. cruzi specific IFNγ-producing CD4 + T lymphocytes. Significantly reduced cardiac inflammation, fibrosis, and parasite burdens and improved survival were achieved by vaccine-linked chemotherapy and individual treatments. Importantly, low dose treatments were comparably efficacious to high dose treatments, demonstrating potential dose sparing effects. We conclude that through induction of TH17 immune responses vaccine-linked chemotherapeutic strategies could bridge the tolerability and efficacy gaps of current drug treatment in Chagasic patients.
Collapse
Affiliation(s)
- Julio V Cruz-Chan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Liliana E Villanueva-Lizama
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Cell Biology and Immunology Group, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Ashish Damania
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Maria José Villar
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Cristina González-López
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Brian Keegan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jeroen Pollet
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.,James A. Baker III Institute for Public Policy, Rice University, Houston, TX, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn M Jones
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
38
|
Van Den Eeckhout B, Tavernier J, Gerlo S. Interleukin-1 as Innate Mediator of T Cell Immunity. Front Immunol 2021; 11:621931. [PMID: 33584721 PMCID: PMC7873566 DOI: 10.3389/fimmu.2020.621931] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The three-signal paradigm tries to capture how the innate immune system instructs adaptive immune responses in three well-defined actions: (1) presentation of antigenic peptides in the context of MHC molecules, which allows for a specific T cell response; (2) T cell co-stimulation, which breaks T cell tolerance; and (3) secretion of polarizing cytokines in the priming environment, thereby specializing T cell immunity. The three-signal model provides an empirical framework for innate instruction of adaptive immunity, but mainly discusses STAT-dependent cytokines in T cell activation and differentiation, while the multi-faceted roles of type I IFNs and IL-1 cytokine superfamily members are often neglected. IL-1α and IL-1β are pro-inflammatory cytokines, produced following damage to the host (release of DAMPs) or upon innate recognition of PAMPs. IL-1 activity on both DCs and T cells can further shape the adaptive immune response with variable outcomes. IL-1 signaling in DCs promotes their ability to induce T cell activation, but also direct action of IL-1 on both CD4+ and CD8+ T cells, either alone or in synergy with prototypical polarizing cytokines, influences T cell differentiation under different conditions. The activities of IL-1 form a direct bridge between innate and adaptive immunity and could therefore be clinically translatable in the context of prophylactic and therapeutic strategies to empower the formation of T cell immunity. Understanding the modalities of IL-1 activity during T cell activation thus could hold major implications for rational development of the next generation of vaccine adjuvants.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Sarah Gerlo
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Greigert V, Bittich-Fahmi F, Pfaff AW. Pathophysiology of ocular toxoplasmosis: Facts and open questions. PLoS Negl Trop Dis 2020; 14:e0008905. [PMID: 33382688 PMCID: PMC7774838 DOI: 10.1371/journal.pntd.0008905] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infections with the protozoan parasite Toxoplasma gondii are frequent, but one of its main consequences, ocular toxoplasmosis (OT), remains poorly understood. While its clinical description has recently attracted more attention and publications, the underlying pathophysiological mechanisms are only sparsely elucidated, which is partly due to the inherent difficulties to establish relevant animal models. Furthermore, the particularities of the ocular environment explain why the abundant knowledge on systemic toxoplasmosis cannot be just transferred to the ocular situation. However, studies undertaken in mouse models have revealed a central role of interferon gamma (IFNγ) and, more surprisingly, interleukin 17 (IL17), in ocular pathology and parasite control. These studies also show the importance of the genetic background of the infective Toxoplasma strain. Indeed, infections due to exotic strains show a completely different pathophysiology, which translates in a different clinical outcome. These elements should lead to more individualized therapy. Furthermore, the recent advance in understanding the immune response during OT paved the way to new research leads, involving immune pathways poorly studied in this particular setting, such as type I and type III interferons. In any case, deeper knowledge of the mechanisms of this pathology is needed to establish new, more targeted treatment schemes.
Collapse
Affiliation(s)
- Valentin Greigert
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Faiza Bittich-Fahmi
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Alexander W. Pfaff
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
- Service de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
40
|
Cristina Borges Araujo E, Cariaco Y, Paulo Oliveira Almeida M, Patricia Pallete Briceño M, Neto de Sousa JE, Rezende Lima W, Maria Costa-Cruz J, Maria Silva N. Beneficial effects of Strongyloides venezuelensis antigen extract in acute experimental toxoplasmosis. Parasite Immunol 2020; 43:e12811. [PMID: 33247953 DOI: 10.1111/pim.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Toxoplasma gondii is a protozoan with worldwide distribution and triggers a strong Th1 immune response in infected susceptible hosts. On the contrary, most helminth infections are characterized by Th2 immune response and the use of helminth-derived antigens to regulate immune response in inflammatory disorders has been broadly investigated. OBJECTIVES The aim of this study was to investigate whether treatment with Strongyloides venezuelensis antigen extract (SvAg) would alter immune response against T gondii. METHODS C57BL/6 mice were orally infected with T gondii and treated with SvAg, and parasitological, histological and immunological parameters were investigated. RESULTS It was observed that SvAg treatment improved survival rates of T gondii-infected mice. At day 7 post-infection, the parasite load was lower in the lung and small intestine of infected SvAg-treated mice than untreated infected mice. Remarkably, SvAg-treated mice infected with T gondii presented reduced inflammatory lesions in the small intestine than infected untreated mice and decreased intestinal and systemic levels of IFN-γ, TNF-α and IL-6. In contrast, SvAg treatment increased T gondii-specific IgA serum levels in infected mice. CONCLUSIONS S venezuelensis antigen extract has anti-parasitic and anti-inflammatory properties during T gondii infection suggesting as a possible alternative to parasite and inflammation control.
Collapse
Affiliation(s)
- Ester Cristina Borges Araujo
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Yusmaris Cariaco
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Marcos Paulo Oliveira Almeida
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | | | - José Eduardo Neto de Sousa
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Wânia Rezende Lima
- Instituto de Biotecnologia, Universidade Federal de Catalão, Rua Terezinha Margon Vaz, s/n Residencial Barka II, Catalão, Brasil
| | - Julia Maria Costa-Cruz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Neide Maria Silva
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| |
Collapse
|
41
|
Yu Z, Zhou T, Luo Y, Dong L, Li C, Liu J, Luo J, Yan R, Xu L, Song X, Li X. Modulation Effects of Toxoplasma gondii Histone H2A1 on Murine Macrophages and Encapsulation with Polymer as a Vaccine Candidate. Vaccines (Basel) 2020; 8:vaccines8040731. [PMID: 33287313 PMCID: PMC7761694 DOI: 10.3390/vaccines8040731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is the most common zoonotic protozoa and has infected about one-third of the population worldwide. Recombinant epitopes encapsulated in nanospheres have advantages over traditional T. gondii vaccines. For an efficient delivery system, poly (DL-lactide-co-glycolide) (PLGA) and chitosan are the most frequently used biodegradable polymeric nanospheres with strong safety profiles. In the present study, we first expressed and purified histone H2A1 of T. gondii using the prokaryotic expression system. The effects of recombinant TgH2A1 on the functions of murine macrophages were then studied. Purified recombinant TgH2A1 was then encapsulated in nanospheres with PLGA and chitosan. After subcutaneous vaccination in mice, the immune response was evaluated by double antibody sandwich ELISA kits. The results from this study showed that PLGA and chitosan loaded with rTgH2A1 could trigger a stronger Th1 oriented immune response and prolong the survival time of mice effectively. In conclusion, PLGA and chitosan nanospheres loaded with histone H2A1 are an effective method for the development of vaccines against T. gondii. Further studies should focus on evaluating the regulatory mechanism of TgH2A1, vaccine potency, and cellular response in chronic T. gondii infections.
Collapse
Affiliation(s)
- Zhengqing Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Tianyuan Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Yanxin Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Lu Dong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Chunjing Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.L.); (J.L.)
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.L.); (J.L.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
- Correspondence:
| |
Collapse
|
42
|
Frimpong A, Amponsah J, Adjokatseh AS, Agyemang D, Bentum-Ennin L, Ofori EA, Kyei-Baafour E, Akyea-Mensah K, Adu B, Mensah GI, Amoah LE, Kusi KA. Asymptomatic Malaria Infection Is Maintained by a Balanced Pro- and Anti-inflammatory Response. Front Microbiol 2020; 11:559255. [PMID: 33281757 PMCID: PMC7705202 DOI: 10.3389/fmicb.2020.559255] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/19/2020] [Indexed: 01/12/2023] Open
Abstract
Background Pro- and anti-inflammatory cytokines are important mediators of immunity and are associated with malaria disease outcomes. However, their role in the establishment of asymptomatic infections, which may precede the development of clinical symptoms, is not as well-understood. Methods We determined the association of pro and anti-inflammatory cytokines and other immune effector molecules with the development of asymptomatic malaria. We measured and compared the plasma levels of pro-inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin (IL)-6, IL-12p70, IL-17A, and granzyme B, the anti-inflammatory cytokine IL-4 and the regulatory cytokine IL-10 from children with asymptomatic malaria infections (either microscopic or submicroscopic) and uninfected controls using Luminex. Results We show that individuals with microscopic asymptomatic malaria had significantly increased levels of TNF-α and IL-6 compared to uninfected controls. Children with either microscopic or submicroscopic asymptomatic malaria exhibited higher levels of IFN-γ, IL-17A, and IL-4 compared to uninfected controls. The levels of most of the pro and anti-inflammatory cytokines were comparable between children with microscopic and submicroscopic infections. The ratio of IFN-γ/IL-10, TNF-α/IL-10, IL-6/IL-10 as well as IFN-γ/IL-4 and IL-6/IL-4 did not differ significantly between the groups. Additionally, using a principal component analysis, the cytokines measured could not distinguish amongst the three study populations. This may imply that neither microscopic nor submicroscopic asymptomatic infections were polarized toward a pro-inflammatory or anti-inflammatory response. Conclusion The data show that asymptomatic malaria infections result in increased plasma levels of both pro and anti-inflammatory cytokines relative to uninfected persons. The balance between pro- and anti-inflammatory cytokines are, however, largely maintained and this may in part, explain the lack of clinical symptoms. This is consistent with the generally accepted observation that clinical symptoms develop as a result of immunopathology involving dysregulation of inflammatory mediator balance in favor of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Augustina Frimpong
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.,African Institute for Mathematical Sciences, Accra, Ghana
| | - Jones Amponsah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Abigail Sena Adjokatseh
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Dorothy Agyemang
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Lutterodt Bentum-Ennin
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ebenezer Addo Ofori
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Akyea-Mensah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Gloria Ivy Mensah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
43
|
El-Wakil ES, Salem AE, Al-Ghandour AMF. Evaluation of possible prophylactic and therapeutic effect of mefloquine on experimental cryptosporidiosis in immunocompromised mice. J Parasit Dis 2020; 45:380-393. [PMID: 34295037 DOI: 10.1007/s12639-020-01315-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/05/2020] [Indexed: 01/18/2023] Open
Abstract
Cryptosporidiosis is an imperative global health concern. Unfortunately, Nitazoxanide (NTZ) (the nowadays drug of choice) is not effective in treatment of immunocompromised patients. We aimed to assess the possible anti-cryptosporidial prophylactic and therapeutic effects of Mefloquine (MQ) on infected immunosuppressed murine models. Mice were divided into five groups; GI: received Mefloquine (400 mg/kg/day), GII: received NTZ (100 mg/kg/bid), GIII: received a combination, half dose regimen of both drugs, GIV: infected untreated and GV: non-infected untreated. Each treated group was divided into three subgroups; Ga prophylaxis (PX), thereafter infection, Gb first and Gc second treatment doses. Assessment was done by parasitological, histopathological and serological techniques. A significant oocyst clearance was detected in all prophylactically treated groups. GIa showed 77% reduction of the mean oocyst count in stool while GIb and GIIIc showed100% oocyst clearance. Histopathologically, the ileocecal sections from GIV showed loss of brush borders with marked villous atrophy. GIa induced a moderate improvement of those pathological changes. Moreover, the villi in GIb and GIIIc retained their normal appearance with minimal inflammatory cells. Serum interferon gamma levels showed highly significant increases in GI&GIII compared to GIV while a non-significant increase was observed in GIIa only. On the contrary, serum interleukin-17 levels showed a highly significant down-regulation in all treated groups in comparison to GIV. This study proved a marvelous effect of MQ-PX on cryptosporidiosis in immunosuppressed mice and thus it could be introduced as one of the most promising re-purposed prophylactic and therapeutic anti-cryptosporidial agents.
Collapse
Affiliation(s)
- Eman S El-Wakil
- Department of Parasitology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Amal E Salem
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa M F Al-Ghandour
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
44
|
Sabbaghi A, Miri SM, Keshavarz M, Mahooti M, Zebardast A, Ghaemi A. Role of γδ T cells in controlling viral infections with a focus on influenza virus: implications for designing novel therapeutic approaches. Virol J 2020; 17:174. [PMID: 33183352 PMCID: PMC7659406 DOI: 10.1186/s12985-020-01449-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Influenza virus infection is among the most detrimental threats to the health of humans and some animals, infecting millions of people annually all around the world and in many thousands of cases giving rise to pneumonia and death. All those health crises happen despite previous and recent developments in anti-influenza vaccination, suggesting the need for employing more sophisticated methods to control this malign infection. Main body The innate immunity modules are at the forefront of combating against influenza infection in the respiratory tract, among which, innate T cells, particularly gamma-delta (γδ) T cells, play a critical role in filling the gap needed for adaptive immune cells maturation, linking the innate and adaptive immunity together. Upon infection with influenza virus, production of cytokines and chemokines including CCL3, CCL4, and CCL5 from respiratory epithelium recruits γδ T cells at the site of infection in a CCR5 receptor-dependent fashion. Next, γδ T cells become activated in response to influenza virus infection and produce large amounts of proinflammatory cytokines, especially IL-17A. Regardless of γδ T cells' roles in triggering the adaptive arm of the immune system, they also protect the respiratory epithelium by cytolytic and non-cytolytic antiviral mechanisms, as well as by enhancing neutrophils and natural killer cells recruitment to the infection site. CONCLUSION In this review, we explored varied strategies of γδ T cells in defense to influenza virus infection and how they can potentially provide balanced protective immune responses against infected cells. The results may provide a potential window for the incorporation of intact or engineered γδ T cells for developing novel antiviral approaches or for immunotherapeutic purposes.
Collapse
Affiliation(s)
- Ailar Sabbaghi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehran Mahooti
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.
| |
Collapse
|
45
|
El-Shafey AAM, Hegab MHA, Seliem MME, Barakat AMA, Mostafa NE, Abdel-Maksoud HA, Abdelhameed RM. Curcumin@metal organic frameworks nano-composite for treatment of chronic toxoplasmosis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:90. [PMID: 33089411 DOI: 10.1007/s10856-020-06429-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Toxoplasmosis is a zoonotic protozoal disease caused by Toxoplasma gondii, an intracellular opportunistic protozoan parasite that can infect any warm-blooded vertebrate cell. In this study, zirconium, and iron-based metal-organic framework was prepared according to the solvothermal method. New nanocomposite (Curcumin@MOFs) was prepared by reacting curcumin with amino-functionalized metal-organic frameworks (Fe-MOF and UiO-66-NH2). Besides characterizations of the composite by powder X-ray diffraction and scanning electron microscope, nano-Curcumin@MOFs was used as a new novel structure as atrial for treatment of chronic toxoplasmosis. Results showed a reduced number of brain cysts, high levels of serum Toxo IgG, and normal histo-morphology with preserved parenchymal, and stromal tissues in rats groups treated with curcumin and Curcumin@MOFs nanocomposite.
Collapse
Affiliation(s)
| | - Mohammed H A Hegab
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Ashraf M A Barakat
- Zoonotic Diseases Department, National Research Centre, 33 Bohouth str. Dokki, Giza, Egypt
| | - Nahed E Mostafa
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanem A Abdel-Maksoud
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Centre, 33 Bohouth str. Dokki, Giza, Egypt.
| |
Collapse
|
46
|
Marcon CF, Ferreira PTM, Franco PS, Ribeiro M, Silva RJ, Sousa RAP, Oliveira CJF, Rodrigues Junior V, Gomes MLM, Lazo Chica JE, Mineo TWP, Mineo JR, Barbosa BF, Ferro EAV, Gomes AO. Macrophage migration inhibitory factor (MIF) and pregnancy may impact the balance of intestinal cytokines and the development of intestinal pathology caused by Toxoplasma gondii infection. Cytokine 2020; 136:155283. [PMID: 32947151 DOI: 10.1016/j.cyto.2020.155283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toxoplasma gondii (T. gondii) is an intracellular parasite responsible for causing toxoplasmosis. When infection occurs during pregnancy, it can produce severe congenital infection with ocular and neurologic damage to the infant. From the oral infection parasite reaches the intestine, causing inflammatory response, damage in tissue architecture and systemic dissemination. Macrophage migration inhibition factor (MIF) is a cytokine secreted from both immune and non-immune cells, including gut epithelial cells. MIF is described to promote inflammatory responses, to be associated in colitis pathogenesis and also to play role in maintaining the intestinal barrier. The aim of the present study was to evaluate the influence of the pregnancy and MIF deficiency on T. gondii infection in the intestinal microenvironment and to address how these factors can impact on the intestinal architecture and local cytokine profile. For this purpose, small intestine of pregnant and non-pregnant C57BL/6 MIF deficient mice (MIF-/-) and Wild-type (WT) orally infected with 5 cysts of ME-49 strain of T. gondii were collected on day 8th of infection. Intestines were processed for morphological and morphometric analyses, parasite quantification and for cytokines mensuration. Our results showed that the absence of MIF and pregnancy caused an increase in T. gondii infection index. T. gondii immunolocalization demonstrated that segments preferentially infected with T. gondii were duodenum and ileum. The infection caused a reduction in the size of the intestinal villi, whereas, infection associated with pregnancy caused an increase in villi size due to edema caused by the infection. Also, the goblet cell number was increased in the ileum of MIF-/- mice, when compared to the corresponding WT group. Analyses of cytokine production in the small intestine showed that MIF was up regulated in the gut of pregnant WT mice due to infection. Also, infection provoked an intense Th1 response that was more exacerbated in pregnant MIF-/- mice. We also detected that the Th2/Treg response was more pronounced in MIF-/- mice. Altogether, our results demonstrated that pregnancy and MIF deficiency interferes in the balance of the intestinal cytokines and favors a Th1-immflamatory profile, which in turn, impact in the development of pathology caused by T. gondii infection in the intestinal microenvironment.
Collapse
Affiliation(s)
- Camila Ferreira Marcon
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Paula Tatiana Mutão Ferreira
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Priscila Silva Franco
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Mayara Ribeiro
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Rafaela José Silva
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Roberto Augusto Pereira Sousa
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire Oliveira
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Lucca Moreira Gomes
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Javier Emílio Lazo Chica
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Tiago Wilson Patriarca Mineo
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - José Roberto Mineo
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Bellisa Freitas Barbosa
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Angelica Oliveira Gomes
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
47
|
Marcon CF, Ferreira PTM, Franco PS, Ribeiro M, Silva RJ, Sousa RAP, Oliveira CJF, Junior VR, Gomes MLM, Chica JEL, Mineo TWP, Mineo JR, Barbosa BF, Ferro EAV, Gomes AO. WITHDRAWN: Macrophage migration inhibitory factor (MIF) and pregnancy may impact the balance of intestinal cytokines and the development of intestinal pathology caused by Toxoplasma gondii infection. Cytokine X 2020; 2:100034. [PMID: 33604559 PMCID: PMC7885889 DOI: 10.1016/j.cytox.2020.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Camila Ferreira Marcon
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Paula Tatiana Mutão Ferreira
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Priscila Silva Franco
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Mayara Ribeiro
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Rafaela José Silva
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Roberto Augusto Pereira Sousa
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire Oliveira
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Lucca Moreira Gomes
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Javier Emílio Lazo Chica
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Tiago Wilson Patriarca Mineo
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - José Roberto Mineo
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Bellisa Freitas Barbosa
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Angelica Oliveira Gomes
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| |
Collapse
|
48
|
Hirose S, Jaggi U, Wang S, Tormanen K, Nagaoka Y, Katsumata M, Ghiasi H. Role of TH17 Responses in Increasing Herpetic Keratitis in the Eyes of Mice Infected with HSV-1. Invest Ophthalmol Vis Sci 2020; 61:20. [PMID: 32516406 PMCID: PMC7415293 DOI: 10.1167/iovs.61.6.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose TH17 cells play an important role in host defense and autoimmunity yet very little is known about the role of IL17 in herpes simplex virus (HSV)-1 infectivity. To better understand the relationship between IL17 and HSV-1 infection, we assessed the relative impact of IL17A-deficiency and deficiency of its receptors on HSV-1 responses in vivo. Methods We generated IL17RA−/− and IL17RA−/−RC−/− mice in-house and infected them along with IL17A−/− and IL17RC−/− mice in the eyes with 2 × 105 PFU/eye of wild type (WT) HSV-1 strain McKrae. WT C57BL/6 mice were used as control. Virus replication in the eye, survival, corneal scarring (CS), angiogenesis, levels of latency-reactivation, and levels of CD8 and exhaustion markers (PD1, TIM3, LAG3, CTLA4, CD244, and CD39) in the trigeminal ganglia (TG) of infected mice were determined on day 28 postinfection. Results No significant differences in virus replication in the eye, survival, latency, reactivation, and exhaustion markers were detected among IL17A−/−, IL17RA−/−, IL17RC−/−, IL17RA−/−RC−/−, and WT mice. However, mice lacking IL17 had significantly less CS and angiogenesis than WT mice. In addition, angiogenesis levels in the absence of IL17RC and irrespective of the absence of IL17RA were significantly less than in IL17A- or IL17RA-deficient mice. Conclusions Our results suggest that the absence of IL17 protects against HSV-1-induced eye disease, but has no role in protecting against virus replication, latency, or reactivation. In addition, our data provide rationale for blocking IL17RC function rather than IL17A or IL17RA function as a key driver of HSV-1-induced eye disease.
Collapse
|
49
|
Peng X, Pan X, Tan J, Li Y, Li M. Protective effect of interleukin-36 receptor antagonist on liver injury induced by concanavalin A in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:623-628. [PMID: 32742600 PMCID: PMC7374990 DOI: 10.22038/ijbms.2020.35614.8492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective(s): Interleukin-36 receptor antagonist (IL-36Ra) is a new member of the IL-1 family that exhibits anti-inflammatory activity in a variety of inflammatory and immune diseases. Our purpose was to determine the effect of IL-36Ra on liver injury in a mouse hepatitis model induced by concanavalin A (ConA). Materials and Methods: Mice were treated with IL-36Ra DNA or pcDNA3.1 control plasmid using a hydrodynamic gene delivery approach. Results: Our data reveal that treatment with IL-36Ra decreased liver inflammation and serum level of aminotransferases. Furthermore, IL-36Ra reduced ConA-induced pro-inflammatory cytokines (interferon-γ, tumor necrosis factor-α, and IL-17A) production when compared to control plasmid. Conclusion: Our results demonstrated that IL-36Ra is a critical protector against ConA-induced liver injury.
Collapse
Affiliation(s)
- Xiao Peng
- Department of Immunology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xiuhe Pan
- Department of Immunology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jun Tan
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Yan Li
- Department of Immunology, Medical School of Ningbo University, Ningbo 315211, China
| | - Mingcai Li
- Department of Immunology, Medical School of Ningbo University, Ningbo 315211, China
| |
Collapse
|
50
|
Amezcua Vesely MC, Rodríguez C, Gruppi A, Acosta Rodríguez EV. Interleukin-17 mediated immunity during infections with Trypanosoma cruzi and other protozoans. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165706. [PMID: 31987839 PMCID: PMC7071987 DOI: 10.1016/j.bbadis.2020.165706] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
Host resistance during infection with Trypanosoma cruzi, and other protozoans, is dependent on a balanced immune response. Robust immunity against these pathogens requires of the concerted action of many innate and adaptive cell populations including macrophages, neutrophils, dendritic cells, CD4+, and CD8+ T cells and B cells among others. Indeed, during most protozoan infections only a balanced production of inflammatory (TH1) and anti-inflammatory (TH2/regulatory) cytokines will allow the control of parasite spreading without compromising host tissue integrity. The description of TH17 cells, a novel effector helper T cell lineage that produced IL-17 as signature cytokine, prompted the revision of our knowledge about the mechanisms that mediate protection and immunopathology during protozoan infections. In this manuscript we discuss the general features of IL-17 mediated immune responses as well as the cellular sources, effector mechanisms and overall role of IL-17 in the immune response to T. cruzi and other protozoan infections.
Collapse
Affiliation(s)
- María Carolina Amezcua Vesely
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Constanza Rodríguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Eva Virginia Acosta Rodríguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|