1
|
Low WW, Wong JLC, Beltran LC, Seddon C, David S, Kwong HS, Bizeau T, Wang F, Peña A, Costa TRD, Pham B, Chen M, Egelman EH, Beis K, Frankel G. Mating pair stabilization mediates bacterial conjugation species specificity. Nat Microbiol 2022; 7:1016-1027. [PMID: 35697796 PMCID: PMC9246713 DOI: 10.1038/s41564-022-01146-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
Bacterial conjugation mediates contact-dependent transfer of DNA from donor to recipient bacteria, thus facilitating the spread of virulence and resistance plasmids. Here we describe how variants of the plasmid-encoded donor outer membrane (OM) protein TraN cooperate with distinct OM receptors in recipients to mediate mating pair stabilization and efficient DNA transfer. We show that TraN from the plasmid pKpQIL (Klebsiella pneumoniae) interacts with OmpK36, plasmids from R100-1 (Shigella flexneri) and pSLT (Salmonella Typhimurium) interact with OmpW, and the prototypical F plasmid (Escherichia coli) interacts with OmpA. Cryo-EM analysis revealed that TraNpKpQIL interacts with OmpK36 through the insertion of a β-hairpin in the tip of TraN into a monomer of the OmpK36 porin trimer. Combining bioinformatic analysis with AlphaFold structural predictions, we identified a fourth TraN structural variant that mediates mating pair stabilization by binding OmpF. Accordingly, we devised a classification scheme for TraN homologues on the basis of structural similarity and their associated receptors: TraNα (OmpW), TraNβ (OmpK36), TraNγ (OmpA), TraNδ (OmpF). These TraN-OM receptor pairings have real-world implications as they reflect the distribution of resistance plasmids within clinical Enterobacteriaceae isolates, demonstrating the importance of mating pair stabilization in mediating conjugation species specificity. These findings will allow us to predict the distribution of emerging resistance plasmids in high-risk bacterial pathogens. Combining conjugation and structural analyses, the authors show that TraN-OMP pairings determine bacterial conjugation species specificity, with implications in resistance plasmid distribution within Enterobacteriaceae.
Collapse
Affiliation(s)
- Wen Wen Low
- MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.,Department of Life Sciences, Imperial College, London, UK
| | - Joshua L C Wong
- MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.,Department of Life Sciences, Imperial College, London, UK
| | - Leticia C Beltran
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Chloe Seddon
- MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.,Department of Life Sciences, Imperial College, London, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire, UK
| | - Sophia David
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Hok-Sau Kwong
- Department of Life Sciences, Imperial College, London, UK.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Tatiana Bizeau
- Department of Life Sciences, Imperial College, London, UK
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Alejandro Peña
- MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.,Department of Life Sciences, Imperial College, London, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.,Department of Life Sciences, Imperial College, London, UK
| | - Bach Pham
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Min Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College, London, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire, UK
| | - Gad Frankel
- MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK. .,Department of Life Sciences, Imperial College, London, UK.
| |
Collapse
|
2
|
Fazzino L, Anisman J, Chacón JM, Harcombe WR. Phage cocktail strategies for the suppression of a pathogen in a cross-feeding coculture. Microb Biotechnol 2020; 13:1997-2007. [PMID: 32814365 PMCID: PMC7533344 DOI: 10.1111/1751-7915.13650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 01/19/2023] Open
Abstract
Cocktail combinations of bacteria-infecting viruses (bacteriophages) can suppress pathogenic bacterial growth. However, predicting how phage cocktails influence microbial communities with complex ecological interactions, specifically cross-feeding interactions in which bacteria exchange nutrients, remains challenging. Here, we used experiments and mathematical simulations to determine how to best suppress a model pathogen, E. coli, when obligately cross-feeding with S. enterica. We tested whether the duration of pathogen suppression caused by a two-lytic phage cocktail was maximized when both phages targeted E. coli, or when one phage targeted E. coli and the other its cross-feeding partner, S. enterica. Experimentally, we observed that cocktails targeting both cross-feeders suppressed E. coli growth longer than cocktails targeting only E. coli. Two non-mutually exclusive mechanisms could explain these results: (i) we found that treatment with two E. coli phage led to the evolution of a mucoid phenotype that provided cross-resistance against both phages, and (ii) S. enterica set the growth rate of the coculture, and therefore, targeting S. enterica had a stronger effect on pathogen suppression. Simulations suggested that cross-resistance and the relative growth rates of cross-feeders modulated the duration of E. coli suppression. More broadly, we describe a novel bacteriophage cocktail strategy for pathogens that cross-feed.
Collapse
Affiliation(s)
- Lisa Fazzino
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
- BioTechnology InstituteUniversity of MinnesotaSaint PaulMNUSA
| | - Jeremy Anisman
- College of Continuing and Professional StudiesUniversity of MinnesotaMinneapolisMNUSA
- Department of Diagnostic and Biological SciencesSchool of DentistryUniversity of MinnesotaMinneapolisMNUSA
| | - Jeremy M. Chacón
- BioTechnology InstituteUniversity of MinnesotaSaint PaulMNUSA
- Department of Evolution, and BehaviorUniversity of MinnesotaSaint PaulMNUSA
| | - William R. Harcombe
- BioTechnology InstituteUniversity of MinnesotaSaint PaulMNUSA
- Department of Evolution, and BehaviorUniversity of MinnesotaSaint PaulMNUSA
| |
Collapse
|
3
|
Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes (Basel) 2020; 11:genes11111239. [PMID: 33105635 PMCID: PMC7690428 DOI: 10.3390/genes11111239] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial conjugation, also referred to as bacterial sex, is a major horizontal gene transfer mechanism through which DNA is transferred from a donor to a recipient bacterium by direct contact. Conjugation is universally conserved among bacteria and occurs in a wide range of environments (soil, plant surfaces, water, sewage, biofilms, and host-associated bacterial communities). Within these habitats, conjugation drives the rapid evolution and adaptation of bacterial strains by mediating the propagation of various metabolic properties, including symbiotic lifestyle, virulence, biofilm formation, resistance to heavy metals, and, most importantly, resistance to antibiotics. These properties make conjugation a fundamentally important process, and it is thus the focus of extensive study. Here, we review the key steps of plasmid transfer by conjugation in Gram-negative bacteria, by following the life cycle of the F factor during its transfer from the donor to the recipient cell. We also discuss our current knowledge of the extent and impact of conjugation within an environmentally and clinically relevant bacterial habitat, bacterial biofilms.
Collapse
|
4
|
Moriguchi K, Zoolkefli FIRM, Abe M, Kiyokawa K, Yamamoto S, Suzuki K. Targeting Antibiotic Resistance Genes Is a Better Approach to Block Acquisition of Antibiotic Resistance Than Blocking Conjugal Transfer by Recipient Cells: A Genome-Wide Screening in Escherichia coli. Front Microbiol 2020; 10:2939. [PMID: 31969865 PMCID: PMC6960129 DOI: 10.3389/fmicb.2019.02939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
The conjugal transfer is a major driving force in the spread of antibiotic resistance genes. Nevertheless, an effective approach has not yet been developed to target conjugal transfer to prevent the acquisition of antibiotic resistance by this mechanism. This study aimed to identify potential targets for plasmid transfer blockade by isolating mutants defective in the completion of the acquisition of antibiotic resistance via conjugal transfer. We performed genome-wide screening by combining an IncP1α-type broad host range plasmid conjugation system with a comprehensive collection of Escherichia coli gene knockout mutants (Keio collection; 3884 mutants). We followed a six-step screening procedure to identify the mutants showing conjugation deficiency precisely. No mutants defective in the conjugal transfer were isolated, strongly suggesting that E. coli cannot escape from being a recipient organism for P1α plasmid transfer. However, several mutants with low viability were identified, as well as mutants defective in establishing resistance to chloramphenicol, which was used for transconjugant selection. These results suggest that developing drugs capable of inhibiting the establishment of antibiotic resistance is a better approach than attempting to prevent the conjugal transfer to block the spread of antibiotic resistance genes. Our screening system based on the IncP1α-type plasmid transfer can be extended to isolation of target genes for other drugs. This study could be the foundation for further research to understand its underlying molecular mechanism through functional analysis of the identified genes.
Collapse
Affiliation(s)
- Kazuki Moriguchi
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | | | - Masanobu Abe
- Division for Health Service Promotion, University of Tokyo, Tokyo, Japan
| | - Kazuya Kiyokawa
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | - Katsunori Suzuki
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
5
|
More than Rotating Flagella: Lipopolysaccharide as a Secondary Receptor for Flagellotropic Phage 7-7-1. J Bacteriol 2018; 200:JB.00363-18. [PMID: 30012730 DOI: 10.1128/jb.00363-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Bacteriophage 7-7-1, a member of the family Myoviridae, infects the soil bacterium Agrobacterium sp. strain H13-3. Infection requires attachment to actively rotating bacterial flagellar filaments, with flagellar number, length, and rotation speed being important determinants for infection efficiency. To identify the secondary receptor(s) on the cell surface, we isolated motile, phage-resistant Agrobacterium sp. H13-3 transposon mutants. Transposon insertion sites were pinpointed using arbitrary primed PCR and bioinformatics analyses. Three genes were recognized, whose corresponding proteins had the following computationally predicted functions: AGROH133_07337, a glycosyltransferase; AGROH133_13050, a UDP-glucose 4-epimerase; and AGROH133_08824, an integral cytoplasmic membrane protein. The first two gene products are part of the lipopolysaccharide (LPS) synthesis pathway, while the last is predicted to be a relatively small (13.4-kDa) cytosolic membrane protein with up to four transmembrane helices. The phenotypes of the transposon mutants were verified by complementation and site-directed mutagenesis. Additional characterization of motile, phage-resistant mutants is also described. Given these findings, we propose a model for Agrobacterium sp. H13-3 infection by bacteriophage 7-7-1 where the phage initially attaches to the flagellar filament and is propelled down toward the cell surface by clockwise flagellar rotation. The phage then attaches to and degrades the LPS to reach the outer membrane and ejects its DNA into the host using its syringe-like contractile tail. We hypothesize that the integral membrane protein plays an important role in events following viral DNA ejection or in LPS processing and/or deployment. The proposed two-step attachment mechanism may be conserved among other flagellotropic phages infecting Gram-negative bacteria.IMPORTANCE Flagellotropic bacteriophages belong to the tailed-phage order Caudovirales, the most abundant phages in the virome. While it is known that these viruses adhere to the bacterial flagellum and use flagellar rotation to reach the cell surface, their infection mechanisms are poorly understood. Characterizing flagellotropic-phage-host interactions is crucial to understanding how microbial communities are shaped. Using a transposon mutagenesis approach combined with a screen for motile, phage-resistant mutants, we identified lipopolysaccharides as the secondary cell surface receptor for phage 7-7-1. This is the first cell surface receptor identified for flagellotropic phages. One hypothetical membrane protein was also recognized as essential for infection. These new findings, together with previous results, culminated in an infection model for phage 7-7-1.
Collapse
|
6
|
Getino M, de la Cruz F. Natural and Artificial Strategies To Control the Conjugative Transmission of Plasmids. Microbiol Spectr 2018; 6:10.1128/microbiolspec.mtbp-0015-2016. [PMID: 29327679 PMCID: PMC11633558 DOI: 10.1128/microbiolspec.mtbp-0015-2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 12/19/2022] Open
Abstract
Conjugative plasmids are the main carriers of transmissible antibiotic resistance (AbR) genes. For that reason, strategies to control plasmid transmission have been proposed as potential solutions to prevent AbR dissemination. Natural mechanisms that bacteria employ as defense barriers against invading genomes, such as restriction-modification or CRISPR-Cas systems, could be exploited to control conjugation. Besides, conjugative plasmids themselves display mechanisms to minimize their associated burden or to compete with related or unrelated plasmids. Thus, FinOP systems, composed of FinO repressor protein and FinP antisense RNA, aid plasmids to regulate their own transfer; exclusion systems avoid conjugative transfer of related plasmids to the same recipient bacteria; and fertility inhibition systems block transmission of unrelated plasmids from the same donor cell. Artificial strategies have also been designed to control bacterial conjugation. For instance, intrabodies against R388 relaxase expressed in recipient cells inhibit plasmid R388 conjugative transfer; pIII protein of bacteriophage M13 inhibits plasmid F transmission by obstructing conjugative pili; and unsaturated fatty acids prevent transfer of clinically relevant plasmids in different hosts, promoting plasmid extinction in bacterial populations. Overall, a number of exogenous and endogenous factors have an effect on the sophisticated process of bacterial conjugation. This review puts them together in an effort to offer a wide picture and inform research to control plasmid transmission, focusing on Gram-negative bacteria.
Collapse
Affiliation(s)
- María Getino
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| |
Collapse
|
7
|
The Composition of the Cell Envelope Affects Conjugation in Bacillus subtilis. J Bacteriol 2016; 198:1241-9. [PMID: 26833415 DOI: 10.1128/jb.01044-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 01/27/2016] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Conjugation in bacteria is the contact-dependent transfer of DNA from one cell to another via donor-encoded conjugation machinery. It is a major type of horizontal gene transfer between bacteria. Conjugation of the integrative and conjugative element ICEBs1 into Bacillus subtilis is affected by the composition of phospholipids in the cell membranes of the donor and recipient. We found that reduction (or elimination) of lysyl-phosphatidylglycerol caused by loss of mpr F caused a decrease in conjugation efficiency. Conversely, alterations that caused an increase in lysyl-phosphatidylglycerol, including loss of ugtP or overproduction of mprF, caused an increase in conjugation efficiency. In addition, we found that mutations that alter production of other phospholipids, e.g., loss of clsA and yfnI, also affected conjugation, apparently without substantively altering levels of lysyl-phosphatidylglycerol, indicating that there are multiple pathways by which changes to the cell envelope affect conjugation. We found that the contribution of mprF to conjugation was affected by the chemical environment. Wild-type cells were generally more responsive to addition of anions that enhanced conjugation, whereas mprF mutant cells were more sensitive to combinations of anions that inhibited conjugation at pH 7. Our results indicate that mprF and lysyl-phosphatidylglycerol allow cells to maintain relatively consistent conjugation efficiencies under a variety of ionic conditions. IMPORTANCE Horizontal gene transfer is a driving force in microbial evolution, enabling cells that receive DNA to acquire new genes and phenotypes. Conjugation, the contact-dependent transfer of DNA from a donor to a recipient by a donor-encoded secretion machine, is a prevalent type of horizontal gene transfer. Although critically important, it is not well understood how the recipient influences the success of conjugation. We found that the composition of phospholipids in the membranes of donors and recipients influences the success of transfer of the integrative and conjugative element ICEBs1 in Bacillus subtilis Specifically, the presence of lysyl-phosphatidylglycerol enables relatively constant conjugation efficiencies in a range of diverse chemical environments.
Collapse
|
8
|
Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 2016; 363:fnw002. [PMID: 26755501 DOI: 10.1093/femsle/fnw002] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2016] [Indexed: 01/21/2023] Open
Abstract
The adsorption of bacteriophages (phages) onto host cells is, in all but a few rare cases, a sine qua non condition for the onset of the infection process. Understanding the mechanisms involved and the factors affecting it is, thus, crucial for the investigation of host-phage interactions. This review provides a survey of the phage host receptors involved in recognition and adsorption and their interactions during attachment. Comprehension of the whole infection process, starting with the adsorption step, can enable and accelerate our understanding of phage ecology and the development of phage-based technologies. To assist in this effort, we have established an open-access resource--the Phage Receptor Database (PhReD)--to serve as a repository for information on known and newly identified phage receptors.
Collapse
Affiliation(s)
- Juliano Bertozzi Silva
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Zachary Storms
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
9
|
León M, Bastías R. Virulence reduction in bacteriophage resistant bacteria. Front Microbiol 2015; 6:343. [PMID: 25954266 PMCID: PMC4407575 DOI: 10.3389/fmicb.2015.00343] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/07/2015] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages can influence the abundance, diversity, and evolution of bacterial communities. Several bacteriophages have been reported to add virulence factors to their host and to increase bacterial virulence. However, lytic bacteriophages can also exert a selective pressure allowing the proliferation of strains with reduced virulence. This reduction can be explained because bacteriophages use structures present on the bacterial surface as receptors, which can be virulence factors in different bacterial species. Therefore, strains with modifications in these receptors will be resistant to bacteriophage infection and may also exhibit reduced virulence. This mini-review summarizes the reports on bacteriophage-resistant strains with reductions in virulence, and it discusses the potential consequences in phage therapy and in the use of bacteriophages to select attenuated strains for vaccines.
Collapse
Affiliation(s)
- Marcela León
- Laboratory of Microbiology, Institute of Biology, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile
| | - Roberto Bastías
- Laboratory of Microbiology, Institute of Biology, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile
| |
Collapse
|
10
|
Johnson CM, Grossman AD. Identification of host genes that affect acquisition of an integrative and conjugative element in Bacillus subtilis. Mol Microbiol 2014; 93:1284-301. [PMID: 25069588 DOI: 10.1111/mmi.12736] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2014] [Indexed: 01/28/2023]
Abstract
Conjugation, a major type of horizontal gene transfer in bacteria, involves transfer of DNA from a donor to a recipient using donor-encoded conjugation machinery. Using a high-throughput screen (Tn-seq), we identified genes in recipients that contribute to acquisition of the integrative and conjugative element ICEBs1 by Bacillus subtilis. We found that null mutations in some genes caused an increase, and others a decrease in conjugation efficiency. Some mutations affected conjugation only when present in recipients. Other mutations affected conjugation when present in donors or recipients. Most of the genes identified are known or predicted to affect the cell envelope. Several encode enzymes involved in phospholipid biosynthesis and one encodes a homologue of penicillin-binding proteins. Two of the genes identified also affected conjugation of Tn916, indicating that their roles in conjugation may be general. We did not identify any genes in recipients that were essential for ICEBs1 conjugation, indicating that if there are such genes, then these are either essential for cell growth or redundant. Our results indicate that acquisition of ICEBs1, and perhaps other conjugative elements, is robust and not easily avoided by mutation and that several membrane-related functions affect the efficiency of conjugation.
Collapse
Affiliation(s)
- Christopher M Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | |
Collapse
|
11
|
Minimum requirements of flagellation and motility for infection of Agrobacterium sp. strain H13-3 by flagellotropic bacteriophage 7-7-1. Appl Environ Microbiol 2012; 78:7216-22. [PMID: 22865074 DOI: 10.1128/aem.01082-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The flagellotropic phage 7-7-1 specifically adsorbs to Agrobacterium sp. strain H13-3 (formerly Rhizobium lupini H13-3) flagella for efficient host infection. The Agrobacterium sp. H13-3 flagellum is complex and consists of three flagellin proteins: the primary flagellin FlaA, which is essential for motility, and the secondary flagellins FlaB and FlaD, which have minor functions in motility. Using quantitative infectivity assays, we showed that absence of FlaD had no effect on phage infection, while absence of FlaB resulted in a 2.5-fold increase in infectivity. A flaA deletion strain, which produces straight and severely truncated flagella, experienced a significantly reduced infectivity, similar to that of a flaB flaD strain, which produces a low number of straight flagella. A strain lacking all three flagellin genes is phage resistant. In addition to flagellation, flagellar rotation is required for infection. A strain that is nonmotile due to an in-frame deletion in the gene encoding the motor component MotA is resistant to phage infection. We also generated two strains with point mutations in the motA gene resulting in replacement of the conserved charged residue Glu98, which is important for modulation of rotary speed. A change to the neutral Gln caused the flagellar motor to rotate at a constant high speed, allowing a 2.2-fold-enhanced infectivity. A change to the positively charged Lys caused a jiggly motility phenotype with very slow flagellar rotation, which significantly reduced the efficiency of infection. In conclusion, flagellar number and length, as well as speed of flagellar rotation, are important determinants for infection by phage 7-7-1.
Collapse
|
12
|
Abstract
Decrypting the structure, function, and molecular interactions of complex molecular machines in their cellular context and at atomic resolution is of prime importance for understanding fundamental physiological processes. Nuclear magnetic resonance is a well-established imaging method that can visualize cellular entities at the micrometer scale and can be used to obtain 3D atomic structures under in vitro conditions. Here, we introduce a solid-state NMR approach that provides atomic level insights into cell-associated molecular components. By combining dedicated protein production and labeling schemes with tailored solid-state NMR pulse methods, we obtained structural information of a recombinant integral membrane protein and the major endogenous molecular components in a bacterial environment. Our approach permits studying entire cellular compartments as well as cell-associated proteins at the same time and at atomic resolution.
Collapse
|
13
|
Gautam A, Vinson HM, Gibbs PS, Olet S, Barigye R. Proteomic analysis of multidrug resistant Escherichia coli strains from scouring calves. Vet Microbiol 2011; 151:363-71. [DOI: 10.1016/j.vetmic.2011.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/07/2011] [Accepted: 03/28/2011] [Indexed: 11/29/2022]
|
14
|
Bacteriophage PhiX174's ecological niche and the flexibility of its Escherichia coli lipopolysaccharide receptor. Appl Environ Microbiol 2010; 76:7310-3. [PMID: 20833781 DOI: 10.1128/aem.02721-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine bacteriophage PhiX174's ecological niche, 783 Escherichia coli isolates were screened for susceptibility. Sensitive strains are diverse regarding their phylogenies and core lipopolysaccharides (LPS), but all have rough phenotypes. Further analysis of E. coli K-12 LPS mutants revealed that PhiX174 can use a wide diversity of LPS structures to initiate its infectious process.
Collapse
|
15
|
Evans TJ, Trauner A, Komitopoulou E, Salmond GPC. Exploitation of a new flagellatropic phage of Erwinia for positive selection of bacterial mutants attenuated in plant virulence: towards phage therapy. J Appl Microbiol 2009; 108:676-85. [PMID: 19674185 DOI: 10.1111/j.1365-2672.2009.04462.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To isolate and characterize novel bacteriophages for the phytopathogen, Erwinia carotovora ssp. atroseptica (Eca), and to isolate phage-resistant mutants attenuated in virulence. METHODS AND RESULTS A novel flagellatropic phage was isolated on the potato-rotting bacterial species, Eca, and characterized using electron microscopy and restriction analysis. The phage, named PhiAT1, has an icosahedral head and a long, contractile tail; it belongs to the Myoviridae family. Partial sequencing revealed the presence of genes with homology to those of coliphages T4, T7 and Mu. Phage-resistant transposon mutants of Eca were isolated and studied in vitro for a number of virulence-related phenotypes; only motility was found to be affected. In vivo tuber rotting assays showed that these mutants were attenuated in virulence, presumably because the infection is unable to spread from the initial site of inoculation. CONCLUSIONS The Eca flagellum can act as a receptor for PhiAT1 infection, and resistant mutants are enriched for motility and virulence defects. SIGNIFICANCE AND IMPACT OF THE STUDY PhiAT1 is the first reported flagellatropic phage found to infect Eca and has enabled further study of the virulence of this economically important phytopathogen.
Collapse
Affiliation(s)
- T J Evans
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
16
|
Pérez-Mendoza D, de la Cruz F. Escherichia coli genes affecting recipient ability in plasmid conjugation: are there any? BMC Genomics 2009; 10:71. [PMID: 19203375 PMCID: PMC2645431 DOI: 10.1186/1471-2164-10-71] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 02/09/2009] [Indexed: 12/08/2023] Open
Abstract
Background How does the recipient cell contribute to bacterial conjugation? To answer this question we systematically analyzed the individual contribution of each Escherichia coli gene in matings using plasmid R388 as a conjugative plasmid. We used an automated conjugation assay and two sets of E. coli mutant collections: the Keio collection (3,908 E. coli single-gene deletion mutants) and a collection of 20,000 random mini-Tn10::Km insertion mutants in E. coli strain DH5α. The combined use of both collections assured that we screened > 99% of the E. coli non-essential genes in our survey. Results Results indicate that no non-essential recipient E. coli genes exist that play an essential role in conjugation. Mutations in the lipopolysaccharide (LPS) synthesis pathway had a modest effect on R388 plasmid transfer (6 – 32% of wild type). The same mutations showed a drastic inhibition effect on F-plasmid transfer, but only in liquid matings, suggesting that previously isolated conjugation-defective mutants do in fact impair mating pair formation in liquid mating, but not conjugative DNA processing or transport per se. Conclusion We conclude from our genome-wide screen that recipient bacterial cells cannot avoid being used as recipients in bacterial conjugation. This is relevant as an indication of the problems in curbing the dissemination of antibiotic resistance and suggests that conjugation acts as a pure drilling machine, with little regard to the constitution of the recipient cell.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-IDICAN), Santander, Spain.
| | | |
Collapse
|
17
|
Strauch E, Beutin L. Imprecise excision of insertion element IS5 from the fliC gene contributes to flagellar diversity in Escherichia coli. FEMS Microbiol Lett 2006; 256:195-202. [PMID: 16499606 DOI: 10.1111/j.1574-6968.2006.00100.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Motile strains of Escherichia coli K12 carrying both a chromosomal fliC-H48 gene and a plasmid encoded fliC-H4 gene express both types of flagellins, which are coassembled into functional flagella. By using flagellar-H48-specific antiserum and a plasmid curing procedure, nonmotile mutants were found that carried an IS5 insertion in the chromosomal fliC-H48 gene. Motile revertants were isolated that showed deletions of the IS5 element together with sections of the fliC-H48 gene resulting in an altered flagellar serotype in these strains. As IS5 elements were found associated with 35 of 53 known H-types in wildtype E. coli strains, this insertion element might play a major role in serotype diversity.
Collapse
Affiliation(s)
- Eckhard Strauch
- National Reference Laboratory for Escherichia coli, Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | | |
Collapse
|
18
|
Schröder G, Lanka E. The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. Plasmid 2005; 54:1-25. [PMID: 15907535 DOI: 10.1016/j.plasmid.2005.02.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The mating pair formation (Mpf) system functions as a secretion machinery for intercellular DNA transfer during bacterial conjugation. The components of the Mpf system, comprising a minimal set of 10 conserved proteins, form a membrane-spanning protein complex and a surface-exposed sex pilus, which both serve to establish intimate physical contacts with a recipient bacterium. To function as a DNA secretion apparatus the Mpf complex additionally requires the coupling protein (CP). The CP interacts with the DNA substrate and couples it to the secretion pore formed by the Mpf system. Mpf/CP conjugation systems belong to the family of type IV secretion systems (T4SS), which also includes DNA-uptake and -release systems, as well as effector protein translocation systems of bacterial pathogens such as Agrobacterium tumefaciens (VirB/VirD4) and Helicobacter pylori (Cag). The increased efforts to unravel the molecular mechanisms of type IV secretion have largely advanced our current understanding of the Mpf/CP system of bacterial conjugation systems. It has become apparent that proteins coupled to DNA rather than DNA itself are the actively transported substrates during bacterial conjugation. We here present a unified and updated view of the functioning and the molecular architecture of the Mpf/CP machinery.
Collapse
Affiliation(s)
- Gunnar Schröder
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
19
|
Vega MI, Santos-Argumedo L, Huerta-Yepez S, Luría-Perez R, Ortiz-Navarrete V, Isibasi A, González-Bonilla CR. A Salmonella typhi OmpC fusion protein expressing the CD154 Trp140-Ser149 amino acid strand binds CD40 and activates a lymphoma B-cell line. Immunology 2003; 110:206-16. [PMID: 14511234 PMCID: PMC1783042 DOI: 10.1046/j.1365-2567.2003.01717.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD154 is a type II glycoprotein member of the tumour necrosis factor (TNF) ligand family, which is expressed mainly on the surface of activated T lymphocytes. The interaction with its receptor CD40, plays a central role in the control of several functions of the immune system. Structural models based on the homology of CD154 with TNF and lymphotoxin indicate that binding to CD40 involves three regions surrounding amino acids K143, R203 and Q220, and that strands W140-S149 and S198-A210 are critical for such interactions. Also, it has been reported that two recombinant CD154 fragments, including amino acid residues Y45-L261 or E108-L261 are biologically active, whereas other polypeptides, including S149-L261, are not. Therefore, we decided to construct a fusion protein inserting the W140-S149 amino acid strand (WAEKGYYTMS) in an external loop of the outer membrane protein C (OmpC) from Salmonella enterica serovar Typhi and assess its ability to bind CD40 and activate B cells. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis demonstrated that the chimeric OmpC-gp39 protein conserved its ability to form trimers. Binding to CD40 was established by three variants of enzyme-linked immunosorbent assay, a direct binding assay by coating plates with a recombinant CD40-Fc protein and through two competition assays between OmpC-gp39 and recombinant CD154 or soluble CD40-Fc. Flow cytometry analysis demonstrated that OmpC-gp39 increased the expression levels of major histocompatibility complex II, CD23, and CD80, in Raji human B-cell lymphoma similarly to an antibody against CD40. These results further support that the CD154/CD40 interaction is similar to the TNF/TNF receptor. This is the first report of a bacterial fusion protein containing a small amino acid strand form a ligand that is able to activate its cognate receptor.
Collapse
Affiliation(s)
- Mario I Vega
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología 'Dr Daniel Méndez Hernández' Centro Médico 'La Raza', México.
| | | | | | | | | | | | | |
Collapse
|
20
|
Liu Z, Binns AN. Functional subsets of the virB type IV transport complex proteins involved in the capacity of Agrobacterium tumefaciens to serve as a recipient in virB-mediated conjugal transfer of plasmid RSF1010. J Bacteriol 2003; 185:3259-69. [PMID: 12754223 PMCID: PMC155385 DOI: 10.1128/jb.185.11.3259-3269.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The virB-encoded type IV transport complex of Agrobacterium tumefaciens mediates the transfer of DNA and proteins into plant cells, as well as the conjugal transfer of IncQ plasmids, such as RSF1010, between Agrobacterium strains. While several studies have indicated that there are physical interactions among the 11 VirB proteins, the functional significance of the interactions has been difficult to establish since all of the proteins are required for substrate transfer. Our previous studies, however, indicated that although all of the VirB proteins are required for the capacity of a strain to serve as an RSF1010 donor, only a subset of these proteins in the recipient is necessary to increase the conjugal frequency by 3 to 4 logs. The roles of particular groups of VirB proteins in this increased recipient activity were examined in the study reported here. Examination of the expression of subgroups of virB genes revealed that translation of virB6 is necessary for expression of downstream open reading frames. Expression of limited subsets of the VirB proteins in a recipient strain lacking the Ti plasmid revealed that the VirB7 to VirB10 proteins yield a subcomplex that is functional in the recipient assay but that the VirB1 to VirB4 proteins, as a group, dramatically increase this activity in strains expressing VirB7 to VirB10. Finally, the membrane distribution and cross-linking patterns of VirB10, but not of VirB8 or VirB9, in a strain expressing only VirB7 to VirB10 are significantly altered compared to the patterns of the wild type. These characteristics are, however, restored to the wild-type status by coexpression of VirB1 to VirB3. Taken together, these results define subsets of type IV transport complex proteins that are critical in allowing a strain to participate as a recipient in virB-mediated conjugal RSF1010 transfer.
Collapse
Affiliation(s)
- Zhenying Liu
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | |
Collapse
|
21
|
Higgs PI, Letain TE, Merriam KK, Burke NS, Park H, Kang C, Postle K. TonB interacts with nonreceptor proteins in the outer membrane of Escherichia coli. J Bacteriol 2002; 184:1640-8. [PMID: 11872715 PMCID: PMC134908 DOI: 10.1128/jb.184.6.1640-1648.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2001] [Accepted: 12/23/2001] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli TonB protein serves to couple the cytoplasmic membrane proton motive force to active transport of iron-siderophore complexes and vitamin B(12) across the outer membrane. Consistent with this role, TonB has been demonstrated to participate in strong interactions with both the cytoplasmic and outer membranes. The cytoplasmic membrane determinants for that interaction have been previously characterized in some detail. Here we begin to examine the nature of TonB interactions with the outer membrane. Although the presence of the siderophore enterochelin (also known as enterobactin) greatly enhanced detectable cross-linking between TonB and the outer membrane receptor, FepA, the absence of enterochelin did not prevent the localization of TonB to the outer membrane. Furthermore, the absence of FepA or indeed of all the iron-responsive outer membrane receptors did not alter this association of TonB with the outer membrane. This suggested that TonB interactions with the outer membrane were not limited to the TonB-dependent outer membrane receptors. Hydrolysis of the murein layer with lysozyme did not alter the distribution of TonB, suggesting that peptidoglycan was not responsible for the outer membrane association of TonB. Conversely, the interaction of TonB with the outer membrane was disrupted by the addition of 4 M NaCl, suggesting that these interactions were proteinaceous. Subsequently, two additional contacts of TonB with the outer membrane proteins Lpp and, putatively, OmpA were identified by in vivo cross-linking. These contacts corresponded to the 43-kDa and part of the 77-kDa TonB-specific complexes described previously. Surprisingly, mutations in these proteins individually did not appear to affect TonB phenotypes. These results suggest that there may be multiple redundant sites where TonB can interact with the outer membrane prior to transducing energy to the outer membrane receptors.
Collapse
Affiliation(s)
- Penelope I Higgs
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4233, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Jordan KN, Oxford L, O'Byrne CP. Survival of low-pH stress by Escherichia coli O157:H7: correlation between alterations in the cell envelope and increased acid tolerance. Appl Environ Microbiol 1999; 65:3048-55. [PMID: 10388702 PMCID: PMC91455 DOI: 10.1128/aem.65.7.3048-3055.1999] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/1998] [Accepted: 04/15/1999] [Indexed: 11/20/2022] Open
Abstract
Survival of a nontoxigenic isolate of Escherichia coli O157:H7 at low pH (pH 3.0) was examined over prolonged time periods for each of three population types: exponential-phase cells, stationary-phase cells, and acid-adapted exponential-phase cells. In each population, approximately 5 x 10(4) CFU ml-1 were detected after a 24-h incubation at pH 3.0. Even after 3 days at pH 3.0, significant numbers of survivors from each of the three populations could be detected. The high level of acid tolerance exhibited by these survivors was found to be quickly lost once they were transferred to conditions which permitted growth to resume, indicating that they were not mutants. Proton flux measurements on the three populations of cells revealed that the initial rates of viability loss at pH 3.0 correlated well with net proton accumulation. Cells showing a high initial rate of viability loss (exponential-phase cells) accumulated protons at the highest rate, whereas resistant populations (adapted or stationary-phase cells) accumulated protons only slowly. Differences in the protein composition of the cell envelope between the three populations were studied by two-dimensional polyacrylamide gel electrophoresis. Complex differences in the pattern of proteins expressed by each population were uncovered. The implications of these findings are discussed in the context of a possible model accounting for acid tolerance in this important food-borne pathogen.
Collapse
Affiliation(s)
- K N Jordan
- Microbiology Department, Unilever Research Colworth, Sharnbrook, Bedfordshire MK44 1LQ, England
| | | | | |
Collapse
|
23
|
Abstract
A novel colicin, designated colicin U, was found in two Shigella boydii strains of serovars 1 and 8. Colicin U was active against bacterial strains of the genera Escherichia and Shigella. Plasmid pColU (7.3 kb) of the colicinogenic strain S. boydii M592 (serovar 8) was sequenced, and three colicin genes were identified. The colicin U activity gene, cua, encodes a protein of 619 amino acids (Mr, 66,289); the immunity gene, cui, encodes a protein of 174 amino acids (Mr, 20,688); and the lytic protein gene, cul, encodes a polypeptide of 45 amino acids (Mr, 4,672). Colicin U displays sequence similarities to various colicins. The N-terminal sequence of 130 amino acids has 54% identity to the N-terminal sequence of bacteriocin 28b produced by Serratia marcescens. Furthermore, the N-terminal 36 amino acids have striking sequence identity (83%) to colicin A. Although the C-terminal pore-forming sequence of colicin U shows the highest degree of identity (73%) to the pore-forming C-terminal sequence of colicin B, the immunity protein, which interacts with the same region, displays a higher degree of sequence similarity to the immunity protein of colicin A (45%) than to the immunity protein of colicin B (30.5%). Immunity specificity is probably conferred by a short sequence from residues 571 to residue 599 of colicin U; this sequence is not similar to that of colicin B. We showed that binding of colicin U to sensitive cells is mediated by the OmpA protein, the OmpF porin, and core lipopolysaccharide. Uptake of colicin U was dependent on the TolA, -B, -Q, and -R proteins. pColU is homologous to plasmid pSB41 (4.1 kb) except for the colicin genes on pColU. pSB41 and pColU coexist in S. boydii strains and can be cotransformed into Escherichia coli, and both plasmids are homologous to pColE1.
Collapse
Affiliation(s)
- D Smajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|
24
|
Haase J, Kalkum M, Lanka E. TrbK, a small cytoplasmic membrane lipoprotein, functions in entry exclusion of the IncP alpha plasmid RP4. J Bacteriol 1996; 178:6720-9. [PMID: 8955288 PMCID: PMC178567 DOI: 10.1128/jb.178.23.6720-6729.1996] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
TrbK is the only plasmid-encoded gene product involved in entry exclusion of the broad-host-range plasmid RP4. The corresponding gene, trbK, coding for a protein of 69 amino acid residues maps in the Tra2 region within the mating pair formation genes. TrbK carries a lipid moiety at the N-terminal cysteine of the mature 47-residue polypeptide. The mutant protein TrbKC23G cannot be modified or proteolytically processed but still acts in entry exclusion with reduced efficiency. An 8-amino-acid truncation at the C terminus of TrbK results in a complete loss of the entry exclusion activity but still allows the protein to be processed. TrbK localizes predominately to the cytoplasmic membrane. Its function depends on presence in the recipient cell but not in the donor cell. TrbK excludes plasmids of homologous systems of the P complex; it is inert towards the IncI system. The likely target for TrbK action is the mating pair formation system, because DNA or any of the components of the relaxosome were excluded as possible targets.
Collapse
Affiliation(s)
- J Haase
- Max-Planck-Institut für Molekulare Genetik, Dahlem, Berlin, Germany
| | | | | |
Collapse
|
25
|
Hashemolhosseini S, Stierhof YD, Hindennach I, Henning U. Characterization of the helper proteins for the assembly of tail fibers of coliphages T4 and lambda. J Bacteriol 1996; 178:6258-65. [PMID: 8892827 PMCID: PMC178498 DOI: 10.1128/jb.178.21.6258-6265.1996] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Assembly of tail fibers of coliphage T4 requires the action of helper proteins. In the absence of one of these, protein 38 (p38), p37, constituting the distal part of the long tail fiber, fails to oligomerize. In the absence of the other, p57, p34 (another component of the long tail fiber), p37, and p12 (the subunit of the short tail fiber) remain unassembled. p38 can be replaced by the Tfa (tail fiber assembly) protein (pTfa) of phage lambda, which has the advantage of remaining soluble even when produced in massive amounts. The mechanisms of action of the helpers are unknown. As a first step towards elucidation of these mechanisms, p57 and pTfa have been purified to homogeneity and have been crystallized. The identity of gene 57 (g57), not known with certainty previously, has been established. The 79-residue protein p57 represents a very exotic polypeptide. It is oligomeric and acidic (an excess of nine negative charges). It does not contain Phe, Trp, Tyr, His, Pro, and Cys. Only 25 N-terminal residues were still able to complement a g57 amber mutant, although with a reduced efficiency. In cells overproducing the protein, it assumed a quasi-crystalline structure in the form of highly ordered fibers. They traversed the cells longitudinally (and thus blocked cell division) with a diameter approaching that of the cell and with a hexagonal appearance. The 194-residue pTfa is also acidic (an excess of 13 negative charges) and is likely to be dimeric.
Collapse
|
26
|
Anthony KG, Sherburne C, Sherburne R, Frost LS. The role of the pilus in recipient cell recognition during bacterial conjugation mediated by F-like plasmids. Mol Microbiol 1994; 13:939-53. [PMID: 7854127 DOI: 10.1111/j.1365-2958.1994.tb00486.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of defined mutations in the lipopolysaccharide (LPS) and the outer membrane protein OmpA of the recipient cell on mating-pair formation in liquid media by the transfer systems of the F-like plasmids pOX38 (F), ColB2 and R100-1 were investigated. Transfer of all three plasmids was affected differently by mutations in the rfa (LPS) locus of the recipient cell, the F plasmid being most sensitive to mutations that affected rfaP gene expression which is responsible for the addition of pyrophosphorylethanolamine (PPEA) to heptose I of the inner core of the LPS. ColB2 transfer was more strongly affected by mutations in the heptose II-heptose III region of the LPS (rfaF) whereas R100-1 was not strongly affected by any of the rfa mutations tested. ompA but not rfa mutations further decreased the mating efficiency of an F plasmid carrying a mutation in the mating-pair stabilization protein TraN. An F derivative with a chloramphenicol acetyltransferase (CAT) cassette interrupting the traA pilin gene was constructed and pilin genes from F-like plasmids (F, ColB2, R100-1) were used to complement this mutation. Unexpectedly, the results suggested that the differences in the pilin sequences were not responsible for recognizing specific groups in the LPS, OmpA or the TraT surface exclusion protein. Other corroborating evidence is presented suggesting the presence of an adhesin at the F pilus tip.
Collapse
Affiliation(s)
- K G Anthony
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
27
|
Hansen MJ, Chen LH, Fejzo ML, Belasco JG. The ompA 5' untranslated region impedes a major pathway for mRNA degradation in Escherichia coli. Mol Microbiol 1994; 12:707-16. [PMID: 8052123 DOI: 10.1111/j.1365-2958.1994.tb01058.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The unusual longevity of the Escherichia coli ompA transcript is determined by its 5' untranslated region (UTR), which functions in vivo as an mRNA stabilizer. Here we show that this 5' UTR can prolong the lifetime in E. coli of a variety of heterologous mRNAs to which it is joined, either as a gene fusion or as an operon fusion. Statistical extrapolation suggests that it is quite likely that most E. coli mRNAs could be stabilized in this manner. We conclude that the ompA 5' UTR impedes a major pathway for mRNA degradation in E. coli and that stabilization by fusion to this UTR does not require translational readthrough of the heterologous mRNA segment by ribosomes that initiate translation at the ompA ribosome-binding site. Additional experiments indicate that the E. coli ribonuclease whose action is slowed by the ompA 5' UTR is not RNase III.
Collapse
Affiliation(s)
- M J Hansen
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
28
|
Frost LS, Ippen-Ihler K, Skurray RA. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 1994; 58:162-210. [PMID: 7915817 PMCID: PMC372961 DOI: 10.1128/mr.58.2.162-210.1994] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial conjugation results in the transfer of DNA of either plasmid or chromosomal origin between microorganisms. Transfer begins at a defined point in the DNA sequence, usually called the origin of transfer (oriT). The capacity of conjugative DNA transfer is a property of self-transmissible plasmids and conjugative transposons, which will mobilize other plasmids and DNA sequences that include a compatible oriT locus. This review will concentrate on the genes required for bacterial conjugation that are encoded within the transfer region (or regions) of conjugative plasmids. One of the best-defined conjugation systems is that of the F plasmid, which has been the paradigm for conjugation systems since it was discovered nearly 50 years ago. The F transfer region (over 33 kb) contains about 40 genes, arranged contiguously. These are involved in the synthesis of pili, extracellular filaments which establish contact between donor and recipient cells; mating-pair stabilization; prevention of mating between similar donor cells in a process termed surface exclusions; DNA nicking and transfer during conjugation; and the regulation of expression of these functions. This review is a compendium of the products and other features found in the F transfer region as well as a discussion of their role in conjugation. While the genetics of F transfer have been described extensively, the mechanism of conjugation has proved elusive, in large part because of the low levels of expression of the pilus and the numerous envelope components essential for F plasmid transfer. The advent of molecular genetic techniques has, however, resulted in considerable recent progress. This summary of the known properties of the F transfer region is provided in the hope that it will form a useful basis for future comparison with other conjugation systems.
Collapse
Affiliation(s)
- L S Frost
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
29
|
Sirakova T, Kolattukudy PE, Murwin D, Billy J, Leake E, Lim D, DeMaria T, Bakaletz L. Role of fimbriae expressed by nontypeable Haemophilus influenzae in pathogenesis of and protection against otitis media and relatedness of the fimbrin subunit to outer membrane protein A. Infect Immun 1994; 62:2002-20. [PMID: 7909539 PMCID: PMC186460 DOI: 10.1128/iai.62.5.2002-2020.1994] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nontypeable Haemophilus influenzae is a primary pathogen in both acute otitis media (OM) and chronic OM, yet the pathogenesis of this disease is not fully understood. Although fimbriae have been observed on all clinical OM isolates examined to date, their role in pathogenesis remains unclear. Therefore, the gene which codes for the fimbrial subunit protein (fimbrin) in nontypeable H. influenzae 1128 was isolated, cloned, and sequenced. The nucleotide sequence of the fimbrin gene was found to contain an open reading frame of 1,077 bp which would encode a mature fimbrin protein consisting of 338 amino acid with a calculated molecular mass of 36.4 kDa. The translated amino acid sequence was found to be homologous with various OmpA proteins of other gram-negative bacteria, and algorithmic analysis predicted that this protein is organized as a coiled coil. To directly test whether fimbriae are involved in pathogenesis, the fimbrin gene was disrupted, and the biological consequences of disruption were absence of both expression of the fimbrial appendage and the specific immunogold labeling thereof with antisera directed against isolated fimbrial protein, reduced adherence to human oropharyngeal cells in vitro, augmented clearance from the tympanum post-transbullar inoculation, and significantly reduced induction of OM post-intranasal inoculation in a chinchilla model compared with the fimbriated parent strain. We additionally find that either passive immunization or active immunization against isolated fimbrial protein confers partial protection against transbullar challenge. A Western blot (immunoblot) indicated a degree of serological relatedness among fimbrin proteins of 15 nontypeable and type b isolates. These data suggest that fimbrin could be useful as a component of a vaccine to protect against OM.
Collapse
Affiliation(s)
- T Sirakova
- Department of Otolaryngology, College of Medicine, Ohio State University, Columbus
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kaufmann A, Stierhof YD, Henning U. New outer membrane-associated protease of Escherichia coli K-12. J Bacteriol 1994; 176:359-67. [PMID: 8288530 PMCID: PMC205058 DOI: 10.1128/jb.176.2.359-367.1994] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The gene for a new outer membrane-associated protease, designated OmpP, of Escherichia coli has been cloned and sequenced. The gene encodes a 315-residue precursor protein possessing a 23-residue signal sequence. Including conservative substitutions and omitting the signal peptides, OmpP is 87% identical to the outer membrane protease OmpT. OmpP possessed the same enzymatic activity as OmpT. Immuno-electron microscopy demonstrated the exposure of the protein at the cell surface. Digestion of intact cells with proteinase K removed 155 N-terminal residues of OmpP, while the C-terminal half remained protected. It is possible that much of this N-terminal part is cell surface exposed and carries the enzymatic activity. Synthesis of OmpP was found to be thermoregulated, as is the expression of ompT (i.e., there is a low rate of synthesis at low temperatures) and, in addition, was found to be controlled by the cyclic AMP system.
Collapse
Affiliation(s)
- A Kaufmann
- Max-Planck-Institut für Biologie, Tübingen, Germany
| | | | | |
Collapse
|
31
|
Puohiniemi R, Muotiala A, Helander IM, Sarvas M. Conformation of Escherichia coli outer membrane protein OmpA produced in Bacillus subtilis: influence of lipopolysaccharide. FEMS Microbiol Lett 1993; 106:105-10. [PMID: 8440462 DOI: 10.1111/j.1574-6968.1993.tb05942.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The conformation of the outer membrane protein OmpA of Escherichia coli produced in Bacillus subtilis and solubilized in Sarkosyl was studied by measuring its ability to bind OmpA-specific phage K3 and to inhibit F-mediated conjugation. The partially purified protein was inactive in both of these assays. Refolding of the protein in the presence of lipopolysaccharide resulted in preparations with full phage-binding and conjugation-inhibiting capacity, indicating the formation of surface-exposed loops of OmpA of native conformation. The finding is of importance for the potential use of outer membrane proteins of Gram-negative bacteria as vaccines.
Collapse
Affiliation(s)
- R Puohiniemi
- Department of Molecular Bacteriology, National Public Health Institute, Helsinki, Finland
| | | | | | | |
Collapse
|
32
|
Köhler G, Ludwig W, Schleifer KH. Differentiation of lactococci by rRNA gene restriction analysis. FEMS Microbiol Lett 1991. [PMID: 1687138 DOI: 10.1111/j.1574-6968.1990.tb13956.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Strains of the subspecies of Lactococcus lactis could be differentiated by rRNA gene restriction fragment length polymorphisms (RFLP). 16S rRNA-specific oligonucleotide as well as polynucleotide DNA probes were used for the detection of restriction fragments. In addition, a site-specific probe was designed for the intergenic spacer region of 23S and 5S rRNA genes. For all lactococcal strains the putative presence of six rRNA operons was confirmed. A non-radioactive hybridization assay was used based on hybrid detection by chemiluminescence. Specific patterns were found for any of the strains investigated. Subspecies-specific restriction fragments could be identified in addition to the strain-specific patterns.
Collapse
Affiliation(s)
- G Köhler
- Lehrstuhl für Mikrobiologie, Technische Universität München, F.R.G
| | | | | |
Collapse
|
33
|
Drexler K, Dannull J, Hindennach I, Mutschler B, Henning U. Single mutations in a gene for a tail fiber component of an Escherichia coli phage can cause an extension from a protein to a carbohydrate as a receptor. J Mol Biol 1991; 219:655-63. [PMID: 1829115 DOI: 10.1016/0022-2836(91)90662-p] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The T-even type Escherichia coli phage Ox2 recognizes the outer membrane protein OmpA as a receptor. This recognition is accomplished by the 266 residue protein 38, which is located at the free ends of the virion's long tail fibers. Host-range mutants had been isolated in three consecutive steps: Ox2----Ox2h5----Ox2h10----Ox2h12, with Ox2h12 recognizing the outer membrane protein OmpC efficiently and having lost some affinity for OmpA. Protein 38 consists, in comparison with these proteins of other phages, of two constant and one contiguous array of four hypervariable regions; the alterations leading to Ox2h12 were all found within the latter area. Starting with Ox2h12, further host-range mutants could be isolated on strains resistant to the respective phage: Ox2h12----h12h1----h12h1.1----h12h1.11----h12 h1.111. It was found that Ox2h12h1.1 (and a derivative of Ox2h10, h10h4) probably uses, instead of OmpA or OmpC, yet another outer membrane protein, designated OmpX. Ox2h12h1.11 was obtained on a strain lacking OmpA, -C and -X. This phage could not grow on a mutant of E. coli B, possessing a lipopolysaccharide (LPS) with a defective core oligosaccharide; Ox2h12h1.111 was obtained from this strain. It turned out that the latter two mutants used LPS as a receptor, most likely via its glucose residues. Selection for resistance to them in E. coli B (ompA+, ompC-, ompX-) yielded exclusively LPS mutants, and in another strain, possessing OmpA, C and X, the majority of resistant mutants were of this type. Isolated LPS inactivated the mutant phages very well and was inactive towards Ox2h12. By recombining the genes of mutant phages into the genome of parental phages it could be shown that the phenotypes were associated with gene 38. All mutant alterations (mostly single amino acid substitutions) were found within the hypervariable regions of protein 38. In particular, a substitution leading to Ox2h12h1.11 (Arg170----Ser) had occurred at the same site that led to Ox2h10 (His170----Arg), which binds to OmpC in addition to OmpA. It is concluded that not only can protein 38 gain the ability to switch from a protein to a carbohydrate as a receptor but can do so using the same domain of the polypeptide.
Collapse
Affiliation(s)
- K Drexler
- Max-Planck-Institut für Biologie, Tübingen, Germany
| | | | | | | | | |
Collapse
|
34
|
Lai CH, Bloomquist C, Liljemark WF. Purification and characterization of an outer membrane protein adhesin from Haemophilus parainfluenzae HP-28. Infect Immun 1990; 58:3833-9. [PMID: 2254013 PMCID: PMC313743 DOI: 10.1128/iai.58.12.3833-3839.1990] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Outer membranes were isolated from Haemophilus parainfluenzae HP-28 by a mild extraction method followed by Sephadex G-150 gel filtration chromatography. The first peak (pool 1) recovered contained an activity which inhibited adherence of HP-28 cells to saliva-coated spheroidal hydroxyapatite. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of pool 1 revealed a dominant protein band of 34 kDa. The SDS-PAGE-purified 34-kDa protein was excised from the gel and used for antibody preparation in rabbits. The antiserum produced was analyzed by immunoblot and was shown to be monospecific for the 34-kDa protein. Anti-34-kDa protein antibody was purified from the rabbit antiserum by protein A-Sepharose 6MB affinity chromatography. This antibody was then cross-linked to protein A-Sepharose 6MB to construct a second affinity column. The 34-kDa proteins were purified from outer membranes by this affinity chromatography. The 34-kDa protein was homogeneous, as confirmed by SDS-PAGE, isoelectric focusing, and reverse-phase chromatography analyses. Fab and Fc fragments of the purified anti-34-kDa protein antibodies were prepared by papain digestion, followed by carboxymethyl cellulose chromatography. Fab fragments from the anti-34-kDa protein antibody and the affinity-purified 34-kDa protein both showed significant inhibition of parent H. parainfluenzae HP-28 cell adherence to experimental salivary pellicle and to Streptococcus sanguis SA-1.
Collapse
Affiliation(s)
- C H Lai
- Department of Diagnostic School of Dentistry, University of Minnesota, Minneapolis 55455
| | | | | |
Collapse
|
35
|
Montag D, Hashemolhosseini S, Henning U. Receptor-recognizing proteins of T-even type bacteriophages. The receptor-recognizing area of proteins 37 of phages T4 TuIa and TuIb. J Mol Biol 1990; 216:327-34. [PMID: 2147721 DOI: 10.1016/s0022-2836(05)80324-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Escherichia coli phages of the T4 family (T4, TuIa, TuIb) recognize their cellular receptors by means of a C-terminal region of protein 37; a dimer of this polypeptide (1026 residues in T4) is located at the distal part of the long tail fibers. Virions of the T2 family use protein 38 (which is attached to the free end of protein 37) for this purpose. The corresponding areas of genes 37 belonging to TuIa and TuIb were cloned and sequenced. Comparison of the deduced protein primary structures, including those of T4 and lambda Stf (Stf most likely representing a subunit of the side tail fibers of phage lambda) showed that an area of 70 to 100 residues is characterized by very variable sequences, while the sequences of the adjacent 43 to 44 C-terminal residues as well as those upstream from the variable region are highly homologous. The variable regions are flanked and interrupted seven or eight times by the motif His-x-His-y, with x and y most often being Ser or Thr; furthermore, the locations of these repeated tetrapeptides are conserved. Using hybrid phages obtained by recombination of one phage with cloned fragments of gene 37 of another, it could be shown that the area of this gene encoding receptor specificity includes the variable area. The situation is analogous to the known receptor-recognizing region of proteins 38 belonging to the T2-type family, except that the repeating sequence is of a different nature. In T4, receptor specificity is coded for by 382 base-pairs of the 3'-end of the gene, starting exactly at the variable area. It was found that T4 can use the outer membrane protein OmpC or lipopolysaccharide as receptors with the same efficiency, and it is proposed that the 70 residues of the variable part of the protein serve to bind to both ligands.
Collapse
Affiliation(s)
- D Montag
- Max-Planck-Institut für Biologie, Tübingen, F.R.G
| | | | | |
Collapse
|
36
|
Ried G, Hindennach I, Henning U. Role of lipopolysaccharide in assembly of Escherichia coli outer membrane proteins OmpA, OmpC, and OmpF. J Bacteriol 1990; 172:6048-53. [PMID: 2170338 PMCID: PMC526928 DOI: 10.1128/jb.172.10.6048-6053.1990] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Selection was performed for resistance to a phage, Ox2, specific for the Escherichia coli outer membrane protein OmpA, under conditions which excluded recovery of ompA mutants. All mutants analyzed produced normal quantities of OmpA, which was also normally assembled in the outer membrane. They had become essentially resistant to OmpC and OmpF-specific phages and synthesized these outer membrane porins at much reduced rates. The inhibition of synthesis acted at the level of translation. This was due to the presence of lipopolysaccharides (LPS) with defective core oligosaccharides. Cerulenin blocks fatty acid synthesis and therefore that of LPS. It also inhibits synthesis of OmpC and OmpF but not of OmpA (C. Bocquet-Pagès, C. Lazdunski, and A. Lazdunski, Eur. J. Biochem. 118:105-111, 1981). In the presence of the antibiotic, OmpA synthesis and membrane incorporation remained unaffected at a time when OmpC and OmpF synthesis had almost ceased. The similarity of these results with those obtained with the mutants suggests that normal porin synthesis is not only interfered with by production of mutant LPS but also requires de novo synthesis of LPS. Since synthesis and assembly of OmpA into the outer membrane was not affected in the mutants or in the presence of cerulenin, association of this protein with LPS appears to occur with outer membrane-located LPS.
Collapse
Affiliation(s)
- G Ried
- Max-Planck-Institut für Biologie, Tübingen, Federal Republic of Germany
| | | | | |
Collapse
|
37
|
Sukupolvi S, Vaara M. Salmonella typhimurium and Escherichia coli mutants with increased outer membrane permeability to hydrophobic compounds. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 988:377-87. [PMID: 2686757 DOI: 10.1016/0304-4157(89)90011-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- S Sukupolvi
- National Public Health Institute, University of Helsinki, Finland
| | | |
Collapse
|
38
|
Freudl R. Insertion of peptides into cell-surface-exposed areas of the Escherichia coli OmpA protein does not interfere with export and membrane assembly. Gene 1989; 82:229-36. [PMID: 2684781 DOI: 10.1016/0378-1119(89)90048-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Peptides, 21 amino acids (aa) in length, were inserted into cell-surface-exposed areas of the Escherichia coli outer membrane protein, OmpA, corresponding to aa positions 70 or 154 or at both sites simultaneously. The corresponding hybrid proteins were exported and normally assembled in the outer membrane. The results of protease-accessibility experiments are compatible with the presence of the peptides at the cell surface.
Collapse
Affiliation(s)
- R Freudl
- Max-Planck-Institut für Biologie, Tübingen, F.R.G
| |
Collapse
|
39
|
Veeraragavan K. Studies on two major contaminating proteins of the cytoplasmic inclusion bodies inEscherichia coli. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03569.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
40
|
Abstract
The immunity (imm) gene of the Escherichia coli bacteriophage T4 effects exclusion of phage superinfecting cells already infected with T4. A candidate for this gene was placed under the control of the lac regulatory elements in a pUC plasmid. DNA sequencing revealed the presence of an open reading frame encoding a very lipophilic 83-residue (or 73-residue, depending on the unknown site of translation initiation) polypeptide which most likely represents a plasma membrane protein. This gene could be identified as the imm gene because expression from the plasmid caused exclusion of T4 and because interruption of the gene in the phage genome resulted in a phage no longer effecting superinfection immunity. It was found that the fraction of phage which was excluded upon infection of cells possessing the plasmid-encoded Imm protein ejected only about one-half of their DNA. Therefore, the Imm protein inhibited, directly or indirectly, DNA ejection.
Collapse
Affiliation(s)
- M J Lu
- Max-Planck-Institut für Biologie, Tübingen, Federal Republic of Germany
| | | |
Collapse
|
41
|
Cohen SP, McMurry LM, Hooper DC, Wolfson JS, Levy SB. Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother 1989; 33:1318-25. [PMID: 2679373 PMCID: PMC172647 DOI: 10.1128/aac.33.8.1318] [Citation(s) in RCA: 250] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chromosomal multiple-antibiotic-resistant (Mar) mutants of Escherichia coli, selected on agar containing low concentrations of tetracycline or chloramphenicol, were 6- to 18-fold less susceptible to the fluoroquinolones than were their wild-type E. coli K-12 or E. coli C parental strains. The frequency of emergence of such mutants was at least 1,000-fold higher than that of those selected by the fluoroquinolone norfloxacin directly. When Mar mutants, but not wild-type cells, were plated on norfloxacin, mutants resistant to high levels of norfloxacin (2 micrograms/ml) appeared at a relatively high (approximately 10(-7] frequency. In addition to decreased amounts of OmpF, Mar mutants had other outer membrane protein changes and were four- to eightfold less susceptible to fluoroquinolones than was an ompF::Tn5 mutant lacking only OmpF. Accumulation of [3H]norfloxacin was more than threefold lower in the Mar mutants than in wild-type cells and twofold lower than in the OmpF-deficient derivative. These differences were not attributable to a change in the endogenous active efflux system for norfloxacin in E. coli. Norfloxacin-induced inhibition of DNA synthesis was threefold lower in intact cells of a Mar mutant than in susceptible cells, but this difference was not seen in toluene-permeabilized cells. Insertion of Tn5 into marA (min 34.05 on the chromosome) led to a return of the wild-type patterns of norfloxacin accumulation, fluoroquinolone and other antimicrobial agent susceptibilities, and outer membrane protein profile, including partial restoration of OmpF. These findings together suggest that marA-dependent fluoroquinolone resistance is linked to decreased cell permeability, only part of which can be accounted for by the reduction in OmpF. Once mutated to marA, cells can achieve high levels of quinolone resistance at a relatively high frequency.
Collapse
Affiliation(s)
- S P Cohen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | | | | |
Collapse
|
42
|
Drexler K, Riede I, Montag D, Eschbach ML, Henning U. Receptor specificity of the Escherichia coli T-even type phage Ox2. Mutational alterations in host range mutants. J Mol Biol 1989; 207:797-803. [PMID: 2547973 DOI: 10.1016/0022-2836(89)90245-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The T-even type Escherichia coli phage Ox2 uses the outer membrane protein OmpA as a receptor. The protein is recognized with the ends of the virion's long tail fibers. The 266 residue protein 38 is located at this site and acts as an adhesin. Host-range mutants had previously been isolated from Ox2. Mutant Ox2h5 is able to infect cells possessing an altered OmpA protein, which renders the cell resistant to Ox2. Ox2h10 was selected from Ox2h5. This phage recognizes the OmpC protein in addition to the OmpA protein. Ox2h12, which stems from Ox2h10, binds to OmpC with high affinity, but has lost efficient binding to OmpA. The mutational alterations caused in genes 38 are: Asp231----Asn(h5) and His170----Arg(h10). The triple mutant Ox2h12 possesses an insertion of a Gly residue next to Gly121. The three mutants have additionally acquired mutations affecting their base plate, making them "trigger-happy". When protein 38 was compared with the same protein derived from other E. coli phages, it was found to contain two constant and one variable domains, the latter harboring four hypervariable regions flanked by a largely conserved glycine-rich sequence. The h5 and h10 mutations occurred within two hypervariable areas, while the additional Gly residue was present in one of the flanking conserved sequences. On the basis of these results, as well as those obtained from host-range mutants analyzed previously, a model for such adhesins is proposed. Receptor recognition is most likely performed via the hypervariable regions, which may form loops held together in close proximity by the oligoglycine sequences. The latter may achieve this by being part of highly compact omega loops.
Collapse
Affiliation(s)
- K Drexler
- Max-Planck-Institut für Biologie, Tübingen, F.R.G
| | | | | | | | | |
Collapse
|
43
|
Woodruff WA, Hancock RE. Pseudomonas aeruginosa outer membrane protein F: structural role and relationship to the Escherichia coli OmpA protein. J Bacteriol 1989; 171:3304-9. [PMID: 2498289 PMCID: PMC210050 DOI: 10.1128/jb.171.6.3304-3309.1989] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A Pseudomonas aeruginosa outer membrane protein F-deficient omega-insertion mutant strain H636, in contrast to its protein F-sufficient parent strain H103, was unable to grow on unsupplemented Proteose Peptone no. 2 broth (Difco Laboratories, Detroit, Mich.). Addition of high concentrations of NaCl, KCl, glucose, sucrose, or potassium succinate permitted growth of strain H636 at rates approaching those of the parent strain H103. Strain H636 cells were 33% shorter and had a 46% smaller cross-sectional area than did the parent strain growing at similar rates on the same medium. These properties of the oprF::omega mutant were analogous to those previously observed for Escherichia coli ompA mutants in an lpp (Braun lipoprotein-deficient) mutant background. Therefore, we compared P. aeruginosa protein F and the E. coli OmpA protein. In addition to many similarities previously described, sequence alignment demonstrated substantial amino acid sequence homology throughout the carboxy-terminal 168 to 180 amino acids of the two proteins. Consistent with this observation, polyclonal antiserum specific for OmpA reacted on Western blots (immunoblots) with protein F. Expression of protein F from the cloned oprF gene in an E. coli ompA lpp double mutant resulted in a 1.7-fold increase in cell length and a 2.1-fold increase in cross-sectional area compared with values for the same mutant containing only the plasmid vector onto which the oprF gene had been cloned. These results favor a structural role for P. aeruginosa protein F and suggest that it is strongly related to the E. coli OmpA protein.
Collapse
Affiliation(s)
- W A Woodruff
- Department of Microbiology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
44
|
Benz R, Schmid A, Maier C, Bremer E. Characterization of the nucleoside-binding site inside the Tsx channel of Escherichia coli outer membrane. Reconstitution experiments with lipid bilayer membranes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 176:699-705. [PMID: 2458926 DOI: 10.1111/j.1432-1033.1988.tb14333.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reconstitution of purified Tsx protein from Escherichia coli into lipid bilayer membranes showed that Tsx formed small ion-permeable channels with a single-channel conductance of 10 pS in 1 M KCl. The dependence of conductance versus salt concentration was linear, suggesting that Tsx has no binding site for ions. Conductance was inhibited by the addition of 20 mM adenosine. Titration of the Tsx-mediated membrane conductance with different solutes including free bases, nucleosides, and deoxynucleosides suggested that the channel contains a binding site for nucleosides but not for sugars or amino acids, and binding increased in the following order: free base, nucleoside, and deoxynucleoside. Among the five nucleosides the stability constant for the binding increased in the order of cytidine, guanosine, uridine, adenosine, and thymidine. Control experiments revealed that the binding of the nucleosides is independent of ion concentration in the aqueous phase, i.e. there was no competition between nucleosides and ions for the binding site inside the channel. The binding of the solutes to the channel interior can be explained by a one-site two-barrier model for the Tsx channel. The advantage of a binding site inside a specific porin for the permeation of solutes is discussed with respect to the properties of a general diffusion pore.
Collapse
Affiliation(s)
- R Benz
- Lehrstuhl für Biotechnologie, Universität Würzburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
45
|
Maier C, Bremer E, Schmid A, Benz R. Pore-forming activity of the Tsx protein from the outer membrane of Escherichia coli. Demonstration of a nucleoside-specific binding site. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)69233-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
46
|
Montag D, Riede I, Eschbach ML, Degen M, Henning U. Receptor-recognizing proteins of T-even type bacteriophages. Constant and hypervariable regions and an unusual case of evolution. J Mol Biol 1987; 196:165-74. [PMID: 2958637 DOI: 10.1016/0022-2836(87)90519-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proteins 38 of bacteriophages T2, K3, Ox2 and M1 are located at the free ends of their long tail fibers and function as adhesins, i.e. they mediate binding to the bacterial receptors. The latter three phages use the Escherichia coli outer membrane protein OmpA as a receptor, while T2 uses the outer membrane proteins OmpF or Ttr. The DNA sequences of genes 38 of phages Ox2 and M1 have been determined and are compared with those known for T2 and K3. The genes encode 262(T2), 260(K3), 266(Ox2) and 262(M1) amino acid residues. Three domains are distinguishable in these proteins. There are two conserved regions encompassing about 120 NH2-terminal and about 25 CO2H-terminal residues, respectively. The area between these was found to be hypervariable, and it is shown that a very large number of amino acid substitutions, deletions and/or insertions have occurred. Glycine-rich stretches are present within and flanking these areas. Their positions are essentially conserved, indicating an important structural role in receptor recognition. The hypervariability, most likely caused by a constant struggle with bacterial phage-resistant mutants, is so drastic that one cannot discern that T2 uses different receptors from those of the other phages. The partially known sequence of gene 38 of phage T4 has been completed. The gene encodes a protein consisting of 183 amino acid residues. The amino acid composition and sequence of this protein is completely different from those of phages T2, K3, Ox2 and M1. Also, the protein is functionally unrelated to the other proteins 38: it is not present in phage T4 and, unlike the other proteins 38, is required for the efficient dimerization of protein 37. All phages under study are of the same morphology and the genomic organization of the tail fiber genes is identical, with genes 36, 37 and 38 most likely representing, in this order, a transcriptional unit. Sequence similarities between the CO2H-termini of genes 37 of the non-T4 phages and gene 38 of phage T4 were found; this part of gene 37 does not exist in T4. It is suggested that gene 38 of phage T4 originated from a segment of gene 37 of a T2-type phage. Gene 38 of phage T4 is not unique, DNA-DNA hybridization experiments indicated that two other T-even type phages, TuIa and TuIb, possess a T4-type gene 38.
Collapse
Affiliation(s)
- D Montag
- Max-Planck-Institut für Biologie, Tübingen, F.R.G
| | | | | | | | | |
Collapse
|
47
|
Riede I. Lysis gene t of T-even bacteriophages: evidence that colicins and bacteriophage genes have common ancestors. J Bacteriol 1987; 169:2956-61. [PMID: 3597316 PMCID: PMC212333 DOI: 10.1128/jb.169.7.2956-2961.1987] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The lysis gene t of the T-even-like bacteriophage K3 has been cloned and sequenced. The gene codes for a protein with a predicted molecular weight of 25,200. Expression of the complete lysis protein was impossible, but peptides complementing T4 amber mutants in t are described. No known lysis protein of other phages is homologous to protein T. Also, the Escherichia coli phospholipase A is different from protein T. CelB, the lysis protein of the colicin E2 operon, shows a similarity to protein T. Sequences of colicins A, E1, and E2 are related to gene 38 sequences, the gene preceding t and coding for the phage adhesin. A common origin for colicin genes and phage genes is discussed, and a protein region in colicins that is responsible for receptor recognition is predicted.
Collapse
|
48
|
Riede I, Drexler K, Schwarz H, Henning U. T-even-type bacteriophages use an adhesin for recognition of cellular receptors. J Mol Biol 1987; 194:23-30. [PMID: 3302275 DOI: 10.1016/0022-2836(87)90712-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein 38 of the Escherichia coli phage T4 is thought to be required catalytically for the assembly of the long tail fibers of this phage. It is shown that this protein of phage T2 and the T-even-type phage K3 and Ox2 act differently. It was found that NH2-terminal fragments of the protein, expressed from cloned fragments of gene 38 of phage K3, bind to gene 38 amber mutants of phage T2. Such phage or T2 gene 38 amber mutants, grown on a non-permissive host, possess a complete set of six tail fibers but are non-infectious. Both types of non-infectious phage could be repaired by incubation with an extract of cells harboring a cloned gene 38 of a host range mutant of phage K3, K3hx. The repaired phages had the host range of K3hx and not of T2. Immuno-electron microscopy showed that protein 38 is located at the free ends of the long tail fibers of phages T2, K3 and Ox2. The protein serves the recognition of the cellular receptor, i.e. it acts as an adhesin.
Collapse
|
49
|
Riede I, Drexler K, Eschbach ML, Henning U. DNA sequence of genes 38 encoding a receptor-recognizing protein of bacteriophages T2, K3 and of K3 host range mutants. J Mol Biol 1987; 194:31-9. [PMID: 3302276 DOI: 10.1016/0022-2836(87)90713-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genes 38, which code for a receptor-recognizing protein present at the tip of the long tail fibers, have been sequenced from phages T2, the T-even-type phage K3 and its host range mutants K3hx, K3h1 and K3h1h. The genes from phages T2 and K3 code for proteins consisting of 262 and 260 amino acid residues, respectively. Fifty amino-terminal and 25 carboxy-terminal residues are highly conserved. The amino-terminal amino acids are most likely involved in binding to the neighboring protein 37. Between residues 116 and 226 of the T2 protein and residues 116 and 223 of the K3 protein, sequences exist that are similar to sequences present in Escherichia coli outer membrane proteins and which serve as phage receptors. Most likely, all of these regions in the latter proteins are exposed on the cell surface and are part of their phage receptor areas. In the phage proteins, these sequences are flanked by stretches rich in glycine, perhaps providing an increased flexibility for the polypeptide at these sites; some "wobble" may be required during the protein 38-receptor interaction. The mutational alterations in the host range mutants were found in gene 38. In the K3hx protein, a duplication of six base-pairs caused the wild-type sequence -Gly163-Lys-Leu-Ile- to be changed to -Gly163-Lys-Leu-Lys-Leu-Ile-. In the K3h1 protein, a glutamic acid residue at position 203 was substituted by a lysine. Both alterations occurred within areas similar to outer membrane proteins. Mutant K3h1h, derived from K3h1, exhibits an extended host range as compared to K3h1. No mutational alteration, in addition to that found in K3h1, was found in g38 nor was the part of gene 37 that encodes the carboxy-terminal moiety of the protein altered. K3h1h may represent a "trigger-happy" phage. The results of this and other work show that the phage-phage receptor systems under study represent a primitive immune system.
Collapse
|
50
|
Chen R, Henning U. Nucleotide sequence of the gene for the peptidoglycan-associated lipoprotein of Escherichia coli K12. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 163:73-7. [PMID: 3545827 DOI: 10.1111/j.1432-1033.1987.tb10738.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During attempts to clone the gene for the Escherichia coli outer membrane protein III another gene was recovered. Its nucleotide sequence was determined and the deduced amino acid sequence showed that the gene does not encode protein III. It codes for a 173-residue polypeptide; 21 NH2-terminal residues are typical for a signal peptide. The sequence around the putative site (Ala-Cys) for removing this peptide, Ala-Ile-Ala-Ala-Cys-Ser-Ser-Asn, is highly homologous to that of the major cell envelope lipoprotein (Braun lipoprotein) surrounding its processing site; it is also homologous to the consensus pentapeptide Leu-Leu-Ala-Gly-Cys present in other lipoproteins of gram-negative bacteria. It could be shown that the gene expresses a lipoprotein with all the properties, including the amino acid composition, of the peptidoglycan-associated lipoprotein (PAL) [Mizuno, T. (1979) J. Biochem. (Tokyo) 86, 991-1000]. Therefore, the cloned gene is the pal gene. The protein does not contain hydrophobic regions which would serve as a membrane anchor. Tandemly repeated amino acid sequences exist at and near the NH2-terminus of the mature protein which are homologous to such repeats in the Braun lipoprotein, suggesting a common origin of this part of the two proteins. Attempts to place a transposon into the pal gene were unsuccessful. Hence the complete absence of the protein may be lethal and its function remains unknown.
Collapse
|