1
|
Pourtois JD, Haddock NL, Gupta A, Khosravi A, Martinez H, Schmidt AK, Prakash PS, Jain R, Fleming P, Chang TH, Milla C, Secor PR, De Leo GA, Bollyky PL, Burgener EB. Pseudomonas superinfection drives Pf phage transmission within airway infections in patients with cystic fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632786. [PMID: 39868244 PMCID: PMC11761399 DOI: 10.1101/2025.01.14.632786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Pf bacteriophages, lysogenic viruses that infect Pseudomonas aeruginosa (Pa), are implicated in the pathogenesis of chronic Pa infections; phage-infected (Pf+) strains are known to predominate in people with cystic fibrosis (pwCF) who are older and have more severe disease. However, the transmission patterns of Pf underlying the progressive dominance of Pf+ strains are unclear. In particular, it is unknown whether phage transmission commonly occurs horizontally between bacteria within the airway via viral particles or if Pf+ bacteria are mostly acquired via new Pseudomonas infections. Here, we have studied Pa genomic sequences from 3 patient cohorts totaling 663 clinical isolates from 105 pwCF. We identify Pf+ isolates and analyze transmission patterns of Pf within patients between genetically similar groups of bacteria called "clone types". We find that Pf is predominantly passed down vertically within Pa lineages and rarely via horizontal transfer between clone types within the airway. Conversely, we find extensive evidence of Pa superinfection by a new, genetically distinct Pa that is Pf+. Finally, we find that clinical isolates show reduced activity of the type IV pilus and reduced susceptibility to Pf in vitro. These results cast new light on the transmission of virulence-associated phages in the clinical setting.
Collapse
Affiliation(s)
- Julie D Pourtois
- Biology Department, Stanford University, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Naomi L Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Aditi Gupta
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Arya Khosravi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Hunter Martinez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Amelia K Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Prema S Prakash
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Ronit Jain
- Biology Department, Stanford University, Stanford, California, USA
- Oceans Department, Stanford University, Pacific Grove, California, USA
| | - Piper Fleming
- Oceans Department, Stanford University, Pacific Grove, California, USA
| | - Tony H Chang
- Biology Department, Stanford University, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Carlos Milla
- Center for Excellence in Pulmonary Biology, Division of Pulmonary Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Patrick R Secor
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Giulio A De Leo
- Oceans Department, Stanford University, Pacific Grove, California, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elizabeth B Burgener
- Center for Excellence in Pulmonary Biology, Division of Pulmonary Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Division of Pediatric Pulmonology & Sleep Medicine, Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Guo Y, Tang K, Sit B, Gu J, Chen R, Shao X, Lin S, Huang Z, Nie Z, Lin J, Liu X, Wang W, Gao X, Liu T, Liu F, Luo HR, Waldor MK, Wang X. Control of lysogeny and antiphage defense by a prophage-encoded kinase-phosphatase module. Nat Commun 2024; 15:7244. [PMID: 39174532 PMCID: PMC11341870 DOI: 10.1038/s41467-024-51617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
The filamentous 'Pf' bacteriophages of Pseudomonas aeruginosa play roles in biofilm formation and virulence, but mechanisms governing Pf prophage activation in biofilms are unclear. Here, we identify a prophage regulatory module, KKP (kinase-kinase-phosphatase), that controls virion production of co-resident Pf prophages and mediates host defense against diverse lytic phages. KKP consists of Ser/Thr kinases PfkA and PfkB, and phosphatase PfpC. The kinases have multiple host targets, one of which is MvaU, a host nucleoid-binding protein and known prophage-silencing factor. Characterization of KKP deletion and overexpression strains with transcriptional, protein-level and prophage-based approaches indicates that shifts in the balance between kinase and phosphatase activities regulate phage production by controlling MvaU phosphorylation. In addition, KKP acts as a tripartite toxin-antitoxin system that provides defense against some lytic phages. A conserved lytic phage replication protein inhibits the KKP phosphatase PfpC, stimulating toxic kinase activity and blocking lytic phage production. Thus, KKP represents a phosphorylation-based mechanism for prophage regulation and antiphage defense. The conservation of KKP gene clusters in >1000 diverse temperate prophages suggests that integrated control of temperate and lytic phage infection by KKP-like regulatory modules may play a widespread role in shaping host cell physiology.
Collapse
Grants
- This work was supported by the National Science Foundation of China (42188102, 92451302, 31625001, 91951203, 42376128 and 31970037), by the Science & Technology Fundamental Resources Investigation Program (2022FY100600), by the National Science Foundation of Guangdong Province (2024A1515011146), by the Guangdong Major Project of Basic and Applied Basic Research (2019B030302004), by the Guangdong Local Innovation Team Program (2019BT02Y262), by the Tianjin Municipal Science and Technology Commission Grant (21JCQNJC01550), and by the Haihe Laboratory of Cell Ecosystem Innovation Fund (HH22KYZX0019).
Collapse
Affiliation(s)
- Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Brandon Sit
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiayu Gu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xinqi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zixian Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaolong Nie
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbo R Luo
- Boston Children's Hospital, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Bethesda, MD, USA.
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Bucher MJ, Czyż DM. Phage against the Machine: The SIE-ence of Superinfection Exclusion. Viruses 2024; 16:1348. [PMID: 39339825 PMCID: PMC11436027 DOI: 10.3390/v16091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Prophages can alter their bacterial hosts to prevent other phages from infecting the same cell, a mechanism known as superinfection exclusion (SIE). Such alterations are facilitated by phage interactions with critical bacterial components involved in motility, adhesion, biofilm production, conjugation, antimicrobial resistance, and immune evasion. Therefore, the impact of SIE extends beyond the immediate defense against superinfection, influencing the overall fitness and virulence of the bacteria. Evaluating the interactions between phages and their bacterial targets is critical for leading phage therapy candidates like Pseudomonas aeruginosa, a Gram-negative bacterium responsible for persistent and antibiotic-resistant opportunistic infections. However, comprehensive literature on the mechanisms underlying SIE remains scarce. Here, we provide a compilation of well-characterized and potential mechanisms employed by Pseudomonas phages to establish SIE. We hypothesize that the fitness costs imposed by SIE affect bacterial virulence, highlighting the potential role of this mechanism in the management of bacterial infections.
Collapse
Affiliation(s)
- Michael J Bucher
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Daniel M Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Copeland CJ, Roddy JW, Schmidt AK, Secor P, Wheeler T. VIBES: a workflow for annotating and visualizing viral sequences integrated into bacterial genomes. NAR Genom Bioinform 2024; 6:lqae030. [PMID: 38584872 PMCID: PMC10993291 DOI: 10.1093/nargab/lqae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Bacteriophages are viruses that infect bacteria. Many bacteriophages integrate their genomes into the bacterial chromosome and become prophages. Prophages may substantially burden or benefit host bacteria fitness, acting in some cases as parasites and in others as mutualists. Some prophages have been demonstrated to increase host virulence. The increasing ease of bacterial genome sequencing provides an opportunity to deeply explore prophage prevalence and insertion sites. Here we present VIBES (Viral Integrations in Bacterial genomES), a workflow intended to automate prophage annotation in complete bacterial genome sequences. VIBES provides additional context to prophage annotations by annotating bacterial genes and viral proteins in user-provided bacterial and viral genomes. The VIBES pipeline is implemented as a Nextflow-driven workflow, providing a simple, unified interface for execution on local, cluster and cloud computing environments. For each step of the pipeline, a container including all necessary software dependencies is provided. VIBES produces results in simple tab-separated format and generates intuitive and interactive visualizations for data exploration. Despite VIBES's primary emphasis on prophage annotation, its generic alignment-based design allows it to be deployed as a general-purpose sequence similarity search manager. We demonstrate the utility of the VIBES prophage annotation workflow by searching for 178 Pf phage genomes across 1072 Pseudomonas spp. genomes.
Collapse
Affiliation(s)
- Conner J Copeland
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Jack W Roddy
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Amelia K Schmidt
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Travis J Wheeler
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
5
|
Schmidt AK, Schwartzkopf CM, Pourtois JD, Burgener EB, Faith DR, Joyce A, Lamma T, Kumar G, Bollyky PL, Secor PR. Targeted deletion of Pf prophages from diverse Pseudomonas aeruginosa isolates has differential impacts on quorum sensing and virulence traits. J Bacteriol 2024; 206:e0040223. [PMID: 38687034 PMCID: PMC11112994 DOI: 10.1128/jb.00402-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that commonly causes medical hardware, wound, and respiratory infections. Temperate filamentous Pf phages that infect P. aeruginosa impact numerous virulence phenotypes. Most work on Pf phages has focused on Pf4 and its host P. aeruginosa PAO1. Expanding from Pf4 and PAO1, this study explores diverse Pf phages infecting P. aeruginosa clinical isolates. We describe a simple technique targeting the Pf lysogeny maintenance gene, pflM (PA0718), that enables the effective elimination of Pf prophages from diverse P. aeruginosa hosts. The pflM gene shows diversity among different Pf phage isolates; however, all examined pflM alleles encode the DUF5447 domain. We demonstrate that pflM deletion results in prophage excision but not replication, leading to total prophage loss, indicating a role for lysis/lysogeny decisions for the DUF5447 domain. This study also assesses the effects different Pf phages have on host quorum sensing, biofilm formation, pigment production, and virulence against the bacterivorous nematode Caenorhabditis elegans. We find that Pf phages have strain-specific impacts on quorum sensing and biofilm formation, but nearly all suppress pigment production and increase C. elegans avoidance behavior. Collectively, this research not only introduces a valuable tool for Pf prophage elimination from diverse P. aeruginosa isolates but also advances our understanding of the complex relationship between P. aeruginosa and filamentous Pf phages.IMPORTANCEPseudomonas aeruginosa is an opportunistic bacterial pathogen that is frequently infected by filamentous Pf phages (viruses) that integrate into its chromosome, affecting behavior. Although prior work has focused on Pf4 and PAO1, this study investigates diverse Pf in clinical isolates. A simple method targeting the deletion of the Pf lysogeny maintenance gene pflM (PA0718) effectively eliminates Pf prophages from clinical isolates. The research evaluates the impact Pf prophages have on bacterial quorum sensing, biofilm formation, and virulence phenotypes. This work introduces a valuable tool to eliminate Pf prophages from clinical isolates and advances our understanding of P. aeruginosa and filamentous Pf phage interactions.
Collapse
Affiliation(s)
- Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | | | - Julie D. Pourtois
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elizabeth B. Burgener
- Division of Pediatric Pulmonology and Sleep Medicine, Children’s Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Alex Joyce
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Tyrza Lamma
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Geetha Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Paul L. Bollyky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
6
|
Pei TT, Luo H, Wang Y, Li H, Wang XY, Zhang YQ, An Y, Wu LL, Ma J, Liang X, Yan A, Yang L, Chen C, Dong T. Filamentous prophage Pf4 promotes genetic exchange in Pseudomonas aeruginosa. THE ISME JOURNAL 2024; 18:wrad025. [PMID: 38365255 PMCID: PMC10837833 DOI: 10.1093/ismejo/wrad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
Filamentous prophages are widespread among bacteria and play crucial functions in virulence, antibiotic resistance, and biofilm structures. The filamentous Pf4 particles, extruded by an important pathogen Pseudomonas aeruginosa, can protect producing cells from adverse conditions. Contrary to the conventional belief that the Pf4-encoding cells resist reinfection, we herein report that the Pf4 prophage is reciprocally and commonly exchanged within P. aeruginosa colonies, which can repair defective Pf4 within the community. By labeling the Pf4 locus with antibiotic resistance and fluorescence markers, we demonstrate that the Pf4 locus is frequently exchanged within colony biofilms, in artificial sputum media, and in infected mouse lungs. We further show that Pf4 trafficking is a rapid process and capable of rescuing Pf4-defective mutants. The Pf4 phage is highly adaptable and can package additional DNA doubling its genome size. We also report that two clinical P. aeruginosa isolates are susceptible to the Pf4-mediated exchange, and the Pf5 prophage can be exchanged between cells as well. These findings suggest that the genetic exchanging interactions by filamentous prophages may facilitate defect rescue and the sharing of prophage-dependent benefits and costs within the P. aeruginosa community.
Collapse
Affiliation(s)
- Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanyuan Wang
- Unit of Pathogenic Fungal Infection and Host Immunity, Key Laboratory of Molecular Virology and Immunology, Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing-Yu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi-Qiu Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying An
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Li Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junhua Ma
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoye Liang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changbin Chen
- Unit of Pathogenic Fungal Infection and Host Immunity, Key Laboratory of Molecular Virology and Immunology, Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- Nanjing Advanced Academy of Life and Health, Nanjing 211135, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Schwartzkopf CM, Taylor VL, Groleau MC, Faith DR, Schmidt AK, Lamma TL, Brooks DM, Déziel E, Maxwell KL, Secor PR. Inhibition of PQS signaling by the Pf bacteriophage protein PfsE enhances viral replication in Pseudomonas aeruginosa. Mol Microbiol 2024; 121:116-128. [PMID: 38038061 PMCID: PMC10842821 DOI: 10.1111/mmi.15202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Quorum sensing, a bacterial signaling system that coordinates group behaviors as a function of cell density, plays an important role in regulating viral (phage) defense mechanisms in bacteria. The opportunistic pathogen Pseudomonas aeruginosa is a model system for the study of quorum sensing. P. aeruginosa is also frequently infected by Pf prophages that integrate into the host chromosome. Upon induction, Pf phages suppress host quorum sensing systems; however, the physiological relevance and mechanism of suppression are unknown. Here, we identify the Pf phage protein PfsE as an inhibitor of Pseudomonas Quinolone Signal (PQS) quorum sensing. PfsE binds to the host protein PqsA, which is essential for the biosynthesis of the PQS signaling molecule. Inhibition of PqsA increases the replication efficiency of Pf virions when infecting a new host and when the Pf prophage switches from lysogenic replication to active virion replication. In addition to inhibiting PQS signaling, our prior work demonstrates that PfsE also binds to PilC and inhibits type IV pili extension, protecting P. aeruginosa from infection by type IV pili-dependent phages. Overall, this work suggests that the simultaneous inhibition of PQS signaling and type IV pili by PfsE may be a viral strategy to suppress host defenses to promote Pf replication while at the same time protecting the susceptible host from competing phages.
Collapse
Affiliation(s)
| | | | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Tyrza L. Lamma
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Karen L. Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
8
|
Schmidt AK, Schwartzkopf CM, Pourtois JD, Burgener E, Faith DR, Joyce A, Lamma T, Kumar G, Bollyky PL, Secor PR. Targeted deletion of Pf prophages from diverse Pseudomonas aeruginosa isolates impacts quorum sensing and virulence traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567716. [PMID: 38014273 PMCID: PMC10680813 DOI: 10.1101/2023.11.19.567716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that commonly causes medical hardware, wound, and respiratory infections. Temperate filamentous Pf phages that infect P. aeruginosa impact numerous bacterial virulence phenotypes. Most work on Pf phages has focused on strain Pf4 and its host P. aeruginosa PAO1. Expanding from Pf4 and PAO1, this study explores diverse Pf strains infecting P. aeruginosa clinical isolates. We describe a simple technique targeting the Pf lysogeny maintenance gene, pflM (PA0718), that enables the effective elimination of Pf prophages from diverse P. aeruginosa hosts. This study also assesses the effects different Pf phages have on host quorum sensing, biofilm formation, virulence factor production, and virulence. Collectively, this research not only introduces a valuable tool for Pf prophage elimination from diverse P. aeruginosa isolates, but also advances our understanding of the complex relationship between P. aeruginosa and filamentous Pf phages.
Collapse
Affiliation(s)
- Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | | | - Julie D. Pourtois
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth Burgener
- Department of Pediatrics, Division of Pulmonology, Children’s Hospital of Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Alex Joyce
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Tyrza Lamma
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Geetha Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
9
|
Copeland CJ, Roddy JW, Schmidt AK, Secor PR, Wheeler TJ. VIBES: A Workflow for Annotating and Visualizing Viral Sequences Integrated into Bacterial Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562434. [PMID: 37905003 PMCID: PMC10614876 DOI: 10.1101/2023.10.17.562434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Bacteriophages are viruses that infect bacteria. Many bacteriophages integrate their genomes into the bacterial chromosome and become prophages. Prophages may substantially burden or benefit host bacteria fitness, acting in some cases as parasites and in others as mutualists, and have been demonstrated to increase host virulence. The increasing ease of bacterial genome sequencing provides an opportunity to deeply explore prophage prevalence and insertion sites. Here we present VIBES, a workflow intended to automate prophage annotation in complete bacterial genome sequences. VIBES provides additional context to prophage annotations by annotating bacterial genes and viral proteins in user-provided bacterial and viral genomes. The VIBES pipeline is implemented as a Nextflow-driven workflow, providing a simple, unified interface for execution on local, cluster, and cloud computing environments. For each step of the pipeline, a container including all necessary software dependencies is provided. VIBES produces results in simple tab separated format and generates intuitive and interactive visualizations for data exploration. Despite VIBES' primary emphasis on prophage annotation, its generic alignment-based design allows it to be deployed as a general-purpose sequence similarity search manager. We demonstrate the utility of the VIBES prophage annotation workflow by searching for 178 Pf phage genomes across 1,072 Pseudomonas spp. genomes. VIBES software is available at https://github.com/TravisWheelerLab/VIBES.
Collapse
Affiliation(s)
- Conner J. Copeland
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Jack W. Roddy
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Travis J. Wheeler
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Picker MA, Karney MMA, Gerson TM, Karabachev A, Duhart J, McKenna J, Wing H. Localized modulation of DNA supercoiling, triggered by the Shigella anti-silencer VirB, is sufficient to relieve H-NS-mediated silencing. Nucleic Acids Res 2023; 51:3679-3695. [PMID: 36794722 PMCID: PMC10164555 DOI: 10.1093/nar/gkad088] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
In Bacteria, nucleoid structuring proteins govern nucleoid dynamics and regulate transcription. In Shigella spp., at ≤30°C, the histone-like nucleoid structuring protein (H-NS) transcriptionally silences many genes on the large virulence plasmid. Upon a switch to 37°C, VirB, a DNA binding protein and key transcriptional regulator of Shigella virulence, is produced. VirB functions to counter H-NS-mediated silencing in a process called transcriptional anti-silencing. Here, we show that VirB mediates a loss of negative DNA supercoils from our plasmid-borne, VirB-regulated PicsP-lacZ reporter in vivo. The changes are not caused by a VirB-dependent increase in transcription, nor do they require the presence of H-NS. Instead, the VirB-dependent change in DNA supercoiling requires the interaction of VirB with its DNA binding site, a critical first step in VirB-dependent gene regulation. Using two complementary approaches, we show that VirB:DNA interactions in vitro introduce positive supercoils in plasmid DNA. Subsequently, by exploiting transcription-coupled DNA supercoiling, we reveal that a localized loss of negative supercoils is sufficient to alleviate H-NS-mediated transcriptional silencing independently of VirB. Together, our findings provide novel insight into VirB, a central regulator of Shigella virulence and, more broadly, a molecular mechanism that offsets H-NS-dependent silencing of transcription in bacteria.
Collapse
Affiliation(s)
- Michael A Picker
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Monika M A Karney
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Taylor M Gerson
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | | | - Juan C Duhart
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Joy A McKenna
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Helen J Wing
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| |
Collapse
|
11
|
Picker MA, Karney MMA, Gerson TM, Karabachev AD, Duhart JC, McKenna JA, Wing HJ. Localized modulation of DNA supercoiling, triggered by the Shigella anti-silencer VirB, is sufficient to relieve H-NS-mediated silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523335. [PMID: 36711906 PMCID: PMC9882051 DOI: 10.1101/2023.01.09.523335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In Bacteria, nucleoid structuring proteins govern nucleoid dynamics and regulate transcription. In Shigella spp ., at ≤ 30 °C, the histone-like nucleoid structuring protein (H-NS) transcriptionally silences many genes on the large virulence plasmid. Upon a switch to 37 °C, VirB, a DNA binding protein and key transcriptional regulator of Shigella virulence, is produced. VirB functions to counter H-NS-mediated silencing in a process called transcriptional anti-silencing. Here, we show that VirB mediates a loss of negative DNA supercoils from our plasmid-borne, VirB-regulated PicsP-lacZ reporter, in vivo . The changes are not caused by a VirB-dependent increase in transcription, nor do they require the presence of H-NS. Instead, the VirB-dependent change in DNA supercoiling requires the interaction of VirB with its DNA binding site, a critical first step in VirB-dependent gene regulation. Using two complementary approaches, we show that VirB:DNA interactions in vitro introduce positive supercoils in plasmid DNA. Subsequently, by exploiting transcription-coupled DNA supercoiling, we reveal that a localized loss of negative supercoils is sufficient to alleviate H-NS-mediated transcriptional silencing, independently of VirB. Together, our findings provide novel insight into VirB, a central regulator of Shigella virulence and more broadly, a molecular mechanism that offsets H-NS-dependent silencing of transcription in bacteria.
Collapse
|
12
|
Klonowska A, Ardley J, Moulin L, Zandberg J, Patrel D, Gollagher M, Marinova D, Reddy TBK, Varghese N, Huntemann M, Woyke T, Seshadri R, Ivanova N, Kyrpides N, Reeve W. Discovery of a novel filamentous prophage in the genome of the Mimosa pudica microsymbiont Cupriavidus taiwanensis STM 6018. Front Microbiol 2023; 14:1082107. [PMID: 36925474 PMCID: PMC10011098 DOI: 10.3389/fmicb.2023.1082107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Integrated virus genomes (prophages) are commonly found in sequenced bacterial genomes but have rarely been described in detail for rhizobial genomes. Cupriavidus taiwanensis STM 6018 is a rhizobial Betaproteobacteria strain that was isolated in 2006 from a root nodule of a Mimosa pudica host in French Guiana, South America. Here we describe features of the genome of STM 6018, focusing on the characterization of two different types of prophages that have been identified in its genome. The draft genome of STM 6018 is 6,553,639 bp, and consists of 80 scaffolds, containing 5,864 protein-coding genes and 61 RNA genes. STM 6018 contains all the nodulation and nitrogen fixation gene clusters common to symbiotic Cupriavidus species; sharing >99.97% bp identity homology to the nod/nif/noeM gene clusters from C. taiwanensis LMG19424T and "Cupriavidus neocalidonicus" STM 6070. The STM 6018 genome contains the genomes of two prophages: one complete Mu-like capsular phage and one filamentous phage, which integrates into a putative dif site. This is the first characterization of a filamentous phage found within the genome of a rhizobial strain. Further examination of sequenced rhizobial genomes identified filamentous prophage sequences in several Beta-rhizobial strains but not in any Alphaproteobacterial rhizobia.
Collapse
Affiliation(s)
- Agnieszka Klonowska
- Université de Montpellier, IRD, CIRAD, INRAE, Institut AgroPHIM Plant Health Institute, Montpellier, France
| | - Julie Ardley
- Centre for Crop and Food Innovation, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Lionel Moulin
- Université de Montpellier, IRD, CIRAD, INRAE, Institut AgroPHIM Plant Health Institute, Montpellier, France
| | - Jaco Zandberg
- Centre for Crop and Food Innovation, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Delphine Patrel
- Université de Montpellier, IRD, CIRAD, INRAE, Institut AgroPHIM Plant Health Institute, Montpellier, France
| | - Margaret Gollagher
- Curtin University Sustainability Policy Institute, Curtin University, Bentley, WA, Australia
| | - Dora Marinova
- Curtin University Sustainability Policy Institute, Curtin University, Bentley, WA, Australia
| | - T B K Reddy
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Neha Varghese
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Marcel Huntemann
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Rekha Seshadri
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nikos Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Wayne Reeve
- Centre for Crop and Food Innovation, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
13
|
The Regulatory Network Involving PcoR, RsaL, and MvaT Coordinates the Quorum-Sensing System in Pseudomonas fluorescens 2P24. Appl Environ Microbiol 2022; 88:e0062522. [PMID: 35695573 PMCID: PMC9275216 DOI: 10.1128/aem.00625-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas fluorescens 2P24 is a beneficial plant root-associated microorganism capable of suppressing several soilborne plant diseases. The capacity of P. fluorescens to aggressively colonize the rhizosphere is an important requirement for its biocontrol trait. We previously found that the PcoI/PcoR quorum-sensing system (QS) is involved in regulating the rhizosphere colonization of P. fluorescens. Here, we revealed a sophisticated regulatory network that connects PcoR, RsaL, and MvaT proteins to fine-tune the PcoI/PcoR QS system. Our data showed that PcoR could directly bind to the promoter region of pcoI thereby inducing the PcoI/PcoR QS system, whereas RsaL binds simultaneously with PcoR to the promoter region of pcoI and represses the PcoR-dependent activation of pcoI gene. In addition, RsaL indirectly downregulates the expression of pcoR. Furthermore, we showed that disruption of mvaT enhanced the expression of pcoI, pcoR, and rsaL, whereas MvaT controls the PcoI/PcoR QS in a RsaL-independent manner. Overall, this study elucidates that PcoR, RsaL, and MvaT regulate the PcoI/PcoR QS through a multi-tiered regulatory mechanism and that PcoR is necessary in the RsaL- and MvaT-mediated repression on the expression of pcoI. IMPORTANCE The PcoI/PcoR quorum-sensing system of Pseudomonas fluorescens 2P24 is important for its effective colonization in the plant rhizosphere. Many regulatory elements appear to directly or indirectly influence the QS system. Here, we found a complex regulatory network employing transcriptional factors PcoR, RsaL, and MvaT to influence the expression of the PcoI/PcoR QS in P. fluorescens 2P24. Our results indicate that PcoR and RsaL directly bind to the promoter region of pcoI and then positively and negatively regulate the expression of pcoI, respectively. Furthermore, the H-NS family protein MvaT negatively controls the PcoI/PcoR QS in a RsaL-independent manner. Taken together, our data provide new insights into the interplays between different regulatory elements that fine-tune the QS system of P. fluorescens.
Collapse
|
14
|
Bach MS, de Vries CR, Khosravi A, Sweere JM, Popescu MC, Chen Q, Demirdjian S, Hargil A, Van Belleghem JD, Kaber G, Hajfathalian M, Burgener EB, Liu D, Tran QL, Dharmaraj T, Birukova M, Sunkari V, Balaji S, Ghosh N, Mathew-Steiner SS, El Masry MS, Keswani SG, Banaei N, Nedelec L, Sen CK, Chandra V, Secor PR, Suh GA, Bollyky PL. Filamentous bacteriophage delays healing of Pseudomonas-infected wounds. Cell Rep Med 2022; 3:100656. [PMID: 35732145 PMCID: PMC9244996 DOI: 10.1016/j.xcrm.2022.100656] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023]
Abstract
Chronic wounds infected by Pseudomonas aeruginosa (Pa) are characterized by disease progression and increased mortality. We reveal Pf, a bacteriophage produced by Pa that delays healing of chronically infected wounds in human subjects and animal models of disease. Interestingly, impairment of wound closure by Pf is independent of its effects on Pa pathogenesis. Rather, Pf impedes keratinocyte migration, which is essential for wound healing, through direct inhibition of CXCL1 signaling. In support of these findings, a prospective cohort study of 36 human patients with chronic Pa wound infections reveals that wounds infected with Pf-positive strains of Pa are more likely to progress in size compared with wounds infected with Pf-negative strains. Together, these data implicate Pf phage in the delayed wound healing associated with Pa infection through direct manipulation of mammalian cells. These findings suggest Pf may have potential as a biomarker and therapeutic target in chronic wounds.
Collapse
Affiliation(s)
- Michelle S Bach
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Christiaan R de Vries
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Arya Khosravi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Johanna M Sweere
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Medeea C Popescu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sally Demirdjian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jonas D Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Maryam Hajfathalian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth B Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Dan Liu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Quynh-Lam Tran
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Maria Birukova
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Vivekananda Sunkari
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Swathi Balaji
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nandini Ghosh
- Department of Surgery, Indiana University, Indianapolis, IN 46202, USA
| | | | | | - Sundeep G Keswani
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Niaz Banaei
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Division of Pathology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laurence Nedelec
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Chandan K Sen
- Department of Surgery, Indiana University, Indianapolis, IN 46202, USA
| | - Venita Chandra
- Department of Surgery, Division of Vascular Surgery, Stanford University, Stanford, CA 94305, USA
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Gina A Suh
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55902, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Wang W, Li Y, Tang K, Lin J, Gao X, Guo Y, Wang X. Filamentous Prophage Capsid Proteins Contribute to Superinfection Exclusion and Phage Defense in Pseudomonas aeruginosa. Environ Microbiol 2022; 24:4285-4298. [PMID: 35384225 DOI: 10.1111/1462-2920.15991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Filamentous prophages in Pseudomonas aeruginosa PAO1 are converted to superinfective phage virions during biofilm development. Superinfection exclusion is necessary for the development of resistance against superinfective phage virions in host cells. However, the molecular mechanisms underlying the exclusion of superinfective Pf phages are unknown. In this study, we found that filamentous prophage-encoded structural proteins allow exclusion of superinfective Pf phages by interfering with type IV pilus (T4P) function. Specifically, the phage minor capsid protein pVII inhibits Pf phage adsorption by interacting with PilC and PilJ of T4P, and overproduction of pVII completely abrogates twitching motility. The minor capsid protein pIII provides partial superinfection exclusion and interacts with the PilJ and TolR/TolA proteins. Furthermore, pVII provides full host protection against infection by pilus-dependent lytic phages, and pIII provides partial protection against infection by pilus-independent lytic phages. Considering that filamentous prophages are common in clinical Pseudomonas isolates and their induction is often activated during biofilm formation, this study suggests the need to rethink the strategy of using lytic phages to treat P. aeruginosa biofilm-related infections. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Schmidt AK, Fitzpatrick AD, Schwartzkopf CM, Faith DR, Jennings LK, Coluccio A, Hunt DJ, Michaels LA, Hargil A, Chen Q, Bollyky PL, Dorward DW, Wachter J, Rosa PA, Maxwell KL, Secor PR. A Filamentous Bacteriophage Protein Inhibits Type IV Pili To Prevent Superinfection of Pseudomonas aeruginosa. mBio 2022; 13:e0244121. [PMID: 35038902 PMCID: PMC8764522 DOI: 10.1128/mbio.02441-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in a variety of settings. Many P. aeruginosa isolates are infected by filamentous Pf bacteriophage integrated into the bacterial chromosome as a prophage. Pf virions can be produced without lysing P. aeruginosa. However, cell lysis can occur during superinfection, which occurs when Pf virions successfully infect a host lysogenized by a Pf prophage. Temperate phages typically encode superinfection exclusion mechanisms to prevent host lysis by virions of the same or similar species. In this study, we sought to elucidate the superinfection exclusion mechanism of Pf phage. Initially, we observed that P. aeruginosa that survive Pf superinfection are transiently resistant to Pf-induced plaquing and are deficient in twitching motility, which is mediated by type IV pili (T4P). Pf utilize T4P as a cell surface receptor, suggesting that T4P are suppressed in bacteria that survive superinfection. We tested the hypothesis that a Pf-encoded protein suppresses T4P to mediate superinfection exclusion by expressing Pf proteins in P. aeruginosa and measuring plaquing and twitching motility. We found that the Pf protein PA0721, which we termed Pf superinfection exclusion (PfsE), promoted resistance to Pf infection and suppressed twitching motility by binding the T4P protein PilC. Because T4P play key roles in biofilm formation and virulence, the ability of Pf phage to modulate T4P via PfsE has implications in the ability of P. aeruginosa to persist at sites of infection. IMPORTANCE Pf bacteriophage (phage) are filamentous viruses that infect Pseudomonas aeruginosa and enhance its virulence potential. Pf virions can lyse and kill P. aeruginosa through superinfection, which occurs when an already infected cell is infected by the same or similar phage. Here, we show that a small, highly conserved Pf phage protein (PA0721, PfsE) provides resistance to superinfection by phages that use the type IV pilus as a cell surface receptor. PfsE does this by inhibiting assembly of the type IV pilus via an interaction with PilC. As the type IV pilus plays important roles in virulence, the ability of Pf phage to modulate its assembly has implications for P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | | | | | - Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Laura K. Jennings
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Alison Coluccio
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Devin J. Hunt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Lia A. Michaels
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - David W. Dorward
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jenny Wachter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Patricia A. Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Karen L. Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
17
|
Callens M, Scornavacca C, Bedhomme S. Evolutionary responses to codon usage of horizontally transferred genes in Pseudomonas aeruginosa: gene retention, amelioration and compensatory evolution. Microb Genom 2021; 7:000587. [PMID: 34165421 PMCID: PMC8461475 DOI: 10.1099/mgen.0.000587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Prokaryote genome evolution is characterized by the frequent gain of genes through horizontal gene transfer (HGT). For a gene, being horizontally transferred can represent a strong change in its genomic and physiological context. If the codon usage of a transferred gene deviates from that of the receiving organism, the fitness benefits it provides can be reduced due to a mismatch with the expression machinery. Consequently, transferred genes with a deviating codon usage can be selected against or elicit evolutionary responses that enhance their integration, such as gene amelioration and compensatory evolution. Within bacterial species, the extent and relative importance of these different mechanisms has never been considered altogether. In this study, a phylogeny-based method was used to investigate the occurrence of these different evolutionary responses in Pseudomonas aeruginosa. Selection on codon usage of genes acquired through HGT was observed over evolutionary time, with the overall codon usage converging towards that of the core genome. Gene amelioration, through the accumulation of synonymous mutations after HGT, did not seem to systematically affect transferred genes. This pattern therefore seemed to be mainly driven by selective retention of transferred genes with an initial codon usage similar to that of the core genes. Additionally, variation in the copy number of tRNA genes was often associated with the acquisition of genes for which the observed variation could enhance their expression. This provides evidence that compensatory evolution might be an important mechanism for the integration of horizontally transferred genes.
Collapse
Affiliation(s)
- Martijn Callens
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Celine Scornavacca
- Institut des Sciences de l’Evolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Stéphanie Bedhomme
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
18
|
Liu X, Lin S, Liu T, Zhou Y, Wang W, Yao J, Guo Y, Tang K, Chen R, Benedik MJ, Wang X. Xenogeneic silencing relies on temperature-dependent phosphorylation of the host H-NS protein in Shewanella. Nucleic Acids Res 2021; 49:3427-3440. [PMID: 33693785 PMCID: PMC8034616 DOI: 10.1093/nar/gkab137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022] Open
Abstract
Lateral gene transfer (LGT) plays a key role in shaping the genome evolution and environmental adaptation of bacteria. Xenogeneic silencing is crucial to ensure the safe acquisition of LGT genes into host pre-existing regulatory networks. We previously found that the host nucleoid structuring protein (H-NS) silences prophage CP4So at warm temperatures yet enables this prophage to excise at cold temperatures in Shewanella oneidensis. However, whether H-NS silences other genes and how bacteria modulate H-NS to regulate the expression of genes have not been fully elucidated. In this study, we discovered that the H-NS silences many LGT genes and the xenogeneic silencing of H-NS relies on a temperature-dependent phosphorylation at warm temperatures in S. oneidensis. Specifically, phosphorylation of H-NS at Ser42 is critical for silencing the cold-inducible genes including the excisionase of CP4So prophage, a cold shock protein, and a stress-related chemosensory system. By contrast, nonphosphorylated H-NS derepresses the promoter activity of these genes/operons to enable their expression at cold temperatures. Taken together, our results reveal that the posttranslational modification of H-NS can function as a regulatory switch to control LGT gene expression in host genomes to enable the host bacterium to react and thrive when environmental temperature changes.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqing Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Michael J Benedik
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Peña JM, Prezioso SM, McFarland KA, Kambara TK, Ramsey KM, Deighan P, Dove SL. Control of a programmed cell death pathway in Pseudomonas aeruginosa by an antiterminator. Nat Commun 2021; 12:1702. [PMID: 33731715 PMCID: PMC7969949 DOI: 10.1038/s41467-021-21941-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/19/2021] [Indexed: 01/29/2023] Open
Abstract
In Pseudomonas aeruginosa the alp system encodes a programmed cell death pathway that is switched on in a subset of cells in response to DNA damage and is linked to the virulence of the organism. Here we show that the central regulator of this pathway, AlpA, exerts its effects by acting as an antiterminator rather than a transcription activator. In particular, we present evidence that AlpA positively regulates the alpBCDE cell lysis genes, as well as genes in a second newly identified target locus, by recognizing specific DNA sites within the promoter, then binding RNA polymerase directly and allowing it to bypass intrinsic terminators positioned downstream. AlpA thus functions in a mechanistically unusual manner to control the expression of virulence genes in this opportunistic pathogen.
Collapse
Affiliation(s)
- Jennifer M Peña
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samantha M Prezioso
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kirsty A McFarland
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracy K Kambara
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn M Ramsey
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Departments of Cell and Molecular Biology and Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | | | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Lippa AM, Gebhardt MJ, Dove SL. H-NS-like proteins in Pseudomonas aeruginosa coordinately silence intragenic transcription. Mol Microbiol 2020; 115:1138-1151. [PMID: 33245158 DOI: 10.1111/mmi.14656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023]
Abstract
The H-NS-like proteins MvaT and MvaU act coordinately as global repressors in Pseudomonas aeruginosa by binding to AT-rich regions of the chromosome. Although cells can tolerate loss of either protein, identifying their combined regulatory effects has been challenging because the loss of both proteins is lethal due to induction of prophage Pf4 and subsequent superinfection of the cell. In other bacteria, H-NS promotes the cellular fitness by inhibiting intragenic transcription from AT-rich target regions, preventing them from sequestering RNA polymerase; however, it is not known whether MvaT and MvaU function similarly. Here, we utilize a parental strain that cannot be infected by Pf4 phage to define the collective MvaT and MvaU regulon and demonstrate that the combined loss of both MvaT and MvaU leads to increased intragenic transcription from loci directly controlled by these proteins. We further show that the loss of MvaT and MvaU leads to a striking redistribution of RNA polymerase containing σ70 to genomic regions vacated by these proteins. Our findings suggest that the ability of H-NS-like proteins to repress intragenic transcription is a universal function of these proteins and point to a second mechanism by which MvaT and MvaU may contribute to the growth of P. aeruginosa.
Collapse
Affiliation(s)
- Andrew M Lippa
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Gebhardt
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Activation of the Cell Wall Stress Response in Pseudomonas aeruginosa Infected by a Pf4 Phage Variant. Microorganisms 2020; 8:microorganisms8111700. [PMID: 33143386 PMCID: PMC7693463 DOI: 10.3390/microorganisms8111700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa PAO1 has an integrated Pf4 prophage in its genome, encoding a relatively well-characterized filamentous phage, which contributes to the bacterial biofilm organization and maturation. Pf4 variants are considered as superinfectives when they can re-infect and kill the prophage-carrying host. Herein, the response of P. aeruginosa H103 to Pf4 variant infection was investigated. This phage variant caused partial lysis of the bacterial population and modulated H103 physiology. We show by confocal laser scanning microscopy that a Pf4 variant-infection altered P. aeruginosa H103 biofilm architecture either in static or dynamic conditions. Interestingly, in the latter condition, numerous cells displayed a filamentous morphology, suggesting a link between this phenotype and flow-related forces. In addition, Pf4 variant-infection resulted in cell envelope stress response, mostly mediated by the AlgU and SigX extracytoplasmic function sigma factors (ECFσ). AlgU and SigX involvement may account, at least partly, for the enhanced expression level of genes involved in the biosynthesis pathways of two matrix exopolysaccharides (Pel and alginates) and bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) metabolism.
Collapse
|
22
|
Fis Contributes to Resistance of Pseudomonas aeruginosa to Ciprofloxacin by Regulating Pyocin Synthesis. J Bacteriol 2020; 202:JB.00064-20. [PMID: 32205461 DOI: 10.1128/jb.00064-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/16/2020] [Indexed: 12/31/2022] Open
Abstract
Factor for inversion stimulation (Fis) is a versatile DNA binding protein that plays an important role in coordinating bacterial global gene expression in response to growth phases and environmental stresses. Previously, we demonstrated that Fis regulates the type III secretion system (T3SS) in Pseudomonas aeruginosa In this study, we explored the role of Fis in the antibiotic resistance of P. aeruginosa and found that mutation of the fis gene increases the bacterial susceptibility to ciprofloxacin. We further demonstrated that genes related to pyocin biosynthesis are upregulated in the fis mutant. The pyocins are produced in response to genotoxic agents, including ciprofloxacin, and the release of pyocins results in lysis of the producer cell. Thus, pyocin biosynthesis genes sensitize P. aeruginosa to ciprofloxacin. We found that PrtN, the positive regulator of the pyocin biosynthesis genes, is upregulated in the fis mutant. Genetic experiments and electrophoretic mobility shift assays revealed that Fis directly binds to the promoter region of prtN and represses its expression. Therefore, our results revealed novel Fis-mediated regulation on pyocin production and bacterial resistance to ciprofloxacin in P. aeruginosa IMPORTANCE Pseudomonas aeruginosa is an important opportunistic pathogenic bacterium that causes various acute and chronic infections in human, especially in patients with compromised immunity, cystic fibrosis (CF), and/or severe burn wounds. About 60% of cystic fibrosis patients have a chronic respiratory infection caused by P. aeruginosa The bacterium is intrinsically highly resistant to antibiotics, which greatly increases difficulties in clinical treatment. Therefore, it is critical to understand the mechanisms and the regulatory pathways that are involved in antibiotic resistance. In this study, we elucidated a novel regulatory pathway that controls the bacterial resistance to fluoroquinolone antibiotics, which enhances our understanding of how P. aeruginosa responds to ciprofloxacin.
Collapse
|
23
|
Secor PR, Burgener EB, Kinnersley M, Jennings LK, Roman-Cruz V, Popescu M, Van Belleghem JD, Haddock N, Copeland C, Michaels LA, de Vries CR, Chen Q, Pourtois J, Wheeler TJ, Milla CE, Bollyky PL. Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections. Front Immunol 2020; 11:244. [PMID: 32153575 PMCID: PMC7047154 DOI: 10.3389/fimmu.2020.00244] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pf bacteriophage are temperate phages that infect the bacterium Pseudomonas aeruginosa, a major cause of chronic lung infections in cystic fibrosis (CF) and other settings. Pf and other temperate phages have evolved complex, mutualistic relationships with their bacterial hosts that impact both bacterial phenotypes and chronic infection. We and others have reported that Pf phages are a virulence factor that promote the pathogenesis of P. aeruginosa infections in animal models and are associated with worse skin and lung infections in humans. Here we review the biology of Pf phage and what is known about its contributions to pathogenesis and clinical disease. First, we review the structure, genetics, and epidemiology of Pf phage. Next, we address the diverse and surprising ways that Pf phages contribute to P. aeruginosa phenotypes including effects on biofilm formation, antibiotic resistance, and motility. Then, we cover data indicating that Pf phages suppress mammalian immunity at sites of bacterial infection. Finally, we discuss recent literature implicating Pf in chronic P. aeruginosa infections in CF and other settings. Together, these reports suggest that Pf bacteriophage have direct effects on P. aeruginosa infections and that temperate phages are an exciting frontier in microbiology, immunology, and human health.
Collapse
Affiliation(s)
- Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| | - Elizabeth B. Burgener
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - M. Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura K. Jennings
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Valery Roman-Cruz
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Medeea Popescu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Jonas D. Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Naomi Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Conner Copeland
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Lia A. Michaels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Christiaan R. de Vries
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Julie Pourtois
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Travis J. Wheeler
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Carlos E. Milla
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
24
|
Pfeifer E, Hünnefeld M, Popa O, Frunzke J. Impact of Xenogeneic Silencing on Phage-Host Interactions. J Mol Biol 2019; 431:4670-4683. [PMID: 30796986 PMCID: PMC6925973 DOI: 10.1016/j.jmb.2019.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
Phages, viruses that prey on bacteria, are the most abundant and diverse inhabitants of the Earth. Temperate bacteriophages can integrate into the host genome and, as so-called prophages, maintain a long-term association with their host. The close relationship between host and virus has significantly shaped microbial evolution and phage elements may benefit their host by providing new functions. Nevertheless, the strong activity of phage promoters and potentially toxic gene products may impose a severe fitness burden and must be tightly controlled. In this context, xenogeneic silencing (XS) proteins, which can recognize foreign DNA elements, play an important role in the acquisition of novel genetic information and facilitate the evolution of regulatory networks. Currently known XS proteins fall into four classes (H-NS, MvaT, Rok and Lsr2) and have been shown to follow a similar mode of action by binding to AT-rich DNA and forming an oligomeric nucleoprotein complex that silences gene expression. In this review, we focus on the role of XS proteins in phage-host interactions by highlighting the important function of XS proteins in maintaining the lysogenic state and by providing examples of how phages fight back by encoding inhibitory proteins that disrupt XS functions in the host. Sequence analysis of available phage genomes revealed the presence of genes encoding Lsr2-type proteins in the genomes of phages infecting Actinobacteria. These data provide an interesting perspective for future studies to elucidate the impact of phage-encoded XS homologs on the phage life cycle and phage-host interactions.
Collapse
Affiliation(s)
- Eugen Pfeifer
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany.
| | - Max Hünnefeld
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Ovidiu Popa
- Heinrich Heine Universität Düsseldorf, Institute for Quantitative and Theoretical Biology, 40223 Düsseldorf, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany.
| |
Collapse
|
25
|
H-NS Family Members MvaT and MvaU Regulate the Pseudomonas aeruginosa Type III Secretion System. J Bacteriol 2019; 201:JB.00054-19. [PMID: 30782629 DOI: 10.1128/jb.00054-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen capable of causing severe disease in immunocompromised individuals. A major P. aeruginosa virulence factor is the type III secretion system (T3SS). The T3SS is used to translocate effector proteins into host cells, causing cytotoxicity. The T3SS is under the transcriptional control of the master regulator ExsA. ExsA is encoded in the exsCEBA operon and autoregulates transcription via the P exsC promoter. There is also a Vfr-dependent promoter (P exsA ) located in the intergenic region between exsB and exsA A previous chromatin immunoprecipitation (ChIP)-on-chip experiment identified strong binding signatures for MvaT and MvaU in the intergenic region containing the P exsA promoter. MvaT and MvaU are DNA-binding histone-like nucleoid-structuring proteins that can repress gene expression. As predicted from the previous ChIP data, purified MvaT specifically bound to the P exsA promoter region in electrophoretic mobility shift assays. Whereas disruption of mvaT or mvaU by either transposon insertion or clustered regularly interspaced short palindromic repeat interference (CRISPRi) derepressed P exsA promoter activity and T3SS gene expression, overexpression of MvaT or MvaU inhibited P exsA promoter activity. Disruption of mvaT, however, did not suppress the Vfr requirement for P exsA promoter activity. Mutated MvaT/MvaU defective in transcriptional silencing exhibited dominant negative activity, resulting in a significant increase in P exsA promoter activity. Because no effect of MvaT or MvaU on Vfr expression was detected, we propose a model in which the primary effect of MvaT/MvaU on T3SS gene expression is through direct silencing of the P exsA promoter.IMPORTANCE Global regulatory systems play a prominent role in controlling the P. aeruginosa T3SS and include the Gac/RsmA, c-di-GMP, and Vfr-cAMP signaling pathways. Many of these pathways appear to directly or indirectly influence exsA transcription or translation. In this study, the histone-like proteins MvaT and MvaU are added to the growing list of global regulators that control the T3SS. MvaT and MvaU bind AT-rich regions in the genome and silence xenogeneic genes, including pathogenicity islands. The T3SS gene cluster has been horizontally transmitted among many Gram-negative pathogens. Control by MvaT/MvaU may reflect a residual effect that has persisted since the initial acquisition of the gene cluster, subsequently imposing a requirement for active regulatory mechanisms to override MvaT/MvaU-mediated silencing.
Collapse
|
26
|
Li Y, Liu X, Tang K, Wang P, Zeng Z, Guo Y, Wang X. Excisionase in Pf filamentous prophage controls lysis-lysogeny decision-making in Pseudomonas aeruginosa. Mol Microbiol 2018; 111:495-513. [PMID: 30475408 PMCID: PMC7379572 DOI: 10.1111/mmi.14170] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2018] [Indexed: 12/15/2022]
Abstract
Pf filamentous prophages are prevalent among clinical and environmental Pseudomonasaeruginosa isolates. Pf4 and Pf5 prophages are integrated into the host genomes of PAO1 and PA14, respectively, and play an important role in biofilm development. However, the genetic factors that directly control the lysis‐lysogeny switch in Pf prophages remain unclear. Here, we identified and characterized the excisionase genes in Pf4 and Pf5 (named xisF4 and xisF5, respectively). XisF4 and XisF5 represent two major subfamilies of functional excisionases and are commonly found in Pf prophages. While both of them can significantly promote prophage excision, only XisF5 is essential for Pf5 excision. XisF4 activates Pf4 phage replication by upregulating the phage initiator gene (PA0727). In addition, xisF4 and the neighboring phage repressor c gene pf4r are transcribed divergently and their 5′‐untranslated regions overlap. XisF4 and Pf4r not only auto‐activate their own expression but also repress each other. Furthermore, two H‐NS family proteins, MvaT and MvaU, coordinately repress Pf4 production by directly repressing xisF4. Collectively, we reveal that Pf prophage excisionases cooperate in controlling lysogeny and phage production.
Collapse
Affiliation(s)
- Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Lanthanide-Dependent Regulation of Methylotrophy in Methylobacteriumaquaticum Strain 22A. mSphere 2018; 3:mSphere00462-17. [PMID: 29404411 PMCID: PMC5784242 DOI: 10.1128/msphere.00462-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022] Open
Abstract
Methylobacterium species are representative of methylotrophic bacteria. Their genomes usually encode two types of methanol dehydrogenases (MDHs): MxaF and XoxF. The former is a Ca2+-dependent enzyme, and the latter was recently determined to be a lanthanide-dependent enzyme that is necessary for the expression of mxaF. This finding revealed the unexpected and important roles of lanthanides in bacterial methylotrophy. In this study, we performed transcriptome sequencing (RNA-seq) analysis using M. aquaticum strain 22A grown in the presence of different lanthanides. Expression of mxaF and xoxF1 genes showed a clear inverse correlation in response to La3+. We observed downregulation of formaldehyde oxidation pathways, high formaldehyde dehydrogenase activity, and low accumulation of formaldehyde in the reaction with cells grown in the presence of La3+; this might be due to the direct oxidation of methanol to formate by XoxF1. Lanthanides induced the transcription of AT-rich genes, the function of most of which was unknown, and genes possibly related to cellular survival, as well as other MDH homologues. These results revealed not only the metabolic response toward altered primary methanol oxidation, but also the possible targets to be investigated further in order to better understand methylotrophy in the presence of lanthanides. IMPORTANCE Lanthanides have been considered unimportant for biological processes. In methylotrophic bacteria, however, a methanol dehydrogenase (MDH) encoded by xoxF was recently found to be lanthanide dependent, while the classic-type mxaFI is calcium dependent. XoxF-type MDHs are more widespread in diverse bacterial genera, suggesting their importance for methylotrophy. Methylobacterium species, representative methylotrophic and predominating alphaproteobacteria in the phyllosphere, contain both types and regulate their expression depending on the availability of lanthanides. RNA-seq analysis showed that the regulation takes place not only for MDH genes but also the subsequent formaldehyde oxidation pathways and respiratory chain, which might be due to the direct oxidation of methanol to formate by XoxF. In addition, a considerable number of genes of unknown function, including AT-rich genes, were found to be upregulated in the presence of lanthanides. This study provides first insights into the specific reaction of methylotrophic bacteria to the presence of lanthanides, emphasizing the biological relevance of this trace metal.
Collapse
|
28
|
Abstract
Most RNA polymerases can initiate transcription from diverse DNA template sequences with relatively few outright sequence restraints. Recent reports have demonstrated that failure to subdue the promiscuity of RNA polymerase in vivo can severely impede cell function. This phenomenon appears common to all cell types with undesirable effects ranging from growth inhibition in prokaryotes to cancer in higher organisms. Here we discuss similarities and differences in strategies employed by cells to minimise spurious transcription across life's domains.
Collapse
Affiliation(s)
- Joseph T Wade
- a Wadsworth Center , New York State Department of Health , Albany , NY , USA.,b Department of Biomedical Sciences , School of Public Health, University at Albany, SUNY , Albany , NY , USA
| | - David C Grainger
- c Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Edgbaston, Birmingham , UK
| |
Collapse
|
29
|
Nazik H, Joubert LM, Secor PR, Sweere JM, Bollyky PL, Sass G, Cegelski L, Stevens DA. Pseudomonas phage inhibition of Candida albicans. MICROBIOLOGY-SGM 2017; 163:1568-1577. [PMID: 28982395 DOI: 10.1099/mic.0.000539] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa (Pa) and Candida albicans (Ca) are major bacterial and fungal pathogens in immunocompromised hosts, and notably in the airways of cystic fibrosis patients. The bacteriophages of Pa physically alter biofilms, and were recently shown to inhibit the biofilms of Aspergillus fumigatus. To understand the range of this viral-fungal interaction, we studied Pa phages Pf4 and Pf1, and their interactions with Ca biofilm formation and preformed Ca biofilm. Both forms of Ca biofilm development, as well as planktonic Ca growth, were inhibited by either phage. The inhibition of biofilm was reversed by the addition of iron, suggesting that the mechanism of phage action on Ca involves denial of iron. Birefringence studies on added phage showed an ordered structure of binding to Ca. Electron microscopic observations indicated phage aggregation in the biofilm extracellular matrix. Bacteriophage-fungal interactions may be a general feature with several pathogens in the fungal kingdom.
Collapse
Affiliation(s)
- Hasan Nazik
- Division of Infectious Diseases, Department of Medicine, Stanford University Medical School, Stanford, CA, USA.,California Institute for Medical Research, San Jose, CA, USA
| | - Lydia-Marie Joubert
- Cell Sciences Imaging Facility, Stanford University Medical School, Stanford, CA, USA
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Johanna M Sweere
- Division of Infectious Diseases, Department of Medicine, Stanford University Medical School, Stanford, CA, USA.,Immunology Program, Stanford University, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University Medical School, Stanford, CA, USA.,Immunology Program, Stanford University, Stanford, CA, USA
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases, Department of Medicine, Stanford University Medical School, Stanford, CA, USA
| | | | - David A Stevens
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases, Department of Medicine, Stanford University Medical School, Stanford, CA, USA
| |
Collapse
|
30
|
|
31
|
Secor PR, Sass G, Nazik H, Stevens DA. Effect of acute predation with bacteriophage on intermicrobial aggression by Pseudomonas aeruginosa. PLoS One 2017. [PMID: 28622385 PMCID: PMC5473581 DOI: 10.1371/journal.pone.0179659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In persons with structural lung disease, particularly those with cystic fibrosis (CF), chronic airway infections cause progressive loss of lung function. CF airways can be colonized by a variety of microorganisms; the most frequently encountered bacterial and fungal pathogens are Pseudomonas aeruginosa and Aspergillus fumigatus, respectively. Co-infection with P. aeruginosa and A. fumigatus often results in a more rapid loss of lung function, indicating that interactions between these pathogens affect infection pathogenesis. There has been renewed interest in the use of viruses (bacteriophage, mycoviruses) as alternatives to antibiotics to treat these infections. In previous work, we found that filamentous Pf bacteriophage produced by P. aeruginosa directly inhibited the metabolic activity of A. fumigatus by binding to and sequestering iron. In the current study, we further examined how filamentous Pf bacteriophage affected interactions between P. aeruginosa and A. fumigatus. Here, we report that the antifungal properties of supernatants collected from P. aeruginosa cultures infected with Pf bacteriophage were substantially less inhibitory towards A. fumigatus biofilms. In particular, we found that acute infection of P. aeruginosa by Pf bacteriophage inhibited the production of the virulence factor pyoverdine. Our results raise the possibility that the reduced production of antimicrobials by P. aeruginosa infected by Pf bacteriophage may promote conditions in CF airways that allow co-infection with A. fumigatus to occur, exacerbating disease severity. Our results also highlight the importance of considering how the use of bacteriophage as therapeutic agents could affect the behavior and composition of polymicrobial communities colonizing sites of chronic infection.
Collapse
Affiliation(s)
- Patrick R. Secor
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA, United States of America
| | - Hasan Nazik
- California Institute for Medical Research, San Jose, CA, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States of America
- Department of Medical Microbiology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
32
|
Filamentous Bacteriophage Produced by Pseudomonas aeruginosa Alters the Inflammatory Response and Promotes Noninvasive Infection In Vivo. Infect Immun 2016; 85:IAI.00648-16. [PMID: 27795361 DOI: 10.1128/iai.00648-16] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/07/2016] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen that lives in biofilm-like cell aggregates at sites of chronic infection, such as those that occur in the lungs of patients with cystic fibrosis and nonhealing ulcers. During growth in a biofilm, P. aeruginosa dramatically increases the production of filamentous Pf bacteriophage (Pf phage). Previous work indicated that when in vivo Pf phage production was inhibited, P. aeruginosa was less virulent. However, it is not clear how the production of abundant quantities of Pf phage similar to those produced by biofilms under in vitro conditions affects pathogenesis. Here, using a murine pneumonia model, we show that the production of biofilm-relevant amounts of Pf phage prevents the dissemination of P. aeruginosa from the lung. Furthermore, filamentous phage promoted bacterial adhesion to mucin and inhibited bacterial invasion of airway epithelial cultures, suggesting that Pf phage traps P. aeruginosa within the lung. The in vivo production of Pf phage was also associated with reduced lung injury, reduced neutrophil recruitment, and lower cytokine levels. Additionally, when producing Pf phage, P. aeruginosa was less prone to phagocytosis by macrophages than bacteria not producing Pf phage. Collectively, these data suggest that filamentous Pf phage alters the progression of the inflammatory response and promotes phenotypes typically associated with chronic infection.
Collapse
|
33
|
Ricci DP, Melfi MD, Lasker K, Dill DL, McAdams HH, Shapiro L. Cell cycle progression in Caulobacter requires a nucleoid-associated protein with high AT sequence recognition. Proc Natl Acad Sci U S A 2016; 113:E5952-E5961. [PMID: 27647925 PMCID: PMC5056096 DOI: 10.1073/pnas.1612579113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Faithful cell cycle progression in the dimorphic bacterium Caulobacter crescentus requires spatiotemporal regulation of gene expression and cell pole differentiation. We discovered an essential DNA-associated protein, GapR, that is required for Caulobacter growth and asymmetric division. GapR interacts with adenine and thymine (AT)-rich chromosomal loci, associates with the promoter regions of cell cycle-regulated genes, and shares hundreds of recognition sites in common with known master regulators of cell cycle-dependent gene expression. GapR target loci are especially enriched in binding sites for the transcription factors GcrA and CtrA and overlap with nearly all of the binding sites for MucR1, a regulator that controls the establishment of swarmer cell fate. Despite constitutive synthesis, GapR accumulates preferentially in the swarmer compartment of the predivisional cell. Homologs of GapR, which are ubiquitous among the α-proteobacteria and are encoded on multiple bacteriophage genomes, also accumulate in the predivisional cell swarmer compartment when expressed in Caulobacter The Escherichia coli nucleoid-associated protein H-NS, like GapR, selectively associates with AT-rich DNA, yet it does not localize preferentially to the swarmer compartment when expressed exogenously in Caulobacter, suggesting that recognition of AT-rich DNA is not sufficient for the asymmetric accumulation of GapR. Further, GapR does not silence the expression of H-NS target genes when expressed in E. coli, suggesting that GapR and H-NS have distinct functions. We propose that Caulobacter has co-opted a nucleoid-associated protein with high AT recognition to serve as a mediator of cell cycle progression.
Collapse
Affiliation(s)
- Dante P Ricci
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - Michael D Melfi
- Department of Developmental Biology, Stanford University, Stanford, CA 94305; Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Keren Lasker
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - David L Dill
- Department of Computer Science, Stanford University, Stanford, CA 94305
| | - Harley H McAdams
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University, Stanford, CA 94305;
| |
Collapse
|
34
|
Filamentous Bacteriophage Promote Biofilm Assembly and Function. Cell Host Microbe 2016; 18:549-59. [PMID: 26567508 DOI: 10.1016/j.chom.2015.10.013] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/04/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022]
Abstract
Biofilms-communities of bacteria encased in a polymer-rich matrix-confer bacteria with the ability to persist in pathologic host contexts, such as the cystic fibrosis (CF) airways. How bacteria assemble polymers into biofilms is largely unknown. We find that the extracellular matrix produced by Pseudomonas aeruginosa self-assembles into a liquid crystal through entropic interactions between polymers and filamentous Pf bacteriophages, which are long, negatively charged filaments. This liquid crystalline structure enhances biofilm function by increasing adhesion and tolerance to desiccation and antibiotics. Pf bacteriophages are prevalent among P. aeruginosa clinical isolates and were detected in CF sputum. The addition of Pf bacteriophage to sputum polymers or serum was sufficient to drive their rapid assembly into viscous liquid crystals. Fd, a related bacteriophage of Escherichia coli, has similar biofilm-building capabilities. Targeting filamentous bacteriophage or the liquid crystalline organization of the biofilm matrix may represent antibacterial strategies.
Collapse
|
35
|
Abstract
The H-NS family of DNA-binding proteins is the subject of intense study due to its important roles in the regulation of horizontally acquired genes critical for virulence, antibiotic resistance, and metabolism. Xenogeneic silencing proteins, typified by the H-NS protein of Escherichia coli, specifically target and downregulate expression from AT-rich genes by selectively recognizing specific structural features unique to the AT-rich minor groove. In doing so, these proteins facilitate bacterial evolution; enabling these cells to engage in horizontal gene transfer while buffering potential any detrimental fitness consequences that may result from it. Xenogeneic silencing and counter-silencing explain how bacterial cells can evolve effective gene regulatory strategies in the face of rampant gene gain and loss and it has extended our understanding of bacterial gene regulation beyond the classic operon model. Here we review the structures and mechanisms of xenogeneic silencers as well as their impact on bacterial evolution. Several H-NS-like proteins appear to play a role in facilitating gene transfer by other mechanisms including by regulating transposition, conjugation, and participating in the activation of virulence loci like the locus of enterocyte effacement pathogenicity island of pathogenic strains of E. coli. Evidence suggests that the critical determinants that dictate whether an H-NS-like protein will be a silencer or will perform a different function do not lie in the DNA-binding domain but, rather, in the domains that control oligomerization. This suggests that H-NS-like proteins are transcription factors that both recognize and alter the shape of DNA to exert specific effects that include but are not limited to gene silencing.
Collapse
|
36
|
Penner JC, Ferreira JAG, Secor PR, Sweere JM, Birukova MK, Joubert LM, Haagensen JAJ, Garcia O, Malkovskiy AV, Kaber G, Nazik H, Manasherob R, Spormann AM, Clemons KV, Stevens DA, Bollyky PL. Pf4 bacteriophage produced by Pseudomonas aeruginosa inhibits Aspergillus fumigatus metabolism via iron sequestration. MICROBIOLOGY-SGM 2016; 162:1583-1594. [PMID: 27473221 DOI: 10.1099/mic.0.000344] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) are major human pathogens known to interact in a variety of disease settings, including airway infections in cystic fibrosis. We recently reported that clinical CF isolates of Pa inhibit the formation and growth of Af biofilms. Here, we report that the bacteriophage Pf4, produced by Pa, can inhibit the metabolic activity of Af biofilms. This phage-mediated inhibition was dose dependent, ablated by phage denaturation, and was more pronounced against preformed Af biofilm rather than biofilm formation. In contrast, planktonic conidial growth was unaffected. Two other phages, Pf1 and fd, did not inhibit Af, nor did supernatant from a Pa strain incapable of producing Pf4. Pf4, but not Pf1, attaches to Af hyphae in an avid and prolonged manner, suggesting that Pf4-mediated inhibition of Af may occur at the biofilm surface. We show that Pf4 binds iron, thus denying Af a crucial resource. Consistent with this, the inhibition of Af metabolism by Pf4 could be overcome with supplemental ferric iron, with preformed biofilm more resistant to reversal. To our knowledge, this is the first report of a bacterium producing a phage that inhibits the growth of a fungus and the first description of a phage behaving as an iron chelator in a biological system.
Collapse
Affiliation(s)
- Jack C Penner
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jose A G Ferreira
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Patrick R Secor
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Johanna M Sweere
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.,Stanford Immunology Program, Stanford University, Stanford, CA, USA
| | - Maria K Birukova
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.,Stanford Immunology Program, Stanford University, Stanford, CA, USA
| | - Lydia-Marie Joubert
- Cell Sciences Imaging Facility (CSIF), Stanford University Medical School, Stanford, CA, USA
| | - Janus A J Haagensen
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Omar Garcia
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Andrey V Malkovskiy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.,Biomaterial and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hasan Nazik
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.,Department of Medical Microbiology, Istanbul University, Istanbul, Turkey
| | - Robert Manasherob
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Alfred M Spormann
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Karl V Clemons
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.,Stanford Immunology Program, Stanford University, Stanford, CA, USA
| |
Collapse
|
37
|
Abstract
The H-NS (heat-stable nucleoid structuring) protein affects both nucleoid compaction and global gene regulation. H-NS appears to act primarily as a silencer of AT-rich genetic material acquired by horizontal gene transfer. As such, it is key in the regulation of most genes involved in virulence and in adaptation to new environmental niches. Here we review recent progress in understanding the biochemistry of H-NS and how xenogeneic silencing affects bacterial evolution. We highlight the strengths and weaknesses of some of the models proposed in H-NS-mediated nucleoprotein complex formation. Based on recent single-molecule studies, we also propose a novel mode of DNA compaction by H-NS termed intrabridging to explain over two decades of observations of the H-NS molecule.
Collapse
Affiliation(s)
- Kamna Singh
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada;
| | - Joshua N Milstein
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Ontario L5L 1C6, Canada.,Department of Physics, University of Toronto, Ontario M5S 1A7, Canada
| | | |
Collapse
|
38
|
The Histone-Like Nucleoid Structuring Protein (H-NS) Is a Negative Regulator of the Lateral Flagellar System in the Deep-Sea Bacterium Shewanella piezotolerans WP3. Appl Environ Microbiol 2016; 82:2388-2398. [PMID: 26873312 DOI: 10.1128/aem.00297-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/05/2016] [Indexed: 11/20/2022] Open
Abstract
Although the histone-like nucleoid structuring protein (H-NS) is well known for its involvement in the adaptation of mesophilic bacteria, such as Escherichia coli, to cold environments and high-pressure stress, an understanding of the role of H-NS in the cold-adapted benthic microorganisms that live in the deep-sea ecosystem, which covers approximately 60% of the earth's surface, is still lacking. In this study, we characterized the function of H-NS in Shewanella piezotolerans WP3, which was isolated from West Pacific sediment at a depth of 1,914 m. Anhns gene deletion mutant (WP3Δhns) was constructed, and comparative whole-genome microarray analysis was performed. H-NS had a significant influence (fold change, >2) on the expression of a variety of WP3 genes (274 and 280 genes were upregulated and downregulated, respectively), particularly genes related to energy production and conversion. Notably, WP3Δhnsexhibited higher expression levels of lateral flagellar genes than WP3 and showed enhanced swarming motility and lateral flagellar production compared to those of WP3. The DNA gel mobility shift experiment showed that H-NS bound specifically to the promoter of lateral flagellar genes. Moreover, the high-affinity binding sequences of H-NS were identified by DNase I protection footprinting, and the results support the "binding and spreading" model for H-NS functioning. To our knowledge, this is the first attempt to characterize the function of the universal regulator H-NS in a deep-sea bacterium. Our data revealed that H-NS has a novel function as a repressor of the expression of genes related to the energy-consuming secondary flagellar system and to swarming motility.
Collapse
|
39
|
Ares MA, Fernández-Vázquez JL, Rosales-Reyes R, Jarillo-Quijada MD, von Bargen K, Torres J, González-y-Merchand JA, Alcántar-Curiel MD, De la Cruz MA. H-NS Nucleoid Protein Controls Virulence Features of Klebsiella pneumoniae by Regulating the Expression of Type 3 Pili and the Capsule Polysaccharide. Front Cell Infect Microbiol 2016; 6:13. [PMID: 26904512 PMCID: PMC4746245 DOI: 10.3389/fcimb.2016.00013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen causing nosocomial infections. Main virulence determinants of K. pneumoniae are pili, capsular polysaccharide, lipopolysaccharide, and siderophores. The histone-like nucleoid-structuring protein (H-NS) is a pleiotropic regulator found in several gram-negative pathogens. It has functions both as an architectural component of the nucleoid and as a global regulator of gene expression. We generated a Δhns mutant and evaluated the role of the H-NS nucleoid protein on the virulence features of K. pneumoniae. A Δhns mutant down-regulated the mrkA pilin gene and biofilm formation was affected. In contrast, capsule expression was derepressed in the absence of H-NS conferring a hypermucoviscous phenotype. Moreover, H-NS deficiency affected the K. pneumoniae adherence to epithelial cells such as A549 and HeLa cells. In infection experiments using RAW264.7 and THP-1 differentiated macrophages, the Δhns mutant was less phagocytized than the wild-type strain. This phenotype was likely due to the low adherence to these phagocytic cells. Taken together, our data indicate that H-NS nucleoid protein is a crucial regulator of both T3P and CPS of K. pneumoniae.
Collapse
Affiliation(s)
- Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de PediatríaMexico City, Mexico; Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico
| | - José L Fernández-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Ma Dolores Jarillo-Quijada
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de Pediatría Mexico City, Mexico
| | - Jorge A González-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - María D Alcántar-Curiel
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de Pediatría Mexico City, Mexico
| |
Collapse
|
40
|
σ Factor and Anti-σ Factor That Control Swarming Motility and Biofilm Formation in Pseudomonas aeruginosa. J Bacteriol 2015. [PMID: 26620262 DOI: 10.1128/jb.00784-15.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa is capable of causing a variety of acute and chronic infections. Here, we provide evidence that sbrR (PA2895), a gene previously identified as required during chronic P. aeruginosa respiratory infection, encodes an anti-σ factor that inhibits the activity of its cognate extracytoplasmic-function σ factor, SbrI (PA2896). Bacterial two-hybrid analysis identified an N-terminal region of SbrR that interacts directly with SbrI and that was sufficient for inhibition of SbrI-dependent gene expression. We show that SbrI associates with RNA polymerase in vivo and identify the SbrIR regulon. In cells lacking SbrR, the SbrI-dependent expression of muiA was found to inhibit swarming motility and promote biofilm formation. Our findings reveal SbrR and SbrI as a novel set of regulators of swarming motility and biofilm formation in P. aeruginosa that mediate their effects through muiA, a gene not previously known to influence surface-associated behaviors in this organism. IMPORTANCE This study characterizes a σ factor/anti-σ factor system that reciprocally regulates the surface-associated behaviors of swarming motility and biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa. We present evidence that SbrR is an anti-σ factor specific for its cognate σ factor, SbrI, and identify the SbrIR regulon in P. aeruginosa. We find that cells lacking SbrR are severely defective in swarming motility and exhibit enhanced biofilm formation. Moreover, we identify muiA (PA1494) as the SbrI-dependent gene responsible for mediating these effects. SbrIR have been implicated in virulence and in responding to antimicrobial and cell envelope stress. SbrIR may therefore represent a stress response system that influences the surface behaviors of P. aeruginosa during infection.
Collapse
|
41
|
σ Factor and Anti-σ Factor That Control Swarming Motility and Biofilm Formation in Pseudomonas aeruginosa. J Bacteriol 2015; 198:755-65. [PMID: 26620262 DOI: 10.1128/jb.00784-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa is capable of causing a variety of acute and chronic infections. Here, we provide evidence that sbrR (PA2895), a gene previously identified as required during chronic P. aeruginosa respiratory infection, encodes an anti-σ factor that inhibits the activity of its cognate extracytoplasmic-function σ factor, SbrI (PA2896). Bacterial two-hybrid analysis identified an N-terminal region of SbrR that interacts directly with SbrI and that was sufficient for inhibition of SbrI-dependent gene expression. We show that SbrI associates with RNA polymerase in vivo and identify the SbrIR regulon. In cells lacking SbrR, the SbrI-dependent expression of muiA was found to inhibit swarming motility and promote biofilm formation. Our findings reveal SbrR and SbrI as a novel set of regulators of swarming motility and biofilm formation in P. aeruginosa that mediate their effects through muiA, a gene not previously known to influence surface-associated behaviors in this organism. IMPORTANCE This study characterizes a σ factor/anti-σ factor system that reciprocally regulates the surface-associated behaviors of swarming motility and biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa. We present evidence that SbrR is an anti-σ factor specific for its cognate σ factor, SbrI, and identify the SbrIR regulon in P. aeruginosa. We find that cells lacking SbrR are severely defective in swarming motility and exhibit enhanced biofilm formation. Moreover, we identify muiA (PA1494) as the SbrI-dependent gene responsible for mediating these effects. SbrIR have been implicated in virulence and in responding to antimicrobial and cell envelope stress. SbrIR may therefore represent a stress response system that influences the surface behaviors of P. aeruginosa during infection.
Collapse
|
42
|
Perez-Rueda E, Ibarra JA. Distribution of putative xenogeneic silencers in prokaryote genomes. Comput Biol Chem 2015; 58:167-72. [PMID: 26247404 DOI: 10.1016/j.compbiolchem.2015.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/05/2015] [Accepted: 06/27/2015] [Indexed: 12/30/2022]
Abstract
Gene silencing is an important function as it keeps newly acquired foreign DNA repressed, thereby avoiding possible deleterious effects in the host organism. Known transcriptional regulators associated with this process are called xenogeneic silencers (XS) and belong to either the H-NS, Lsr2, MvaT or Rok families. In the work described here we looked for XS-like regulators and their distribution in prokaryotic organisms was evaluated. Our analysis showed that putative XS regulators similar to H-NS, Lsr2, MvaT or Rok are present only in bacteria (31.7%). This does not exclude the existence of alternative XS in the rest of the organisms analyzed. Additionally, of the four XS groups evaluated in this work, those from the H-NS family have diversified more than the other groups. In order to compare the distribution of these putative XS regulators we also searched for other nucleoid-associated proteins (NAPs) not included in this group such as Fis, EbfC/YbaB, HU/IHF and Alba. Results showed that NAPs from the Fis, EbfC/YbaB, HU/IHF and Alba families are widely (94%) distributed among prokaryotes. These NAPs were found in multiple combinations with or without XS-like proteins. In regard with XS regulators, results showed that only XS proteins from one family were found in those organisms containing them. This suggests specificity for this type of regulators and their corresponding genomes.
Collapse
Affiliation(s)
- Ernesto Perez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM, Av. Universidad 2001, Cuernavaca, Morelos CP 62210, Mexico; Unidad Multidisciplinaria de Docencia e Investigación, Sisal Facultad de Ciencias, Sisal, Yucatán, UNAM, Mexico
| | - J Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Distrito Federal, CP 11340, Mexico.
| |
Collapse
|
43
|
Ding P, McFarland KA, Jin S, Tong G, Duan B, Yang A, Hughes TR, Liu J, Dove SL, Navarre WW, Xia B. A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT. PLoS Pathog 2015; 11:e1004967. [PMID: 26068099 PMCID: PMC4466236 DOI: 10.1371/journal.ppat.1004967] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022] Open
Abstract
Bacterial xenogeneic silencing proteins selectively bind to and silence expression from many AT rich regions of the chromosome. They serve as master regulators of horizontally acquired DNA, including a large number of virulence genes. To date, three distinct families of xenogeneic silencers have been identified: H-NS of Proteobacteria, Lsr2 of the Actinomycetes, and MvaT of Pseudomonas sp. Although H-NS and Lsr2 family proteins are structurally different, they all recognize the AT-rich DNA minor groove through a common AT-hook-like motif, which is absent in the MvaT family. Thus, the DNA binding mechanism of MvaT has not been determined. Here, we report the characteristics of DNA sequences targeted by MvaT with protein binding microarrays, which indicates that MvaT prefers binding flexible DNA sequences with multiple TpA steps. We demonstrate that there are clear differences in sequence preferences between MvaT and the other two xenogeneic silencer families. We also determined the structure of the DNA-binding domain of MvaT in complex with a high affinity DNA dodecamer using solution NMR. This is the first experimental structure of a xenogeneic silencer in complex with DNA, which reveals that MvaT recognizes the AT-rich DNA both through base readout by an "AT-pincer" motif inserted into the minor groove and through shape readout by multiple lysine side chains interacting with the DNA sugar-phosphate backbone. Mutations of key MvaT residues for DNA binding confirm their importance with both in vitro and in vivo assays. This novel DNA binding mode enables MvaT to better tolerate GC-base pair interruptions in the binding site and less prefer A tract DNA when compared to H-NS and Lsr2. Comparison of MvaT with other bacterial xenogeneic silencers provides a clear picture that nature has evolved unique solutions for different bacterial genera to distinguish foreign from self DNA.
Collapse
Affiliation(s)
- Pengfei Ding
- Beijing Nuclear Magnetic Resonance Center, School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kirsty A. McFarland
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shujuan Jin
- Beijing Nuclear Magnetic Resonance Center, School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Grace Tong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bo Duan
- Beijing Nuclear Magnetic Resonance Center, School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ally Yang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Timothy R. Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SLD); (WWN); (BX)
| | - William Wiley Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (SLD); (WWN); (BX)
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- * E-mail: (SLD); (WWN); (BX)
| |
Collapse
|
44
|
CysB Negatively Affects the Transcription of pqsR and Pseudomonas Quinolone Signal Production in Pseudomonas aeruginosa. J Bacteriol 2015; 197:1988-2002. [PMID: 25845844 DOI: 10.1128/jb.00246-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa is a Gram-negative bacterium that is ubiquitous in the environment, and it is an opportunistic pathogen that can infect a variety of hosts, including humans. During the process of infection, P. aeruginosa coordinates the expression of numerous virulence factors through the production of multiple cell-to-cell signaling molecules. The production of these signaling molecules is linked through a regulatory network, with the signal N-(3-oxododecanoyl) homoserine lactone and its receptor LasR controlling the induction of a second acyl-homoserine lactone signal and the Pseudomonas quinolone signal (PQS). LasR-mediated control of PQS occurs partly by activating the transcription of pqsR, a gene that encodes the PQS receptor and is necessary for PQS production. We show that LasR interacts with a single binding site in the pqsR promoter region and that it does not influence the transcription of the divergently transcribed gene, nadA. Using DNA affinity chromatography, we identified additional proteins that interact with the pqsR-nadA intergenic region. These include the H-NS family members MvaT and MvaU, and CysB, a transcriptional regulator that controls sulfur uptake and cysteine biosynthesis. We show that CysB interacts with the pqsR promoter and that CysB represses pqsR transcription and PQS production. Additionally, we provide evidence that CysB can interfere with the activation of pqsR transcription by LasR. However, as seen with other CysB-regulated genes, pqsR expression was not differentially regulated in response to cysteine levels. These findings demonstrate a novel role for CysB in influencing cell-to-cell signal production by P. aeruginosa. IMPORTANCE The production of PQS and other 4-hydroxy-2-alkylquinolone (HAQs) compounds is a key component of the P. aeruginosa cell-to-cell signaling network, impacts multiple physiological functions, and is required for virulence. PqsR directly regulates the genes necessary for HAQ production, but little is known about the regulation of pqsR. We identified CysB as a novel regulator of pqsR and PQS production, but, unlike other CysB-controlled genes, it does not appear to regulate pqsR in response to cysteine. This implies that CysB functions as both a cysteine-responsive and cysteine-unresponsive regulator in P. aeruginosa.
Collapse
|
45
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 980] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
46
|
Mai-Prochnow A, Hui JGK, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015; 39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023] Open
Abstract
This review synthesizes recent and past observations on filamentous phages and describes how these phages contribute to host phentoypes. For example, the CTXφ phage of Vibrio cholerae encodes the cholera toxin genes, responsible for causing the epidemic disease, cholera. The CTXφ phage can transduce non-toxigenic strains, converting them into toxigenic strains, contributing to the emergence of new pathogenic strains. Other effects of filamentous phage include horizontal gene transfer, biofilm development, motility, metal resistance and the formation of host morphotypic variants, important for the biofilm stress resistance. These phages infect a wide range of Gram-negative bacteria, including deep-sea, pressure-adapted bacteria. Many filamentous phages integrate into the host genome as prophage. In some cases, filamentous phages encode their own integrase genes to facilitate this process, while others rely on host-encoded genes. These differences are mediated by different sets of 'core' and 'accessory' genes, with the latter group accounting for some of the mechanisms that alter the host behaviours in unique ways. It is increasingly clear that despite their relatively small genomes, these phages exert signficant influence on their hosts and ultimately alter the fitness and other behaviours of their hosts.
Collapse
Affiliation(s)
- Anne Mai-Prochnow
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Janice Gee Kay Hui
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Diane McDougald
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Scott A Rice
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
47
|
Winardhi RS, Castang S, Dove SL, Yan J. Single-molecule study on histone-like nucleoid-structuring protein (H-NS) paralogue in Pseudomonas aeruginosa: MvaU bears DNA organization mode similarities to MvaT. PLoS One 2014; 9:e112246. [PMID: 25372370 PMCID: PMC4221281 DOI: 10.1371/journal.pone.0112246] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa contains two distinct members of H-NS family of nucleoid-structuring proteins: MvaT and MvaU. Together, these proteins bind to the same regions of the chromosome and function coordinately in the regulation of hundreds of genes. Due to their structural similarity, they can associate to form heteromeric complexes. These findings left us wondering whether they bear similar DNA binding properties that underlie their gene-silencing functions. Using single-molecule stretching and imaging experiments, we found striking similarities in the DNA organization modes of MvaU compared to the previously studied MvaT. MvaU can form protective nucleoprotein filaments that are insensitive to environmental factors, consistent with its role as a repressor of gene expression. Similar to MvaT, MvaU filament can mediate DNA bridging while excessive MvaU can cause DNA aggregation. The almost identical DNA organization modes of MvaU and MvaT explain their functional redundancy, and raise an interesting question regarding the evolutionary benefits of having multiple H-NS paralogues in the Pseudomonas genus.
Collapse
Affiliation(s)
- Ricksen S. Winardhi
- NUS Graduate school for Integrative Sciences and Engineering, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Sandra Castang
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
| |
Collapse
|
48
|
Ali SS, Soo J, Rao C, Leung AS, Ngai DHM, Ensminger AW, Navarre WW. Silencing by H-NS potentiated the evolution of Salmonella. PLoS Pathog 2014; 10:e1004500. [PMID: 25375226 PMCID: PMC4223078 DOI: 10.1371/journal.ppat.1004500] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022] Open
Abstract
The bacterial H-NS protein silences expression from sequences with higher AT-content than the host genome and is believed to buffer the fitness consequences associated with foreign gene acquisition. Loss of H-NS results in severe growth defects in Salmonella, but the underlying reasons were unclear. An experimental evolution approach was employed to determine which secondary mutations could compensate for the loss of H-NS in Salmonella. Six independently derived S. Typhimurium hns mutant strains were serially passaged for 300 generations prior to whole genome sequencing. Growth rates of all lineages dramatically improved during the course of the experiment. Each of the hns mutant lineages acquired missense mutations in the gene encoding the H-NS paralog StpA encoding a poorly understood H-NS paralog, while 5 of the mutant lineages acquired deletions in the genes encoding the Salmonella Pathogenicity Island-1 (SPI-1) Type 3 secretion system critical to invoke inflammation. We further demonstrate that SPI-1 misregulation is a primary contributor to the decreased fitness in Salmonella hns mutants. Three of the lineages acquired additional loss of function mutations in the PhoPQ virulence regulatory system. Similarly passaged wild type Salmonella lineages did not acquire these mutations. The stpA missense mutations arose in the oligomerization domain and generated proteins that could compensate for the loss of H-NS to varying degrees. StpA variants most able to functionally substitute for H-NS displayed altered DNA binding and oligomerization properties that resembled those of H-NS. These findings indicate that H-NS was central to the evolution of the Salmonellae by buffering the negative fitness consequences caused by the secretion system that is the defining characteristic of the species.
Collapse
Affiliation(s)
- Sabrina S. Ali
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeremy Soo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chitong Rao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Andrea S. Leung
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David Hon-Man Ngai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
49
|
Suzuki C, Kawazuma K, Horita S, Terada T, Tanokura M, Okada K, Yamane H, Nojiri H. Oligomerization mechanisms of an H-NS family protein, Pmr, encoded on the plasmid pCAR1 provide a molecular basis for functions of H-NS family members. PLoS One 2014; 9:e105656. [PMID: 25137042 PMCID: PMC4138198 DOI: 10.1371/journal.pone.0105656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 07/26/2014] [Indexed: 11/19/2022] Open
Abstract
Enterobacterial H-NS-like proteins and Pseudomonas MvaT-like proteins share low homology at the amino acid sequence level, but both can function as xenogeneic silencers and are included in the H-NS family of proteins. H-NS family members have dimerization/oligomerization and DNA-binding domains connected by a flexible linker and form large nucleoprotein complexes using both domains. Pmr, an MvaT-like protein encoded on the IncP-7 carbazole-degradative plasmid pCAR1, is a key regulator of an interaction between pCAR1 and its host Pseudomonas putida KT2440. KT2440 has two transcribed genes that encode the MvaT-like proteins TurA and TurB. Our previous transcriptome analyses suggested that the functions of Pmr, TurA and TurB are non-equivalent, although the detailed underlying mechanisms remain unclear. In this study, we focused on the protein–protein interactions of Pmr, and assessed the homo-oligomerization capacity of various substituted and truncated Pmr derivatives by protein–protein cross-linking analysis. Six of the seven residues identified as important for homo-oligomerization in Pmr were located near the N-terminus, and the putative flexible linker or the region near that was not involved in homo-oligomerization, suggesting that Pmr homo-oligomerization is different from that of enterobacterial H-NS and that the functional mechanism differs between H-NS-like and MvaT-like proteins. In addition, we assessed homo- and hetero-oligomerization of Pmr by surface plasmon resonance analysis and found that the coupling ratio of TurB-Pmr oligomers is smaller than that of Pmr-Pmr or TurA-Pmr oligomers. These results raised the possibility that composition of the hetero-oligomers of Pmr, TurA, and TurB could explain why the different gene sets were affected by either pmr, turA, or turB disruption in our previous studies.
Collapse
Affiliation(s)
- Chiho Suzuki
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Kohei Kawazuma
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Shoichiro Horita
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tohru Terada
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
50
|
Rybenkov VV. Maintenance of chromosome structure in Pseudomonas aeruginosa. FEMS Microbiol Lett 2014; 356:154-65. [PMID: 24863732 DOI: 10.1111/1574-6968.12478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/11/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Abstract
Replication and segregation of genetic information are the activities central to the well-being of all living cells. Concerted mechanisms have evolved that ensure that each cellular chromosome is replicated once and only once per cell cycle and then faithfully segregated into daughter cells. Despite remarkable taxonomic diversity, these mechanisms are largely conserved across eubacteria, although species-specific distinctions can often be noted. Here, we provide an overview of the current state of knowledge about maintenance of the chromosome structure in Pseudomonas aeruginosa. We focus on global chromosome organization and its dynamics during DNA replication and cell division. Special emphasis is made on contrasting these activities in P. aeruginosa and other bacteria. Among unique P. aeruginosa, features are the presence of two distinct autonomously replicating sequences and multiple condensins, which suggests existence of novel regulatory mechanisms.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|