1
|
Ochiai Y, Clifton BE, Le Coz M, Terenzio M, Laurino P. SUPREM: an engineered non-site-specific m6A RNA methyltransferase with highly improved efficiency. Nucleic Acids Res 2024:gkae887. [PMID: 39417589 DOI: 10.1093/nar/gkae887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
N 6-Methyladenine (m6A) RNA methylation plays a key role in RNA processing and translational regulation, influencing both normal physiological and pathological processes. Yet, current techniques for studying RNA methylation struggle to isolate the effects of individual m6A modifications. Engineering of RNA methyltransferases (RNA MTases) could enable development of improved synthetic biology tools to manipulate RNA methylation, but it is challenging due to limited understanding of structure-function relationships in RNA MTases. Herein, using ancestral sequence reconstruction, we explore the sequence space of the bacterial DNA methyltransferase EcoGII (M.EcoGII), a promising target for protein engineering due to its lack of sequence specificity and its residual activity on RNA. We thereby created an efficient non-specific RNA MTase termed SUPer RNA EcoGII Methyltransferase (SUPREM), which exhibits 8-fold higher expression levels, 7°C higher thermostability and 12-fold greater m6A RNA methylation activity compared with M.EcoGII. Immunofluorescent staining and quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis confirmed SUPREM's higher RNA methylation activity compared with M.EcoGII in mammalian cells. Additionally, Nanopore direct RNA sequencing highlighted that SUPREM is capable of methylating a larger number of RNA methylation sites than M.EcoGII. Through phylogenetic and mutational analysis, we identified a critical residue for the enhanced RNA methylation activity of SUPREM. Collectively, our findings indicate that SUPREM holds promise as a versatile tool for in vivo RNA methylation and labeling.
Collapse
Affiliation(s)
- Yoshiki Ochiai
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Ben E Clifton
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Madeleine Le Coz
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Wencker FDR, Lyon SE, Breaker RR. Improved methods for genetic manipulation of the alkaliphile Halalkalibacterium halodurans. Front Microbiol 2024; 15:1465811. [PMID: 39360312 PMCID: PMC11445130 DOI: 10.3389/fmicb.2024.1465811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
An improved approach was developed for the genetic manipulation of the Gram-positive extremophile Halalkalibacterium halodurans (formerly called Bacillus halodurans). We describe an allelic replacement method originally developed for Staphylococcus aureus that allows the deletion, mutation, or insertion of genes without leaving markers or other genetic scars. In addition, a protocol for rapid in vitro plasmid methylation and transformation is presented. The combined methods allow the routine genetic manipulation of H. halodurans from initial transformation to the desired strain in 8 days. These methods improve H. halodurans as a model organism for the study of extremophiles.
Collapse
Affiliation(s)
- Freya D. R. Wencker
- Howard Hughes Medical Institute, Yale University, New Haven, CT, United States
| | - Seth E. Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Ronald R. Breaker
- Howard Hughes Medical Institute, Yale University, New Haven, CT, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
3
|
Hikage R, Tadika Y, Asanuma H, Han Y, Nishiyama KI. MucA is a small peptide encoded by an overlapping sequence with cdsA that upregulates the biosynthesis of glycolipid MPIase in the cold. Biochem Biophys Res Commun 2024; 721:150148. [PMID: 38781662 DOI: 10.1016/j.bbrc.2024.150148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
MPIase is a glycolipid involved in protein insertion into and preprotein translocation across the cytoplasmic membranes of E. coli. MPIase is upregulated in the cold conditions to overcome the cold-sensitive protein export. CdsA, a CDP-diacylglycerol synthase, catalyzes the first reaction in MPIase biosynthesis. An open reading frame for a peptide of 50 amino acids is encoded immediately after ispU, a neighboring upstream gene of cdsA, and overlaps cdsA to a large extent. Mutational analysis revealed that the expression of this peptide is essential for upregulation of MPIase in the cold. Consistently, expression of this peptide in trans resulted in cold upregulation of MPIase. We therefore named this peptide MucA after its function (MPIase upregulation in the cold). When the partially purified MucA was added to the reaction of the intermediate in MPIase biosynthesis, a significant increase in the product formation was observed, supporting the function of MucA. The possible role of MucA in MPIase biosynthesis is discussed.
Collapse
Affiliation(s)
- Runa Hikage
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan
| | - Yuta Tadika
- Department of Applied Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Haruka Asanuma
- Department of Applied Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Youjung Han
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan
| | - Ken-Ichi Nishiyama
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan; Department of Applied Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
4
|
Perkins A, Mounange-Badimi MS, Margolin W. Role of the antiparallel double-stranded filament form of FtsA in activating the Escherichia coli divisome. mBio 2024; 15:e0168724. [PMID: 39041810 PMCID: PMC11323482 DOI: 10.1128/mbio.01687-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
The actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including Escherichia coli. Previous in vitro studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsAR286W and FtsAG50E can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. However, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome. Here, we used an in vivo crosslinking assay for FtsA DS filaments to show that they largely depend on proper divisome assembly and are prevalent at later stages of cell division. We also used a previously reported variant that fails to assemble DS filaments, FtsAM96E R153D, to investigate the roles of FtsA oligomeric states in divisome assembly and activation. We show that FtsAM96E R153D cannot form DS filaments in vivo, fails to replace native FtsA, and confers a dominant negative phenotype, underscoring the importance of the DS filament stage for FtsA function. Surprisingly, however, activation of the divisome through the ftsL* or ftsW* superfission alleles suppressed the dominant negative phenotype and rescued the functionality of FtsAM96E R153D. Our results suggest that FtsA DS filaments are needed for divisome activation once it is assembled, but they are not essential for divisome assembly or guiding septum synthesis.IMPORTANCECell division is fundamental for cellular duplication. In simple cells like Escherichia coli bacteria, the actin homolog FtsA is essential for cell division and assembles into a variety of protein filaments at the cytoplasmic membrane. These filaments not only help tether polymers of the tubulin-like FtsZ to the membrane at early stages of cell division but also play crucial roles in recruiting other cell division proteins to a complex called the divisome. Once assembled, the E. coli divisome subsequently activates synthesis of the division septum that splits the cell in two. One recently discovered oligomeric conformation of FtsA is an antiparallel double-stranded filament. Using a combination of in vivo crosslinking and genetics, we provide evidence suggesting that these FtsA double filaments have a crucial role in activating the septum synthesis enzymes.
Collapse
Affiliation(s)
- Abbigale Perkins
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| | - Mwidy Sava Mounange-Badimi
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
5
|
Perkins A, Mounange-Badimi MS, Margolin W. Role of the antiparallel double-stranded filament form of FtsA in activating the Escherichia coli divisome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600433. [PMID: 38979378 PMCID: PMC11230281 DOI: 10.1101/2024.06.24.600433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including Escherichia coli. Previous in vitro studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsAR286W and FtsAG50E can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. Yet, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome. Here we used an in vivo crosslinking assay for FtsA DS filaments to show that they largely depend on proper divisome assembly and are prevalent at later stages of cell division. We also used a previously reported variant that fails to assemble DS filaments, FtsAM96E R153D, to investigate the roles of FtsA oligomeric states in divisome assembly and activation. We show that FtsAM96E R153D cannot form DS filaments in vivo, fails to replace native FtsA, and confers a dominant negative phenotype, underscoring the importance of the DS filament stage for FtsA function. Surprisingly, however, activation of the divisome through the ftsL* or ftsW* superfission alleles suppressed the dominant negative phenotype and rescued the functionallity of FtsAM96E R153D. Our results suggest that FtsA DS filaments are needed for divisome activation once it is assembled, but they are not essential for divisome assembly or guiding septum synthesis.
Collapse
Affiliation(s)
- Abbigale Perkins
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| | - Mwidy Sava Mounange-Badimi
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| | - William Margolin
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| |
Collapse
|
6
|
Ishikawa M, Hori K. The elimination of two restriction enzyme genes allows for electroporation-based transformation and CRISPR-Cas9-based base editing in the non-competent Gram-negative bacterium Acinetobacter sp. Tol 5. Appl Environ Microbiol 2024; 90:e0040024. [PMID: 38722179 PMCID: PMC11218613 DOI: 10.1128/aem.00400-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/06/2024] [Indexed: 06/19/2024] Open
Abstract
Environmental isolates are promising candidates for new chassis of synthetic biology because of their inherent capabilities, which include efficiently converting a wide range of substrates into valuable products and resilience to environmental stresses; however, many remain genetically intractable and unamenable to established genetic tools tailored for model bacteria. Acinetobacter sp. Tol 5, an environmentally isolated Gram-negative bacterium, possesses intriguing properties for use in synthetic biology applications. Despite the previous development of genetic tools for the engineering of strain Tol 5, its genetic manipulation has been hindered by low transformation efficiency via electroporation, rendering the process laborious and time-consuming. This study demonstrated the genetic refinement of the Tol 5 strain, achieving efficient transformation via electroporation. We deleted two genes encoding type I and type III restriction enzymes. The resulting mutant strain not only exhibited marked efficiency of electrotransformation but also proved receptive to both in vitro and in vivo DNA assembly technologies, thereby facilitating the construction of recombinant DNA without reliance on intermediate Escherichia coli constructs. In addition, we successfully adapted a CRISPR-Cas9-based base-editing platform developed for other Acinetobacter species. Our findings provide genetic modification strategies that allow for the domestication of environmentally isolated bacteria, streamlining their utilization in synthetic biology applications.IMPORTANCERecent synthetic biology has sought diverse bacterial chassis from environmental sources to circumvent the limitations of laboratory Escherichia coli strains for industrial and environmental applications. One of the critical barriers in cell engineering of bacterial chassis is their inherent resistance to recombinant DNA, propagated either in vitro or within E. coli cells. Environmental bacteria have evolved defense mechanisms against foreign DNA as a response to the constant threat of phage infection. The ubiquity of phages in natural settings accounts for the genetic intractability of environmental isolates. The significance of our research is in demonstrating genetic modification strategies for the cell engineering of such genetically intractable bacteria. This research marks a pivotal step in the domestication of environmentally isolated bacteria, promising candidates for emerging synthetic biology chassis. Our work thus significantly contributes to advancing their applications across industrial, environmental, and biomedical fields.
Collapse
Affiliation(s)
- Masahito Ishikawa
- Department of Frontier Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Nagoya, Japan
| |
Collapse
|
7
|
Suzuki S, Morita Y, Ishige S, Kai K, Kawasaki K, Matsushita K, Ogura K, Miyoshi-Akiyama† T, Shimizu T. Effects of quorum sensing-interfering agents, including macrolides and furanone C-30, and an efflux pump inhibitor on nitrosative stress sensitivity in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001464. [PMID: 38900549 PMCID: PMC11263931 DOI: 10.1099/mic.0.001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Long-term administration of certain macrolides is efficacious in patients with persistent pulmonary Pseudomonas aeruginosa infection, despite how limited the clinically achievable concentrations are, being far below their MICs. An increase in the sub-MIC of macrolide exposure-dependent sensitivity to nitrosative stress is a typical characteristic of P. aeruginosa. However, a few P. aeruginosa clinical isolates do not respond to sub-MIC of macrolide treatment. Therefore, we examined the effects of sub-MIC of erythromycin (EM) on the sensitivity to nitrosative stress together with an efflux pump inhibitor (EPI) phenylalanine arginyl β-naphthylamide (PAβN). The sensitivity to nitrosative stress increased, suggesting that the efflux pump was involved in inhibiting the sub-MIC of macrolide effect. Analysis using efflux pump-mutant P. aeruginosa revealed that MexAB-OprM, MexXY-OprM, and MexCD-OprJ are factors in reducing the sub-MIC of macrolide effect. Since macrolides interfere with quorum sensing (QS), we demonstrated that the QS-interfering agent furanone C-30 (C-30) producing greater sensitivity to nitric oxide (NO) stress than EM. The effect of C-30 was decreased by overproduction of MexAB-OprM. To investigate whether the increase in the QS-interfering agent exposure-dependent sensitivity to nitrosative stress is characteristic of P. aeruginosa clinical isolates, we examined the viability of P. aeruginosa treated with NO. Although treatment with EM could reduce cell viability, a high variability in EM effects was observed. Conversely, C-30 was highly effective at reducing cell viability. Treatment with both C-30 and PAβN was sufficiently effective against the remaining isolates. Therefore, the combination of a QS-interfering agent and an EPI could be effective in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Shin Suzuki
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Shota Ishige
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Kiyohiro Kai
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Kenji Kawasaki
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Kohei Ogura
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 6110011, Japan
| | - Tohru Miyoshi-Akiyama†
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Takeshi Shimizu
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| |
Collapse
|
8
|
Sakamoto Y, Sato S, Yoshida H, Takahashi M, Osakabe K, Muraguchi H. The exp2 gene, which encodes a protein with two zinc finger domains, regulates cap expansion and autolysis in Coprinopsis cinerea. Microbiol Res 2024; 283:127695. [PMID: 38554651 DOI: 10.1016/j.micres.2024.127695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Cap expansion in agaricoid mushroom species is an important event for sexual reproduction because meiosis occurs in basidia under the cap, and basidiospores can be released by opening the cap. However, molecular mechanisms underlying cap expansion in basidiomycetes remain poorly understood. We aimed to elucidate the molecular mechanisms of cap expansion in basidiomycetes by analyzing the unique cap-expansionless UV mutant #13 (exp2-1) in Coprinopsis cinerea. Linkage analysis and consequent genome sequence analysis revealed that the gene responsible for the mutant phenotypes encodes a putative transcription factor with two C2H2 zinc finger motifs. The mutant that was genome-edited to lack exp2 exhibited an expansionless phenotype. Some of the genes encoding cell wall degradation-related enzymes showed decreased expression during cap expansion and autolysis in the exp2 UV and genome-edited mutant. The exp2 gene is widely conserved in Agaricomycetes, suggesting that Exp2 homologs regulate fruiting body maturation in Agaricomycetes, especially cap expansion in Agaricoid-type mushroom-forming fungi. Therefore, exp2 homologs could be a target for mushroom breeding to maintain shape after harvest for some cultivating mushrooms, presenting a promising avenue for further research in breeding techniques.
Collapse
Affiliation(s)
- Yuichi Sakamoto
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan.
| | - Shiho Sato
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Hiroshi Yoshida
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Machiko Takahashi
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hajime Muraguchi
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Shimoshinjo, Akita 010-0195, Japan
| |
Collapse
|
9
|
Kozome D, Sljoka A, Laurino P. Remote loop evolution reveals a complex biological function for chitinase enzymes beyond the active site. Nat Commun 2024; 15:3227. [PMID: 38622119 PMCID: PMC11018821 DOI: 10.1038/s41467-024-47588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
Loops are small secondary structural elements that play a crucial role in the emergence of new enzyme functions. However, the evolutionary molecular mechanisms how proteins acquire these loop elements and obtain new function is poorly understood. To address this question, we study glycoside hydrolase family 19 (GH19) chitinase-an essential enzyme family for pathogen degradation in plants. By revealing the evolutionary history and loops appearance of GH19 chitinase, we discover that one loop which is remote from the catalytic site, is necessary to acquire the new antifungal activity. We demonstrate that this remote loop directly accesses the fungal cell wall, and surprisingly, it needs to adopt a defined structure supported by long-range intramolecular interactions to perform its function. Our findings prove that nature applies this strategy at the molecular level to achieve a complex biological function while maintaining the original activity in the catalytic pocket, suggesting an alternative way to design new enzyme function.
Collapse
Affiliation(s)
- Dan Kozome
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, 904-0495, Japan
| | - Adnan Sljoka
- Center for Advanced Intelligence Project, RIKEN, Tokyo, 103-0027, Japan
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, 904-0495, Japan.
- Institute for Protein Research, Osaka University, Suita, Japan.
| |
Collapse
|
10
|
Hikage R, Sekiya Y, Sawasato K, Nishiyama KI. CdsA, a CDP-diacylglycerol synthase involved in phospholipid and glycolipid MPIase biosynthesis, possesses multiple initiation codons. Genes Cells 2024; 29:347-355. [PMID: 38351722 PMCID: PMC11448367 DOI: 10.1111/gtc.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 04/04/2024]
Abstract
CdsA is a CDP-diacylglycerol synthase essential for phospholipid and glycolipid MPIase biosynthesis, and therefore for growth. The initiation codon of CdsA has been assigned as "TTG," while methionine at the 37th codon was reported to be an initiation codon in the original report. Since a vector containing the open reading frame starting with "TTG" under a controllable promoter complemented the cdsA knockout, "TTG" could function as an initiation codon. However, no evidence supporting that this "TTG" is the sole initiation codon has been reported. We determined the initiation codon by examining the ability of mutants around the N-terminal region to complement cdsA mutants. Even if the "TTG" was substituted with a stop codon, the clear complementation was observed. Moreover, the clones with multiple mutations of stop codons complemented the cdsA mutant up to the 37th codon, indicating that cdsA possesses multiple codons that can function as initiation codons. We constructed an experimental system in which the chromosomal expression of cdsA can be analyzed. By means of this system, we found that the cdsA mutant with substitution of "TTG" with a stop codon is fully functional. Thus, we concluded that CdsA contains multiple initiation codons.
Collapse
Affiliation(s)
- Runa Hikage
- Department of Applied Biological Chemistry, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yusei Sekiya
- Department of Applied Biological Chemistry, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Katsuhiro Sawasato
- Department of Applied Biological Chemistry, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Ken-Ichi Nishiyama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
11
|
Iida T, Igarashi A, Fukunaga K, Aoki T, Hidai T, Yanagi K, Yamamori M, Satou K, Go H, Kosho T, Maki R, Suzuki T, Nitta Y, Sugie A, Asaoka Y, Furutani-Seiki M, Kimura T, Matsubara Y, Kaname T. Functional analysis of RRAS2 pathogenic variants with a Noonan-like phenotype. Front Genet 2024; 15:1383176. [PMID: 38601074 PMCID: PMC11004488 DOI: 10.3389/fgene.2024.1383176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction: RRAS2, a member of the R-Ras subfamily of Ras-like low-molecular-weight GTPases, is considered to regulate cell proliferation and differentiation via the RAS/MAPK signaling pathway. Seven RRAS2 pathogenic variants have been reported in patients with Noonan syndrome; however, few functional analyses have been conducted. Herein, we report two patients who presented with a Noonan-like phenotype with recurrent and novel RRAS2 pathogenic variants (p.Gly23Val and p.Gly24Glu, respectively) and the results of their functional analysis. Materials and methods: Wild-type (WT) and mutant RRAS2 genes were transiently expressed in Human Embryonic Kidney293 cells. Expression of RRAS2 and phosphorylation of ERK1/2 were confirmed by Western blotting, and the RAS signaling pathway activity was measured using a reporter assay system with the serum response element-luciferase construct. WT and p.Gly23Val RRAS2 were expressed in Drosophila eye using the glass multiple reporter-Gal4 driver. Mutant mRNA microinjection into zebrafish embryos was performed, and the embryo jaws were observed. Results: No obvious differences in the expression of proteins WT, p.Gly23Val, and p.Gly24Glu were observed. The luciferase reporter assay showed that the activity of p.Gly23Val was 2.45 ± 0.95-fold higher than WT, and p.Gly24Glu was 3.06 ± 1.35-fold higher than WT. For transgenic flies, the p.Gly23Val expression resulted in no adults flies emerging, indicating lethality. For mutant mRNA-injected zebrafish embryos, an oval shape and delayed jaw development were observed compared with WT mRNA-injected embryos. These indicated hyperactivity of the RAS signaling pathway. Discussion: Recurrent and novel RRAS2 variants that we reported showed increased in vitro or in vivo RAS signaling pathway activity because of gain-of-function RRAS2 variants. Clinical features are similar to those previously reported, suggesting that RRAS2 gain-of-function variants cause this disease in patients.
Collapse
Affiliation(s)
- Takaya Iida
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Arisa Igarashi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kae Fukunaga
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Taiga Aoki
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tomomi Hidai
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Masahiko Yamamori
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuhito Satou
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Hayato Go
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryuto Maki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yohei Nitta
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Yoichi Asaoka
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Makoto Furutani-Seiki
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Tetsuaki Kimura
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Japan
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | | | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
12
|
Nishikawa S, Sato G, Takada S, Kohyama S, Honda G, Yanagisawa M, Hori Y, Doi N, Yoshinaga N, Fujiwara K. Multimolecular Competition Effect as a Modulator of Protein Localization and Biochemical Networks in Cell-Size Space. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308030. [PMID: 38054641 PMCID: PMC10853730 DOI: 10.1002/advs.202308030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Cells are small, closed spaces filled with various types of macromolecules. Although it is shown that the characteristics of biochemical reactions in vitro are quite different from those in living cells, the role of the co-existence of various macromolecules in cell-size space remains still elusive. Here, using a constructive approach, it is demonstrated that the co-existence of various macromolecules themselves has the ability to tune protein localization for spatiotemporal regulation and a biochemical reaction system in a cell-size space. Both experimental and theoretical analyses reveal that enhancement of interfacial effects by a large surface-area-to-volume ratio facilitates membrane localization of molecules in the cell-size space, and the interfacial effects are alleviated by competitive binding to lipid membranes among multiple proteins even if their membrane affinities are weak. These results indicate that competition for membrane binding among various macromolecules in the cell-size space plays a role in regulating the spatiotemporal molecular organization and biochemical reaction networks. These findings shed light on the importance of surrounding molecules for biochemical reactions using purified elements in small spaces.
Collapse
Affiliation(s)
- Saki Nishikawa
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Gaku Sato
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Sakura Takada
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Shunshi Kohyama
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
- Present address:
Department for Cellular and Molecular BiophysicsMax Planck Institute for BiochemistryAm Klopferspitz 18D‐82152MartinsriedGermany
| | - Gen Honda
- Komaba Institute for ScienceGraduate School of Arts and SciencesThe University of TokyoKomaba 3‐8‐1MeguroTokyo153‐8902Japan
| | - Miho Yanagisawa
- Komaba Institute for ScienceGraduate School of Arts and SciencesThe University of TokyoKomaba 3‐8‐1MeguroTokyo153‐8902Japan
- Graduate School of ScienceThe University of TokyoHongo 7‐3‐1BunkyoTokyo113‐0033Japan
- Center for Complex Systems BiologyUniversal Biology InstituteThe University of TokyoKomaba 3‐8‐1MeguroTokyo153‐8902Japan
| | - Yutaka Hori
- Department of Applied Physics and Physico‐informaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Nobuhide Doi
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Natsuhiko Yoshinaga
- WPI Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversityKatahira 2‐1‐1, Aoba‐KuSendai980‐8577Japan
- MathAM‐OILAISTSendai980‐8577Japan
| | - Kei Fujiwara
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| |
Collapse
|
13
|
Nakano K, Okamoto M, Takahashi-Nakaguchi A, Sasamoto K, Yamaguchi M, Chibana H. Evaluation of Antifungal Selective Toxicity Using Candida glabrata ERG25 and Human SC4MOL Knock-In Strains. J Fungi (Basel) 2023; 9:1035. [PMID: 37888291 PMCID: PMC10607794 DOI: 10.3390/jof9101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
With only four classes of antifungal drugs available for the treatment of invasive systemic fungal infections, the number of resistant fungi is increasing, highlighting the urgent need for novel antifungal drugs. Ergosterol, an essential component of cell membranes, and its synthetic pathway have been targeted for antifungal drug development. Sterol-C4-methyl monooxygenase (Erg25p), which is a greater essential target than that of existing drugs, represents a promising drug target. However, the development of antifungal drugs must consider potential side effects, emphasizing the importance of evaluating their selective toxicity against fungi. In this study, we knocked in ERG25 of Candida glabrata and its human ortholog, SC4MOL, in ERG25-deleted Saccharomyces cerevisiae. Utilizing these strains, we evaluated 1181-0519, an Erg25p inhibitor, that exhibited selective toxicity against the C. glabrata ERG25 knock-in strain. Furthermore, 1181-0519 demonstrated broad-spectrum antifungal activity against pathogenic Candida species, including Candida auris. The approach of utilizing a gene that is functionally conserved between yeast and humans and subsequently screening for molecular target drugs enables the identification of selective inhibitors for both species.
Collapse
Affiliation(s)
- Keiko Nakano
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Michiyo Okamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | | | - Kaname Sasamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
- School of Medicine, Niigata University, Niigata 951-8510, Japan
- Faculty of Medicine, University of the Ryukyus, Okinawa 903-0125, Japan
| |
Collapse
|
14
|
Makeeva A, Muzaev D, Shubert M, Ianshina T, Sidorin A, Sambuk E, Rumyantsev A, Padkina M. Alternative PCR-Based Approaches for Generation of Komagataella phaffii Strains. Microorganisms 2023; 11:2297. [PMID: 37764140 PMCID: PMC10536657 DOI: 10.3390/microorganisms11092297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Komagataella phaffii (Pichia pastoris) is a widely known microbial host for recombinant protein production and an emerging model organism in fundamental research. The development of new materials and techniques on this yeast improves heterologous protein synthesis. One of the most prominent ways to enhance protein production efficiency is to select K. phaffii strains with multiple expression cassettes and generate MutS strains using various vectors. In this study, we demonstrate approaches to expand the applications of pPICZ series vectors. Procedures based on PCR amplification and in vivo cloning allow rapid exchange of selectable markers. The combination of PCR amplification with split-marker-mediated transformation allows the development of K. phaffii MutS strains with two expression cassettes using pPICZ vectors. Both PCR-based approaches were applied to efficiently produce interleukin-2 mimetic Neo-2/15 in K. phaffii. The described techniques provide alternative ways to generate and improve K. phaffii strains without the need for obtaining new specific vectors or additional cloning of expression cassettes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrey Rumyantsev
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| | - Marina Padkina
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| |
Collapse
|
15
|
Liu AY, Koga H, Goya C, Kitabatake M. Quick and affordable DNA cloning by reconstitution of Seamless Ligation Cloning Extract using defined factors. Genes Cells 2023; 28:553-562. [PMID: 37132531 DOI: 10.1111/gtc.13034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/04/2023]
Abstract
The cloning of DNA fragments to plasmid vectors is at the heart of molecular biology. Recent developments have led to various methods utilizing homologous recombination of homology arms. Among them, Seamless Ligation Cloning Extract (SLiCE) is an affordable alternative solution that uses simple Escherichia coli lysates. However, the underlying molecular mechanisms remain unclear and the reconstitution of the extract by defined factors has not yet been reported. We herein show that the key factor in SLiCE is Exonuclease III (ExoIII), a double-strand (ds) DNA-dependent 3'-5' exonuclease, encoded by XthA. SLiCE prepared from the xthAΔ strain is devoid of recombination activity, whereas purified ExoIII alone is sufficient to assemble two blunt-ended dsDNA fragments with homology arms. In contrast to SLiCE, ExoIII is unable to digest (or assemble) fragments with 3' protruding ends; however, the addition of single-strand DNA-targeting Exonuclease T overcomes this issue. Through the combination of commercially available enzymes under optimized conditions, we achieved the efficient, reproducible, and affordable cocktail, "XE cocktail," for seamless DNA cloning. By reducing the cost and time required for DNA cloning, researchers will devote more resources to advanced studies and the careful validation of their own findings.
Collapse
Affiliation(s)
- Alexander Y Liu
- Laboratory of RNA Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroto Koga
- Laboratory of RNA Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chihiro Goya
- Laboratory of RNA Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Makoto Kitabatake
- Laboratory of RNA Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Xiong X, Lu Z, Ma L, Zhai C. Applications of Programmable Endonucleases in Sequence- and Ligation-Independent Seamless DNA Assembly. Biomolecules 2023; 13:1022. [PMID: 37509059 PMCID: PMC10377497 DOI: 10.3390/biom13071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Programmable endonucleases, such as Cas (Clustered Regularly-Interspaced Short Repeats-associated proteins) and prokaryotic Argonaute (pAgo), depend on base pairing of the target DNA with the guide RNA or DNA to cleave DNA strands. Therefore, they are capable of recognizing and cleaving DNA sequences at virtually any arbitrary site. The present review focuses on the commonly used in vivo and in vitro recombination-based gene cloning methods and the application of programmable endonucleases in these sequence- and ligation-independent DNA assembly methods. The advantages and shortcomings of the programmable endonucleases utilized as tools for gene cloning are also discussed in this review.
Collapse
Affiliation(s)
- Xingchen Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhiwen Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
17
|
Tounosu N, Sesoko K, Hori K, Shimojima M, Ohta H. Cis-regulatory elements and transcription factors related to auxin signaling in the streptophyte algae Klebsormidium nitens. Sci Rep 2023; 13:9635. [PMID: 37322074 PMCID: PMC10272232 DOI: 10.1038/s41598-023-36500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
The phytohormone auxin affects numerous processes in land plants. The central auxin signaling machinery, called the nuclear auxin pathway, is mediated by its pivotal receptor named TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB). The nuclear auxin pathway is widely conserved in land plants, but auxin also accumulates in various algae. Although auxin affects the growth of several algae, the components that mediate auxin signaling have not been identified. We previously reported that exogenous auxin suppresses cell proliferation in the Klebsormidium nitens that is a member of streptophyte algae, a paraphyletic group sharing the common ancestor with land plants. Although K. nitens lacks TIR1/AFB, auxin affects the expression of numerous genes. Thus, elucidation of the mechanism of auxin-inducible gene expression in K. nitens would provide important insights into the evolution of auxin signaling. Here, we show that some motifs are enriched in the promoter sequences of auxin-inducible genes in K. nitens. We also found that the transcription factor KnRAV activates several auxin-inducible genes and directly binds the promoter of KnLBD1, a representative auxin-inducible gene. We propose that KnRAV has the potential to regulate auxin-responsive gene expression in K. nitens.
Collapse
Affiliation(s)
- Noriaki Tounosu
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-65, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Kanami Sesoko
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-65, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-65, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-65, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-65, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
18
|
Kunoh T, Yamamoto T, Ono E, Sugimoto S, Takabe K, Takeda M, Utada AS, Nomura N. Identification of lthB, a Gene Encoding a Putative Glycosyltransferase Family 8 Protein Required for Leptothrix Sheath Formation. Appl Environ Microbiol 2023; 89:e0191922. [PMID: 36951572 PMCID: PMC10132092 DOI: 10.1128/aem.01919-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023] Open
Abstract
The bacterium Leptothrix cholodnii generates cell chains encased in sheaths that are composed of woven nanofibrils. The nanofibrils are mainly composed of glycoconjugate repeats, and several glycosyltransferases (GTs) are required for its biosynthesis. However, only one GT (LthA) has been identified to date. In this study, we screened spontaneous variants of L. cholodnii SP6 to find those that form smooth colonies, which is one of the characteristics of sheathless variants. Genomic DNA sequencing of an isolated variant revealed an insertion in the locus Lcho_0972, which encodes a putative GT family 8 protein. We thus designated this protein LthB and characterized it using deletion mutants and antibodies. LthB localized adjacent to the cell envelope. ΔlthB cell chains were nanofibril free and thus sheathless, indicating that LthB is involved in nanofibril biosynthesis. Unlike the ΔlthA mutant and the wild-type strain, which often generate planktonic cells, most ΔlthB organisms presented as long cell chains under static conditions, resulting in deficient pellicle formation, which requires motile planktonic cells. These results imply that sheaths are not required for elongation of cell chains. Finally, calcium depletion, which induces cell chain breakage due to sheath loss, abrogated the expression of LthA, but not LthB, suggesting that these GTs cooperatively participate in glycoconjugate biosynthesis under different signaling controls. IMPORTANCE In recent years, the regulation of cell chain elongation of filamentous bacteria via extracellular signals has attracted attention as a potential strategy to prevent clogging of water distribution systems and filamentous bulking of activated sludge in industrial settings. However, a fundamental understanding of the ecology of filamentous bacteria remains elusive. Since sheath formation is associated with cell chain elongation in most of these bacteria, the molecular mechanisms underlying nanofibril sheath formation, including the intracellular signaling cascade in response to extracellular stimuli, must be elucidated. Here, we isolated a sheathless variant of L. cholodnii SP6 and thus identified a novel glycosyltransferase, LthB. Although mutants with deletions of lthA, encoding another GT, and lthB were both defective for nanofibril formation, they exhibited different phenotypes of cell chain elongation and pellicle formation. Moreover, LthA expression, but not LthB expression, was influenced by extracellular calcium, which is known to affect nanofibril formation, indicating the functional diversities of LthA and LthB. Such molecular insights are critical for a better understanding of ecology of filamentous bacteria, which, in turn, can be used to improve strategies to control filamentous bacteria in industrial facilities.
Collapse
Affiliation(s)
- Tatsuki Kunoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tatsuya Yamamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Erika Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinya Sugimoto
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kyosuke Takabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Minoru Takeda
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Andrew S. Utada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
19
|
Shishiuchi R, Kang H, Tagami T, Ueda Y, Lang W, Kimura A, Okuyama M. Discovery of α-l-Glucosidase Raises the Possibility of α-l-Glucosides in Nature. ACS OMEGA 2022; 7:47411-47423. [PMID: 36570207 PMCID: PMC9774334 DOI: 10.1021/acsomega.2c06991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Glucose, a common monosaccharide in nature, is dominated by the d-enantiomer. Meanwhile, the discovery of l-glucose-utilizing bacteria and the elucidation of their metabolic pathways 10 years ago suggests that l-glucose exists naturally. Most carbohydrates exist as glycosides rather than monosaccharides; therefore, we expected that nature also contains l-glucosides. Sequence analysis within glycoside hydrolase family 29 led us to identify two α-l-glucosidases, ClAgl29A and ClAgl29B, derived from Cecembia lonarensis LW9. ClAgl29A and ClAgl29B exhibited higher K m, k cat, and k cat/K m values for p-nitrophenyl α-l-glucoside than that for p-nitrophenyl α-l-fucoside. Structural analysis of ClAgl29B in complex with l-glucose showed that these enzymes have an active-site pocket that preferentially binds α-l-glucoside, but excludes α-l-fucoside. These results suggest that ClAgl29A and ClAgl29B evolved to hydrolyze α-l-glucoside, implying the existence of α-l-glucoside in nature. Furthermore, α-l-glucosidic linkages (α-l-Glc-(1 → 3)-l-Glc, α-l-Glc-(1 → 2)-l-Glc, and α-l-Glc-(1 → 6)-l-Glc) were synthesized by the transglucosylation activity of ClAgl29A and ClAgl29B. We believe that this study will lead to new research on α-l-glucosides, including determining the physiological effects on humans, and the discovery of novel α-l-glucoside-related enzymes.
Collapse
|
20
|
Nozaki S. Rapid and Accurate Assembly of Large DNA Assisted by In Vitro Packaging of Bacteriophage. ACS Synth Biol 2022; 11:4113-4122. [PMID: 36446634 PMCID: PMC9764419 DOI: 10.1021/acssynbio.2c00419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Development of DNA assembly methods made it possible to construct large DNA. However, achieving a large DNA assembly easily, accurately, and at a low cost remains a challenge. This study shows that DNA assembled only by annealing of overlapping single-stranded DNA ends, which are generated by exonuclease treatment, without ligation can be packaged in phage particles and can also be transduced into bacterial cells. Based on this, I developed a simple method to construct long DNA of about 40-50 kb from five to ten PCR fragments using the bacteriophage in vitro packaging system. This method, namely, iPac (in vitro Packaging-assisted DNA assembly), allowed accurate and rapid construction of large plasmids and phage genomes. This simple method will accelerate research in molecular and synthetic biology, including the construction of gene circuits or the engineering of metabolic pathways.
Collapse
Affiliation(s)
- Shingo Nozaki
- Department
of Life Science, College of Science, Rikkyo
University, Tokyo 171-8501, Japan,Graduate
School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8527, Japan,
| |
Collapse
|
21
|
Porous Pellicle Formation of a Filamentous Bacterium, Leptothrix. Appl Environ Microbiol 2022; 88:e0134122. [PMID: 36416549 PMCID: PMC9746318 DOI: 10.1128/aem.01341-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The bacterium Leptothrix cholodnii generates filaments encased in a sheath comprised of woven nanofibrils. In static liquid culture, L. cholodnii moves toward the air-liquid interface, where it forms porous pellicles. Observations of aggregation at the interface reveal that clusters consisting of only a few bacteria primarily grow by netting free cells. These growing clusters hierarchically enlarge through the random docking of other small clusters. We find that the bacteria swim using their polar flagellum toward the interface, where their sheath assists them in intertwining with others and thereby promotes the formation of small clusters. In contrast, sheathless hydrophobic mutant cells get stuck to the interface. We find that the nanofibril sheath is vital for robust pellicle formation as it lowers cell surface hydrophobicity by 60%, thereby reducing their adsorption and enabling cells to move toward and stick together at the air-liquid interface. IMPORTANCE Efficient and sustainable management of water resources is becoming a fundamental issue for supporting growing populations and for developing economic activity. Fundamental to this management is the treatment of wastewater. Microorganisms are the active component of activated sludge that is employed in the biodegradation process of many wastewater treatment facilities. However, uncontrolled growth of filamentous bacteria such as Sphaerotilus often results in filamentous bulking, lowering the efficiency of water treatment systems. To prevent this undesirable condition, strategies based on a fundamental understanding of the ecology of filamentous bacteria are required. Although the filamentous bacterium Leptothrix cholodnii, which is closely related to Sphaerotilus, is a minor inhabitant of activated sludge, its complete genome sequence is known, making gene manipulation relatively easy. Moreover, L. cholodnii generates porous pellicles under static conditions, which may be a characteristic of filamentous bulking. We show that both swimming motility and nanofibril-mediated air-liquid interface attachment are required for porous pellicle formation. These insights are critical for a better understanding of the characteristics of filamentous bulking and might improve strategies to control activated sludge.
Collapse
|
22
|
Mashruwala AA, Qin B, Bassler BL. Quorum-sensing- and type VI secretion-mediated spatiotemporal cell death drives genetic diversity in Vibrio cholerae. Cell 2022; 185:3966-3979.e13. [PMID: 36167071 PMCID: PMC9623500 DOI: 10.1016/j.cell.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/03/2022] [Accepted: 08/31/2022] [Indexed: 01/26/2023]
Abstract
Bacterial colonies composed of genetically identical individuals can diversify to yield variant cells with distinct genotypes. Variant outgrowth manifests as sectors. Here, we show that Type VI secretion system (T6SS)-driven cell death in Vibrio cholerae colonies imposes a selective pressure for the emergence of variant strains that can evade T6SS-mediated killing. T6SS-mediated cell death occurs in two distinct spatiotemporal phases, and each phase is driven by a particular T6SS toxin. The first phase is regulated by quorum sensing and drives sectoring. The second phase does not require the T6SS-injection machinery. Variant V. cholerae strains isolated from colony sectors encode mutated quorum-sensing components that confer growth advantages by suppressing T6SS-killing activity while simultaneously boosting T6SS-killing defenses. Our findings show that the T6SS can eliminate sibling cells, suggesting a role in intra-specific antagonism. We propose that quorum-sensing-controlled T6SS-driven killing promotes V. cholerae genetic diversity, including in natural habitats and during disease.
Collapse
Affiliation(s)
- Ameya A. Mashruwala
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Boyang Qin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA,Lead Contact,Correspondence:
| |
Collapse
|
23
|
Past, Present, and Future of Genome Modification in Escherichia coli. Microorganisms 2022; 10:microorganisms10091835. [PMID: 36144436 PMCID: PMC9504249 DOI: 10.3390/microorganisms10091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
Escherichia coli K-12 is one of the most well-studied species of bacteria. This species, however, is much more difficult to modify by homologous recombination (HR) than other model microorganisms. Research on HR in E. coli has led to a better understanding of the molecular mechanisms of HR, resulting in technical improvements and rapid progress in genome research, and allowing whole-genome mutagenesis and large-scale genome modifications. Developments using λ Red (exo, bet, and gam) and CRISPR-Cas have made E. coli as amenable to genome modification as other model microorganisms, such as Saccharomyces cerevisiae and Bacillus subtilis. This review describes the history of recombination research in E. coli, as well as improvements in techniques for genome modification by HR. This review also describes the results of large-scale genome modification of E. coli using these technologies, including DNA synthesis and assembly. In addition, this article reviews recent advances in genome modification, considers future directions, and describes problems associated with the creation of cells by design.
Collapse
|
24
|
Tsugita A, Uehara S, Matsui T, Yokoyama T, Ostash I, Deneka M, Yalamanchili S, Bennett CS, Tanaka Y, Ostash B. The carbohydrate tail of landomycin A is responsible for its interaction with the repressor protein LanK. FEBS J 2022; 289:6038-6057. [DOI: 10.1111/febs.16460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Atsushi Tsugita
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Shiro Uehara
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Takashi Matsui
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Takeshi Yokoyama
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Iryna Ostash
- Department of Genetics and Biotechnology Ivan Franko National University of Lviv Ukraine
| | - Maksym Deneka
- Department of Genetics and Biotechnology Ivan Franko National University of Lviv Ukraine
| | | | | | - Yoshikazu Tanaka
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Bohdan Ostash
- Department of Genetics and Biotechnology Ivan Franko National University of Lviv Ukraine
| |
Collapse
|
25
|
Pang Q, Ma S, Han H, Jin X, Liu X, Su T, Qi Q. Phage Enzyme-Assisted Direct In Vivo DNA Assembly in Multiple Microorganisms. ACS Synth Biol 2022; 11:1477-1487. [PMID: 35298132 DOI: 10.1021/acssynbio.1c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The assembly of DNA fragments is extremely important for molecular biology. Increasing numbers of studies have focused on streamlining the laborious and costly protocols via in vivo DNA assembly. However, the existing methods were mainly developed for Escherichia coli or Saccharomyces cerevisiae, whereas there are few direct in vivo DNA assembly methods for other microorganisms. The use of shuttle vectors and tedious plasmid extraction and transformation procedures make DNA cloning in other microorganisms laborious and inefficient, especially for DNA library construction. In this study, we developed a "phage enzyme-assisted in vivo DNA assembly" (PEDA) method via combinatorial expression of T5 exonuclease and T4 DNA ligase. PEDA facilitated the in vivo assembly of DNA fragments with homologous sequences as short as 5 bp, and it is applicable to multiple microorganisms, such as Ralstonia eutropha, Pseudomonas putida, Lactobacillus plantarum, and Yarrowia lipolytica. The cloning efficiency of optimized PEDA is much higher than that of the existing in vivo DNA assembly methods and comparable to that of in vitro DNA assembly, making it extremely suitable for DNA library cloning. Collectively, PEDA will boost the application of in vivo DNA assembly in various microorganisms.
Collapse
Affiliation(s)
- Qingxiao Pang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Shuai Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Hao Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Xin Jin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Xiaoqin Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| |
Collapse
|
26
|
Single 3′-exonuclease-based multifragment DNA assembly method (SENAX). Sci Rep 2022; 12:4004. [PMID: 35256704 PMCID: PMC8901738 DOI: 10.1038/s41598-022-07878-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractDNA assembly is a vital process in biotechnology and synthetic biology research, during which DNA plasmids are designed and constructed using bioparts to engineer microorganisms for a wide range of applications. Here, we present an enzymatic homology-based DNA assembly method, SENAX (Stellar ExoNuclease Assembly miX), that can efficiently assemble multiple DNA fragments at ambient temperature from 30 to 37 °C and requires homology overlap as short as 12–18 base pairs. SENAX relies only on a 3′–5′ exonuclease, XthA (ExoIII), followed by Escherichia coli transformation, enabling easy scaling up and optimization. Importantly, SENAX can efficiently assemble short fragments down to 70 bp into a vector, overcoming a key shortcoming of existing commonly used homology-based technologies. To the best of our knowledge, this has not been reported elsewhere using homology-based methods. This advantage leads us to develop a framework to perform DNA assembly in a more modular manner using reusable promoter-RBS short fragments, simplifying the construction process and reducing the cost of DNA synthesis. This approach enables commonly used short bioparts (e.g., promoter, RBS, insulator, terminator) to be reused by the direct assembly of these parts into intermediate constructs. SENAX represents a novel accurate, highly efficient, and automation-friendly DNA assembly method.
Collapse
|
27
|
Ichikawa S, Ito D, Asaoka S, Abe R, Katsuo N, Ito T, Ito D, Karita S. The expression of alternative sigma-I7 factor induces the transcription of cellulosomal genes in the cellulolytic bacterium Clostridium thermocellum. Enzyme Microb Technol 2022; 156:110002. [DOI: 10.1016/j.enzmictec.2022.110002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 01/07/2023]
|
28
|
Ishibashi Y, Matsushima N, Ito T, Hemmi H. Isopentenyl diphosphate/dimethylallyl diphosphate-specific Nudix hydrolase from the methanogenic archaeon Methanosarcina mazei. Biosci Biotechnol Biochem 2022; 86:246-253. [PMID: 34864834 DOI: 10.1093/bbb/zbab205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 11/12/2022]
Abstract
Nudix hydrolases typically catalyze the hydrolysis of nucleoside diphosphate linked to moiety X and yield nucleoside monophosphate and X-phosphate, while some of them hydrolyze a terminal diphosphate group of non-nucleosidic compounds and convert it into a phosphate group. Although the number of Nudix hydrolases is usually limited in archaea comparing with those in bacteria and eukaryotes, the physiological functions of most archaeal Nudix hydrolases remain unknown. In this study, a Nudix hydrolase family protein, MM_2582, from the methanogenic archaeon Methanosarcina mazei was recombinantly expressed in Escherichia coli, purified, and characterized. This recombinant protein shows higher hydrolase activity toward isopentenyl diphosphate and short-chain prenyl diphosphates than that toward nucleosidic compounds. Kinetic studies demonstrated that the archaeal enzyme prefers isopentenyl diphosphate and dimethylallyl diphosphate, which suggests its role in the biosynthesis of prenylated flavin mononucleotide, a recently discovered coenzyme that is required, for example, in the archaea-specific modified mevalonate pathway.
Collapse
Affiliation(s)
- Yumi Ishibashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Natsumi Matsushima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Tomokazu Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Hisashi Hemmi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
29
|
Yamamoto T, Hasegawa Y, Iwaki H. Identification and characterization of a novel class of self-sufficient cytochrome P450 hydroxylase involved in cyclohexanecarboxylate degradation in Paraburkholderia terrae strain KU-64. Biosci Biotechnol Biochem 2022; 86:199-208. [PMID: 34965585 DOI: 10.1093/bbb/zbab199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 11/14/2022]
Abstract
Cytochrome P450 monooxygenases play important roles in metabolism. Here, we report the identification and biochemical characterization of P450CHC, a novel self-sufficient cytochrome P450, from cyclohexanecarboxylate-degrading Paraburkholderia terrae KU-64. P450CHC was found to comprise a [2Fe-2S] ferredoxin domain, NAD(P)H-dependent FAD-containing reductase domain, FCD domain, and cytochrome P450 domain (in that order from the N terminus). Reverse transcription-polymerase chain reaction results indicated that the P450CHC-encoding chcA gene was inducible by cyclohexanecarboxylate. chcA overexpression in Escherichia coli and recombinant protein purification enabled functional characterization of P450CHC as a catalytically self-sufficient cytochrome P450 that hydroxylates cyclohexanecarboxylate. Kinetic analysis indicated that P450CHC largely preferred NADH (Km = 0.011 m m) over NADPH (Km = 0.21 m m). The Kd, Km, and kcat values for cyclohexanecarboxylate were 0.083 m m, 0.084 m m, and 15.9 s-1, respectively. The genetic and biochemical analyses indicated that the physiological role of P450CHC is initial hydroxylation in the cyclohexanecarboxylate degradation pathway.
Collapse
Affiliation(s)
- Taisei Yamamoto
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Yoshie Hasegawa
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Hiroaki Iwaki
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| |
Collapse
|
30
|
Ogawa H, Fujikura D, Namba H, Yamashita N, Honda T, Yamada M. Nectin-2 Acts as a Viral Entry Mediated Molecule That Binds to Human Herpesvirus 6B Glycoprotein B. Viruses 2022; 14:v14010160. [PMID: 35062364 PMCID: PMC8779676 DOI: 10.3390/v14010160] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Human herpesvirus 6B (HHV-6B) is a T-lymphotropic virus and the etiological agent of exanthem subitum. HHV-6B is present in a latent or persistent form after primary infection and is produced in the salivary glands or transmitted to this organ. Infected individuals continue to secrete the virus in their saliva, which is thus considered a source for virus transmission. HHV-6B primarily propagates in T cells because its entry receptor, CD134, is mainly expressed by activated T cells. The virus then spreads to the host’s organs, including the salivary glands, nervous system, and liver. However, CD134 expression is not detected in these organs. Therefore, HHV-6B may be entering cells via a currently unidentified cell surface molecule, but the mechanisms for this have not yet been investigated. In this study, we investigated a CD134-independent virus entry mechanism in the parotid-derived cell line HSY. First, we confirmed viral infection in CD134-membrane unanchored HSY cells. We then determined that nectin cell adhesion molecule 2 (nectin-2) mediated virus entry and that HHV-6B-insensitive T-cells transduced with nectin-2 were transformed into virus-permissive cells. We also found that virus entry was significantly reduced in nectin-2 knockout parotid-derived cells. Furthermore, we showed that HHV-6B glycoprotein B (gB) interacted with the nectin-2 V-set domain. The results suggest that nectin-2 acts as an HHV-6B entry-mediated protein.
Collapse
Affiliation(s)
- Hirohito Ogawa
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (H.N.); (N.Y.); (T.H.)
- Correspondence: (H.O.); (M.Y.)
| | - Daisuke Fujikura
- School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada 034-8628, Japan;
| | - Hikaru Namba
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (H.N.); (N.Y.); (T.H.)
| | - Nobuko Yamashita
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (H.N.); (N.Y.); (T.H.)
| | - Tomoyuki Honda
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (H.N.); (N.Y.); (T.H.)
| | - Masao Yamada
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (H.N.); (N.Y.); (T.H.)
- Correspondence: (H.O.); (M.Y.)
| |
Collapse
|
31
|
Dilimulati K, Orita M, Yonahara Y, Imai FL, Yonezawa N. Identification of Sperm-Binding Sites in the N-Terminal Domain of Bovine Egg Coat Glycoprotein ZP4. Int J Mol Sci 2022; 23:ijms23020762. [PMID: 35054946 PMCID: PMC8775842 DOI: 10.3390/ijms23020762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 11/16/2022] Open
Abstract
The species-selective interaction between sperm and egg at the beginning of mammalian fertilisation is partly mediated by a transparent envelope called the zona pellucida (ZP). The ZP is composed of three or four glycoproteins (ZP1-ZP4). The functions of the three proteins present in mice (ZP1-ZP3) have been extensively studied. However, the biological role of ZP4, which was found in all other mammals studied so far, has remained largely unknown. Previously, by developing a solid support assay system, we showed that ZP4 exhibits sperm-binding activity in bovines and the N-terminal domain of bovine ZP4 (bZP4 ZP-N1 domain) is a sperm-binding region. Here, we show that bovine sperm bind to the bZP4 ZP-N1 domain in a species-selective manner and that N-glycosylation is not required for sperm-binding activity. Moreover, we identified three sites involved in sperm binding (site I: from Gln-41 to Pro-46, site II: from Leu-65 to Ser-68 and site III: from Thr-108 to Ile-123) in the bZP4 ZP-N1 domain using chimeric bovine/porcine and bovine/human ZP4 recombinant proteins. These results provide in vitro experimental evidence for the role of the bZP4 ZP-N1 domain in mediating sperm binding to the ZP.
Collapse
Affiliation(s)
- Kamila Dilimulati
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (K.D.); (M.O.); (F.L.I.)
| | - Misaki Orita
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (K.D.); (M.O.); (F.L.I.)
| | - Yoshiki Yonahara
- Department of Chemistry, Faculty of Science, Chiba University, Chiba 263-8522, Japan;
| | - Fabiana Lica Imai
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (K.D.); (M.O.); (F.L.I.)
| | - Naoto Yonezawa
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (K.D.); (M.O.); (F.L.I.)
- Correspondence:
| |
Collapse
|
32
|
Kohga H, Saito Y, Kanamaru M, Uchiyama J, Ohta H. The lack of the cell division protein FtsZ induced generation of giant cells under acidic stress in cyanobacterium Synechocystis sp. PCC6803. PHOTOSYNTHESIS RESEARCH 2021; 150:343-356. [PMID: 33146872 DOI: 10.1007/s11120-020-00792-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Bacteria exposed to environmental stresses often exhibit superior acclimation abilities to environmental change. Acid treatment causes an increase in the cell length of the cyanobacterium Synechocystis sp. PCC6803 under light conditions. We aimed to elucidate the relationship between acidic stress and cell enlargement. After being synchronized under dark conditions, the cells were cultivated at different pH (pH 8.0 or pH 6.0) levels under light conditions. Synechocystis 6803 cells exhibited only cell growth occurred (cell volume expansion) and slow proliferation under the acidic condition. In the recovery experiment of the enlarged cells, they proliferated normally at pH 8.0, and the cell lengths decreased to the normal cell size under light conditions. Inhibition of cell division might be caused by acidic stress. To understand the effect of acidic stress on cell division, we evaluated the expression of FtsZ via Western blotting. The FtsZ concentration in cells was lower at pH 6.0 than at pH 8.0 and was not sufficient for cell division in the photoautotrophic conditions. ClpXP is well known as a regulator of the Z-ring dynamics in E. coli. The transcriptional level of four clpXP genes was upregulated approximately threefold at pH 6.0 after 24 h compared with that in cells grown at pH 8.0. The lack of FtsZ may be caused by the upregulation of clpXP expression under acidic condition. Therefore, ClpXP may participate in the degradation of FtsZ and be involved in the regulation of cell division via FtsZ under acidic stress in Synechocystis 6803.
Collapse
Affiliation(s)
- Hidetaka Kohga
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yoshikazu Saito
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Mirai Kanamaru
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Junji Uchiyama
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Department of Biology, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Hisataka Ohta
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
- Department of Biology, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
| |
Collapse
|
33
|
Yamamoto T, Hasegawa Y, Lau PCK, Iwaki H. Identification and characterization of a chc gene cluster responsible for the aromatization pathway of cyclohexanecarboxylate degradation in Sinomonas cyclohexanicum ATCC 51369. J Biosci Bioeng 2021; 132:621-629. [PMID: 34583900 DOI: 10.1016/j.jbiosc.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022]
Abstract
Cyclohexanecarboxylate (CHCA) is formed by oxidative microbial degradation of n-alkylcycloparaffins and anaerobic degradation of benzoate, and also known to be a synthetic intermediate or the starter unit of biosynthesis of cellular constituents and secondary metabolites. Although two degradation pathways have been proposed, genetic information has been limited to the β-oxidation-like pathway. In this study, we identified a gene cluster, designated chcC1XTC2B1B2RAaAbAc, that is responsible for the CHCA aromatization pathway in Sinomonas (formerly Corynebacterium) cyclohexanicum strain ATCC 51369. Reverse transcription-PCR analysis indicated that the chc gene cluster is inducible by CHCA and that it consists of two transcriptional units, chcC1XTC2B1B2R and chcAaAbAc. Overexpression of the various genes in Escherichia coli, and purification of the recombinant proteins led to the functional characterization of ChcAaAbAc as subunits of a cytochrome P450 system responsible for CHCA hydroxylation; ChcB1 and ChcB2 as trans-4-hydroxyCHCA and cis-4-hydroxyCHCA dehydrogenases, respectively; ChcC1 was identified as a 4-oxoCHCA desaturase containing a covalently bound FAD; and ChcC2 was identified as a 4-oxocyclohexenecarboxylate desaturase. The binding constant of ChcAa for CHCA was found to be 0.37 mM. Kinetic parameters established for ChcB1 indicated that it has a high catalytic efficiency towards 4-oxoCHCA compared to trans- or cis-4-hydroxyCHCA. The Km and Kcat values of ChcC1 for 4-oxoCHCA were 0.39 mM and 44 s-1, respectively. Taken together with previous work on the identification of a pobA gene encoding a 4-hydroxybenzoate hydroxylase, we have now localized the remaining set of genes for the final degradation of protocatechuate before entry into the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Taisei Yamamoto
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Yoshie Hasegawa
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Peter C K Lau
- Department of Microbiology & Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Hiroaki Iwaki
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
34
|
Sekiya Y, Sawasato K, Nishiyama KI. Expression of Cds4/5 of Arabidopsis chloroplasts in E. coli reveals the membrane topology of the C-terminal region of CDP-diacylglycerol synthases. Genes Cells 2021; 26:727-738. [PMID: 34166546 DOI: 10.1111/gtc.12880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
CDP-diacylglycerol synthases (Cds) are conserved from bacteria to eukaryotes. Bacterial CdsA is involved not only in phospholipid biosynthesis but also in biosynthesis of glycolipid MPIase, an essential glycolipid that catalyzes membrane protein integration. We found that both Cds4 and Cds5 of Arabidopsis chloroplasts complement cdsA knockout by supporting both phospholipid and MPIase biosyntheses. Comparison of the sequences of CdsA and Cds4/5 suggests a difference in membrane topology at the C-termini, since the region assigned as the last transmembrane region of CdsA, which follows the conserved cytoplasmic domain, is missing in Cds4/5. Deletion of the C-terminal region abolished the function, indicating the importance of the region. Both 6 × His tag attachment to CdsA and substitution of the C-terminal 6 residues with 6 × His did not affect the function. These 6 × His tags were sensitive to protease added from the cytosolic side in vitro, indicating that this region is not a transmembrane one but forms a membrane-embedded reentrant loop. Thus, the C-terminal region of Cds homologues forms a reentrant loop, of which structure is important for the Cds function.
Collapse
Affiliation(s)
- Yusei Sekiya
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Katsuhiro Sawasato
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Ken-Ichi Nishiyama
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
35
|
Yamamoto T, Kobayashi K, Hasegawa Y, Iwaki H. Cloning, expression, and characterization of Baeyer-Villiger monooxygenases from eukaryotic Exophiala jeanselmei strain KUFI-6N. Biosci Biotechnol Biochem 2021; 85:1675-1685. [PMID: 33930112 DOI: 10.1093/bbb/zbab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/27/2021] [Indexed: 01/02/2023]
Abstract
The fungus Exophiala jeanselmei strain KUFI-6N produces a unique cycloalkanone monooxygenase (ExCAMO) that displays an uncommon substrate spectrum of Baeyer-Villiger oxidation of 4-10-membered ring ketones. In this study, we aimed to identify and sequence the gene encoding ExCAMO from KUFI-6N and overexpress the gene in Escherichia coli. We found that the primary structure of ExCAMO is most closely related to the cycloalkanone monooxygenase from Cylindrocarpon radicicola ATCC 11011, with 54.2% amino acid identity. ExCAMO was functionally expressed in E. coli and its substrate spectrum and kinetic parameters were investigated. Substrate profiling indicated that ExCAMO is unusual among known Baeyer-Villiger monooxygenases owing to its ability to accept a variety of substrates, including C4-C12 membered ring ketones. ExCAMO has high affinity and catalytic efficiency toward cycloalkanones, the highest being toward cyclohexanone. Five other genes encoding Baeyer-Villiger monooxygenases were also cloned and expressed in E. coli.
Collapse
Affiliation(s)
- Taisei Yamamoto
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Kento Kobayashi
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Yoshie Hasegawa
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Hiroaki Iwaki
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| |
Collapse
|
36
|
Jain K, Wood EA, Romero ZJ, Cox MM. RecA-independent recombination: Dependence on the Escherichia coli RarA protein. Mol Microbiol 2021; 115:1122-1137. [PMID: 33247976 PMCID: PMC8160026 DOI: 10.1111/mmi.14655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/29/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022]
Abstract
Most, but not all, homologous genetic recombination in bacteria is mediated by the RecA recombinase. The mechanistic origin of RecA-independent recombination has remained enigmatic. Here, we demonstrate that the RarA protein makes a major enzymatic contribution to RecA-independent recombination. In particular, RarA makes substantial contributions to intermolecular recombination and to recombination events involving relatively short (<200 bp) homologous sequences, where RecA-mediated recombination is inefficient. The effects are seen here in plasmid-based recombination assays and in vivo cloning processes. Vestigial levels of recombination remain even when both RecA and RarA are absent. Additional pathways for RecA-independent recombination, possibly mediated by helicases, are suppressed by exonucleases ExoI and RecJ. Translesion DNA polymerases may also contribute. Our results provide additional substance to a previous report of a functional overlap between RecA and RarA.
Collapse
Affiliation(s)
- Kanika Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
37
|
Ishikawa K, Soejima S, Masuda F, Saitoh S. Implementation of dCas9-mediated CRISPRi in the fission yeast Schizosaccharomyces pombe. G3 (BETHESDA, MD.) 2021; 11:jkab051. [PMID: 33617628 PMCID: PMC8137136 DOI: 10.1093/g3journal/jkab051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/12/2021] [Indexed: 11/24/2022]
Abstract
Controllable and reversible transcriptional repression is an essential method to study gene functions. A systematic knock-down method using catalytically inactive Cas9 (dCas9) was originally established in bacteria. dCas9 forms a ribonucleoprotein with a small guide RNA and uses it to recognize a specific DNA sequence via Watson-Crick base-pairing. When specifically bound to a targeted DNA, dCas9 impairs RNA polymerase activity and represses transcription of that target gene. This technology, CRISPRi, has been implemented in several organisms, but not in Schizosaccharomyces pombe using dCas9. Here, we provide a plasmid that expresses dCas9 and sgRNA in fission yeast. With this plasmid, CRISPRi repressed endogenous gene transcription by as much as 87%. This transcriptional repression method is controllable, reversible, and efficient enough to alter cellular phenotypes. Here, we offer a CRISPRi method to choose proper targeting sequences for transcriptional repression in fission yeast. Implementation of CRISPRi will help to reveal gene functions and to develop tools based on dCas9 technology in S. pombe.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Cell Biology, Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Saeko Soejima
- Department of Cell Biology, Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Fumie Masuda
- Department of Cell Biology, Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Shigeaki Saitoh
- Department of Cell Biology, Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
38
|
Marincola G, Jaschkowitz G, Kieninger AK, Wencker FDR, Feßler AT, Schwarz S, Ziebuhr W. Plasmid-Chromosome Crosstalk in Staphylococcus aureus: A Horizontally Acquired Transcription Regulator Controls Polysaccharide Intercellular Adhesin-Mediated Biofilm Formation. Front Cell Infect Microbiol 2021; 11:660702. [PMID: 33829001 PMCID: PMC8019970 DOI: 10.3389/fcimb.2021.660702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) of clonal complex CC398 typically carry various antimicrobial resistance genes, many of them located on plasmids. In the bovine LA-MRSA isolate Rd11, we previously identified plasmid pAFS11 in which resistance genes are co-localized with a novel ica-like gene cluster, harboring genes required for polysaccharide intercellular adhesin (PIA)-mediated biofilm formation. The ica genes on pAFS11 were acquired in addition to a pre-existing ica locus on the S. aureus Rd11 chromosomal DNA. Both loci consist of an icaADBC operon and icaR, encoding a corresponding icaADBC repressor. Despite carrying two biofilm gene copies, strain Rd11 did not produce PIA and transformation of pAFS11 into another S. aureus strain even slightly diminished PIA-mediated biofilm formation. By focusing on the molecular background of the biofilm-negative phenotype of pAFS11-carrying S. aureus, we identified the pAFS11-borne ica locus copy as functionally fully active. However, transcription of both plasmid- and core genome-derived icaADBC operons were efficiently suppressed involving IcaR. Surprisingly, although being different on the amino acid sequence level, the two IcaR repressor proteins are mutually replaceable and are able to interact with the icaA promoter region of the other copy. We speculate that this regulatory crosstalk causes the biofilm-negative phenotype in S. aureus Rd11. The data shed light on an unexpected regulatory interplay between pre-existing and newly acquired DNA traits in S. aureus. This also raises interesting general questions regarding functional consequences of gene transfer events and their putative implications for the adaptation and evolution of bacterial pathogens.
Collapse
Affiliation(s)
- Gabriella Marincola
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Greta Jaschkowitz
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ann-Katrin Kieninger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Freya D R Wencker
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Andrea T Feßler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Free University of Berlin, Berlin, Germany
| | - Stefan Schwarz
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Free University of Berlin, Berlin, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
39
|
Chen F, Li YY, Yu YL, Dai J, Huang JL, Lin J. Simplified plasmid cloning with a universal MCS design and bacterial in vivo assembly. BMC Biotechnol 2021; 21:24. [PMID: 33722223 PMCID: PMC7962268 DOI: 10.1186/s12896-021-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability to clone DNA sequences quickly and precisely into plasmids is essential for molecular biology studies. The recent development of seamless cloning technologies has made significant improvements in plasmid construction, but simple and reliable tools are always desirable for time- and labor-saving purposes. RESULTS We developed and standardized a plasmid cloning protocol based on a universal MCS (Multiple Cloning Site) design and bacterial in vivo assembly. With this method, the vector is linearized first by PCR (Polymerase Chain Reaction) or restriction digestion. Then a small amount (10 ~ 20 ng) of this linear vector can be mixed with a PCR-amplified insert (5× molar ratio against vector) and transformed directly into competent E. coli cells to obtain the desired clones through in vivo assembly. Since we used a 36-bp universal MCS as the homologous linker, any PCR-amplified insert with ~ 15 bp compatible termini can be cloned into the vector with high fidelity and efficiency. Thus, the need for redesigning insert-amplifying primers according to various vector sequences and the following PCR procedures was eliminated. CONCLUSIONS Our protocol significantly reduced hands-on time for preparing transformation reactions, had excellent reliability, and was confirmed to be a rapid and versatile plasmid cloning technique. The protocol contains mostly mixing steps, making it an extremely automation-friendly and promising tool in modern biology studies.
Collapse
Affiliation(s)
- Fan Chen
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Yi-Ya Li
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| | - Yan-Li Yu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| | - Jie Dai
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| | - Jin-Ling Huang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| | - Jie Lin
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| |
Collapse
|
40
|
Rab11-mediated post-Golgi transport of the sialyltransferase ST3GAL4 suggests a new mechanism for regulating glycosylation. J Biol Chem 2021; 296:100354. [PMID: 33524390 PMCID: PMC7949161 DOI: 10.1016/j.jbc.2021.100354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Glycosylation, the most common posttranslational modification of proteins, is a stepwise process that relies on tight regulation of subcellular glycosyltransferase location to control the addition of each monosaccharide. Glycosyltransferases primarily reside and function in the endoplasmic reticulum (ER) and the Golgi apparatus; whether and how they traffic beyond the Golgi, how this trafficking is controlled, and how it impacts glycosylation remain unclear. Our previous work identified a connection between N-glycosylation and Rab11, a key player in the post-Golgi transport that connects recycling endosomes and other compartments. To learn more about the specific role of Rab11, we knocked down Rab11 in HeLa cells. Our findings indicate that Rab11 knockdown results in a dramatic enhancement in the sialylation of N-glycans. Structural analyses of glycans using lectins and LC-MS revealed that α2,3-sialylation is selectively enhanced, suggesting that an α2,3-sialyltransferase that catalyzes the sialyation of glycoproteins is activated or upregulated as the result of Rab11 knockdown. ST3GAL4 is the major α2,3-sialyltransferase that acts on N-glycans; we demonstrated that the localization of ST3GAL4, but not the levels of its mRNA, protein, or donor substrate, was altered by Rab11 depletion. In knockdown cells, ST3GAL4 is densely distributed in the trans-Golgi network, compared with the wider distribution in the Golgi and in other peripheral puncta in control cells, whereas the α2,6-sialyltransferase ST6GAL1 is predominantly localized to the Golgi regardless of Rab11 knockdown. This indicates that Rab11 may negatively regulate α2,3-sialylation by transporting ST3GAL4 to post-Golgi compartments (PGCs), which is a novel mechanism of glycosyltransferase regulation.
Collapse
|
41
|
Yang Y, Wang T, Yu Q, Liu H, Xun L, Xia Y. The pathway of recombining short homologous ends in Escherichia coli revealed by the genetic study. Mol Microbiol 2021; 115:1309-1322. [PMID: 33372330 DOI: 10.1111/mmi.14677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
The recombination of short homologous ends in Escherichia coli has been known for 30 years, and it is often used for both site-directed mutagenesis and in vivo cloning. For cloning, a plasmid and target DNA fragments were converted into linear DNA fragments with short homologous ends, which are joined via recombination inside E. coli after transformation. Here this mechanism of joining homologous ends in E. coli was determined by a linearized plasmid with short homologous ends. Two 3'-5' exonucleases ExoIII and ExoX with nonprocessive activity digested linear dsDNA to generate 5' single-strand overhangs, which annealed with each other. The polymerase activity of DNA polymerase I (Pol I) was exclusively employed to fill in the gaps. The strand displacement activity and the 5'-3' exonuclease activity of Pol I were also required, likely to generate 5' phosphate termini for subsequent ligation. Ligase A (LigA) joined the nicks to finish the process. The model involving 5' single-stranded overhangs is different from established recombination pathways that all generate 3' single-stranded overhangs. This recombination is likely common in bacteria since the involved enzymes are ubiquitous.
Collapse
Affiliation(s)
- Yuqing Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.,Institute of Marine Science and Technology, Shandong University, Qingdao, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Qiaoli Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.,School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
42
|
Yoshida R, Hemmi H. Construction of an artificial biosynthetic pathway for hyperextended archaeal membrane lipids in the bacterium Escherichia coli. Synth Biol (Oxf) 2020; 5:ysaa018. [PMID: 33263085 PMCID: PMC7680562 DOI: 10.1093/synbio/ysaa018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 11/12/2022] Open
Abstract
Archaea produce unique membrane lipids, which possess two fully saturated isoprenoid chains linked to the glycerol moiety via ether bonds. The isoprenoid chain length of archaeal membrane lipids is believed to be important for some archaea to thrive in extreme environments because the hyperthermophilic archaeon Aeropyrum pernix and some halophilic archaea synthesize extended C25,C25-archaeal diether-type membrane lipids, which have isoprenoid chains that are longer than those of typical C20,C20-diether lipids. Natural archaeal diether lipids possessing longer C30 or C35 isoprenoid chains, however, have yet to be isolated. In the present study, we attempted to synthesize such hyperextended archaeal membrane lipids. We investigated the substrate preference of the enzyme sn-2,3-(digeranylfarnesyl)glycerol-1-phosphate synthase from A. pernix, which catalyzes the transfer of the second C25 isoprenoid chain to the glycerol moiety in the biosynthetic pathway of C25,C25-archaeal membrane lipids. The enzyme was shown to accept sn-3-hexaprenylglycerol-1-phosphate, which has a C30 isoprenoid chain, as a prenyl acceptor substrate to synthesize sn-2-geranylfarnesyl-3-hexaprenylglycerol-1-phosphate, a supposed precursor for hyperextended C25,C30-archaeal membrane lipids. Furthermore, we constructed an artificial biosynthetic pathway by introducing 4 archaeal genes and 1 gene from Bacillus subtilis in the cells of Escherichia coli, which enabled the E. coli strain to produce hyperextended C25,C30-archaeal membrane lipids, which have never been reported so far.
Collapse
Affiliation(s)
- Ryo Yoshida
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 460-8601, Japan
| | - Hisashi Hemmi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 460-8601, Japan
| |
Collapse
|
43
|
The Vibrio cholerae Quorum-Sensing Protein VqmA Integrates Cell Density, Environmental, and Host-Derived Cues into the Control of Virulence. mBio 2020; 11:mBio.01572-20. [PMID: 32723922 PMCID: PMC7387800 DOI: 10.1128/mbio.01572-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is a process of chemical communication that bacteria use to orchestrate collective behaviors. QS communication relies on chemical signal molecules called autoinducers. QS regulates virulence in Vibrio cholerae, the causative agent of the disease cholera. Transit into the human small intestine, the site of cholera infection, exposes V. cholerae to the host environment. In this study, we show that the combination of two stimuli encountered in the small intestine, the absence of oxygen and the presence of host-produced bile salts, impinge on V. cholerae QS function and, in turn, pathogenicity. We suggest that possessing a QS system that is responsive to multiple environmental, host, and cell density cues enables V. cholerae to fine-tune its virulence capacity in the human intestine. Quorum sensing is a chemical communication process in which bacteria use the production, release, and detection of signal molecules called autoinducers to orchestrate collective behaviors. The human pathogen Vibrio cholerae requires quorum sensing to infect the small intestine. There, V. cholerae encounters the absence of oxygen and the presence of bile salts. We show that these two stimuli differentially affect quorum-sensing function and, in turn, V. cholerae pathogenicity. First, during anaerobic growth, V. cholerae does not produce the CAI-1 autoinducer, while it continues to produce the DPO autoinducer, suggesting that CAI-1 may encode information specific to the aerobic lifestyle of V. cholerae. Second, the quorum-sensing receptor-transcription factor called VqmA, which detects the DPO autoinducer, also detects the lack of oxygen and the presence of bile salts. Detection occurs via oxygen-, bile salt-, and redox-responsive disulfide bonds that alter VqmA DNA binding activity. We propose that VqmA serves as an information processing hub that integrates quorum-sensing information, redox status, the presence or absence of oxygen, and host cues. In response to the information acquired through this mechanism, V. cholerae appropriately modulates its virulence output.
Collapse
|
44
|
Coupling Ion Specificity of the Flagellar Stator Proteins MotA1/MotB1 of Paenibacillus sp. TCA20. Biomolecules 2020; 10:biom10071078. [PMID: 32698379 PMCID: PMC7407149 DOI: 10.3390/biom10071078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
The bacterial flagellar motor is a reversible rotary molecular nanomachine, which couples ion flux across the cytoplasmic membrane to torque generation. It comprises a rotor and multiple stator complexes, and each stator complex functions as an ion channel and determines the ion specificity of the motor. Although coupling ions for the motor rotation were presumed to be only monovalent cations, such as H+ and Na+, the stator complex MotA1/MotB1 of Paenibacillus sp. TCA20 (MotA1TCA/MotB1TCA) was reported to use divalent cations as coupling ions, such as Ca2+ and Mg2+. In this study, we initially aimed to measure the motor torque generated by MotA1TCA/MotB1TCA under the control of divalent cation motive force; however, we identified that the coupling ion of MotA1TCAMotB1TCA is very likely to be a monovalent ion. We engineered a series of functional chimeric stator proteins between MotB1TCA and Escherichia coli MotB. E. coli ΔmotAB cells expressing MotA1TCA and the chimeric MotB presented significant motility in the absence of divalent cations. Moreover, we confirmed that MotA1TCA/MotB1TCA in Bacillus subtilis ΔmotABΔmotPS cells generates torque without divalent cations. Based on two independent experimental results, we conclude that the MotA1TCA/MotB1TCA complex directly converts the energy released from monovalent cation flux to motor rotation.
Collapse
|
45
|
Reconstruction of the "Archaeal" Mevalonate Pathway from the Methanogenic Archaeon Methanosarcina mazei in Escherichia coli Cells. Appl Environ Microbiol 2020; 86:AEM.02889-19. [PMID: 31924615 DOI: 10.1128/aem.02889-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022] Open
Abstract
The mevalonate pathway is a well-known metabolic route that provides biosynthetic precursors for myriad isoprenoids. An unexpected variety of the pathway has been discovered from recent studies on microorganisms, mainly on archaea. The most recently discovered example, called the "archaeal" mevalonate pathway, is a modified version of the canonical eukaryotic mevalonate pathway and was elucidated in our previous study using the hyperthermophilic archaeon Aeropyrum pernix This pathway comprises four known enzymes that can produce mevalonate 5-phosphate from acetyl coenzyme A, two recently discovered enzymes designated phosphomevalonate dehydratase and anhydromevalonate phosphate decarboxylase, and two more known enzymes, i.e., isopentenyl phosphate kinase and isopentenyl pyrophosphate:dimethylallyl pyrophosphate isomerase. To show its wide distribution in archaea and to confirm if its enzyme configuration is identical among species, the putative genes of a lower portion of the pathway-from mevalonate to isopentenyl pyrophosphate-were isolated from the methanogenic archaeon Methanosarcina mazei, which is taxonomically distant from A. pernix, and were introduced into an engineered Escherichia coli strain that produces lycopene, a red carotenoid pigment. Lycopene production, as a measure of isoprenoid productivity, was enhanced when the cells were grown semianaerobically with the supplementation of mevalonolactone, which demonstrates that the archaeal pathway can function in bacterial cells to convert mevalonate into isopentenyl pyrophosphate. Gene deletion and complementation analysis using the carotenogenic E. coli strain suggests that both phosphomevalonate dehydratase and anhydromevalonate phosphate decarboxylase from M. mazei are required for the enhancement of lycopene production.IMPORTANCE Two enzymes that have recently been identified from the hyperthermophilic archaeon A. pernix as components of the archaeal mevalonate pathway do not require ATP for their reactions. This pathway, therefore, might consume less energy than other mevalonate pathways to produce precursors for isoprenoids. Thus, the pathway might be applicable to metabolic engineering and production of valuable isoprenoids that have application as pharmaceuticals. The archaeal mevalonate pathway was successfully reconstructed in E. coli cells by introducing several genes from the methanogenic or hyperthermophilic archaeon, which demonstrated that the pathway requires the same components even in distantly related archaeal species and can function in bacterial cells.
Collapse
|
46
|
Goto H, Kanai Y, Yotsui A, Shimokihara S, Shitara S, Oyobiki R, Fujiwara K, Watanabe T, Einaga Y, Matsumoto Y, Miki N, Doi N. Microfluidic screening system based on boron-doped diamond electrodes and dielectrophoretic sorting for directed evolution of NAD(P)-dependent oxidoreductases. LAB ON A CHIP 2020; 20:852-861. [PMID: 31984406 DOI: 10.1039/c9lc01263j] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the development of a micro total analysis system (μTAS) based on electrochemical measurements and dielectrophoretic sorting for screening of NAD(P)-dependent oxidoreductases. In this system, the activity of enzymes immobilized on microbeads, together with their encoding DNA, can be measured with a boron-doped diamond (BDD) electrode in each compartment (∼30 nL) of the microfluidic system. The 30 nL droplets containing microbead-displayed genes of enzymes with higher activity can then be recovered by dielectrophoretic sorting. Previously, we developed the NAD(P)H-measuring device containing the BDD electrode for high-throughput measurement of the activity of NAD(P)-dependent oxidoreductases. In this study, we fabricated an encapsulating device and a droplet-sorting device for nanoliter-size droplets, for the first time, and then combined these three devices to construct a μTAS for directed evolution of NAD(P)-dependent oxidoreductases. We confirmed that this system works by proof-of-principle experiments and successfully applied this system for screening of randomized libraries of NAD-dependent dehydrogenases.
Collapse
Affiliation(s)
- Haruna Goto
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Yuki Kanai
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Arisa Yotsui
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Shota Shimokihara
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Shunya Shitara
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Ryo Oyobiki
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Takeshi Watanabe
- Department of Electrical Engineering and Electronics, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Yoshinori Matsumoto
- Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan
| | - Norihisa Miki
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| |
Collapse
|
47
|
Yamanaka Y, Watanabe H, Yamauchi E, Miyake Y, Yamamoto K. Measurement of the Promoter Activity in Escherichia coli by Using a Luciferase Reporter. Bio Protoc 2020; 10:e3500. [PMID: 33654727 DOI: 10.21769/bioprotoc.3500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 11/02/2022] Open
Abstract
The reporter system is widely used technique for measuring promoter activity in bacterial cells. Until now, a number of reporter system have been developed, but the bioluminescent reporter constructed from the bacterial luciferase genes is one of the useful systems for measuring in vivo dynamics of gene expression. The introduced bioluciferase lux reporter enables easy, fast, and sensitive measurement of the promoter activity without cell lysis because the substrates of bioluminescent reaction are synthesized inside the bacterial cell, thereby allowing low-cost experiments. This protocol describes a high throughput technique to measure the promoter activity in Escherichia coli K-12 using the lux reporter system.
Collapse
Affiliation(s)
- Yuki Yamanaka
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan.,Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| | - Hiroki Watanabe
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Erika Yamauchi
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Yukari Miyake
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan.,Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| |
Collapse
|
48
|
Yoshida A, Kohyama S, Fujiwara K, Nishikawa S, Doi N. Regulation of spatiotemporal patterning in artificial cells by a defined protein expression system. Chem Sci 2019; 10:11064-11072. [PMID: 32190256 PMCID: PMC7066863 DOI: 10.1039/c9sc02441g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/16/2019] [Indexed: 02/04/2023] Open
Abstract
Spatiotemporal patterning is a fundamental mechanism for developmental differentiation and homeostasis in living cells. Because spatiotemporal patterns are based on higher-order collective motions of elements synthesized from genes, their behavior dynamically changes according to the element amounts. Thus, to understand life and use this process for material application, creation of artificial cells with time development of spatiotemporal patterning by changes of element levels is necessary. However, realizing coupling between spatiotemporal patterning and synthesis of elements in artificial cells has been particularly challenging. In this study, we established a system that can synthesize a patterning mechanism of the bacterial cell division plane (the so-called Min system) in artificial cells by modifying a defined protein expression system and demonstrated that artificial cells can show time development of spatiotemporal patterning similar to living cells. This system also allows generation and disappearance of spatiotemporal patterning, is controllable by a small molecule in artificial cells, and has the ability for application in cargo transporters. The system developed here provides a new material and a technique for understanding life, development of drug delivery tools, and creation of molecular robots.
Collapse
Affiliation(s)
- Aoi Yoshida
- Department of Biosciences & Informatics , Keio University , 3-14-1 Hiyoshi , Kohoku-ku , Yokohama 223-8522 , Japan .
| | - Shunshi Kohyama
- Department of Biosciences & Informatics , Keio University , 3-14-1 Hiyoshi , Kohoku-ku , Yokohama 223-8522 , Japan .
| | - Kei Fujiwara
- Department of Biosciences & Informatics , Keio University , 3-14-1 Hiyoshi , Kohoku-ku , Yokohama 223-8522 , Japan .
| | - Saki Nishikawa
- Department of Biosciences & Informatics , Keio University , 3-14-1 Hiyoshi , Kohoku-ku , Yokohama 223-8522 , Japan .
| | - Nobuhide Doi
- Department of Biosciences & Informatics , Keio University , 3-14-1 Hiyoshi , Kohoku-ku , Yokohama 223-8522 , Japan .
| |
Collapse
|
49
|
Krebs AS, Bierig T, Collu G, Benoit RM. Seamless insert-plasmid assembly at sub-terminal homologous sequences. Plasmid 2019; 106:102445. [PMID: 31669339 DOI: 10.1016/j.plasmid.2019.102445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
The engineering of fusion proteins for structural biology and protein nanotechnology often requires seamless DNA assembly with slight variations in the domain boundaries. To improve the molecular biology workflow for such projects, we evaluated the use of sub-terminal homologous sequences (HS) for co-transformation cloning and for T5 exonuclease / Phusion DNA polymerase mediated in vitro assembly. To quantify the effects of different HS-to-ends distances on cloning efficiency, we designed a blue-white-pink screening system that allowed us to easily identify positive clones (blue colonies), negative clones resulting from circular template plasmid (pink colonies) and negative colonies originating from linearized plasmids that have recircularized without an insert (white colonies). Our experiments show that both methods are feasible with HS-to-ends distances up to at least 10 base pairs. Using a combination of co-transformation cloning at sub-terminal HS and nucleotide insertions in non-annealing primer 5'-overhangs, we integrated a fusion protein into the third intracellular loop (ICL) of a G-protein-coupled receptor (GPCR) with nine different linker boundaries, using only a single plasmid linearization reaction. This molecular cloning approach is an invaluable tool for protein engineering, protein nanotechnology and synthetic biology that extends the range of applications of DNA assembly strategies.
Collapse
Affiliation(s)
- Anna-Sophia Krebs
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Tobias Bierig
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Gabriella Collu
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Roger M Benoit
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.
| |
Collapse
|
50
|
Hidayati NA, Yamada‐Oshima Y, Iwai M, Yamano T, Kajikawa M, Sakurai N, Suda K, Sesoko K, Hori K, Obayashi T, Shimojima M, Fukuzawa H, Ohta H. Lipid remodeling regulator 1 (LRL1) is differently involved in the phosphorus-depletion response from PSR1 in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:610-626. [PMID: 31350858 PMCID: PMC6899820 DOI: 10.1111/tpj.14473] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 05/05/2023]
Abstract
The elucidation of lipid metabolism in microalgae has attracted broad interest, as their storage lipid, triacylglycerol (TAG), can be readily converted into biofuel via transesterification. TAG accumulates in the form of oil droplets, especially when cells undergo nutrient deprivation, such as for nitrogen (N), phosphorus (P), or sulfur (S). TAG biosynthesis under N-deprivation has been comprehensively studied in the model microalga Chlamydomonas reinhardtii, during which TAG accumulates dramatically. However, the resulting rapid breakdown of chlorophyll restricts overall oil yield productivity and causes cessation of cell growth. In contrast, P-deprivation results in oil accumulation without disrupting chloroplast integrity. We used a reverse genetics approach based on co-expression analysis to identify a transcription factor (TF) that is upregulated under P-depleted conditions. Transcriptomic analysis revealed that the mutants showed repression of genes typically associated with lipid remodeling under P-depleted conditions, such as sulfoquinovosyl diacylglycerol 2 (SQD2), diacylglycerol acyltransferase (DGTT1), and major lipid droplet protein (MLDP). As accumulation of sulfoquinovosyl diacylglycerol and TAG were suppressed in P-depleted mutants, we designated the protein as lipid remodeling regulator 1 (LRL1). LRL1 mutants showed slower growth under P-depletion. Moreover, cell size in the mutant was significantly reduced, and TAG and starch accumulation per cell were decreased. Transcriptomic analysis also suggested the repression of several genes typically upregulated in adaptation to P-depletion that are associated with the cell cycle and P and lipid metabolism. Thus, our analysis of LRL1 provides insights into P-allocation and lipid remodeling under P-depleted conditions in C. reinhardtii. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The sequencing data were made publicly available under the BioProject Accession number PRJDB6733 and an accession number LC488724 at the DNA Data Bank of Japan (DDBJ). The data is available at https://trace.ddbj.nig.ac.jp/BPSearch/bioproject?acc=PRJDB6733; http://getentry.ddbj.nig.ac.jp/getentry/na/LC488724. The metabolome data were made publicly available and can be accessed at http://metabolonote.kazusa.or.jp/SE195:/; http://webs2.kazusa.or.jp/data/nur/.
Collapse
Affiliation(s)
- Nur A. Hidayati
- Graduate School of Bioscience and BiotechnologyTokyo Institute of Technology4259‐B‐65 Nagatsuta‐cho, Midori‐kuYokohama226‐8501Japan
| | - Yui Yamada‐Oshima
- Graduate School of Bioscience and BiotechnologyTokyo Institute of Technology4259‐B‐65 Nagatsuta‐cho, Midori‐kuYokohama226‐8501Japan
| | - Masako Iwai
- School of Life Science and TechnologyTokyo Institute of Technology4259‐B‐65 Nagatsuta‐cho, Midori‐kuYokohama226‐8501Japan
| | - Takashi Yamano
- Graduate School of BiostudiesKyoto UniversityKyoto606‐8502Japan
| | | | - Nozomu Sakurai
- Technology DevelopmentKazusa DNA Research InstituteKazusa‐kamatari 2‐6‐7KisarazuChiba292‐0818Japan
- Present address:
National Institute of Genetics Bioinformation & DDBJ Center1111 YataMishimaShizuoka411‐8540Japan
| | - Kunihiro Suda
- Technology DevelopmentKazusa DNA Research InstituteKazusa‐kamatari 2‐6‐7KisarazuChiba292‐0818Japan
| | - Kanami Sesoko
- School of Life Science and TechnologyTokyo Institute of Technology4259‐B‐65 Nagatsuta‐cho, Midori‐kuYokohama226‐8501Japan
| | - Koichi Hori
- School of Life Science and TechnologyTokyo Institute of Technology4259‐B‐65 Nagatsuta‐cho, Midori‐kuYokohama226‐8501Japan
| | - Takeshi Obayashi
- Graduate School of Information SciencesTohoku University6‐3‐09, Aramaki‐Aza‐Aoba, Aoba‐kuSendai980‐8679Japan
| | - Mie Shimojima
- School of Life Science and TechnologyTokyo Institute of Technology4259‐B‐65 Nagatsuta‐cho, Midori‐kuYokohama226‐8501Japan
| | - Hideya Fukuzawa
- Graduate School of BiostudiesKyoto UniversityKyoto606‐8502Japan
| | - Hiroyuki Ohta
- School of Life Science and TechnologyTokyo Institute of Technology4259‐B‐65 Nagatsuta‐cho, Midori‐kuYokohama226‐8501Japan
| |
Collapse
|