1
|
Garsevanyan S, Barlow M. The Klebsiella pneumoniae carbapenemase (KPC) β-Lactamase Has Evolved in Response to Ceftazidime Avibactam. Antibiotics (Basel) 2023; 13:40. [PMID: 38247599 PMCID: PMC10812414 DOI: 10.3390/antibiotics13010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Klebsiella pneumoniae carbapenemase KPC is an important resistance gene that has disseminated globally in response to carbapenem use. It is now being implicated as a resistance determinant in Ceftazidime Avibactam (CAZ-AVI) resistance. Given that CAZ-AVI is a last-resort antibiotic, it is critical to understand how resistance to this drug is evolving. In particular, we were interested in determining the evolutionary response of KPC to CAZ-AVI consumption. Through phylogenetic reconstruction, we identified the variable sites under positive selection in the KPC gene that are correlated with Ceftazidime Avibactam (CAZ-AVI) resistance. Our approach was to use a phylogeny to identify multiple independent occurrences of mutations at variable sites and a literature review to correlate CAZ-AVI resistance with the mutations we identified. We found the following sites that are under positive selection: P104, W105, A120, R164, L169, A172, D179, V240, Y241, T243, Y264, and H274. The sites that correlate with CAZ-AVI resistance are R164, L169, A172, D179, V240, Y241, T243, and H274. Overall, we found that there is evidence of positive selection in KPC and that CAZ-AVI is the major selective pressure.
Collapse
Affiliation(s)
| | - Miriam Barlow
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA 95343, USA;
| |
Collapse
|
2
|
Kaderabkova N, Bharathwaj M, Furniss RCD, Gonzalez D, Palmer T, Mavridou DA. The biogenesis of β-lactamase enzymes. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001217. [PMID: 35943884 PMCID: PMC10235803 DOI: 10.1099/mic.0.001217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The discovery of penicillin by Alexander Fleming marked a new era for modern medicine, allowing not only the treatment of infectious diseases, but also the safe performance of life-saving interventions, like surgery and chemotherapy. Unfortunately, resistance against penicillin, as well as more complex β-lactam antibiotics, has rapidly emerged since the introduction of these drugs in the clinic, and is largely driven by a single type of extra-cytoplasmic proteins, hydrolytic enzymes called β-lactamases. While the structures, biochemistry and epidemiology of these resistance determinants have been extensively characterized, their biogenesis, a complex process including multiple steps and involving several fundamental biochemical pathways, is rarely discussed. In this review, we provide a comprehensive overview of the journey of β-lactamases, from the moment they exit the ribosomal channel until they reach their final cellular destination as folded and active enzymes.
Collapse
Affiliation(s)
- Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Manasa Bharathwaj
- Centre to Impact AMR, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - R. Christopher D. Furniss
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Tracy Palmer
- Microbes in Health and Disease, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Žagar D, Zore A, Torkar KG. The occurrence of antibiotic-resistant bacteria on the clothes of nursery teachers in daycare centres. J Appl Microbiol 2022; 132:4517-4530. [PMID: 35267237 PMCID: PMC9314099 DOI: 10.1111/jam.15520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
Abstract
AIMS Childcare facilities act as microenvironments that facilitate and promote the selection, spread, and transmission of antibiotic-resistant microorganisms in the community. We focused on the study of antimicrobial resistance and genetic predispositions for β-lactamase production in bacterial isolates from nursery teachers' clothing. METHODS AND RESULTS Antimicrobial resistance of bacterial strains belonging to Enterobacteriaceae, Enterococcus, Staphylococcus spp., Pseudomonas spp. and Bacillus spp. isolated from 80 samples of nursery teachers' clothing was determined. The selected ESβL genes were found in 30 (44.1%) of 68 strains examined. The CTX-M type ESβL determinants were detected in 15.4%, 71.5%, and 42.5% of the Enterobacteriaceae, Pseudomonas, and Bacillus isolates, respectively. The OXA-type coding genes were detected only in strains of the genera Pseudomonas (57.1%) and Bacillus (48.6%). Thus, most B. cereus strains were sensitive to the recommended antibiotics used to treat infections caused by these bacteria. Methicillin resistance was phenotypically confirmed in 27 (14.6%) of 185 staphylococcal isolates. Four isolates (2.2%) were identified as MRSA. Vancomycin resistance was not observed in any of the staphylococcal and enterococci strains. CONCLUSIONS This study has shown that potential pathogens have been isolated from the clothing of nursery teachers, posing a risk of transmission to children. These clothes should be maintained and properly laundered to avoid cross-contamination and the spread of multidrug-resistant (MDR) bacteria in childcare centres. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides insight into the route of transmission of MDR microorganisms through the clothing of nursery teachers, to which greater importance should be given in the future. Proper procedures for the cleaning and use of clothing in daycare centres should be clarified and standardised.
Collapse
Affiliation(s)
- Dominika Žagar
- University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI-1000, Ljubljana, Slovenia
| | - Anamarija Zore
- University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI-1000, Ljubljana, Slovenia
| | - Karmen Godič Torkar
- University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
4
|
van Alen I, Chikunova A, Safeer AA, Ahmad MUD, Perrakis A, Ubbink M. The G132S Mutation Enhances the Resistance of Mycobacterium tuberculosis β-Lactamase against Sulbactam. Biochemistry 2021; 60:2236-2245. [PMID: 34250791 PMCID: PMC8383266 DOI: 10.1021/acs.biochem.1c00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The current rise
of antibiotic resistant forms of Mycobacterium
tuberculosis is a global health threat that calls for new
antibiotics. The β-lactamase BlaC of this pathogen prevents
the use of β-lactam antibiotics, except in combination with
a β-lactamase inhibitor. To understand if exposure to such inhibitors
can easily result in resistance, a BlaC evolution experiment was performed,
studying the evolutionary adaptability against the inhibitor sulbactam.
Several amino acid substitutions in BlaC were shown to confer reduced
sensitivity to sulbactam. The G132S mutation causes a reduction in
the rate of nitrocefin and ampicillin hydrolysis and simultaneously
reduces the sensitivity for sulbactam inhibition. Introduction of
the side chain moiety of Ser132 causes the 104–105 peptide
bond to assume the cis conformation and the side
chain of Ser104 to be rotated toward the sulbactam adduct with which
it forms a hydrogen bond not present in the wild-type enzyme. The
gatekeeper residue Ile105 also moves. These changes in the entrance
of the active site can explain the decreased affinity of G132S BlaC
for both substrates and sulbactam. Our results show that BlaC can
easily acquire a reduced sensitivity for sulbactam, with a single-amino
acid mutation, which could hinder the use of combination therapies.
Collapse
Affiliation(s)
- Ilona van Alen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Aleksandra Chikunova
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Adil A Safeer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Misbha Ud Din Ahmad
- Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
5
|
Liu C, Yu P, Yu S, Wang J, Guo H, Zhang Y, Zhang J, Liao X, Li C, Wu S, Gu Q, Zeng H, Zhang Y, Wei X, Zhang J, Wu Q, Ding Y. Assessment and molecular characterization of Bacillus cereus isolated from edible fungi in China. BMC Microbiol 2020; 20:310. [PMID: 33054711 PMCID: PMC7557095 DOI: 10.1186/s12866-020-01996-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
Background Bacillus cereus is a foodborne pathogen commonly found in nature and food and can cause food spoilage and health issues. Although the prevalence of B. cereus in foods has been reported worldwide, the extent of contamination in edible fungi, which has become increasingly popular as traditional or functional food, is largely unknown. Here we investigated the prevalence, toxin genes’ distribution, antibiotic resistance, and genetic diversity of B. cereus isolated from edible fungi in China. Results Six hundred and ninety-nine edible fungi samples were collected across China, with 198 (28.3%) samples found to be contaminated by B. cereus, with an average contamination level of 55.4 most probable number (MPN)/g. Two hundred and forty-seven B. cereus strains were isolated from the contaminated samples. Seven enterotoxin genes and one cereulide synthetase gene were detected. The detection frequencies of all enterotoxin genes were ≥ 80%, whereas the positive rate of the cesB gene in B. cereus was 3%. Most isolates were resistant to penicillins, β-lactam/β-lactamase inhibitor combinations, cephems, and ansamycins, but were susceptible to penems, aminoglycosides, macrolides, ketolide, glycopeptides, quinolones, phenylpropanol, tetracyclines, lincosamides, streptogramins, and nitrofurans. Meanwhile, 99.6% of all isolates displayed multiple antimicrobial resistance to three or more classes of antimicrobials. Using genetic diversity analysis, all isolates were defined in 171 sequence types (STs), of which 83 isolates were assigned to 78 new STs. Conclusions This study provides large-scale insight into the prevalence and potential risk of B. cereus in edible fungi in China. Approximately one-third of the samples were contaminated with B. cereus, and almost all isolates showed multiple antimicrobial resistance. Detection frequencies of all seven enterotoxin genes were equal to or more than 80%. These new findings may indicate a need for proper pre-/post-processing of edible fungi to eliminate B. cereus, thereby preventing the potential risk to public health.
Collapse
Affiliation(s)
- Chengcheng Liu
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Pengfei Yu
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Shubo Yu
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hui Guo
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Ying Zhang
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Junhui Zhang
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Xiyu Liao
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Chun Li
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Shi Wu
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China
| | - Qihui Gu
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China
| | - Haiyan Zeng
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China
| | - Youxiong Zhang
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China
| | - Xianhu Wei
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China.
| | - Yu Ding
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China. .,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Maximum Entropy Production Theorem for Transitions between Enzyme Functional States and Its Applications. ENTROPY 2019; 21:e21080743. [PMID: 33267457 PMCID: PMC7515272 DOI: 10.3390/e21080743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 11/16/2022]
Abstract
Transitions between enzyme functional states are often connected to conformational changes involving electron or proton transport and directional movements of a group of atoms. These microscopic fluxes, resulting in entropy production, are driven by non-equilibrium concentrations of substrates and products. Maximal entropy production exists for any chosen transition, but such a maximal transitional entropy production (MTEP) requirement does not ensure an increase of total entropy production, nor an increase in catalytic performance. We examine when total entropy production increases, together with an increase in the performance of an enzyme or bioenergetic system. The applications of the MTEP theorem for transitions between functional states are described for the triosephosphate isomerase, ATP synthase, for β-lactamases, and for the photochemical cycle of bacteriorhodopsin. The rate-limiting steps can be easily identified as those which are the most efficient in dissipating free-energy gradients and in performing catalysis. The last step in the catalytic cycle is usually associated with the highest free-energy dissipation involving proton nanocurents. This recovery rate-limiting step can be optimized for higher efficiency by using corresponding MTEP requirements. We conclude that biological evolution, leading to increased optimal catalytic efficiency, also accelerated the thermodynamic evolution, the synergistic relationship we named the evolution-coupling hypothesis.
Collapse
|
7
|
Antimicrobial susceptibility and characterization of metallo-β-lactamases, extended-spectrum β-lactamases, and carbapenemases of Bacillus cereus isolates. Microb Pathog 2018; 118:140-145. [PMID: 29551437 DOI: 10.1016/j.micpath.2018.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/06/2018] [Accepted: 03/15/2018] [Indexed: 11/22/2022]
Abstract
The susceptibility of 66 clinical and environmental B. cereus isolates were tested to selected antimicrobials by a broth microdilution method. All strains were resistant to β-lactams and susceptible to gentamicin and imipenem. Sixty-five (98.5%) isolates were susceptible to meropenem and ciprofloxacin and 74.2% to azithromycin. Significant differences in MIC values between environmental and clinical isolates were not demonstrated (p > 0.05). According to the disc diffusion method, 80.3%-98.5% of the strains were resistant to one or more of four cephalosporins. The presence of genes for B. cereus β-lactamases BCI, BCII, BCIII, extended-spectrum β-lactamases from the CTX and TEM family and the carbapenemases belonging to IMP and VIM family was studied. BlaII genes were expressed in all isolates; the PCR products for blaIII were also detected in two strains, but none of them was positive for blaI. The amplicon of the family blaCTX-M, mostly M-1 and M-15, was confirmed among 68.2% of the isolates, while were blaVIM-like genes determined in 21.2% of the samples.
Collapse
|
8
|
Kitamura S, Owensby A, Wall D, Wolan DW. Lipoprotein Signal Peptidase Inhibitors with Antibiotic Properties Identified through Design of a Robust In Vitro HT Platform. Cell Chem Biol 2018; 25:301-308.e12. [PMID: 29337186 DOI: 10.1016/j.chembiol.2017.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/09/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022]
Abstract
As resistance to antibiotics increases, the exploration of new targets and strategies to combat pathogenic bacteria becomes more urgent. Ideal protein targets are required for viability across many species, are unique to prokaryotes to limit effects on the host, and have robust assays to quantitate activity and identify inhibitors. Lipoprotein signal peptidase (Lsp) is a transmembrane aspartyl protease required for lipoprotein maturation and comprehensively fits these criteria. Here, we have developed the first in vitro high-throughput assay to monitor proteolysis by Lsp. We employed our high-throughput screen assay against 646,275 compounds to discover inhibitors of Lsp and synthesized a range of analogs to generate molecules with nanomolar half maximal inhibitory concentration values. Importantly, our inhibitors are effective in preventing the growth of E. coli cultures in the presence of outer-membrane permeabilizer PMBN and should facilitate development of antibacterial agents with a novel mechanism of action to treat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Seiya Kitamura
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anna Owensby
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, USA
| | - Dennis W Wolan
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Bovine intestinal bacteria inactivate and degrade ceftiofur and ceftriaxone with multiple beta-lactamases. Antimicrob Agents Chemother 2011; 55:4990-8. [PMID: 21876048 DOI: 10.1128/aac.00008-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The veterinary cephalosporin drug ceftiofur is rapidly degraded in the bovine intestinal tract. A cylinder-plate assay was used to detect microbiologically active ceftiofur, and high-performance liquid chromatography-mass spectrometry analysis was used to quantify the amount of ceftiofur remaining after incubation with bovine intestinal anaerobic bacteria, which were isolated from colon contents or feces from 8 cattle. Ninety-six percent of the isolates were able to inactivate ceftiofur to some degree, and 54% actually degraded the drug. None of 9 fungal isolates inactivated or degraded ceftiofur. Facultative and obligate anaerobic bacterial species that inactivated or degraded ceftiofur were identified with Vitek and Biolog systems, respectively. A subset of ceftiofur degraders also degraded the chemically similar drug ceftriaxone. Most of the species of bacteria that degraded ceftiofur belonged to the genera Bacillus and Bacteroides. PCR analysis of bacterial DNA detected specific β-lactamase genes. Bacillus cereus and B. mycoides isolates produced extended-spectrum β-lactamases and metallo-β-lactamases. Seven isolates of Bacteroides spp. produced multiple β-lactamases, including possibly CepA, and metallo-β-lactamases. Isolates of Eubacterium biforme, Bifidobacterium breve, and several Clostridium spp. also produced ceftiofur-degrading β-lactamases. An agar gel overlay technique on isoelectric focusing separations of bacterial lysates showed that β-lactamase enzymes were sufficient to degrade ceftiofur. These results suggest that ceftiofur is inactivated nonenzymatically and degraded enzymatically by multiple β-lactamases from bacteria in the large intestines of cattle.
Collapse
|
11
|
Yamamoto T, Nishiyama A, Takano T, Yabe S, Higuchi W, Razvina O, Shi D. Community-acquired methicillin-resistant Staphylococcus aureus: community transmission, pathogenesis, and drug resistance. J Infect Chemother 2010; 16:225-54. [PMID: 20336341 PMCID: PMC7088255 DOI: 10.1007/s10156-010-0045-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Indexed: 11/29/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is able to persist not only in hospitals (with a high level of antimicrobial agent use) but also in the community (with a low level of antimicrobial agent use). The former is called hospital-acquired MRSA (HA-MRSA) and the latter community-acquired MRSA (CA-MRSA). It is believed MRSA clones are generated from S. aureus through insertion of the staphylococcal cassette chromosome mec (SCCmec), and outbreaks occur as they spread. Several worldwide and regional clones have been identified, and their epidemiological, clinical, and genetic characteristics have been described. CA-MRSA is likely able to survive in the community because of suitable SCCmec types (type IV or V), a clone-specific colonization/infection nature, toxin profiles (including Pantone-Valentine leucocidin, PVL), and narrow drug resistance patterns. CA-MRSA infections are generally seen in healthy children or young athletes, with unexpected cases of diseases, and also in elderly inpatients, occasionally surprising clinicians used to HA-MRSA infections. CA-MRSA spreads within families and close-contact groups or even through public transport, demonstrating transmission cores. Re-infection (including multifocal infection) frequently occurs, if the cores are not sought out and properly eradicated. Recently, attention has been given to CA-MRSA (USA300), which originated in the US, and is growing as HA-MRSA and also as a worldwide clone. CA-MRSA infection in influenza season has increasingly been noted as well. MRSA is also found in farm and companion animals, and has occasionally transferred to humans. As such, the epidemiological, clinical, and genetic behavior of CA-MRSA, a growing threat, is focused on in this study.
Collapse
Affiliation(s)
- Tatsuo Yamamoto
- Division of Bacteriology, Department of Infectious Disease Control and International Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Deák E, SzabóA I, Kálmáczhelyi A, Gál Z, Barabás G, Penyige A. Membrane-bound and extracellular beta-lactamase production with developmental regulation in Streptomyces griseus NRRL B-2682. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2169-2177. [PMID: 9720038 DOI: 10.1099/00221287-144-8-2169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new type of beta-lactamase has been isolated and characterized in Streptomyces griseus NRRL B-2682. The enzyme has membrane-bound and extracellular forms. Biochemical characterization of some of the properties of the enzyme showed that it belongs to the class A group of penicillinases. Comparison of the membrane-bound and extracellular forms of the beta-lactamases suggests that they seem to be differently processed forms of the same enzyme. The N-terminal amino acid sequence of the extracellular form of the beta-lactamase showed a high degree of similarity to a D-aminopeptidase of another Streptomyces griseus strain. Secretion of the beta-lactamase was affected by the differentiation state of the strain since in spontaneous non-sporulating mutants only the membrane-bound form was present. In accordance with this when sporulation of the wild-type strain was inhibited it failed to secrete extracellular beta-lactamase. Addition of globomycin to the non-sporulating cells liberated the enzyme from the membrane, indicating that the protein is processed normally by signal peptidase II and a glyceride-thioether group, together with a fatty acid amide-linkage, is responsible for the attachment of the enzyme to the cellular membrane. Under sporulation-repressed conditions addition of peptidoglycan fragments and analogues or inhibition of cell wall biosynthesis by penicillin-G induced beta-lactamase secretion and also restored sporulation both in solid and submerged cultures. These results confirm that beta-lactamase secretion is tightly coupled to the sporulation process in S. griseus.
Collapse
Affiliation(s)
- Eleonóra Deák
- Institute of Biology,University Medical School of DebrecenDebrecen, Nagyerdei krt. 98, H-4012 Hungary
| | - István SzabóA
- Institute of Biology,University Medical School of DebrecenDebrecen, Nagyerdei krt. 98, H-4012 Hungary
| | - Attila Kálmáczhelyi
- Institute of Biology,University Medical School of DebrecenDebrecen, Nagyerdei krt. 98, H-4012 Hungary
| | - Zsuzsanna Gál
- Institute of Pharmacology,University Medical School of DebrecenDebrecen, Nagyerdei krt. 98, H-4012 Hungary
| | - György Barabás
- Institute of Biology,University Medical School of DebrecenDebrecen, Nagyerdei krt. 98, H-4012 Hungary
| | - Andres Penyige
- Institute of Biology Research Group for Microbial Developmental GeneticsMTA DOTE, Institute of Biology
- Institute of Biology,University Medical School of DebrecenDebrecen, Nagyerdei krt. 98, H-4012 Hungary
| |
Collapse
|
13
|
Fournier B, Roy PH, Lagrange PH, Philippon A. Chromosomal beta-lactamase genes of Klebsiella oxytoca are divided into two main groups, blaOXY-1 and blaOXY-2. Antimicrob Agents Chemother 1996; 40:454-9. [PMID: 8834897 PMCID: PMC163133 DOI: 10.1128/aac.40.2.454] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The chromosomally encoded beta-lactamase gene (blaOXY-2) of the wild-type Klebsiella oxytoca SL911 was cloned and sequenced. Its nucleotide sequence similarity with the previously sequenced K. oxytoca beta-lactamase gene (blaOXY-1) (Y. Arakawa, M. Ohta, N. Kido, M. Mori, H. Ito, T. Komatsu, Y. Fujii, and N. Kato, Antimicrob. Agents Chemother. 33:63-70, 1989) is 87.3%, and its amino acid similarity is 89.7%. This group of K. oxytoca beta-lactamases is related to chromosomal beta-lactamases of Citrobacter diversus, Proteus vulgaris, and Yersinia enterocolitica and to the plasmid-mediated extended-spectrum beta-lactamases MEN-1 and Toho-1. By colony hybridization with 86 strains susceptible and resistant to aztreonam, isolated in six countries, K. oxytoca beta-lactamase genes hybridized with either a specific blaOXY-1 DNA probe (668 bp) or a blaOXY-2 DNA probe (723 bp). Thus, beta-lactamase genes could be divided into two groups: blaOXY-1 (47% of the strains) and blaOXY-2 (53% of the strains). A study of isoelectric points confirmed the great variability reported in the literature. However, the two beta-lactamase groups were each represented by four different pIs: for OXY-2, 5.2, 5.7, 6.4, and 6.8, with the 5.2 form representing 59% of all OXY-2 enzymes, and for OXY-1, 7.1, 7.5, 8.2, and 8.8, with the 7.5 form representing 88% of all OXY-1 enzymes.
Collapse
Affiliation(s)
- B Fournier
- Laboratoire de Microbiologie, Université Paris VII, France
| | | | | | | |
Collapse
|
14
|
Péduzzi J, Reynaud A, Baron P, Barthélémy M, Labia R. Chromosomally encoded cephalosporin-hydrolyzing beta-lactamase of Proteus vulgaris RO104 belongs to Ambler's class A. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1207:31-9. [PMID: 8043607 DOI: 10.1016/0167-4838(94)90048-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proteus vulgaris RO104 strain produces a chromosomally encoded beta-lactamase that confers resistance to various beta-lactam antibiotics including methoxyimino third-generation cephalosporins. The beta-lactamase hydrolyzes first- and second-generation cephalosporins efficiently and cefotaxime to a lesser extent. Catalytic activity is inhibited by low concentrations of clavulanic acid and sulbactam. By its broad-spectrum substrate profile, beta-lactamase of Proteus vulgaris RO104 belongs to the group 2e defined by Bush. The protein purified to homogeneity by a four-step procedure was characterized by a pI of 8.31 and a specific activity of 1200 U/mg. The beta-lactamase was digested by trypsin, endoproteinase Asp-N and chymotrypsin. Amino-acid sequence determinations of the resulting peptides allowed the alignment of the 271 amino-acid residues of the protein which did not contain any cysteine residue. From amino-acid sequence comparisons, Proteus vulgaris RO104 beta-lactamase was found to share about 68% identity with the chromosomally mediated beta-lactamases of Klebsiella oxytoca D488 and E23004. Therefore, the cephalosporin-hydrolyzing beta-lactamase of Proteus vulgaris RO104 belongs to Ambler's class A.
Collapse
Affiliation(s)
- J Péduzzi
- Muséum National Histoire Naturelle, CNRS URA 401, Paris, France
| | | | | | | | | |
Collapse
|
15
|
Engelke G, Gutowski-Eckel Z, Kiesau P, Siegers K, Hammelmann M, Entian KD. Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl Environ Microbiol 1994; 60:814-25. [PMID: 8161176 PMCID: PMC201397 DOI: 10.1128/aem.60.3.814-825.1994] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The biosynthetic genes of the nisin-producing strain Lactococcus lactis 6F3 are organized in an operon-like structure starting with the structural gene nisA followed by the genes nisB, nisT, and nisC, which are probably involved in chemical modification and secretion of the prepeptide (G. Engelke, Z. Gutowski-Eckel, M. Hammelmann, and K.-D. Entian, Appl. Environ. Microbiol. 58:3730-3743, 1992). Subcloning of an adjacent 5-kb downstream region revealed additional genes involved in nisin biosynthesis. The gene nisI, which encodes a lipoprotein, causes increased immunity after its transformation into nisin-sensitive L. lactis MG1614. It is followed by the gene nisP, coding for a subtilisin-like serine protease possibly involved in processing of the secreted leader peptide. Adjacent to the 3' end of nisP the genes nisR and nisK were identified, coding for a regulatory protein and a histidine kinase, showing marked similarities to members of the OmpR/EnvZ-like subgroup of two-component regulatory systems. The deduced amino acid sequences of nisR and nisK exhibit marked similarities to SpaR and SpaK, which were recently identified as the response regulator and the corresponding histidine kinase of subtilin biosynthesis. By using antibodies directed against the nisin prepeptide and the NisB protein, respectively, we could show that nisin biosynthesis is regulated by the expression of its structural and biosynthetic genes. Prenisin expression starts in the exponential growth phase and precedes that of the NisB protein by approximately 30 min. Both proteins are expressed to a maximum in the stationary growth phase.
Collapse
Affiliation(s)
- G Engelke
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität Frankfurt, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
16
|
Braun V, Wu H. Chapter 14 Lipoproteins, structure, function, biosynthesis and model for protein export. BACTERIAL CELL WALL 1994. [DOI: 10.1016/s0167-7306(08)60417-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Firth N, Ridgway KP, Byrne ME, Fink PD, Johnson L, Paulsen IT, Skurray RA. Analysis of a transfer region from the staphylococcal conjugative plasmid pSK41. Gene X 1993; 136:13-25. [PMID: 8293996 DOI: 10.1016/0378-1119(93)90442-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The nucleotide sequence of a 14.4-kb region (tra) associated with DNA transfer of the staphylococcal conjugative plasmid, pSK41, has been determined. Analysis of the sequence revealed the presence of 15 genes potentially involved in the conjugative process. Polypeptide products likely to correspond to ten of these genes have been identified, of which one was found to be a lipoprotein. Comparison of the deduced tra products to the protein databases revealed several interesting similarities, one of which suggests an evolutionary link between this Gram+ bacterial conjugation system and DNA transfer systems of Gram- bacteria, such as Escherichia coli and Agrobacterium tumefaciens. The nt sequence also provided an insight into the transcriptional organisation and regulation of the region.
Collapse
Affiliation(s)
- N Firth
- School of Biological Sciences, University of Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Rogers MB, Parker AC, Smith CJ. Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A beta-lactamases. Antimicrob Agents Chemother 1993; 37:2391-400. [PMID: 8285623 PMCID: PMC192397 DOI: 10.1128/aac.37.11.2391] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bacteroides fragilis CS30 is a clinical isolate resistant to high concentrations of benzylpenicillin and cephaloridine but not to cephamycin or penem antibiotics. beta-Lactam resistance is mediated by a chromosomally encoded cephalosporinase produced at a high level. The gene encoding this beta-lactamase was cloned from genomic libraries constructed in Escherichia coli and then mated with B. fragilis 638 for identification of ampicillin-resistant (Apr) strains. Apr transconjugants contained a nitrocefin-reactive protein with the physical and enzymatic properties of the original CS30 isolate. The beta-lactamase gene (cepA) was localized by deletion analysis and subcloned, and its nucleotide sequence was determined. The 903-bp cepA open reading frame encoded a 300-amino-acid precursor protein (predicted molecular mass, 34,070 Da). A beta-lactamase-deficient mutant strain of B. fragilis 638 was constructed by insertional inactivation with the cepA gene of CS30, demonstrating strict functional homology between these chromosomal beta-lactamase genes. An extensive comparison of the CepA protein sequence by alignment with other beta-lactamases revealed the strict conservation of at least four elements common to Ambler class A. A further comparison of the CepA protein sequence with protein sequences of beta-lactamases from two other Bacteroides species indicated that they constitute their own distinct subgroup of class A beta-lactamases.
Collapse
Affiliation(s)
- M B Rogers
- Department of Microbiology and Immunology, School of Medicine, East Carolina University, Greenville 27858-4354
| | | | | |
Collapse
|
19
|
Parker AC, Smith CJ. Genetic and biochemical analysis of a novel Ambler class A beta-lactamase responsible for cefoxitin resistance in Bacteroides species. Antimicrob Agents Chemother 1993; 37:1028-36. [PMID: 8517690 PMCID: PMC187887 DOI: 10.1128/aac.37.5.1028] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A clinical isolate of Bacteroides vulgatus was resistant to tetracycline, clindamycin, ampicillin, cephaloridine, cefoxitin, and other beta-lactam antibiotics except imipenem. beta-Lactam resistance was mediated by a membrane-associated, clavulanate-sensitive cephalosporinase capable of degrading cephalosporins and penicillins. Cefoxitin also was degraded but at a slow rate. The cefoxitin resistance (Fxr) determinant was cloned from B. vulgatus genomic libraries that were prepared in Escherichia coli and then mated with Bacteroides fragilis for the identification of Fxr strains. Analysis of B. fragilis strains with the cloned Fxr determinant revealed the presence of a new beta-lactamase protein with the physical and enzymatic properties of the beta-lactamase found in the original B. vulgatus isolate. The beta-lactamase gene (cfxA) was subcloned on a 2.2-kb DraI-HindIII fragment, and the nucleotide sequence was determined. These results showed that cfxA encoded a protein of 321 amino acids and 35,375 molecular weight. Mutant strains in which the cfxA structural gene was disrupted by insertional inactivation lost both Fxr and beta-lactamase activity. Comparison of CfxA with other beta-lactamases showed a relationship with the active-site serine beta-lactamases in the Ambler molecular class A, although CfxA had apparently diverged significantly. This was exemplified by the substitution in CfxA at 13 of 25 amino acid residues previously identified as being invariant in class A beta-lactamases. These results suggest that CfxA may represent a new class A homology group which diverged very early.
Collapse
Affiliation(s)
- A C Parker
- Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina 27858-4354
| | | |
Collapse
|
20
|
Abstract
Bacilli secrete numerous proteins into the environment. Many of the secretory proteins, their export signals, and their processing steps during secretion have been characterized in detail. In contrast, the molecular mechanisms of protein secretion have been relatively poorly characterized. However, several components of the protein secretion machinery have been identified and cloned recently, which is likely to lead to rapid expansion of the knowledge of the protein secretion mechanism in Bacillus species. Comparison of the presently known export components of Bacillus species with those of Escherichia coli suggests that the mechanism of protein translocation across the cytoplasmic membrane is conserved among gram-negative and gram-positive bacteria differences are found in steps preceding and following the translocation process. Many of the secretory proteins of bacilli are produced industrially, but several problems have been encountered in the production of Bacillus heterologous secretory proteins. In the final section we discuss these problems and point out some possibilities to overcome them.
Collapse
Affiliation(s)
- M Simonen
- Institute of Biotechnology, University of Helsinki, Finland
| | | |
Collapse
|
21
|
Sedlmeier R, Altenbuchner J. Cloning and DNA sequence analysis of the mercury resistance genes of Streptomyces lividans. MOLECULAR & GENERAL GENETICS : MGG 1992; 236:76-85. [PMID: 1494353 DOI: 10.1007/bf00279645] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A broad-spectrum mercury resistance locus (mer) from a spontaneous chloramphenicol-sensitive (Cms), arginine auxotrophic (Arg-) mutant of Streptomyces lividans 1326 was isolated on a 6 kb DNA fragment by shotgun cloning into the mercury-sensitive derivative S. lividans TK64 using the vector pIJ702. The mer genes form part of a very large amplifiable DNA sequence present in S. lividans 1326. This element was amplified to about 20 copies per chromosome in the Cms Arg- mutant and was missing from strains like S. lividans TK64, cured for the plasmid SLP3. DNA sequence analysis of a 5 kb region encompassing the whole region required for broad-spectrum mercury resistance revealed six open reading frames (ORFs) transcribed in opposite directions from a common intercistronic region. The protein sequences predicted from the two ORFs transcribed in one direction showed a high degree of similarity to mercuric reductase and organomercurial lyase from other gram-negative and gram-positive sources. Few, if any, similarities were found between the predicted polypeptide sequences of the other four ORFs and other known proteins.
Collapse
Affiliation(s)
- R Sedlmeier
- Institut für Genetik und Mikrobiologie, Universität München, FRG
| | | |
Collapse
|
22
|
Magdalena J, Forsman M, Lenzini MV, Brans A, Dusart J. Two different β-lactamase genes are present in Streptomycees cacaoi. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05549.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
Couture F, Lachapelle J, Levesque RC. Phylogeny of LCR-1 and OXA-5 with class A and class D beta-lactamases. Mol Microbiol 1992; 6:1693-705. [PMID: 1495394 DOI: 10.1111/j.1365-2958.1992.tb00894.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nucleotide sequences of blaLCR-1 and blaOXA-5 beta-lactamase genes have been determined. Polypeptide products of 260 and 267 amino acids with estimated molecular masses of 27 120 Da and 27,387 Da were obtained for the mature form of LCR-1 and OXA-5 proteins. A progressive alignment was used to evaluate the extent of identity between LCR-1 and OXA-5 with 29 other beta-lactamase amino acid sequences. The data showed that both belong to class D. We identified amino acids conserved in 24 positions for class A beta-lactamases and in 28 positions for five class D enzymes. The structural similarities between class A and class D beta-lactamases are more extensive than indicated by earlier biochemical studies with overall 16% identity between both classes. From the alignment, dendograms were constructed with a distance-matrix and parsimony methods which defined three major groups of proteins subdivided into clusters giving insight on beta-lactamase phylogeny and evolution.
Collapse
Affiliation(s)
- F Couture
- Département de Microbiologie, Faculté de Médécine, Université Laval, Sainte-Foy, Québec, Canada
| | | | | |
Collapse
|
24
|
Abstract
The protein sequences of 18 class A beta-lactamases and 2 class C beta-lactamases were analyzed to produce a rooted phylogenetic tree using the DD peptidase of Streptomyces R61 as an outgroup. This tree supports the penicillin-binding proteins as the most likely candidate for the ancestoral origin of the class A and class C beta-lactamases, these proteins diverging from a common evolutionary origin close to the DD peptidase. The actinomycetes are clearly shown as the origin of the class A beta-lactamases found in other non-actinomycete species. The tree also divides the beta-lactamases from the Streptomyces into two subgroups. One subgroup is closer to the DD peptidase root. The other Streptomyces subgroup shares a common branch point with the rest of the class A beta-lactamases, showing this subgroup as the origin of the non-actinomycete class A beta-lactamases. The non-actinomycete class A beta-lactamase phylogenetic tree suggests a spread of these beta-lactamases by horizontal transfer from the Streptomyces into the non-actinomycete gram-positive bacteria and thence into the gram-negative bacteria. The phylogenetic tree of the Streptomyces class A beta-lactamases supports the possibility that horizontal transfer of class A beta-lactamases occurred within the Streptomyces.
Collapse
Affiliation(s)
- R Kirby
- Department of Biochemistry and Microbiology, Rhodes University, Graham's Town, Republic of South Africa
| |
Collapse
|
25
|
Joris B, Ledent P, Dideberg O, Fonzé E, Lamotte-Brasseur J, Kelly JA, Ghuysen JM, Frère JM. Comparison of the sequences of class A beta-lactamases and of the secondary structure elements of penicillin-recognizing proteins. Antimicrob Agents Chemother 1991; 35:2294-301. [PMID: 1804001 PMCID: PMC245374 DOI: 10.1128/aac.35.11.2294] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The sequences of class A beta-lactamases were compared. Four main groups of enzymes were distinguished: those from the gram-negative organisms and bacilli and two distinct groups of Streptomyces spp. The Staphylococcus aureus PC1 enzyme, although somewhat closer to the enzyme from the Bacillus group, did not belong to any of the groups of beta-lactamases. The similarities between the secondary structure elements of these enzymes and those of the class C beta-lactamases and of the Streptomyces sp. strain R61 DD-peptidase were also analyzed and tentatively extended to the class D beta-lactamases. A unified nomenclature of secondary structure elements is proposed for all the penicillin-recognizing enzymes.
Collapse
Affiliation(s)
- B Joris
- Laboratoire d'Enzymologie, Université de Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Mottl H, Terpstra P, Keck W. Penicillin-binding protein 4 ofEscherichia colishows a novel type of primary structure among penicillin-interacting proteins. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04445.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
28
|
Sibakov M, Koivula T, von Wright A, Palva I. Secretion of TEM beta-lactamase with signal sequences isolated from the chromosome of Lactococcus lactis subsp. lactis. Appl Environ Microbiol 1991; 57:341-8. [PMID: 1901704 PMCID: PMC182716 DOI: 10.1128/aem.57.2.341-348.1991] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
With TEM beta-lactamase as a reporter gene, a set of expression-secretion-promoting fragments were isolated from the chromosome of Lactococcus lactis subsp. lactis. The fact that only translocated beta-lactamase renders cells resistant to ampicillin allowed direct ampicillin selection with an Escherichia coli vector (pKTH33). The clones showing the greatest ampicillin resistance were subcloned onto a replicon capable of replication in lactic acid bacteria (pVS2), and the nucleotide sequences of the relevant fragments were determined. The structure of the secretion-promoting fragments in general resembled that of gram-positive true signal sequences, with a strongly positively charged N terminus, a long hydrophobic core, and a putative signal peptidase recognition site. The promoterlike sequences preceding the signal sequences matched well with those of previously published lactococcal promoters. In addition to E. coli, the functioning of these expression-secretion cassettes was studied in three gram-positive hosts: Bacillus subtilis, L. lactis, and Lactobacillus plantarum. Efficient expression and secretion of TEM beta-lactamase into the culture medium of each gram-positive host was obtained. Furthermore, when a strain of L. lactis subsp. lactis showing increased sensitivity to lysozyme was compared with a standard laboratory strain, threefold-higher secreted enzyme activities were detected.
Collapse
|
29
|
Pastor N, Piñero D, Valdés AM, Soberón X. Molecular evolution of class A beta-lactamases: phylogeny and patterns of sequence conservation. Mol Microbiol 1990; 4:1957-65. [PMID: 2082152 DOI: 10.1111/j.1365-2958.1990.tb02045.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We present a multiple alignment of the amino acid sequences of eight class A beta-lactamases and utilized it to propose a phylogeny, based on the nucleotide sequences of their corresponding genes. We have also used the alignment, together with the alpha-carbon co-ordinates of the Staphylococcus aureus protein, to search systematically for neighbouring residues that share the same pattern of conservation among the different members of the protein family. The distribution of invariant residues and of groups of residues with co-ordinate changes map, predominantly, at the region of the active site and at interfaces between structural elements, respectively. We have also contrasted the distribution of conserved residues with the positions which are known to differ in mutants and variants of class A beta-lactamases.
Collapse
Affiliation(s)
- N Pastor
- Centro de Investigacíon sobre Ingeniería Genética y Biotecnología, Universidad Nacional Autónoma de México
| | | | | | | |
Collapse
|
30
|
Huletsky A, Couture F, Levesque RC. Nucleotide sequence and phylogeny of SHV-2 beta-lactamase. Antimicrob Agents Chemother 1990; 34:1725-32. [PMID: 2285285 PMCID: PMC171913 DOI: 10.1128/aac.34.9.1725] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We determined the nucleotide sequence of the blaSHV-2(pBP60-1) gene from Klebsiella ozaenae which confers resistance to broad-spectrum cephalosporins. The structural gene encodes a polypeptide product of 286 amino acids, and the estimated molecular weight of the mature protein is 28,900. Amino acid sequence comparison of the SHV-2pBP60-1 enzyme with all known class A beta-lactamases and homology studies showed that the residues were highly conserved. Furthermore, SHV-2pBP60-1 was clearly related to SHV-1, LEN-1, and OHIO-1. The SHV-2pBP60-1 enzyme differed from SHV-1 isolated from Klebsiella pneumoniae by seven amino acid substitutions. One of these substitutions, the Gly----Ser substitution at position 234, is probably a key region for the novel activity of cefotaxime hydrolysis. A phylogenetic tree was constructed by using all class A beta-lactamases of known sequences by a progressive alignment method. The data suggested that the beta-lactamases of gram-positive Streptomyces, Staphylococcus, and Bacillus species appeared early in evolution, followed by the PSE and CARB enzymes of Pseudomonas species and, more recently, by the SHV-type and TEM-type enzymes found in enteric bacteria. Larger evolutionary distances separated clusters of the gram-positive beta-lactamases than separated clusters of the gram-negative enzymes. Results of this phylogenetic study suggested that extended-spectrum enzymes are recent derivatives that are selected by the use of new cephalosporins.
Collapse
Affiliation(s)
- A Huletsky
- Département de Microbiologie, Faculté de Médecine, Université Laval, Quebec, Canada
| | | | | |
Collapse
|
31
|
Juteau JM, Levesque RC. Sequence analysis and evolutionary perspectives of ROB-1 beta-lactamase. Antimicrob Agents Chemother 1990; 34:1354-9. [PMID: 2201253 PMCID: PMC175980 DOI: 10.1128/aac.34.7.1354] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleotide sequence of the ROB-1 beta-lactamase gene from Haemophilus influenzae plasmid RRob was determined. The structural gene encodes a polypeptide of 305 amino acids, with an estimated molecular mass of 30,424 for the mature form of the protein. The ROB-1 gene showed low homologies with other beta-lactamases at the nucleic acid level. By using two statistical computer methods, assessment of the extent of similarity between ROB-1 and other known beta-lactamase amino acid sequences suggested that ROB-1 is a class A enzyme. Alignment of class A beta-lactamases with ROB-1 identified conserved residues. The use of a mutation matrix for detecting distance relationships indicated that ROB-1 has higher values and homologies with beta-lactamases of gram-positive bacteria, giving insight into its ancestry and divergence.
Collapse
Affiliation(s)
- J M Juteau
- Département de Microbiologie, Faculté de Médecine, Université Laval, Quebec, Canada
| | | |
Collapse
|
32
|
Abstract
Covalent modification of membrane proteins with lipids appears to be ubiquitous in all living cells. The major outer membrane (Braun's) lipoprotein of E. coli, the prototype of bacterial lipoproteins, is first synthesized as a precursor protein. Analysis of signal sequences of 26 distinct lipoprotein precursors has revealed a consensus sequence of lipoprotein modification/processing site of Leu-(Ala, Ser)-(Gly, Ala)-Cys at -3 to +1 positions which would represent the cleavage region of about three-fourth of all lipoprotein signal sequences in bacteria. Unmodified prolipoprotein with the putative consensus sequence undergoes sequential modification and processing reactions catalyzed by glyceryl transferase, O-acyl transferase(s), prolipoprotein signal peptidase (signal peptidase II), and N-acyl transferase to form mature lipoprotein. Like all exported proteins, the export of lipoprotein requires functional SecA, SecY, and SecD proteins. Thus all precursor proteins are exported through a common pathway accessible to both signal peptidase I and signal peptidase II. The rapidly increasing list of lipid-modified proteins in both prokaryotic as well as eukaryotic cells indicates that lipoproteins comprise a diverse group of structurally and functionally distinct proteins. They share a common structural feature which is derived from a common biosynthetic pathway.
Collapse
Affiliation(s)
- S Hayashi
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | |
Collapse
|
33
|
Boissinot M, Levesque RC. Nucleotide sequence of the PSE-4 carbenicillinase gene and correlations with the Staphylococcus aureus PC1 beta-lactamase crystal structure. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40181-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Lim HM, Pène JJ. Mutations affecting the catalytic activity of Bacillus cereus 5/B/6 β-lactamase II. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)80118-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
von Heijne G, Abrahmsén L. Species-specific variation in signal peptide design. Implications for protein secretion in foreign hosts. FEBS Lett 1989; 244:439-46. [PMID: 2646153 DOI: 10.1016/0014-5793(89)80579-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Secretory signal peptides from individual prokaryotic and eukaryotic species have been analyzed, and the lengths and amino acid compositions of the positively charged amino-terminal region, the central hydrophobic region, and the carboxy-terminal cleavage-region have been compared. We find distinct differences between species in all three regions. Implications for protein secretion in foreign hosts are discussed.
Collapse
Affiliation(s)
- G von Heijne
- Department of Molecular Biology, Karolinska Institute, Huddinge Hospital, Sweden
| | | |
Collapse
|
36
|
Kato C, Nakano Y, Horikoshi K. The nucleotide sequence of the lipo-penicillinase gene of alkalophilic Bacillus sp. strain 170. Arch Microbiol 1989; 151:91-4. [PMID: 2655551 DOI: 10.1007/bf00414419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The lipo-penicillinase (LIPEN) gene from an alkalophilic Bacillus sp. strain 170 was cloned in Escherichia coli using the vector pHSG399. A plasmid, pFAP121, was isolated from an ampicillin resistant transformant and the cloned LIPEN gene was found to be in a 2.2 kb DNA fragment. The nucleotide sequence of a 1.9 kb segment encoding the LIPEN was determined. This segment showed an open reading frame which would encode a polypeptide of 310 amino acids. The amino acid sequence of this LIPEN gene product has strong homology with those of the Bacillus cereus beta-lactamase III and Bacillus licheniformis penicillinase.
Collapse
Affiliation(s)
- C Kato
- Laboratory of Microbiol Metabolism, Research Development Corporation of Japan, Tokyo
| | | | | |
Collapse
|
37
|
Hayashi S, Hara H, Suzuki H, Hirota Y. Lipid modification of Escherichia coli penicillin-binding protein 3. J Bacteriol 1988; 170:5392-5. [PMID: 3053665 PMCID: PMC211622 DOI: 10.1128/jb.170.11.5392-5395.1988] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The primary structure of penicillin-binding protein 3 (PBP 3), an essential enzyme for cell division in Escherichia coli, was deduced from the nucleotide sequence of the ftsI gene (M. Nakamura, I. N. Maruyama, M. Soma, J. Kato, H. Suzuki, and Y. Hirota, Mol. Gen. Genet. 191:1-9, 1983). An amino acid sequence of Leu-26-Leu-Cys-Gly-Cys-30 was found near the amino terminus of the deduced sequence, showing a rather striking homology to the Leu-Leu-Ala-Gly-Cys consensus sequence for the modification and processing of precursors of the E. coli murein lipoprotein and other bacterial lipoproteins. As expected from this finding, PBP 3 was found to be modified with glycerol and fatty acids, although the lipid modification occurred only in a small fraction, accounting for less than 15% of the total PBP 3 molecules.
Collapse
Affiliation(s)
- S Hayashi
- Development Research Laboratories, Banyu Pharmaceutical Co., Ltd, Saitama-ken, Japan
| | | | | | | |
Collapse
|
38
|
Amicosante G, Oratore A, Franceschini N, Maccarrone M, Strom R, Galleni M, Frère JM. Citrobacter diversus ULA-27 beta-lactamases. Improved purification and general properties. Biochem J 1988; 254:885-90. [PMID: 3264152 PMCID: PMC1135165 DOI: 10.1042/bj2540885] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two chromosome-encoded beta-lactamases have been purified from Citrobacter diversus ULA-27. They exhibited slightly different isoelectric points (6.8 and 6.2) and very similar Mr values (congruent to 29,000). Their specificity spectrum was rather wide, since they hydrolysed some cephalosporins with kcat: values similar to those observed with the best penicillin substrates. Cloxacillin, methicillin and imipenem were hydrolysed very slowly. Hydrolysis of azthreonam could not be detected.
Collapse
Affiliation(s)
- G Amicosante
- Università degli Studi dell'Aquila, Dipartimento di Scienze e Tecnologie Biomediche e di Biometria, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Lim HM, Pène JJ, Shaw RW. Cloning, nucleotide sequence, and expression of the Bacillus cereus 5/B/6 beta-lactamase II structural gene. J Bacteriol 1988; 170:2873-8. [PMID: 3131315 PMCID: PMC211218 DOI: 10.1128/jb.170.6.2873-2878.1988] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Two forms of heat-stable, zinc-containing beta-lactamase II have been described for strains of Bacillus cereus and have been shown to differ in substrate specificity (R. B. Davies, E. P. Abraham, J. Fleming, and M. R. Pollock, Biochem. J. 145: 409-411, 1975). We report here the nucleotide sequence, inferred amino acid sequence, and expression of beta-lactamase II from B. cereus 5/B/6 and compare our results with those for its homolog characterized in B. cereus 569/H (M. Hussain, C. Anthony, M. J. Madonna, and J. O. Lampen, J. Bacteriol. 164: 223-229, 1985) to document amino acid differences contributing to the specific properties of these enzymes.
Collapse
Affiliation(s)
- H M Lim
- School of Life and Health Sciences, University of Delaware, Newark 19716
| | | | | |
Collapse
|