1
|
Tulin G, Méndez AA, Figueroa NR, Smith C, Folmer MP, Serra D, Wade JT, Checa SK, Soncini FC. Integration of BrfS into the biofilm-controlling cascade promotes sessile Salmonella growth at low temperatures. Biofilm 2025; 9:100254. [PMID: 39927094 PMCID: PMC11804604 DOI: 10.1016/j.bioflm.2025.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/11/2025] Open
Abstract
Biofilm formation is stimulated by different stress-related physiological and environmental conditions. In Salmonella and Escherichia coli, curli fibers and phosphoethanolamine-cellulose are the major extracellular components of biofilms. The production of both is under the control of CsgD, a transcriptional regulator whose expression is modulated by a number of factors responding to different signals. The atypical MerR-like regulator MlrA is key in the activation of csgD transcription in both Salmonella and E. coli. Recently, MlrB, a SPI-2-encoded MlrA-like regulator that counteracts MlrA by repressing csgD transcription and biofilm formation inside macrophages was identified. Here, we characterize STM1266, a Salmonella-specific MlrA-like regulator, recently renamed BrfS. In contrast to mlrA, brfS transcription increases in minimal growth media and at 20 °C, a temperature not commonly tested in laboratories. Under these conditions, as well as in salt-limited rich medium, deletion or overexpression of brfS affects extracellular matrix production. Using transcriptomics, we uncovered genes under BrfS control relevant for biofilm formation such as csgB and bapA. Transcriptional analysis of these genes in mutants lacking brfS, csgD or both, indicates that BrfS controls curli biosynthesis both in a CsgD-dependent and independent manner. By contrast, at low temperatures, bapA transcription depends only on BrfS, and neither deletion of csgD nor of mlrA modify its expression. Based on these results, we propose that BrfS contributes to Salmonella persistence in the environment, where the pathogen encounters low temperatures and nutrient limitation.
Collapse
Affiliation(s)
- Gonzalo Tulin
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Andrea A.E. Méndez
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Nicolás R. Figueroa
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
- Current position: Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - María P. Folmer
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Diego Serra
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
- RNA Institute, University at Albany, SUNY, Albany, NY, USA
| | - Susana K. Checa
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Fernando C. Soncini
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| |
Collapse
|
2
|
Lin Z, He S, Liang Z, Li D. Temperature cycling between 4 °C and 37 °C could reduce Salmonella viability in low-moisture foods. Int J Food Microbiol 2025; 428:110995. [PMID: 39612661 DOI: 10.1016/j.ijfoodmicro.2024.110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Low-moisture foods (LMFs) have been linked to Salmonella transmission due to the remarkable resilience of Salmonella against desiccation, allowing its survival for extended periods. Being metabolically inactive, Salmonella in LMFs exhibit extraordinary resistance to inactivation treatments. This study proposes a novel strategy for mitigating Salmonella in LMF products through a temperature cycling (TC) approach. Alternating the temperature between 4 °C and 37 °C on a daily basis reduced the viability of S. Typhimurium air-dried on surfaces by >4 log after 6 days. TC also diminished Salmonella resistance to acidity and reduced its virulence. The mechanism was elucidated through an integrated analysis of transcriptomics and proteomics data. Specifically, transcriptomic data revealed elevated levels of protein synthesis alongside active energy metabolism. Proteomic analysis demonstrated that these protein activities were associated primarily with the heat shock protein response. Taken together, the principal mechanism by which TC exerts its inhibitory effect appears to be the repeated induction of heat shock protein synthesis within Salmonella, ultimately leading to energy depletion. Finally, the efficacy of TC was validated on representative LMF samples, including flour, protein powder, and mixed spices. The most notable effect was observed in the mixed spices, with a reduction of 2.7 ± 0.2 log after 6 days (P < 0.05). In conclusion, the TC approach demonstrated in this study provides valuable insights into the management of foodborne pathogens in LMFs.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore
| | - Shuang He
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore
| | - Zhiqian Liang
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore
| | - Dan Li
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
3
|
Wood NA, Gopinath T, Shin K, Marassi FM. In situ NMR reveals a pH sensor motif in an outer membrane protein that drives bacterial vesicle production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634179. [PMID: 39896486 PMCID: PMC11785132 DOI: 10.1101/2025.01.21.634179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The outer membrane vesicles (OMVs) produced by diderm bacteria have important roles in cell envelope homeostasis, secretion, interbacterial communication, and pathogenesis. The facultative intracellular pathogen Salmonella enterica Typhimurium (STm) activates OMV biogenesis inside the acidic vacuoles of host cells by upregulating the expression of the outer membrane (OM) protein PagC, one of the most robustly activated genes in a host environment. Here, we used solid-state nuclear magnetic resonance (NMR) and electron microscopy (EM), with native bacterial OMVs, to demonstrate that three histidines, essential for the OMV biogenic function of PagC, constitute a key pH-sensing motif. The NMR spectra of PagC in OMVs show that they become protonated around pH 6, and His protonation is associated with specific perturbations of select regions of PagC. The use of bacterial OMVs is an essential aspect of this work enabling NMR structural studies in the context of the physiological environment. PagC expression upregulates OMV production in E. coli , replicating its function in STm. Moreover, the presence of PagC drives a striking aggregation of OMVs and increases bacterial cell pellicle formation at acidic pH, pointing to a potential role as an adhesin active in biofilm formation. The data provide experimental evidence for a pH-dependent mechanism of OMV biogenesis and aggregation driven by an outer membrane protein. Significance This work sheds light on the mechanism for extracellular vesicle biogenesis by Gram negative bacteria. It shows that the Salmonella surface protein PagC, a major driver of extracellular vesicle formation, harbors a set of pH-sensitive histidines that become protonated at acidic pH, increasing vesicle production, and promoting bacterial cell aggregation. NMR analysis of PagC in natively secreted bacterial vesicles is introduced as a new important tool for in situ structural analysis of bacterial membrane proteins. The results have important implications for understanding the molecular factors that drive the formation of bacterial extracellular vesicles, their functions in human infection, as well as their roles as vaccine, drug delivery and nanotechnology platforms.
Collapse
|
4
|
Zizza A, Fallucca A, Guido M, Restivo V, Roveta M, Trucchi C. Foodborne Infections and Salmonella: Current Primary Prevention Tools and Future Perspectives. Vaccines (Basel) 2024; 13:29. [PMID: 39852807 PMCID: PMC11768952 DOI: 10.3390/vaccines13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
Salmonella is considered the major zoonotic and foodborne pathogen responsible for human infections. It includes the serovars causing typhoid fever (S. typhi and S. paratyphi) and the non-typhoidal salmonella (NTS) serovars (S. enteritidis and S. typhimurium), causing enteric infections known as "Salmonellosis". NTS represents a major public health burden worldwide. The consumption of S. enteritidis-contaminated animal foods is the main source of this disease in humans, and eradicating bacteria from animals remains a challenge. NTS causes various clinical manifestations, depending on the quantity of bacteria present in the food and the immune status of the infected individual, ranging from localized, self-limiting gastroenteritis to more serious systemic infections. Salmonellosis prevention is based on hygienic and behavioral rules related to food handling that aim to reduce the risk of infection. However, no vaccine against NTS is available for human use. This aspect, in addition to the increase in multidrug-resistant strains and the high morbidity, mortality, and socioeconomic costs of NTS-related diseases, makes the development of new prevention and control strategies urgently needed. The success of the vaccines used to protect against S. typhi encouraged the development of NTS vaccine candidates, including live attenuated, subunit-based, and recombinant-protein-based vaccines. In this review, we discuss the epidemiological burden of Salmonellosis and its primary prevention, focusing on the current status and future perspectives of the vaccines against NTS.
Collapse
Affiliation(s)
- Antonella Zizza
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy;
| | - Alessandra Fallucca
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90127 Palermo, Italy;
| | - Marcello Guido
- Laboratory of Hygiene, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | | | - Marco Roveta
- Food Hygiene and Nutrition Service, Local Health Unit 3, Department of Prevention, 16142 Genoa, Italy;
| | - Cecilia Trucchi
- Food Hygiene and Nutrition Service, Local Health Unit 3, Department of Prevention, 16142 Genoa, Italy;
| |
Collapse
|
5
|
González JF, Laipply B, Sadowski VA, Price M, Gunn JS. Functional role of the biofilm regulator CsgD in Salmonella enterica sv. Typhi. Front Cell Infect Microbiol 2024; 14:1478488. [PMID: 39720794 PMCID: PMC11668344 DOI: 10.3389/fcimb.2024.1478488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/07/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Typhoid fever is an infectious disease primarily caused by Salmonella enterica sv. Typhi (S. Typhi), a bacterium that causes as many as 20 million infections and 600,000 deaths annually. Asymptomatic chronic carriers of S. Typhi play a major role in the transmission of typhoid fever, as they intermittently shed the bacteria and can unknowingly infect humans in close proximity. An estimated 90% of chronic carriers have gallstones; biofilm formation on gallstones is a primary factor in the establishment and maintenance of gallbladder carriage. CsgD is a central biofilm regulator in Salmonella, but the S. Typhi csgD gene has a mutation that introduces an early stop codon, resulting in a protein truncated by 8 amino acids at the C-terminus. In this study, we investigate the role of role of CsgD in S. Typhi. Methods We introduced a fully functional copy of the csgD gene from S. Typhimurium into S. Typhi under both a native and a constitutive promoter and tested for red, dry, and rough (Rdar) colony morphology, curli fimbriae, cellulose, and biofilm formation. Results and discussion We demonstrate that although CsgD-regulated curli and cellulose production were partially restored, the introduction of the S. Typhimurium csgD did not induce the Rdar colony morphology. Interestingly, we show that CsgD does not have a significant role in S. Typhi biofilm formation, as biofilm-forming capacities depend more on the isolate than the CsgD regulator. This data suggests the presence of an alternative biofilm regulatory process in this human-restricted pathogen.
Collapse
Affiliation(s)
- Juan F. González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Baileigh Laipply
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Victoria A. Sadowski
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Matthew Price
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S. Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Muturi P, Wachira P, Wagacha M, Mbae C, Kavai SM, Mugo MM, Mohamed M, González JF, Kariuki S, Gunn JS. Salmonella Typhi Haplotype 58 biofilm formation and genetic variation in isolates from typhoid fever patients with gallstones in an endemic setting in Kenya. Front Cell Infect Microbiol 2024; 14:1468866. [PMID: 39606745 PMCID: PMC11599249 DOI: 10.3389/fcimb.2024.1468866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024] Open
Abstract
Although typhoid fever has largely been eliminated in high-income countries, it remains a major global public health concern especially among low- and middle-income countries. The causative agent, Salmonella enterica serovar Typhi (S. Typhi), is a human restricted pathogen with a limited capacity to replicate outside the human host. Human carriers, 90% of whom have gallstones in their gallbladder, continue to shed the pathogen for an ill-defined period of time after treatment. The genetic mechanisms involved in establishing the carrier state are poorly understood, but S. Typhi is thought to undergo specific genetic changes within the gallbladder as an adaptive mechanism. In the current study, we aimed to identify the genetic differences in longitudinal clinical S. Typhi isolates from asymptomatic carriers with gallstones in a typhoid endemic setting in Nairobi, Kenya. Whole-genome sequences were analyzed from 22 S. Typhi isolates, 20 from stool samples, and 2 from blood samples, all genotype 4.3.1 (H58). Out of this, 19 strains were from four patients also diagnosed with gallstones, of whom three had typhoid symptoms and continued to shed S. Typhi after treatment. All isolates had point mutations in the quinolone resistance-determining region (QRDR), and only sub-lineage 4.3.1.2.EA3 encoded multidrug resistance genes. There was no variation in antimicrobial resistance patterns among strains from the same patient/household. Non-multidrug resistant (MDR) isolates formed significantly stronger biofilms in vitro than the MDR isolates, p<0.001. A point mutation within the treB gene (treB A383T) was observed in strains isolated after clinical resolution from patients living in 75% of the households. For missense mutations in Vi capsular polysaccharide genes, tviE P263S was also observed in 18% of the isolates. This study provides insights into the role of typhoid carriage, biofilm formation, AMR genes, and genetic variations in S. Typhi during asymptomatic carriage.
Collapse
Affiliation(s)
- Peter Muturi
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Peter Wachira
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Maina Wagacha
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Susan M. Kavai
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Michael M. Mugo
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Musa Mohamed
- Department of Medical Services, Ministry of Health, Nairobi, Kenya
| | - Juan F. González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
- Eastern Africa Office, Drugs for Neglected Diseases initiative, Nairobi, Kenya
| | - John S. Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Desai SK, Zhou Y, Dilawari R, Routh AL, Popov V, Kenney LJ. RpoS activates formation of Salmonella Typhi biofilms and drives persistence in the gall bladder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564249. [PMID: 37961640 PMCID: PMC10634867 DOI: 10.1101/2023.10.26.564249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The development of strategies for targeting the asymptomatic carriage of Salmonella Typhi in chronic typhoid patients has suffered owing to our basic lack of understanding of the molecular mechanisms that enable the formation of S. Typhi biofilms. Traditionally, studies have relied on cholesterol-attached biofilms formed by a closely related serovar, Typhimurium, to mimic multicellular Typhi communities formed on human gallstones. In long-term infections, S. Typhi adopts the biofilm lifestyle to persist in vivo and survive in the carrier state, ultimately leading to the spread of infections via the fecal-oral route of transmission. In the present work, we studied S. Typhi biofilms directly, applied targeted as well as genome-wide genetic approaches to uncover unique biofilm components that do not conform to the CsgD-dependent pathway established in S. Typhimurium. We undertook a genome-wide Tn5 mutation screen in H58, a clinically relevant multidrug resistance strain of S. Typhi, in gallstone-mimicking conditions. We generated New Generation Sequencing libraries based on the ClickSeq technology to identify the key regulators, IraP and RpoS, and the matrix components Sth fimbriae, Vi capsule and lipopolysaccharide. We discovered that the starvation sigma factor, RpoS, was required for the transcriptional activation of matrix-encoding genes in vitro, and for S. Typhi colonization in persistent infections in vivo, using a heterologous fish larval model. An rpoS null mutant failed to colonize the gall bladder in chronic zebrafish infections. Overall, our work uncovered a novel RpoS-driven, CsgD-independent paradigm for the formation of cholesterol-attached Typhi biofilms, and emphasized the role(s) of stress signaling pathways for adaptation in chronic infections. Our identification of the biofilm regulators in S. Typhi paves the way for the development of drugs against typhoid carriage, which will ultimately control the increased incidence of gall bladder cancer in typhoid carriers.
Collapse
Affiliation(s)
- Stuti K. Desai
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Rahul Dilawari
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Andrew L. Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- Department of Immunology and Microbiology, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Vsevolod Popov
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Linda J. Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
8
|
Li Z, Zhang M, Lei G, Lu X, Yang X, Kan B. A Single Base Change in the csgD Promoter Resulted in Enhanced Biofilm in Swine-Derived Salmonella Typhimurium. Microorganisms 2024; 12:1258. [PMID: 39065026 PMCID: PMC11278976 DOI: 10.3390/microorganisms12071258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Pathogenic Salmonella strains causing gastroenteritis typically can colonize and proliferate in the intestines of multiple host species. They retain the ability to form red dry and rough (rdar) biofilms, as seen in Salmonella enterica serovar Typhimurium. Conversely, Salmonella serovar like Typhi, which can cause systemic infections and exhibit host restriction, are rdar-negative. In this study, duck-derived strains and swine-derived strains of S. Typhimurium locate on independent phylogenetic clades and display relative genomic specificity. The duck isolates appear more closely related to human blood isolates and invasive non-typhoidal Salmonella (iNTS), whereas the swine isolates were more distinct. Phenotypically, compared to duck isolates, swine isolates exhibited enhanced biofilm formation that was unaffected by the temperature. The transcriptomic analysis revealed the upregulation of csgDEFG transcription as the direct cause. This upregulation may be mainly attributed to the enhanced promoter activity caused by the G-to-T substitution at position -44 of the csgD promoter. Swine isolates have created biofilm polymorphisms by altering a conserved base present in Salmonella Typhi, iNTS, and most Salmonella Typhimurium (such as duck isolates). This provides a genomic characteristics perspective for understanding Salmonella transmission cycles and evolution.
Collapse
Affiliation(s)
- Zhe Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.L.)
| | - Mengke Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.L.)
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Gaopeng Lei
- Center for Disease Control and Prevention of Sichuan Province, Chengdu 610041, China
| | - Xin Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.L.)
| | - Xiaorong Yang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu 610041, China
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.L.)
| |
Collapse
|
9
|
Ou C, Dozois CM, Daigle F. Differential regulatory control of curli (csg) gene expression in Salmonella enterica serovar Typhi requires more than a functional CsgD regulator. Sci Rep 2023; 13:14905. [PMID: 37689734 PMCID: PMC10492818 DOI: 10.1038/s41598-023-42027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
The human-specific Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a systemic disease with no known reservoir. Curli fimbriae are major components of biofilm produced by Salmonella and are encoded by the csg gene cluster (csgBAC and csgDEFG). The role of curli in S. Typhi is unknown, although detection of anti-curli antibodies suggests they are produced during host infection. In this study, we investigated curli gene expression in S. Typhi. We demonstrated that the CsgD regulatory protein binds weakly to the csgB promoter. Yet, replacing S. Typhi csgD with the csgD allele from S. Typhimurium did not modify the curli negative phenotype on Congo Red medium suggesting that differential regulation of curli gene expression in S. Typhi is not dependent on modification of the CsgD regulator. The entire csg gene cluster from S. Typhimurium was also cloned into S. Typhi, but again, despite introduction of a fully functional csg gene cluster from S. Typhimurium, curli were still not detected in S. Typhi. Thus, in addition to intrinsic genomic differences in the csg gene cluster that have resulted in production of a modified CsgD protein, S. Typhi has likely undergone other changes independent of the csg gene cluster that have led to distinctive regulation of csg genes compared to other Salmonella serovars.
Collapse
Affiliation(s)
- Camille Ou
- Department of Microbiology, Infectiology and Immunology, University of Montréal, 2900 Bd Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada
- CRIPA, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, 3200 Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Charles M Dozois
- CRIPA, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, 3200 Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada
- Centre Armand-Frappier Santé Biotechnologie, Institut Nationale de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC, H7V 1B7, Canada
| | - France Daigle
- Department of Microbiology, Infectiology and Immunology, University of Montréal, 2900 Bd Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada.
- CRIPA, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, 3200 Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
10
|
Turner M, Van Hulzen L, Pietri JE. The gut microbiota induces melanin deposits that act as substrates for fimA-mediated aggregation of Salmonella Typhimurium and enhance infection of the German cockroach vector. Microbiol Spectr 2023; 11:e0211923. [PMID: 37606369 PMCID: PMC10580948 DOI: 10.1128/spectrum.02119-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 08/23/2023] Open
Abstract
When Salmonella Typhimurium is ingested by German cockroaches, the bacteria replicate in the gut and persist for at least 7 d, enabling transmission in the feces. However, the mechanisms that facilitate survival and persistence in the cockroach gut remain poorly detailed. We previously reported the formation of biofilm-like aggregate populations of S. Typhimurium in the gut of cockroaches upon ingestion. We also reported that deletion of the type-1 fimbrial subunit of S. Typhimurium, fimA, leads to a reduced bacterial load in the cockroach gut. Here, we link these observations and provide further insight into the mechanism and function of S. Typhimurium aggregation in the gut of the cockroach. We show that S. Typhimurium but not Escherichia coli forms aggregated populations in the cockroach gut, and that aggregate formation requires fimA but not the biofilm formation-related genes csgA and csgD. Furthermore, we show that S. Typhimurium aggregates are formed using small granular deposits present in the cockroach gut, which exhibit properties consistent with melanin, as substrates. These melanin deposits are prevalent in the guts of both immature and adult cockroaches from laboratory colonies and are correlated with increased gut bacterial density while being entirely absent in gnotobiotic cockroaches reared without exposure to environmental bacteria, indicating they are induced as a response to the gut microbiota. When cockroaches lacking melanin deposits in the gut are fed S. Typhimurium, they exhibit lower rates of infection than those harboring melanin deposits, demonstrating that microbiota-induced melanin deposits enhance infection of the gut of the vector. IMPORTANCE Cockroaches, including the German cockroach (Blattella germanica), can be both mechanical and biological vectors of pathogenic bacteria. Together, our data reveal a novel mechanism by which S. Typhimurium interacts with the cockroach gut and its microbiota that promotes infection of the vector. These findings exemplify the emerging but underappreciated complexity of the relationship between cockroaches and S. Typhimurium.
Collapse
Affiliation(s)
- Matthew Turner
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Landen Van Hulzen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Jose E. Pietri
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
11
|
Deblais L, Ranjit S, Vrisman C, Antony L, Scaria J, Miller SA, Rajashekara G. Role of Stress-Induced Proteins RpoS and YicC in the Persistence of Salmonella enterica subsp. enterica Serotype Typhimurium in Tomato Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:109-118. [PMID: 36394339 DOI: 10.1094/mpmi-07-22-0152-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the functional role of bacterial genes in the persistence of Salmonella in plant organs can facilitate the development of agricultural practices to mitigate food safety risks associated with the consumption of fresh produce contaminated with Salmonella spp. Our study showed that Salmonella enterica subsp. enterica serotype Typhimurium (strain MDD14) persisted less in inoculated tomato plants than other Salmonella Typhimurium strains tested (JSG210, JSG626, JSG634, JSG637, JSG3444, and EV030415; P < 0.01). In-vitro assays performed in limited-nutrient conditions (growth rate, biofilm production, and motility) were inconclusive in explaining the in-planta phenotype observed with MDD14. Whole-genome sequencing combined with non-synonymous single nucleotide variations analysis was performed to identify genomic differences between MDD14 and the other Salmonella Typhimurium strains. The genome of MDD14 contained a truncated version (123 bp N-terminal) of yicC and a mutated version of rpoS (two non-synonymous substitutions, i.e., G66E and R82C), which are two stress-induced proteins involved in iron acquisition, environmental sensing, and cell envelope integrity. The rpoS and yicC genes were deleted in Salmonella Typhimurium JSG210 with the Lambda Red recombining system. Both mutants had limited persistence in tomato plant organs, similar to that of MDD14. In conclusion, we demonstrated that YicC and RpoS are involved in the persistence of Salmonella in tomato plants in greenhouse conditions and, thus, could represent potential targets to mitigate persistence of Salmonella spp. in planta. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Loïc Deblais
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| | - Sochina Ranjit
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| | - Claudio Vrisman
- Department of Plant Pathology, The Ohio State University, Wooster, OH, U.S.A
| | - Linto Antony
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, U.S.A
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, U.S.A
| | - Sally A Miller
- Department of Plant Pathology, The Ohio State University, Wooster, OH, U.S.A
| | - Gireesh Rajashekara
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| |
Collapse
|
12
|
Krzyżewska-Dudek E, Kotimaa J, Kapczyńska K, Rybka J, Meri S. Lipopolysaccharides and outer membrane proteins as main structures involved in complement evasion strategies of non-typhoidal Salmonella strains. Mol Immunol 2022; 150:67-77. [PMID: 35998438 DOI: 10.1016/j.molimm.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022]
Abstract
Non-typhoidal Salmonella (NTS) infections pose a serious public health problem. In addition to the typical course of salmonellosis, an infection with Salmonella bacteria can often lead to parenteral infections and sepsis, which are particularly dangerous for children, the elderly and immunocompromised. Bacterial resistance to serum is a key virulence factor for the development of systemic infections. Salmonella, as an enterobacterial pathogen, has developed several mechanisms to escape and block the antibacterial effects of the complement system. In this review, we discuss the relevance of outer membrane polysaccharides to the complement evasion mechanisms of NTS strains. These include the influence of the overall length and density of the lipopolysaccharide molecules, modifications of the O-antigen lipopolysaccharide composition and the role of capsular polysaccharides in opsonization and protection of the outer membrane from the lytic action of complement. Additionally, we discuss specific outer membrane protein complement evasion mechanisms, such as recruitment of complement regulatory proteins, blocking assembly of late complement components to form the membrane attack complex and the proteolytic cleavage of complement proteins.
Collapse
Affiliation(s)
- E Krzyżewska-Dudek
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, and Diagnostic Center (HUSLAB), Helsinki University Hospital, 00290 Helsinki, Finland; Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - J Kotimaa
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, and Diagnostic Center (HUSLAB), Helsinki University Hospital, 00290 Helsinki, Finland
| | - K Kapczyńska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - J Rybka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - S Meri
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, and Diagnostic Center (HUSLAB), Helsinki University Hospital, 00290 Helsinki, Finland.
| |
Collapse
|
13
|
Amyloid-containing biofilms and autoimmunity. Curr Opin Struct Biol 2022; 75:102435. [PMID: 35863164 PMCID: PMC9847210 DOI: 10.1016/j.sbi.2022.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 01/21/2023]
Abstract
Bacteria are microscopic, single-celled organisms known for their ability to adapt to their environment. In response to stressful environmental conditions or in the presence of a contact surface, they commonly form multicellular aggregates called biofilms. Biofilms form on various abiotic or biotic surfaces through a dynamic stepwise process involving adhesion, growth, and extracellular matrix production. Biofilms develop on tissues as well as on implanted devices during infections, providing the bacteria with a mechanism for survival under harsh conditions including targeting by the immune system and antimicrobial therapy. Like pathogenic bacteria, members of the human microbiota can form biofilms. Biofilms formed by enteric bacteria contribute to several human diseases including autoimmune diseases and cancer. However, until recently the interactions of immune cells with biofilms had been mostly uncharacterized. Here, we will discuss how components of the enteric biofilm produced in vivo, specifically amyloid curli and extracellular DNA, could be interacting with the host's immune system causing an unpredicted immune response.
Collapse
|
14
|
Jung J, Schaffner DW. The role of
Salmonella
Newport cell surface structures on bacterial attachment and transfer during cucumber peeling. Lett Appl Microbiol 2022; 75:1246-1253. [DOI: 10.1111/lam.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/12/2022] [Accepted: 07/16/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Jiin Jung
- Department of Food Science Rutgers University 65 Dudley Road New Brunswick
- School of Occupational and Public Health Toronto Metropolitan University 350 Victoria Street Toronto Ontario Canada M5B 2K3
| | | |
Collapse
|
15
|
Jahan F, Chinni SV, Samuggam S, Reddy LV, Solayappan M, Su Yin L. The Complex Mechanism of the Salmonella typhi Biofilm Formation That Facilitates Pathogenicity: A Review. Int J Mol Sci 2022; 23:6462. [PMID: 35742906 PMCID: PMC9223757 DOI: 10.3390/ijms23126462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. typhi) is an intracellular pathogen belonging to the Enterobacteriaceae family, where biofilm (aggregation and colonization of cells) formation is one of their advantageous traits. Salmonella typhi is the causative agent of typhoid fever in the human body and is exceptionally host specific. It is transmitted through the fecal-oral route by consuming contaminated food or water. This subspecies is quite intelligent to evade the innate detection and immune response of the host body, leading to systemic dissemination. Consequently, during the period of illness, the gallbladder becomes a harbor and may develop antibiotic resistance. Afterwards, they start contributing to the continuous damage of epithelium cells and make the host asymptomatic and potential carriers of this pathogen for an extended period. Statistically, almost 5% of infected people with Salmonella typhi become chronic carriers and are ready to contribute to future transmission by biofilm formation. Biofilm development is already recognized to link with pathogenicity and plays a crucial role in persistency within the human body. This review seeks to discuss some of the crucial factors related to biofilm development and its mechanism of interaction causing pathogenicity. Understanding the connections between these things will open up a new avenue for finding therapeutic approaches to combat pathogenicity.
Collapse
Affiliation(s)
- Fahmida Jahan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | - Suresh V. Chinni
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
- Biochemistry Unit, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Sumitha Samuggam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | | | - Maheswaran Solayappan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | - Lee Su Yin
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| |
Collapse
|
16
|
Determination of an effective agent combination using nisin against Salmonella biofilm. Arch Microbiol 2022; 204:167. [PMID: 35133506 DOI: 10.1007/s00203-022-02766-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/17/2021] [Accepted: 01/19/2022] [Indexed: 01/02/2023]
Abstract
This present study aims to determine the lowest concentration effects of the assayed different antibiotics; antimicrobial agents alone and their combinations with nisin were investigated to prevent the biofilm formation and break down the biofilm structure of Salmonella. While the combination of nisin and EDTA showed a synergistic effect against Salmonella strain, chlorhexidine digluconate and streptomycin with nisin showed a partial synergetic effect; citric acid and sulfonamides with nisin showed an indifferent effect. The use of citric acid and chlorhexidine digluconate alone was very effective in Salmonella inhibition. While the citric acid combined with other agents had not much effect, the use of chlorhexidine digluconate combined with nisin and EDTA inactivated the total initial count within 24 h. Significantly, when citric acid and sulfonamides are used alone, they reduce by 64% and 44%, respectively. When they used nisin + EDTA, this ratio increased to 83% and 84%, respectively. For the prevention of biofilm, the most suitable conditions were determined as 97% biofilm inhibition. The results of this study can be used as a guide for the emergence of new approaches to ensure the food safety and quality of the food industry.
Collapse
|
17
|
Qian C, Huang M, Du Y, Song J, Mu H, Wei Y, Zhang S, Yin Z, Yuan C, Liu B, Liu B. Chemotaxis and Shorter O-Antigen Chain Length Contribute to the Strong Desiccation Tolerance of a Food-Isolated Cronobacter sakazakii Strain. Front Microbiol 2022; 12:779538. [PMID: 35058898 PMCID: PMC8764414 DOI: 10.3389/fmicb.2021.779538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen causing a lethality rate as high as 80% in infants. Desiccation tolerance ensures its survival in powdered infant formula (PIF) and contributes to the increased exposure to neonates, resulting in neonatal meningitis, septicemia, and necrotizing enterocolitis. This study showed that a food-isolated C. sakazakii G4023 strain exhibited a stronger desiccation tolerance than C. sakazakii ATCC 29544 strain. Considering the proven pathogenicity of G4023, it could be a big threat to infants. Transcriptome and proteome were performed to provide new insights into the desiccation adaptation mechanisms of G4023. Integrated analyses of these omics suggested that 331 genes were found regulated at both transcriptional and protein levels (≥2.0- and ≥1.5-fold, respectively). Deletion of chemotaxis system encoded genes cheA and cheW resulted in decreased tolerance in both short- and long-term desiccation. Reduced O-antigen chain length contributed to the biofilm formation and desiccation tolerance in the short term rather than the long term. In addition, biosynthesis of flagella, arginine and its transport system, and Fe/S cluster were also observed regulated in desiccated G4023. A better understanding of desiccation adaptation mechanisms of G4023 could in turn guide the operations during production and preservation of PIF or other food to reduce survival odds of G4023 and lower its exposure to get to infants.
Collapse
Affiliation(s)
- Chengqian Qian
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Min Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yuhui Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Jingjie Song
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Huiqian Mu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yi Wei
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Si Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Zhiqiu Yin
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, China
| | - Chao Yuan
- Department of Sanitary Toxicology and Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
18
|
Zwe YH, Ten MMZ, Pang X, Wong CH, Li D. Differential Survivability of Two Genetically Similar Salmonella Thompson Strains on Pre-harvest Sweet Basil ( Ocimum basilicum) Leaves. Front Microbiol 2021; 12:740983. [PMID: 34950113 PMCID: PMC8689135 DOI: 10.3389/fmicb.2021.740983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Although conventionally considered an animal pathogen, recent evidence increasingly suggests that fresh produce may act as significant transmission vehicles and alternative hosts to Salmonella. This study reports the differential survivability of two genetically similar Salmonella Thompson strains (ST 889B and ST 688C) on the adaxial surface of pre-harvest basil (Ocimum basilicum) leaves. Upon inoculation, two distinct phenomena, a dried water-print or a macroscopic lesion, were observed within 24 h. ST 889B survived better than ST 688C on healthy-looking leaves without lesions, possibly due to its higher biofilm-forming ability. Both strains survived better on the leaves with lesions than on the healthy-looking leaves (ST 688C: 4.39 ± 0.68 vs. 2.18 ± 0.29; ST 889B: 4.78 ± 0.12 vs. 2.83 ± 0.18 log CFU per sample at 6 days post-inoculation). ST 889B caused the formation of lesions at a higher frequency [70/117 leaves (59.8%)] than ST 688C [35/96 leaves (36.5%)]. Thus, we highlighted two distinct Salmonella survival strategies in the basil pathosystem and demonstrated gene expression polymorphism (variations in the expression of the same set of genes) as an indispensable strategy in the colonization of plants as hosts by the human pathogens.
Collapse
Affiliation(s)
- Ye Htut Zwe
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Michelle Mei Zhen Ten
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Xinyi Pang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Chun Hong Wong
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Dan Li
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Mandal RK, Jiang T, Kwon YM. Genetic Determinants in Salmonella enterica Serotype Typhimurium Required for Overcoming In Vitro Stressors in the Mimicking Host Environment. Microbiol Spectr 2021; 9:e0015521. [PMID: 34878334 PMCID: PMC8653844 DOI: 10.1128/spectrum.00155-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serotype Typhimurium, a nontyphoidal Salmonella (NTS), results in a range of enteric diseases, representing a major disease burden worldwide. There is still a significant portion of Salmonella genes whose mechanistic basis to overcome host innate defense mechanisms largely remains unknown. Here, we have applied transposon insertion sequencing (Tn-seq) method to unveil the genetic factors required for the growth or survival of S. Typhimurium under various host stressors simulated in vitro. A highly saturating Tn5 library of S. Typhimurium 14028s was subjected to selection during growth in the presence of short-chain fatty acid (100 mM propionate), osmotic stress (3% NaCl), or oxidative stress (1 mM H2O2) or survival in extreme acidic pH (30 min in pH 3) or starvation (12 days in 1× phosphate-buffered saline [PBS]). We have identified a total of 339 conditionally essential genes (CEGs) required to overcome at least one of these conditions mimicking host insults. Interestingly, all eight genes encoding FoF1-ATP synthase subunit proteins were required for fitness in all five stresses. Intriguingly, a total of 88 genes in Salmonella pathogenicity islands (SPI), including SPI-1, SPI-2, SPI-3, SPI-5, SPI-6, and SPI-11, are also required for fitness under the in vitro conditions. Additionally, by comparative analysis of the genes identified in this study and the genes previously shown to be required for in vivo fitness, we identified novel genes (marBCT, envF, barA, hscA, rfaQ, rfbI, and the genes encoding putative proteins STM14_1138, STM14_3334, STM14_4825, and STM_5184) that have compelling potential for the development of vaccines and antibacterial drugs to curb Salmonella infection. IMPORTANCE Salmonella enterica serotype Typhimurium is a major human bacterial pathogen that enters the food chain through meat animals asymptomatically carrying this pathogen. Despite the rich genome sequence data, a significant portion of Salmonella genes remain to be characterized for their potential contributions to virulence. In this study, we used transposon insertion sequencing (Tn-seq) to elucidate the genetic factors required for growth or survival under various host stressors, including short-chain fatty acids, osmotic stress, oxidative stress, extreme acid, and starvation. Among the total of 339 conditionally essential genes (CEGs) that are required under at least one of these five stress conditions were 221 previously known virulence genes required for in vivo fitness during infection in at least one of four animal species, including mice, chickens, pigs, and cattle. This comprehensive map of virulence phenotype-genotype in S. Typhimurium provides a roadmap for further interrogation of the biological functions encoded by the genome of this important human pathogen to survive in hostile host environments.
Collapse
Affiliation(s)
- Rabindra K. Mandal
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Tieshan Jiang
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Young Min Kwon
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
20
|
Snow AJD, Burchill L, Sharma M, Davies GJ, Williams SJ. Sulfoglycolysis: catabolic pathways for metabolism of sulfoquinovose. Chem Soc Rev 2021; 50:13628-13645. [PMID: 34816844 DOI: 10.1039/d1cs00846c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sulfoquinovose (SQ), a derivative of glucose with a C6-sulfonate, is produced by photosynthetic organisms and is the headgroup of the sulfolipid sulfoquinovosyl diacylglycerol. The degradation of SQ allows recycling of its elemental constituents and is important in the global sulfur and carbon biogeochemical cycles. Degradation of SQ by bacteria is achieved through a range of pathways that fall into two main groups. One group involves scission of the 6-carbon skeleton of SQ into two fragments with metabolic utilization of carbons 1-3 and excretion of carbons 4-6 as dihydroxypropanesulfonate or sulfolactate that is biomineralized to sulfite/sulfate by other members of the microbial community. The other involves the complete metabolism of SQ by desulfonylation involving cleavage of the C-S bond to release sulfite and glucose, the latter of which can enter glycolysis. The discovery of sulfoglycolytic pathways has revealed a wide range of novel enzymes and SQ binding proteins. Biochemical and structural characterization of the proteins and enzymes in these pathways have illuminated how the sulfonate group is recognized by Nature's catalysts, supporting bioinformatic annotation of sulfoglycolytic enzymes, and has identified functional and structural relationships with the pathways of glycolysis.
Collapse
Affiliation(s)
- Alexander J D Snow
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - Laura Burchill
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia. .,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - Spencer J Williams
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia. .,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
21
|
Lamprokostopoulou A, Römling U. Yin and Yang of Biofilm Formation and Cyclic di-GMP Signaling of the Gastrointestinal Pathogen Salmonella enterica Serovar Typhimurium. J Innate Immun 2021; 14:275-292. [PMID: 34775379 PMCID: PMC9275015 DOI: 10.1159/000519573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Within the last 60 years, microbiological research has challenged many dogmas such as bacteria being unicellular microorganisms directed by nutrient sources; these investigations produced new dogmas such as cyclic diguanylate monophosphate (cyclic di-GMP) second messenger signaling as a ubiquitous regulator of the fundamental sessility/motility lifestyle switch on the single-cell level. Successive investigations have not yet challenged this view; however, the complexity of cyclic di-GMP as an intracellular bacterial signal, and, less explored, as an extracellular signaling molecule in combination with the conformational flexibility of the molecule, provides endless opportunities for cross-kingdom interactions. Cyclic di-GMP-directed microbial biofilms commonly stimulate the immune system on a lower level, whereas host-sensed cyclic di-GMP broadly stimulates the innate and adaptive immune responses. Furthermore, while the intracellular second messenger cyclic di-GMP signaling promotes bacterial biofilm formation and chronic infections, oppositely, Salmonella Typhimurium cellulose biofilm inside immune cells is not endorsed. These observations only touch on the complexity of the interaction of biofilm microbial cells with its host. In this review, we describe the Yin and Yang interactive concepts of biofilm formation and cyclic di-GMP signaling using S. Typhimurium as an example.
Collapse
Affiliation(s)
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Abstract
Polysaccharides are often the most abundant antigens found on the extracellular surfaces of bacterial cells. These polysaccharides play key roles in interactions with the outside world, and for many bacterial pathogens, they represent what is presented to the human immune system. As a result, many vaccines have been or currently are being developed against carbohydrate antigens. In this review, we explore the diversity of capsular polysaccharides (CPS) in Salmonella and other selected bacterial species and explain the classification and function of CPS as vaccine antigens. Despite many vaccines being developed using carbohydrate antigens, the low immunogenicity and the diversity of infecting strains and serovars present an antigen formulation challenge to manufacturers. Vaccines tend to focus on common serovars or have changing formulations over time, reflecting the trends in human infection, which can be costly and time-consuming. We summarize the approaches to generate carbohydrate-based vaccines for Salmonella, describe vaccines that are in development and emphasize the need for an effective vaccine against non-typhoidal Salmonella strains.
Collapse
|
23
|
The Abundance and Organization of Salmonella Extracellular Polymeric Substances in Gallbladder-Mimicking Environments and In Vivo. Infect Immun 2021; 89:e0031021. [PMID: 34398679 DOI: 10.1128/iai.00310-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) causes chronic infections by establishing biofilms on cholesterol gallstones. Production of extracellular polymeric substances (EPSs) is key to biofilm development and biofilm architecture depends on which EPSs are made. The presence and spatial distribution of Salmonella EPSs produced in vitro and in vivo were investigated in S. Typhimurium and S. Typhi biofilms by confocal microscopy. Comparisons between serovars and EPS-mutant bacteria were examined by growth on cholesterol-coated surfaces, with human gallstones in ox or human bile, and in mice with gallstones. On cholesterol-coated surfaces, major differences in EPS biomass were not found between serovars. Co-culture biofilms containing wild-type (WT) and EPS-mutant bacteria demonstrated WT compensation for EPS mutations. Biofilm EPS analysis from gallbladder-mimicking conditions found that culture in human bile more consistently replicated the relative abundance and spatial organization of each EPS on gallstones from the chronic mouse model than culture in ox bile. S. Typhimurium biofilms cultured in vitro on gallstones in ox bile exhibited co-localized pairings of curli fimbriae/lipopolysaccharide and O antigen capsule/cellulose while these associations were not present in S. Typhi biofilms or in mouse gallstone biofilms. In general, inclusion of human bile with gallstones in vitro replicated biofilm development on gallstones in vivo, demonstrating its strength as a model for studying biofilm parameters or EPS-directed therapeutic treatments.
Collapse
|
24
|
Vasicek EM, O'Neal L, Parsek MR, Fitch J, White P, Gunn JS. L-Arabinose Transport and Metabolism in Salmonella Influences Biofilm Formation. Front Cell Infect Microbiol 2021; 11:698146. [PMID: 34368016 PMCID: PMC8341724 DOI: 10.3389/fcimb.2021.698146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
L-arabinose inducible promoters are commonly used in gene expression analysis. However, nutrient source and availability also play a role in biofilm formation; therefore, L-arabinose metabolism could impact biofilm development. In this study we examined the impact of L-arabinose on Salmonella enterica serovar Typhimurium (S. Typhimurium) biofilm formation. Using mutants impaired for the transport and metabolism of L-arabinose, we showed that L-arabinose metabolism negatively impacts S. Typhimurium biofilm formation in vitro. When L-arabinose metabolism is abrogated, biofilm formation returned to baseline levels. However, without the ability to import extracellular L-arabinose, biofilm formation significantly increased. Using RNA-Seq we identified several gene families involved in these different phenotypes including curli expression, amino acid synthesis, and L-arabinose metabolism. Several individual candidate genes were tested for their involvement in the L-arabinose-mediated biofilm phenotypes, but most played no significant role. Interestingly, in the presence of L-arabinose the diguanylate cyclase gene adrA was downregulated in wild type S. Typhimurium. Meanwhile cyaA, encoding an adenylate cyclase, was downregulated in an L-arabinose transport mutant. Using an IPTG-inducible plasmid to deplete c-di-GMP via vieA expression, we were able to abolish the increased biofilm phenotype seen in the transport mutant. However, the mechanism by which the L-arabinose import mutant forms significantly larger biofilms remains to be determined. Regardless, these data suggest that L-arabinose metabolism influences intracellular c-di-GMP levels and therefore biofilm formation. These findings are important when considering the use of an L-arabinose inducible promoter in biofilm conditions.
Collapse
Affiliation(s)
- Erin M Vasicek
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Lindsey O'Neal
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - James Fitch
- The Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Peter White
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States.,The Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
25
|
Shigella-Specific Immune Profiles Induced after Parenteral Immunization or Oral Challenge with Either Shigella flexneri 2a or Shigella sonnei. mSphere 2021; 6:e0012221. [PMID: 34259559 PMCID: PMC8386581 DOI: 10.1128/msphere.00122-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella spp. are a leading cause of diarrhea-associated global morbidity and mortality. Development and widespread implementation of an efficacious vaccine remain the best option to reduce Shigella-specific morbidity. Unfortunately, the lack of a well-defined correlate of protection for shigellosis continues to hinder vaccine development efforts. Shigella controlled human infection models (CHIM) are often used in the early stages of vaccine development to provide preliminary estimates of vaccine efficacy; however, CHIMs also provide the opportunity to conduct in-depth immune response characterizations pre- and postvaccination or pre- and postinfection. In the current study, principal-component analyses were used to examine immune response data from two recent Shigella CHIMs in order to characterize immune response profiles associated with parenteral immunization, oral challenge with Shigella flexneri 2a, or oral challenge with Shigella sonnei. Although parenteral immunization induced an immune profile characterized by robust systemic antibody responses, it also included mucosal responses. Interestingly, oral challenge with S. flexneri 2a induced a distinctively different profile compared to S. sonnei, characterized by a relatively balanced systemic and mucosal response. In contrast, S. sonnei induced robust increases in mucosal antibodies with no differences in systemic responses across shigellosis outcomes postchallenge. Furthermore, S. flexneri 2a challenge induced significantly higher levels of intestinal inflammation compared to S. sonnei, suggesting that both serotypes may also differ in how they trigger induction and activation of innate immunity. These findings could have important implications for Shigella vaccine development as protective immune mechanisms may differ across Shigella serotypes. IMPORTANCE Although immune correlates of protection have yet to be defined for shigellosis, prior studies have demonstrated that Shigella infection provides protection against reinfection in a serotype-specific manner. Therefore, it is likely that subjects with moderate to severe disease post-oral challenge would be protected from a homologous rechallenge, and investigating immune responses in these subjects may help identify immune markers associated with the development of protective immunity. This is the first study to describe distinct innate and adaptive immune profiles post-oral challenge with two different Shigella serotypes. Analyses conducted here provide essential insights into the potential of different immune mechanisms required to elicit protective immunity, depending on the Shigella serotype. Such differences could have significant impacts on vaccine design and development within the Shigella field and should be further investigated across multiple Shigella serotypes.
Collapse
|
26
|
Hahn MM, González JF, Gunn JS. Salmonella Biofilms Tolerate Hydrogen Peroxide by a Combination of Extracellular Polymeric Substance Barrier Function and Catalase Enzymes. Front Cell Infect Microbiol 2021; 11:683081. [PMID: 34095002 PMCID: PMC8171120 DOI: 10.3389/fcimb.2021.683081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
The ability of Salmonella enterica subspecies enterica serovar Typhi (S. Typhi) to cause chronic gallbladder infections is dependent on biofilm growth on cholesterol gallstones. Non-typhoidal Salmonella (e.g. S. Typhimurium) also utilize the biofilm state to persist in the host and the environment. How the pathogen maintains recalcitrance to the host response, and oxidative stress in particular, during chronic infection is poorly understood. Previous experiments demonstrated that S. Typhi and S. Typhimurium biofilms are tolerant to hydrogen peroxide (H2O2), but that mutations in the biofilm extracellular polymeric substances (EPSs) O antigen capsule, colanic acid, or Vi antigen reduce tolerance. Here, biofilm-mediated tolerance to oxidative stress was investigated using a combination of EPS and catalase mutants, as catalases are important detoxifiers of H2O2. Using co-cultured biofilms of wild-type (WT) bacteria with EPS mutants, it was demonstrated that colanic acid in S. Typhimurium and Vi antigen in S. Typhi have a community function and protect all biofilm-resident bacteria rather than to only protect the individual cells producing the EPSs. However, the H2O2 tolerance deficiency of a O antigen capsule mutant was unable to be compensated for by co-culture with WT bacteria. For curli fimbriae, both WT and mutant strains are tolerant to H2O2 though unexpectedly, co-cultured WT/mutant biofilms challenged with H2O2 resulted in sensitization of both strains, suggesting a more nuanced oxidative resistance alteration in these co-cultures. Three catalase mutant (katE, katG and a putative catalase) biofilms were also examined, demonstrating significant reductions in biofilm H2O2 tolerance for the katE and katG mutants. Biofilm co-culture experiments demonstrated that catalases exhibit a community function. We further hypothesized that biofilms are tolerant to H2O2 because the physical barrier formed by EPSs slows penetration of H2O2 into the biofilm to a rate that can be mitigated by intra-biofilm catalases. Compared to WT, EPS-deficient biofilms have a heighted response even to low-dose (2.5 mM) H2O2 challenge, confirming that resident bacteria of EPS-deficient biofilms are under greater stress and have limited protection from H2O2. Thus, these data provide an explanation for how Salmonella achieves tolerance to H2O2 by a combination of an EPS-mediated barrier and enzymatic detoxification.
Collapse
Affiliation(s)
- Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Juan F González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
27
|
Richards A, Baranova DE, Pizzuto MS, Jaconi S, Willsey GG, Torres-Velez FJ, Doering JE, Benigni F, Corti D, Mantis NJ. Recombinant Human Secretory IgA Induces Salmonella Typhimurium Agglutination and Limits Bacterial Invasion into Gut-Associated Lymphoid Tissues. ACS Infect Dis 2021; 7:1221-1235. [PMID: 33728898 PMCID: PMC8154420 DOI: 10.1021/acsinfecdis.0c00842] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/11/2022]
Abstract
As the predominant antibody type in mucosal secretions, human colostrum, and breast milk, secretory IgA (SIgA) plays a central role in safeguarding the intestinal epithelium of newborns from invasive enteric pathogens like the Gram-negative bacterium Salmonella enterica serovar Typhimurium (STm). SIgA is a complex molecule, consisting of an assemblage of two or more IgA monomers, joining (J)-chain, and secretory component (SC), whose exact functions in neutralizing pathogens are only beginning to be elucidated. In this study, we produced and characterized a recombinant human SIgA variant of Sal4, a well-characterized monoclonal antibody (mAb) specific for the O5-antigen of STm lipopolysaccharide (LPS). We demonstrate by flow cytometry, light microscopy, and fluorescence microscopy that Sal4 SIgA promotes the formation of large, densely packed bacterial aggregates in vitro. In a mouse model, passive oral administration of Sal4 SIgA was sufficient to entrap STm within the intestinal lumen and reduce bacterial invasion into gut-associated lymphoid tissues by several orders of magnitude. Bacterial aggregates induced by Sal4 SIgA treatment in the intestinal lumen were recalcitrant to immunohistochemical staining, suggesting the bacteria were encased in a protective capsule. Indeed, a crystal violet staining assay demonstrated that STm secretes an extracellular matrix enriched in cellulose following even short exposures to Sal4 SIgA. Collectively, these results demonstrate that recombinant human SIgA recapitulates key biological activities associated with mucosal immunity and raises the prospect of oral passive immunization to combat enteric diseases.
Collapse
Affiliation(s)
- Angelene
F. Richards
- Department
of Biomedical Sciences, University at Albany
School of Public Health, Albany, New York 12208, United States
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Danielle E. Baranova
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Matteo S. Pizzuto
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Graham G. Willsey
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Fernando J. Torres-Velez
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Jennifer E. Doering
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Fabio Benigni
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Davide Corti
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Nicholas J. Mantis
- Department
of Biomedical Sciences, University at Albany
School of Public Health, Albany, New York 12208, United States
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| |
Collapse
|
28
|
Ray S, Da Costa R, Thakur S, Nandi D. Salmonella Typhimurium encoded cold shock protein E is essential for motility and biofilm formation. MICROBIOLOGY-SGM 2021; 166:460-473. [PMID: 32159509 DOI: 10.1099/mic.0.000900] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability of bacteria to form biofilms increases their survival under adverse environmental conditions. Biofilms have enormous medical and environmental impact; consequently, the factors that influence biofilm formation are an important area of study. In this investigation, the roles of two cold shock proteins (CSP) during biofilm formation were investigated in Salmonella Typhimurium, which is a major foodborne pathogen. Among all CSP transcripts studied, the expression of cspE (STM14_0732) was higher during biofilm growth. The cspE deletion strain (ΔcspE) did not form biofilms on a cholesterol coated glass surface; however, complementation with WT cspE, but not the F30V mutant, was able to rescue this phenotype. Transcript levels of other CSPs demonstrated up-regulation of cspA (STM14_4399) in ΔcspE. The cspA deletion strain (ΔcspA) did not affect biofilm formation; however, ΔcspEΔcspA exhibited higher biofilm formation compared to ΔcspE. Most likely, the higher cspA amounts in ΔcspE reduced biofilm formation, which was corroborated using cspA over-expression studies. Further functional studies revealed that ΔcspE and ΔcspEΔcspA exhibited slow swimming but no swarming motility. Although cspA over-expression did not affect motility, cspE complementation restored the swarming motility of ΔcspE. The transcript levels of the major genes involved in motility in ΔcspE demonstrated lower expression of the class III (fliC, motA, cheY), but not class I (flhD) or class II (fliA, fliL), flagellar regulon genes. Overall, this study has identified the interplay of two CSPs in regulating two biological processes: CspE is essential for motility in a CspA-independent manner whereas biofilm formation is CspA-dependent.
Collapse
Affiliation(s)
- Semanti Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rochelle Da Costa
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Samriddhi Thakur
- Department of Undergraduate Studies, Indian Insitute of Science, Bangalore-560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
29
|
Genetic and serological characterization of capsular antigen untypeable Vibrio parahaemolyticus strains reveal novel K serotypes and epidemiological characteristics in Shandong, China. Int J Food Microbiol 2021; 347:109188. [PMID: 33839439 DOI: 10.1016/j.ijfoodmicro.2021.109188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022]
Abstract
Vibrio parahaemolyticus, which is commonly found in marine and estuarine environments worldwide and isolated from aquatic products, is one of the most important food-borne pathogens. Among the various typing methods, serotyping is widely accepted and utilized by infectious disease specialists and infection control agencies for the detection and epidemiological investigation of this pathogen. Thus far, 13 O serotypes and 71 K serotypes have been defined; however, untypeable strains are frequently isolated during routine detection, and some new O and/or K antigens have been identified and characterized. During a serotyping survey in Shandong province, China from 2016 to 2018, we collected 411 clinical V. parahaemolyticus strains and found that nine of them are untypeable K antigen strains. In this study, we identified three K serotypes of V. parahaemolyticus through in-depth genetic analysis of the K antigen gene cluster, serological tests, and the production of antisera. Among the nine strains, seven possess K untypeable 2 (KUT2) antigens, which have been reported recently by another group. However, two new O and K combinations (O3:KUT2 and O11:KUT2) were first characterized by us, with the remaining two each representing a novel K serotype. Moreover, through comparative genomic analysis, we showed that the Shandong KUT2 strains exhibit different virulence profiles compared to their identical K serotype partners from Zhejiang province, another Chinese coastal province; however, strains from these two regions are clustered into the same linage and may have evolved from a recent common ancestor. Additionally, one isolate, SD2016062, was phylogenetically similar to the strains associated with several local gastroenteritis outbreaks, with similar toxin patterns, suggesting its potential to cause sporadic occurrences of disease or even local pandemics. Finally, we developed a sero-specific PCR assay targeting the three novel K serotypes, which can monitor the V. parahaemolyticus spectrum for clinical and epidemiological purposes. Thus, we identified and characterized novel strains of V. parahaemolyticus and proposed a new technique for tracking the diversity of strains, which can help manage this food-borne pathogen.
Collapse
|
30
|
Sokaribo AS, Perera SR, Sereggela Z, Krochak R, Balezantis LR, Xing X, Lam S, Deck W, Attah-Poku S, Abbott DW, Tamuly S, White AP. A GMMA-CPS-Based Vaccine for Non-Typhoidal Salmonella. Vaccines (Basel) 2021; 9:vaccines9020165. [PMID: 33671372 PMCID: PMC7922415 DOI: 10.3390/vaccines9020165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Non-typhoidal Salmonella are a major cause of gastroenteritis worldwide, as well as causing bloodstream infections in sub-Saharan Africa with a high fatality rate. No vaccine is currently available for human use. Current vaccine development strategies are focused on capsular polysaccharides (CPS) present on the surface of non-typhoidal Salmonella. This study aimed to boost the amount of CPS purified from S. Typhimurium for immunization trials. Random mutagenesis with Tn10 transposon increased the production of CPS colanic acid, by 10-fold compared to wildtype. Immunization with colanic acid or colanic acid conjugated to truncated glycoprotein D or inactivated diphtheria toxin did not induce a protective immune response in mice. However, immunization with Generalized Modules for Membrane Antigens (GMMAs) isolated from colanic acid overproducing isolates reduced Salmonella colonization in mice. Our results support the development of a GMMA-CPS-based vaccine against non-typhoidal Salmonella.
Collapse
Affiliation(s)
- Akosiererem S. Sokaribo
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Sumudu R. Perera
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Zoe Sereggela
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Ryan Krochak
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Lindsay R. Balezantis
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Xiaohui Xing
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J4B1, Canada; (X.X.); (D.W.A.)
| | - Shirley Lam
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - William Deck
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - Sam Attah-Poku
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - Dennis Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J4B1, Canada; (X.X.); (D.W.A.)
| | - Shantanu Tamuly
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati 781022, Assam, India;
| | - Aaron P. White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
- Correspondence: ; Tel.: +01-306-966-7485
| |
Collapse
|
31
|
Harrell JE, Hahn MM, D'Souza SJ, Vasicek EM, Sandala JL, Gunn JS, McLachlan JB. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract. Front Cell Infect Microbiol 2021; 10:624622. [PMID: 33604308 PMCID: PMC7885405 DOI: 10.3389/fcimb.2020.624622] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Within the species of Salmonella enterica, there is significant diversity represented among the numerous subspecies and serovars. Collectively, these account for microbes with variable host ranges, from common plant and animal colonizers to extremely pathogenic and human-specific serovars. Despite these differences, many Salmonella species find commonality in the ability to form biofilms and the ability to cause acute, latent, or chronic disease. The exact outcome of infection depends on many factors such as the growth state of Salmonella, the environmental conditions encountered at the time of infection, as well as the infected host and immune response elicited. Here, we review the numerous biofilm lifestyles of Salmonella (on biotic and abiotic surfaces) and how the production of extracellular polymeric substances not only enhances long-term persistence outside the host but also is an essential function in chronic human infections. Furthermore, careful consideration is made for the events during initial infection that allow for gut transcytosis which, in conjunction with host immune functions, often determine the progression of disease. Both typhoidal and non-typhoidal salmonellae can cause chronic and/or secondary infections, thus the adaptive immune responses to both types of bacteria are discussed with particular attention to the differences between Salmonella Typhi, Salmonella Typhimurium, and invasive non-typhoidal Salmonella that can result in differential immune responses. Finally, while strides have been made in our understanding of immunity to Salmonella in the lymphoid organs, fewer definitive studies exist for intestinal and hepatobiliary immunity. By examining our current knowledge and what remains to be determined, we provide insight into new directions in the field of Salmonella immunity, particularly as it relates to chronic infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Erin M Vasicek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Jenna L Sandala
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
32
|
Devaraj A, González JF, Eichar B, Thilliez G, Kingsley RA, Baker S, Allard MW, Bakaletz LO, Gunn JS, Goodman SD. Enhanced biofilm and extracellular matrix production by chronic carriage versus acute isolates of Salmonella Typhi. PLoS Pathog 2021; 17:e1009209. [PMID: 33465146 PMCID: PMC7815147 DOI: 10.1371/journal.ppat.1009209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023] Open
Abstract
Salmonella Typhi is the primary causative agent of typhoid fever; an acute systemic infection that leads to chronic carriage in 3–5% of individuals. Chronic carriers are asymptomatic, difficult to treat and serve as reservoirs for typhoid outbreaks. Understanding the factors that contribute to chronic carriage is key to development of novel therapies to effectively resolve typhoid fever. Herein, although we observed no distinct clustering of chronic carriage isolates via phylogenetic analysis, we demonstrated that chronic isolates were phenotypically distinct from acute infection isolates. Chronic carriage isolates formed significantly thicker biofilms with greater biomass that correlated with significantly higher relative levels of extracellular DNA (eDNA) and DNABII proteins than biofilms formed by acute infection isolates. Importantly, extracellular DNABII proteins include integration host factor (IHF) and histone-like protein (HU) that are critical to the structural integrity of bacterial biofilms. In this study, we demonstrated that the biofilm formed by a chronic carriage isolate in vitro, was susceptible to disruption by a specific antibody against DNABII proteins, a successful first step in the development of a therapeutic to resolve chronic carriage. Salmonella Typhi, a human restricted pathogen is the primary etiologic agent of typhoid fever, an acute systemic infection that has a global incidence of 21 million cases annually. Although the acute infection is resolved by antibiotics, 3–5% of individuals develop chronic carriage that is difficult to resolve with antibiotics. A majority of these indivuals serve as reservoirs for further spread of the disease. Understanding the differences between acute and chronic carrier strains is key to design novel targeted approaches to undermine carriage. Here, we demonstrated that chronic carrier strains although not genotypically distinct from acute strains, formed thicker biofilms with greater relative levels of extracellular eDNA and DNABII proteins than those formed by acute infection isolates. We also demonstrated that an antibody against DNABII proteins significantly disrupted biofilms formed by a chronic carrier strain and therefore supported development of therapeutic use of this antibody to attenuate chronic carriage.
Collapse
Affiliation(s)
- Aishwarya Devaraj
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Juan F. González
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Bradley Eichar
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | | | - Robert A. Kingsley
- Quadram Institute Bioscience, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Marc W. Allard
- Food and Drug Administration-FDA, College Park, Maryland, United States of America
| | - Lauren O. Bakaletz
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - John S. Gunn
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
- Oral and GI Microbiology Research Affinity Group, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail: (JSG); (SDG)
| | - Steven D. Goodman
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
- Oral and GI Microbiology Research Affinity Group, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail: (JSG); (SDG)
| |
Collapse
|
33
|
Sense–Analyze–Respond–Actuate (SARA) Paradigm: Proof of Concept System Spanning Nanoscale and Macroscale Actuation for Detection of Escherichia coli in Aqueous Media. ACTUATORS 2020. [DOI: 10.3390/act10010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Foodborne pathogens are a major concern for public health. We demonstrate for the first time a partially automated sensing system for rapid (~17 min), label-free impedimetric detection of Escherichia coli spp. in food samples (vegetable broth) and hydroponic media (aeroponic lettuce system) based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) nanobrushes. This proof of concept (PoC) for the Sense-Analyze-Respond-Actuate (SARA) paradigm uses a biomimetic nanostructure that is analyzed and actuated with a smartphone. The bio-inspired soft material and sensing mechanism is inspired by binary symbiotic systems found in nature, where low concentrations of bacteria are captured from complex matrices by brush actuation driven by concentration gradients at the tissue surface. To mimic this natural actuation system, carbon-metal nanohybrid sensors were fabricated as the transducer layer, and coated with PNIPAAm nanobrushes. The most effective coating and actuation protocol for E. coli detection at various temperatures above/below the critical solution temperature of PNIPAAm was determined using a series of electrochemical experiments. After analyzing nanobrush actuation in stagnant media, we developed a flow through system using a series of pumps that are triggered by electrochemical events at the surface of the biosensor. SARA PoC may be viewed as a cyber-physical system that actuates nanomaterials using smartphone-based electroanalytical testing of samples. This study demonstrates thermal actuation of polymer nanobrushes to detect (sense) bacteria using a cyber-physical systems (CPS) approach. This PoC may catalyze the development of smart sensors capable of actuation at the nanoscale (stimulus-response polymer) and macroscale (non-microfluidic pumping).
Collapse
|
34
|
Nguyen NT, Lee J, Woo SM, Kim YH, Min J. The response of yeast vacuolar proteins: A novel rapid tool for Salmonella sp. screening. Biotechnol Appl Biochem 2020; 68:173-184. [PMID: 32198781 DOI: 10.1002/bab.1910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/11/2020] [Indexed: 01/03/2023]
Abstract
Human health is recently affected by several factors in which food contamination is one of the most dangerous elements that damage directly on our bodies. In this study, we provided a novel approach for the rapid detection of Salmonella sp. at the molecular level using the response of Saccharomyces cerevisiae's vacuoles. First, an augmentation of vacuoles intensity was observed by confocal microscopy after treating Salmonella strains with yeast cells. Second, the vacuolar enzymes were isolated and then analyzed by two-dimensional electrophoresis for the screening of specific biomarkers. After that, various recombinant yeasts containing exclusive biomarkers were constructed by fusing these biomarkers with several fluorescent proteins. Finally, the recombinant strains showed the ability to detect Salmonella strains specifically by appropriate fluorescent signals from 20 CFU/mL after 15 Min of exposure.
Collapse
Affiliation(s)
- Ngoc-Tu Nguyen
- Department of Chemical Engineering, Jeonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
| | - Jaewoong Lee
- Graduate school of Semiconductor and Chemical Engineering, Chonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
| | - Sung Min Woo
- Department of Food Science and Biotechnology, Shin Ansan University, Danwon-Gu, Ansan, South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, Seowon-Gu, Cheongju, South Korea
| | - Jiho Min
- Department of Chemical Engineering, Jeonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea.,Graduate school of Semiconductor and Chemical Engineering, Chonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
| |
Collapse
|
35
|
Rani M, Weadge JT, Jabaji S. Isolation and Characterization of Biosurfactant-Producing Bacteria From Oil Well Batteries With Antimicrobial Activities Against Food-Borne and Plant Pathogens. Front Microbiol 2020; 11:64. [PMID: 32256455 PMCID: PMC7093026 DOI: 10.3389/fmicb.2020.00064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/13/2020] [Indexed: 11/29/2022] Open
Abstract
Microbial biosurfactants, produced by fungi, yeast, and bacteria, are surface-active compounds with emulsifying properties that have a number of known activities, including the solubilization of microbial biofilms. In an on-going survey to uncover new or enhanced antimicrobial metabolite-producing microbes from harsh environments, such as oil-rich niches, 123 bacterial strains were isolated from three oil batteries in the region of Chauvin, Alberta, and characterized by 16S rRNA gene sequencing. Based on their nucleotide sequences, the strains are associated with 3 phyla (Actinobacteria, Proteobacteria and Firmicutes), as well as 17 other discrete genera that shared high homology with known sequences, with the majority of these strains identified to the species level. The most prevalent strains associated with the three oil wells belonged to the Bacillus genus. Thirty-four of the 123 strains were identified as biosurfactant-producers, among which Bacillus methylotrophicus strain OB9 exhibited the highest biosurfactant activity based on multiple screening methods and a comparative analysis with the commercially available biosurfactant, Tween 20. B. methylotrophicus OB9 was selected for further antimicrobial analysis and addition of live cultures of B. methylotrophicus OB9 (or partially purified biosurfactant fractions thereof) were highly effective on biofilm disruption in agar diffusion assays against several Gram-negative food-borne bacteria and plant pathogens. Upon co-culturing with B. methylotrophicus OB9, the number of either Salmonella enterica subsp. enterica Newport SL1 or Xanthomonas campestris B07.007 cells significantly decreased after 6 h and were not retrieved from co-cultures following 12 h exposure. These results also translated to studies on plants, where bacterized tomato seedlings with OB9 significantly protected the tomato leaves from Salmonella enterica Newport SL1 contamination, as evidenced by a 40% reduction of log10 CFU of Salmonella/mg leaf tissue compared to non-bacterized tomato leaves. When B. methylotrophicus 0B9 was used for bacterized lettuce, the growth of X. campestris B07.007, the causal agent of bacterial leaf spot of lettuce, was completely inhibited. While limited, these studies are noteworthy as they demonstrate the inhibition spectrum of B. methylotrophicus 0B9 against both human and plant pathogens; thereby making this bacterium attractive for agricultural and food safety applications in a climate where microbial-biofilm persistence is an increasing problem.
Collapse
Affiliation(s)
- Mamta Rani
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Joel T. Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Suha Jabaji
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Dieltjens L, Appermans K, Lissens M, Lories B, Kim W, Van der Eycken EV, Foster KR, Steenackers HP. Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy. Nat Commun 2020; 11:107. [PMID: 31919364 PMCID: PMC6952394 DOI: 10.1038/s41467-019-13660-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023] Open
Abstract
Bacteria commonly form dense biofilms encased in extracellular polymeric substances (EPS). Biofilms are often extremely tolerant to antimicrobials but their reliance on shared EPS may also be a weakness as social evolution theory predicts that inhibiting shared traits can select against resistance. Here we show that EPS of Salmonella biofilms is a cooperative trait whose benefit is shared among cells, and that EPS inhibition reduces both cell attachment and antimicrobial tolerance. We then compare an EPS inhibitor to conventional antimicrobials in an evolutionary experiment. While resistance against conventional antimicrobials rapidly evolves, we see no evolution of resistance to EPS inhibition. We further show that a resistant strain is outcompeted by a susceptible strain under EPS inhibitor treatment, explaining why resistance does not evolve. Our work suggests that targeting cooperative traits is a viable solution to the problem of antimicrobial resistance. Bacterial biofilms rely on shared extracellular polymeric substances (EPS) and are often highly tolerant to antibiotics. Here, the authors show in in vitro experiments that Salmonella does not evolve resistance to EPS inhibition because such strains are outcompeted by a susceptible strain under inhibitor treatment.
Collapse
Affiliation(s)
- Lise Dieltjens
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Kenny Appermans
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Maries Lissens
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Bram Lories
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Wook Kim
- Department of Zoology and Department of Biochemistry, University of Oxford, Oxford, UK.,Department of Biological Sciences, Duquesne University, Pittsburgh, USA
| | - Erik V Van der Eycken
- Department of Chemistry, Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), KU Leuven, Leuven, Belgium.,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, Russia
| | - Kevin R Foster
- Department of Zoology and Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Hans P Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium. .,Department of Zoology and Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
37
|
Bansal M, Nannapaneni R, Kode D, Chang S, Sharma CS, McDaniel C, Kiess A. Rugose Morphotype in Salmonella Typhimurium and Salmonella Heidelberg Induced by Sequential Exposure to Subinhibitory Sodium Hypochlorite Aids in Biofilm Tolerance to Lethal Sodium Hypochlorite on Polystyrene and Stainless Steel Surfaces. Front Microbiol 2019; 10:2704. [PMID: 31827464 PMCID: PMC6890808 DOI: 10.3389/fmicb.2019.02704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/07/2019] [Indexed: 01/02/2023] Open
Abstract
Salmonella biofilms act as a continuous source for cross-contamination in the food processing environments. In this study, a stable rugose morphotype of Salmonella was first induced by sequential exposure to subinhibitory concentrations (SICs) of sodium hypochlorite (NaOCl) (ranging from 50 to 300 ppm over 18-day period) in tryptic soy broth. Then, rugose and smooth morphotypes of Salmonella Typhimurium ATCC 14028 and Salmonella Heidelberg ATCC 8326 were characterized for biofilm forming abilities on polystyrene and stainless steel surfaces. Rugose morphotype of both ATCC 14028 and ATCC 8326 exhibited higher Exopolysaccharide (EPS) formation than smooth morphotype (p ≤ 0.05). Also, the SICs of NaOCl (200 or 300 ppm in broth model) increased the biofilm formation ability of rugose morphotype of ATCC 8326 (p ≤ 0.05) but decreased that of ATCC 14028. The 2-day-old Salmonella biofilms were treated with biocidal concentrations of 50, 100, or 200 ppm NaOCl (pH 6.15) in water for 5, 10, or 20 min at room temperature. The biofilm reduction in CFU/cm2 for the rugose was lower than the smooth morphotype on both surfaces (p ≤ 0.05) by lethal NaOCl in water. Scanning electron micrographs on both polystyrene and stainless steel surfaces demonstrated that the rugose morphotype produced a denser biofilm than the smooth morphotype. Transmission electron micrographs revealed the cell wall roughness in rugose morphotype, which may help in tolerance to NaOCl. The gene expression data indicate that the expression of biofilm regulator (csgD), curli (csgA, csgB, and csgC), and cellulose (bcsE) was significantly increased in rugose morphotype when induced by sequential exposure of NaOCl SICs. These findings reveal that the rugose morphotype of S. Typhimurium and S. Heidelberg produced significantly denser biofilm on food contact surfaces, which also increased with sequential exposure to SICs of NaOCl in the case of S. Heidelberg, and these biofilms were more tolerant to biocidal NaOCl concentrations commonly used in the food processing plants.
Collapse
Affiliation(s)
- Mohit Bansal
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, United States
| | - Ramakrishna Nannapaneni
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, United States
| | - Divya Kode
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, United States
| | - Sam Chang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, United States
| | - Chander S. Sharma
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, United States
| | - Christopher McDaniel
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, United States
| | - Aaron Kiess
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
38
|
Pang Y, Guo X, Tian X, Liu F, Wang L, Wu J, Zhang S, Li S, Liu B. Developing a novel molecular serotyping system based on capsular polysaccharide synthesis gene clusters of Vibrio parahaemolyticus. Int J Food Microbiol 2019; 309:108332. [DOI: 10.1016/j.ijfoodmicro.2019.108332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022]
|
39
|
Structure of the capsule and lipopolysaccharide O-antigen from the channel catfish pathogen, Aeromonas hydrophila. Carbohydr Res 2019; 486:107858. [PMID: 31683071 DOI: 10.1016/j.carres.2019.107858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/22/2022]
Abstract
A hypervirulent A. hydrophila (vAh) pathotype has been identified as the etiologic agent responsible for disease outbreaks in farmed carp species and channel catfish (Ictalurus punctatus) in China and the Southeastern United States, respectively. The possible route of infection has previously been unknown; however, virulence is believed to be multifactorial, involving the production/secretion of several virulence factors, including a high molecular weight group 4 capsular polysaccharide. Here we present chemical structural evidence of a novel capsule- and LPS-associated O-antigen found present in vAh isolated during these disease outbreaks. In this study, the chemical structure of the vAh O-antigen was determined by chemical analysis, Smith degradation, mass spectrometry, and 2D proton and carbon nuclear magnetic resonance (NMR) spectroscopy and found to be unique among described bacterial O-antigens. The O-antigen consists of hexasaccharide repeating units featuring a 4)-α-l-Fucp-(1-3)-β-d-GlcpNAc-(1-4)-α-l-Fucp-(1-4)-β-d-Glcp-(1- backbone, substituted with single residue side chains of α-d-Glcp and α-d-Quip3NAc linked to O-3 of the two fucose residues. The polysaccharide is partially O-acetylated on O-6 of the 4-substituted β-Glcp residue.
Collapse
|
40
|
Salmonella biofilms program innate immunity for persistence in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2019; 116:12462-12467. [PMID: 31160462 DOI: 10.1073/pnas.1822018116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The adaptive in vivo mechanisms underlying the switch in Salmonella enterica lifestyles from the infectious form to a dormant form remain unknown. We employed Caenorhabditis elegans as a heterologous host to understand the temporal dynamics of Salmonella pathogenesis and to identify its lifestyle form in vivo. We discovered that Salmonella exists as sessile aggregates, or in vivo biofilms, in the persistently infected C. elegans gut. In the absence of in vivo biofilms, Salmonella killed the host more rapidly by actively inhibiting innate immune pathways. Regulatory cross-talk between two major Salmonella pathogenicity islands, SPI-1 and SPI-2, was responsible for biofilm-induced changes in host physiology during persistent infection. Thus, biofilm formation is a survival strategy in long-term infections, as prolonging host survival is beneficial for the parasitic lifestyle.
Collapse
|
41
|
MacKenzie KD, Wang Y, Musicha P, Hansen EG, Palmer MB, Herman DJ, Feasey NA, White AP. Parallel evolution leading to impaired biofilm formation in invasive Salmonella strains. PLoS Genet 2019; 15:e1008233. [PMID: 31233504 PMCID: PMC6611641 DOI: 10.1371/journal.pgen.1008233] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/05/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Pathogenic Salmonella strains that cause gastroenteritis are able to colonize and replicate within the intestines of multiple host species. In general, these strains have retained an ability to form the rdar morphotype, a resistant biofilm physiology hypothesized to be important for Salmonella transmission. In contrast, Salmonella strains that are host-adapted or even host-restricted like Salmonella enterica serovar Typhi, tend to cause systemic infections and have lost the ability to form the rdar morphotype. Here, we investigated the rdar morphotype and CsgD-regulated biofilm formation in two non-typhoidal Salmonella (NTS) strains that caused invasive disease in Malawian children, S. Typhimurium D23580 and S. Enteritidis D7795, and compared them to a panel of NTS strains associated with gastroenteritis, as well as S. Typhi strains. Sequence comparisons combined with luciferase reporter technology identified key SNPs in the promoter region of csgD that either shut off biofilm formation completely (D7795) or reduced transcription of this key biofilm regulator (D23580). Phylogenetic analysis showed that these SNPs are conserved throughout the African clades of invasive isolates, dating as far back as 80 years ago. S. Typhi isolates were negative for the rdar morphotype due to truncation of eight amino acids from the C-terminus of CsgD. We present new evidence in support of parallel evolution between lineages of nontyphoidal Salmonella associated with invasive disease in Africa and the archetypal host-restricted invasive serovar; S. Typhi. We hypothesize that the African invasive isolates are becoming human-adapted and 'niche specialized' with less reliance on environmental survival, as compared to gastroenteritis-causing isolates.
Collapse
Affiliation(s)
- Keith D. MacKenzie
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| | - Yejun Wang
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Guangdong, China
| | - Patrick Musicha
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Elizabeth G. Hansen
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| | - Melissa B. Palmer
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| | - Dakoda J. Herman
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| | - Nicholas A. Feasey
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Aaron P. White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| |
Collapse
|
42
|
Hiller CC, Lucca V, Carvalho D, Borsoi A, Borges KA, Furian TQ, do Nascimento VP. Influence of catecholamines on biofilm formation by Salmonella Enteritidis. Microb Pathog 2019; 130:54-58. [DOI: 10.1016/j.micpath.2019.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/04/2023]
|
43
|
Naranjo E, Merfa MV, Ferreira V, Jain M, Davis MJ, Bahar O, Gabriel DW, De La Fuente L. Liberibacter crescens biofilm formation in vitro: establishment of a model system for pathogenic 'Candidatus Liberibacter spp.'. Sci Rep 2019; 9:5150. [PMID: 30914689 PMCID: PMC6435755 DOI: 10.1038/s41598-019-41495-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/11/2019] [Indexed: 11/23/2022] Open
Abstract
The Liberibacter genus comprises insect endosymbiont bacterial species that cause destructive plant diseases, including Huanglongbing in citrus and zebra chip in potato. To date, pathogenic 'Candidatus Liberibacter spp.' (CLs) remain uncultured, therefore the plant-associated Liberibacter crescens (Lcr), only cultured species of the genus, has been used as a biological model for in vitro studies. Biofilm formation by CLs has been observed on the outer midgut surface of insect vectors, but not in planta. However, the role of biofilm formation in the life cycle of these pathogens remains unclear. Here, a model system for studying CLs biofilms was developed using Lcr. By culture media modifications, bovine serum albumin (BSA) was identified as blocking initial cell-surface adhesion. Removal of BSA allowed for the first time observation of Lcr biofilms. After media optimization for biofilm formation, we demonstrated that Lcr attaches to surfaces, and form cell aggregates embedded in a polysaccharide matrix both in batch cultures and under flow conditions in microfluidic chambers. Biofilm structures may represent excellent adaptive advantages for CLs during insect vector colonization helping with host retention, immune system evasion, and transmission. Future studies using the Lcr model established here will help in the understanding of the biology of CLs.
Collapse
Affiliation(s)
- Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, USA
| | - Virginia Ferreira
- Bioscience Department, College of Chemistry, University of the Republic, Montevideo, Uruguay
| | - Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, USA
| | - Michael J Davis
- Citrus Research and Education Center, University of Florida, Gainesville, USA
| | - Ofir Bahar
- Department of Plant Pathology and Weed Research, ARO - Volcani Center, Bet-Dagan, Israel
| | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, USA
| | | |
Collapse
|
44
|
Adegoke AA, Amoah ID, Stenström TA, Verbyla ME, Mihelcic JR. Epidemiological Evidence and Health Risks Associated With Agricultural Reuse of Partially Treated and Untreated Wastewater: A Review. Front Public Health 2018; 6:337. [PMID: 30574474 PMCID: PMC6292135 DOI: 10.3389/fpubh.2018.00337] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/01/2018] [Indexed: 01/25/2023] Open
Abstract
The use of partially treated and untreated wastewater for irrigation is beneficial in agriculture but may be associated with human health risks. Reports from different locations globally have linked microbial outbreaks with agricultural reuse of wastewater. This article reviews the epidemiological evidence and health risks associated with this practice, aiming toward evidence-based conclusions. Exposure pathways that were addressed in this review included those relevant to agricultural workers and their families, consumers of crops, and residents close to areas irrigated with wastewater (partially treated or untreated). A meta-analysis gave an overall odds ratio of 1.65 (95% CI: 1.31, 2.06) for diarrheal disease and 5.49 (95% CI: 2.49, 12.10) for helminth infections for exposed agricultural workers and family members. The risks were higher among children and immunocompromised individuals than in immunocompetent adults. Predominantly skin and intestinal infections were prevalent among individuals infected mainly via occupational exposure and ingestion. Food-borne outbreaks as a result of crops (fruits and vegetables) irrigated with partially or untreated wastewater have been widely reported. Contamination of crops with enteric viruses, fecal coliforms, and bacterial pathogens, parasites including soil-transmitted helminthes (STHs), as well as occurrence of antibiotic residues and antibiotic resistance genes (ARGs) have also been evidenced. The antibiotic residues and ARGs may get internalized in crops along with pathogens and may select for antibiotic resistance, exert ecotoxicity, and lead to bioaccumulation in aquatic organisms with high risk quotient (RQ). Appropriate mitigation lies in adhering to existing guidelines such as the World Health Organization wastewater reuse guidelines and to Sanitation Safety Plans (SSPs). Additionally, improvement in hygiene practices will also provide measures against adverse health impacts.
Collapse
Affiliation(s)
- Anthony A. Adegoke
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
- Department of Microbiology, Faculty of Science, University of Uyo, Uyo, Nigeria
| | - Isaac D. Amoah
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Thor A. Stenström
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Matthew E. Verbyla
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, United States
| | - James R. Mihelcic
- Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
45
|
Exopolymeric substances (EPS) from Salmonella enterica: polymers, proteins and their interactions with plants and abiotic surfaces. J Microbiol 2018; 57:1-8. [DOI: 10.1007/s12275-019-8353-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022]
|
46
|
Esbelin J, Santos T, Hébraud M. Desiccation: An environmental and food industry stress that bacteria commonly face. Food Microbiol 2018; 69:82-88. [DOI: 10.1016/j.fm.2017.07.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/09/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
|
47
|
Dai X, Liu M, Pan K, Yang J. Surface display of OmpC of Salmonella serovar Pullorum on Bacillus subtilis spores. PLoS One 2018; 13:e0191627. [PMID: 29370221 PMCID: PMC5785212 DOI: 10.1371/journal.pone.0191627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/12/2017] [Indexed: 01/29/2023] Open
Abstract
Salmonellosis is a major public health problem throughout the world. Thus, there is a huge need for diversified control strategies for Salmonella infections. In this work, we have assessed the potential use of Bacillus subtilis (B. subtilis) spores for the expression of a major protective antigen of Salmonella serovar Pullorum, OmpC. The expression of OmpC on the surface of spores was determined by immunofluorescence microscopy. Mice immunized with recombinant spores expressing the OmpC antigen presented significant levels of OmpC-specific serum IgG and mucosal SIgA antibodies than in mice immunized with non-recombinant spores (p<0.01). In addition, oral immunization with recombinant spores was able to induce a significant level of protection in mice against lethal challenge with Salmonella serovar Typhimurium. These results suggest that B. subtilis spores have promising potential in the development of mucosal vaccines against Salmonella infections.
Collapse
Affiliation(s)
- Xixi Dai
- Chongqing Academy of Animal Science, Rongchang, Chongqing, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Minggang Liu
- Fujian Luodong Bio-Technology Co., Ltd., Putian, Fujian, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinlong Yang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, China
- * E-mail:
| |
Collapse
|
48
|
Conditional Function of Autoaggregative Protein Cah and Common cah Mutations in Shiga Toxin-Producing Escherichia coli. Appl Environ Microbiol 2017; 84:AEM.01739-17. [PMID: 29054868 DOI: 10.1128/aem.01739-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/11/2017] [Indexed: 01/05/2023] Open
Abstract
Cah is a calcium-binding autotransporter protein involved in autoaggregation and biofilm formation. Although cah is widespread in Shiga toxin-producing Escherichia coli (STEC), we detected mutations in cah at a frequency of 31.3% in this pathogen. In STEC O157:H7 supershedder strain SS17, a large deletion results in a smaller coding sequence, encoding a protein lacking the C-terminal 71 amino acids compared with Cah in STEC O157:H7 strain EDL933. We examined the function of Cah in biofilm formation and host colonization to better understand the selective pressures for cah mutations. EDL933-Cah played a conditional role in biofilm formation in vitro: it enhanced E. coli DH5α biofilm formation on glass surfaces under agitated culture conditions that prevented autoaggregation but inhibited biofilm formation under hydrostatic conditions that facilitated autoaggregation. This function appeared to be strain dependent since Cah-mediated biofilm formation was diminished when an EDL933 cah gene was expressed in SS17. Deletion of cah in EDL933 enhanced bacterial attachment to spinach leaves and altered the adherence pattern of EDL933 to bovine recto-anal junction squamous epithelial (RSE) cells. In contrast, in trans expression of EDL933 cah in SS17 increased its attachment to leaf surfaces, and in DH5α, it enhanced its adherence to RSE cells. Hence, the ecological function of Cah appears to be modulated by environmental conditions and other bacterial strain-specific properties. Considering the prevalence of cah in STEC and its role in attachment and biofilm formation, cah mutations might be selected in ecological niches in which inactivation of Cah would result in an increased fitness in STEC during colonization of plants or animal hosts.IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) harbors genes encoding diverse adhesins, and many of these are known to play an important role in bacterial attachment and host colonization. We demonstrated here that the autotransporter protein Cah confers on E. coli DH5α cells a strong autoaggregative phenotype that is inversely correlated with its ability to form biofilms and plays a strain-specific role in plant and animal colonization by STEC. Although cah is widespread in the STEC population, we detected a mutation rate of 31.3% in cah, which is similar to that reported for rpoS and fimH The formation of cell aggregates due to increased bacterium-to-bacterium interactions may be disadvantageous to bacterial populations under conditions that favor a planktonic state in STEC. Therefore, a loss-of-function mutation in cah is likely a selective trait in STEC when autoaggregative properties become detrimental to bacterial cells and may contribute to the adaptability of STEC to fluctuating environments.
Collapse
|
49
|
Lipopolysaccharide enters the rat brain by a lipoprotein-mediated transport mechanism in physiological conditions. Sci Rep 2017; 7:13113. [PMID: 29030613 PMCID: PMC5640642 DOI: 10.1038/s41598-017-13302-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/22/2017] [Indexed: 01/19/2023] Open
Abstract
Physiologically, lipopolysaccharide (LPS) is present in the bloodstream and can be bound to several proteins for its transport (i.e.) LPS binding protein (LBP) and plasma lipoproteins). LPS receptors CD14 and TLR-4 are constitutively expressed in the Central Nervous System (CNS). To our knowledge, LPS infiltration in CNS has not been clearly demonstrated. A naturalistic experiment with healthy rats was performed to investigate whether LPS is present with its receptors in brain. Immunofluorescences showed that lipid A and core LPS were present in circumventricular organs, choroid plexus, meningeal cells, astrocytes, tanycytes and endothelial cells. Co-localization of LPS regions with CD14/TLR-4 was found. The role of lipoprotein receptors (SR-BI, ApoER2 and LDLr) in the brain as targets for a LPS transport mechanism by plasma apolipoproteins (i.e. ApoAI) was studied. Co-localization of LPS regions with these lipoproteins markers was observed. Our results suggest that LPS infiltrates in the brain in physiological conditions, possibly, through a lipoprotein transport mechanism, and it is bound to its receptors in blood-brain interfaces.
Collapse
|
50
|
MacKenzie KD, Palmer MB, Köster WL, White AP. Examining the Link between Biofilm Formation and the Ability of Pathogenic Salmonella Strains to Colonize Multiple Host Species. Front Vet Sci 2017; 4:138. [PMID: 29159172 PMCID: PMC5581909 DOI: 10.3389/fvets.2017.00138] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Salmonella are important pathogens worldwide and a predominant number of human infections are zoonotic in nature. The ability of strains to form biofilms, which is a multicellular behavior characterized by the aggregation of cells, is predicted to be a conserved strategy for increased persistence and survival. It may also contribute to the increasing number of infections caused by ingestion of contaminated fruits and vegetables. There is a correlation between biofilm formation and the ability of strains to colonize and replicate within the intestines of multiple host species. These strains predominantly cause localized gastroenteritis infections in humans. In contrast, there are salmonellae that cause systemic, disseminated infections in a select few host species; these “invasive” strains have a narrowed host range, and most are unable to form biofilms. This includes host-restricted Salmonella serovar Typhi, which are only able to infect humans, and atypical gastroenteritis strains associated with the opportunistic infection of immunocompromised patients. From the perspective of transmission, biofilm formation is advantageous for ensuring pathogen survival in the environment. However, from an infection point of view, biofilm formation may be an anti-virulence trait. We do not know if the capacity to form biofilms prevents a strain from accessing the systemic compartments within the host or if loss of the biofilm phenotype reflects a change in a strain’s interaction with the host. In this review, we examine the connections between biofilm formation, Salmonella disease states, degrees of host adaptation, and how this might relate to different transmission patterns. A better understanding of the dynamic lifecycle of Salmonella will allow us to reduce the burden of livestock and human infections caused by these important pathogens.
Collapse
Affiliation(s)
- Keith D MacKenzie
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK, Canada.,Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Melissa B Palmer
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK, Canada.,Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wolfgang L Köster
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron P White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK, Canada.,Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|