1
|
Ray P, Rand-Fleming CR, Mansoorabadi SO. Preparation of coenzyme F430 biosynthetic enzymes and intermediates. Methods Enzymol 2024; 702:147-170. [PMID: 39155109 DOI: 10.1016/bs.mie.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Methyl-coenzyme M reductase (MCR) is the key enzyme in pathways for the formation and anaerobic oxidation of methane. As methane is a potent greenhouse gas and biofuel, investigations of MCR catalysis and maturation are of interest for the development of both methanogenesis inhibitors and natural gas conversion strategies. The activity of MCR is dependent on a unique, nickel-containing coenzyme F430, the most highly reduced tetrapyrrole found in nature. Coenzyme F430 is biosynthesized from sirohydrochlorin in four steps catalyzed by the CfbABCDE enzymes. Here, methods for the expression and purification of the coenzyme F430 biosynthesis enzymes are described along with conditions for the synthesis and purification of biosynthetic intermediates on the milligram scale from commercially available porphobilinogen.
Collapse
Affiliation(s)
- Prosenjit Ray
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, United States
| | | | - Steven O Mansoorabadi
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, United States.
| |
Collapse
|
2
|
Bioprocess Strategies for Vitamin B12 Production by Microbial Fermentation and Its Market Applications. Bioengineering (Basel) 2022; 9:bioengineering9080365. [PMID: 36004890 PMCID: PMC9405231 DOI: 10.3390/bioengineering9080365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin B12 is a widely used compound in the feed and food, healthcare and medical industries that can only be produced by fermentation because of the complexity of its chemical synthesis. For this reason, finding better producer strains and optimizing their bioprocesses have been the main focus of industrial producers over the last few decades. In this review, we initially provide a historical overview of vitamin B12 research and the main biosynthetic characteristics of the two microorganism families typically used for its industrial production: several strains of Propionibacterium freudenreichii and strains related to Pseudomonas denitrificans. Later, a complete summary of the current state of vitamin B12 industrial production as well as the main advances and challenges for improving it is detailed, with a special focus on bioprocess optimization, which aims not only to increase production but also sustainability. In addition, a comprehensive list of the most important and relevant patents for the present industrial strains is provided. Finally, the potential applications of vitamin B12 in different markets are discussed.
Collapse
|
3
|
Lawrence AD, Nemoto-Smith E, Deery E, Baker JA, Schroeder S, Brown DG, Tullet JMA, Howard MJ, Brown IR, Smith AG, Boshoff HI, Barry CE, Warren MJ. Construction of Fluorescent Analogs to Follow the Uptake and Distribution of Cobalamin (Vitamin B 12) in Bacteria, Worms, and Plants. Cell Chem Biol 2018; 25:941-951.e6. [PMID: 29779954 DOI: 10.1016/j.chembiol.2018.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/18/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
Abstract
Vitamin B12 is made by only certain prokaryotes yet is required by a number of eukaryotes such as mammals, fish, birds, worms, and Protista, including algae. There is still much to learn about how this nutrient is trafficked across the domains of life. Herein, we describe ways to make a number of different corrin analogs with fluorescent groups attached to the main tetrapyrrole-derived ring. A further range of analogs were also constructed by attaching similar fluorescent groups to the ribose ring of cobalamin, thereby generating a range of complete and incomplete corrinoids to follow uptake in bacteria, worms, and plants. By using these fluorescent derivatives we were able to demonstrate that Mycobacterium tuberculosis is able to acquire both cobyric acid and cobalamin analogs, that Caenorhabditis elegans takes up only the complete corrinoid, and that seedlings of higher plants such as Lepidium sativum are also able to transport B12.
Collapse
Affiliation(s)
- Andrew D Lawrence
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Emi Nemoto-Smith
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20850, USA
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Joseph A Baker
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Susanne Schroeder
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - David G Brown
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | | - Mark J Howard
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Ian R Brown
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Helena I Boshoff
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20850, USA
| | - Clifton E Barry
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20850, USA
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|
4
|
Abstract
This review summarizes research performed over the last 23 years on the genetics, enzyme structures and functions, and regulation of the expression of the genes encoding functions involved in adenosylcobalamin (AdoCbl, or coenzyme B12) biosynthesis. It also discusses the role of coenzyme B12 in the physiology of Salmonella enterica serovar Typhimurium LT2 and Escherichia coli. John Roth's seminal contributions to the field of coenzyme B12 biosynthesis research brought the power of classical and molecular genetic, biochemical, and structural approaches to bear on the extremely challenging problem of dissecting the steps of what has turned out to be one of the most complex biosynthetic pathways known. In E. coli and serovar Typhimurium, uro'gen III represents the first branch point in the pathway, where the routes for cobalamin and siroheme synthesis diverge from that for heme synthesis. The cobalamin biosynthetic pathway in P. denitrificans was the first to be elucidated, but it was soon realized that there are at least two routes for cobalamin biosynthesis, representing aerobic and anaerobic variations. The expression of the AdoCbl biosynthetic operon is complex and is modulated at different levels. At the transcriptional level, a sensor response regulator protein activates the transcription of the operon in response to 1,2-Pdl in the environment. Serovar Typhimurium and E. coli use ethanolamine as a source of carbon, nitrogen, and energy. In addition, and unlike E. coli, serovar Typhimurium can also grow on 1,2-Pdl as the sole source of carbon and energy.
Collapse
|
5
|
Characterization of a Gene Conferring Red Fluorescence Isolated from an Environmental DNA Library Constructed from Soil Bacteria. Biosci Biotechnol Biochem 2014; 72:1908-14. [DOI: 10.1271/bbb.80161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Abstract
Vitamin B12 (cobalamin) is a cobalt-containing modified tetrapyrrole that is an essential nutrient for higher animals. Its biosynthesis is restricted to certain bacteria and requires approximately 30 enzymatic steps for its complete de novo construction. Remarkably, two distinct biosynthetic pathways exist, which are termed the aerobic and anaerobic routes. The anaerobic pathway has yet to be fully characterized due to the inherent instability of its oxygen-sensitive intermediates. Bacillus megaterium, a bacterium previously used for the commercial production of cobalamin, has a complete anaerobic pathway and this organism is now being used to investigate the anaerobic B12 pathway through the application of recent advances in recombinant protein production. The present paper provides a summary of recent findings in the anaerobic pathway and future perspectives.
Collapse
|
7
|
Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 2012; 30:1533-42. [PMID: 22537876 DOI: 10.1016/j.biotechadv.2012.04.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/29/2012] [Accepted: 04/10/2012] [Indexed: 02/07/2023]
Abstract
δ-aminolevulinate (ALA) is an important intermediate involved in tetrapyrrole synthesis (precursor for vitamin B12, chlorophyll and heme) in vivo. It has been widely applied in agriculture and medicine. On account of many disadvantages of its chemical synthesis, microbial production of ALA has been received much attention as an alternative because of less expensive raw materials, low pollution, and high productivity. Vitamin B12, one of ALA derivatives, which plays a vital role in prevention of anaemia has also attracted intensive works. In this review, recent advances on the production of ALA and vitamin B12 with novel approaches such as whole-cell enzyme-transformation and metabolic engineering are described. Furthermore, the direction for future research and perspective are also summarized.
Collapse
Affiliation(s)
- Zhen Kang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | |
Collapse
|
8
|
Cloning, purification and characterization of Geobacillus stearothermophilus V uroporphyrinogen-III C-methyltransferase: evaluation of its role in resistance to potassium tellurite in Escherichia coli. Res Microbiol 2009; 160:125-33. [DOI: 10.1016/j.resmic.2008.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 12/05/2008] [Accepted: 12/16/2008] [Indexed: 11/18/2022]
|
9
|
Warren MJ, Bolt E, Woodcock SC. 5-Aminolaevulinic acid synthase and uroporphyrinogen methylase: two key control enzymes of tetrapyrrole biosynthesis and modification. CIBA FOUNDATION SYMPOSIUM 2007; 180:26-40; discussion 40-9. [PMID: 7842857 DOI: 10.1002/9780470514535.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two enzymes which play an important role in regulation and flux control through the tetapyrrole biosynthetic pathway are considered. The Rhodobacter sphaeroides 5-aminolaevulinic acid synthase isoenzymes are discussed and the progress being made on their recombinant expression and isolation is reported. The Escherichia coli uroporphyrinogen methylase, which is encoded by the cysG gene, is also examined. In this case evidence is provided which demonstrates that the gene product is responsible for the complete synthesis of sirohaem from uroporphyrinogen III. The enzyme is thus capable of performing two S-adenosylmethionine-dependent methylation reactions, an NADP(+)-dependent dehydrogenation and iron chelation. The uroporphyrinogen methylase is thus a small multifunctional enzyme.
Collapse
Affiliation(s)
- M J Warren
- School of Biological Sciences, Queen Mary and Westfield College, University of London, UK
| | | | | |
Collapse
|
10
|
Stamford NP. Genetics and enzymology of the B12 pathway. CIBA FOUNDATION SYMPOSIUM 2007; 180:247-62; discussion 262-6. [PMID: 7842856 DOI: 10.1002/9780470514535.ch14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The chemical complexity of vitamin B12 suggests that its formation may involve a large number of enzymic steps. However, until recently, little was known of the number, mechanism and stereochemical course of the many enzymic interconversions that are essential to vitamin B12 biosynthesis. In response to this the French groups led by Francis Blanche and Joel Crouzet have carried out extensive investigations into the genetic and biochemical organization of this remarkable biosynthetic pathway. Through heterologous complementation studies with cobalamin-producing mutants they were able to clone and identify a total of 22 unique cob genes from four genomic regions (A-D) of the Pseudomonas denitrificans chromosome. This was the first report of a genetic analysis of cob genes at the molecular level and provided a suitable genetic model from which biosynthetic investigations could be initiated. The metabolic roles of most of the products of these genes have now been defined and in light of this progress current research concentrates on the development and use of a variety of techniques to investigate the chemistry involved in these individual enzymic steps. Here, my focus is on the recent efforts and successes of the French groups that have led to the elucidation of almost the entire enzymic sequence of events in vitamin B12 biosynthesis. From this perspective, recent developments at Cambridge (UK) regarding the utilization of reconstituted enzymic systems to manufacture substrates as probes for this biosynthetic pathway are illustrated.
Collapse
|
11
|
Abstract
Mycobacterium tuberculosis places an enormous burden on the welfare of humanity. Its ability to grow and its pathogenicity are linked to sulfur metabolism, which is considered a fertile area for the development of antibiotics, particularly because many of the sulfur acquisition steps in the bacterium are not found in the host. Sulfite reduction is one such mycobacterium-specific step and is the central focus of this paper. Sulfite reduction in Mycobacterium smegmatis was investigated using a combination of deletion mutagenesis, metabolite screening, complementation, and enzymology. The initial rate parameters for the purified sulfite reductase from M. tuberculosis were determined under strict anaerobic conditions [k(cat) = 1.0 (+/-0.1) electron consumed per second, and K(m(SO(3)(-2))) = 27 (+/-1) microM], and the enzyme exhibits no detectible turnover of nitrite, which need not be the case in the sulfite/nitrite reductase family. Deletion of sulfite reductase (sirA, originally misannotated nirA) reveals that it is essential for growth on sulfate or sulfite as the sole sulfur source and, further, that the nitrite-reducing activities of the cell are incapable of reducing sulfite at a rate sufficient to allow growth. Like their nitrite reductase counterparts, sulfite reductases require a siroheme cofactor for catalysis. Rv2393 (renamed che1) resides in the sulfur reduction operon and is shown for the first time to encode a ferrochelatase, a catalyst that inserts Fe(2+) into siroheme. Deletion of che1 causes cells to grow slowly on metabolites that require sulfite reductase activity. This slow-growth phenotype was ameliorated by optimizing growth conditions for nitrite assimilation, suggesting that nitrogen and sulfur assimilation overlap at the point of ferrochelatase synthesis and delivery.
Collapse
Affiliation(s)
- Rachel Pinto
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461-1926, USA
| | | | | | | | | |
Collapse
|
12
|
Zalkin H. The amidotransferases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 66:203-309. [PMID: 8430515 DOI: 10.1002/9780470123126.ch5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- H Zalkin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| |
Collapse
|
13
|
Vévodová J, Graham RM, Raux E, Schubert HL, Roper DI, Brindley AA, Ian Scott A, Roessner CA, Stamford NPJ, Elizabeth Stroupe M, Getzoff ED, Warren MJ, Wilson KS. Structure/function studies on a S-adenosyl-L-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis. J Mol Biol 2004; 344:419-33. [PMID: 15522295 DOI: 10.1016/j.jmb.2004.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 08/23/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022]
Abstract
The crystallographic structure of the Pseudomonas denitrificans S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase (SUMT), which is encoded by the cobA gene, has been solved by molecular replacement to 2.7A resolution. SUMT is a branchpoint enzyme that plays a key role in the biosynthesis of modified tetrapyrroles by controlling flux to compounds such as vitamin B(12) and sirohaem, and catalysing the transformation of uroporphyrinogen III into precorrin-2. The overall topology of the enzyme is similar to that of the SUMT module of sirohaem synthase (CysG) and the cobalt-precorrin-4 methyltransferase CbiF and, as with the latter structures, SUMT has the product S-adenosyl-L-homocysteine bound in the crystal. The roles of a number of residues within the SUMT structure are discussed with respect to their conservation either across the broader family of cobalamin biosynthetic methyltransferases or within the sub-group of SUMT members. The D47N, L49A, F106A, T130A, Y183A and M184A variants of SUMT were generated by mutagenesis of the cobA gene, and tested for SAM binding and enzymatic activity. Of these variants, only D47N and L49A bound the co-substrate S-adenosyl-L-methionine. Consequently, all the mutants were severely restricted in their capacity to synthesise precorrin-2, although both the D47N and L49A variants produced significant quantities of precorrin-1, the monomethylated derivative of uroporphyrinogen III. The activity of these variants is interpreted with respect to the structure of the enzyme.
Collapse
Affiliation(s)
- Jitka Vévodová
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Soubrier F, Laborderie B, Cameron B. Improvement of pCOR plasmid copy number for pharmaceutical applications. Appl Microbiol Biotechnol 2004; 66:683-8. [PMID: 15349701 DOI: 10.1007/s00253-004-1729-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Production of pharmaceutical-grade plasmid DNA is becoming important as the demand for clinical batches is steadily growing. pCOR plasmids have been specifically designed and used for gene delivery into humans, and have been produced by high cell-density fermentation with a yield of 100 mg/l. This yield could probably be increased as long as the release specifications of bulk plasmid remain the same, particularly in terms of plasmid sequence. We report here the use of genetic approaches in Escherichia coli to increase the copy number of pCOR. The bacterial gene encoding the pi initiator-protein, which plays a pivotal role in pCOR replication, was mutagenized. A fluorescence-based screening methodology in E. coli was used to identify novel copy-up mutations. A particular combination of copy-up mutations translated into a 3-5-fold increase in monomer pCOR plasmid DNA per biomass unit.
Collapse
Affiliation(s)
- F Soubrier
- GENCELL SAS, 72-82 rue Léon Geffroy, 94400, Vitry-Sur-Seine, France.
| | | | | |
Collapse
|
15
|
Raux E, Leech HK, Beck R, Schubert HL, Santander PJ, Roessner CA, Scott AI, Martens JH, Jahn D, Thermes C, Rambach A, Warren MJ. Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. Biochem J 2003; 370:505-16. [PMID: 12408752 PMCID: PMC1223173 DOI: 10.1042/bj20021443] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Revised: 10/21/2002] [Accepted: 10/31/2002] [Indexed: 11/17/2022]
Abstract
In Bacillus megaterium, the hemAXBCDL genes were isolated and were found to be highly similar to the genes from Bacillus subtilis that are required for the conversion of glutamyl-tRNA into uroporphyrinogen III. Overproduction and purification of HemC (porphobilinogen deaminase) and -D (uroporphyrinogen III synthase) allowed these enzymes to be used for the in vitro synthesis of uroporphyrinogen III from porphobilinogen. A second smaller cluster of three genes (termed sirABC) was also isolated and found to encode the enzymes that catalyse the transformation of uroporphyrinogen III into sirohaem on the basis of their ability to complement a defined Escherichia coli (cysG) mutant. The functions of SirC and -B were investigated by direct enzyme assay, where SirC was found to act as a precorrin-2 dehydrogenase, generating sirohydrochlorin, and SirB was found to act as a ferrochelatase responsible for the final step in sirohaem synthesis. CbiX, a protein found encoded within the main B. megaterium cobalamin biosynthetic operon, shares a high degree of similarity with SirB and acts as the cobaltochelatase associated with cobalamin biosynthesis by inserting cobalt into sirohydrochlorin. CbiX contains an unusual histidine-rich region in the C-terminal portion of the protein, which was not found to be essential in the chelation process. Sequence alignments suggest that SirB and CbiX share a similar active site to the cobaltochelatase, CbiK, from Salmonella enterica.
Collapse
Affiliation(s)
- Evelyne Raux
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Roessner CA, Santander PJ, Scott AI. Multiple biosynthetic pathways for vitamin B12: variations on a central theme. VITAMINS AND HORMONES 2001; 61:267-97. [PMID: 11153269 DOI: 10.1016/s0083-6729(01)61009-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The manner in which vitamin B12 is synthesized is detailed with emphasis on the different mechanisms for ring contraction encountered in aerobic and anaerobic organisms. The aerobic process utilizes two enzymes and is dependent on molecular oxygen, in stark contrast to the anaerobic mechanism which is controlled by cobalt and requires only one enzyme.
Collapse
Affiliation(s)
- C A Roessner
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
17
|
Koyama M, Katayama S, Kaji M, Taniguchi Y, Matsushita O, Minami J, Morita S, Okabe A. A Clostridium perfringens hem gene cluster contains a cysG(B) homologue that is involved in cobalamin biosynthesis. Microbiol Immunol 2000; 43:947-57. [PMID: 10585141 DOI: 10.1111/j.1348-0421.1999.tb03355.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hem gene cluster, which consists of hemA, cysG(B), hemC, hemD, hemB, and hemL genes, and encodes enzymes involved in the biosynthetic pathway from glutamyl-tRNA to uroporphyrinogen III, has been identified by the cloning and sequencing of two overlapping DNA fragments from Clostridium perfringens NCTC8237. The deduced amino acid sequence of the N-terminal region of C. perfringens HemD is homologous to those reported for the C-terminal region of Salmonella typhimurium CysG and Clostridium josui HemD. C. perfringens CysG(B) is a predicted 220-residue protein which shows homology to the N-terminal region of S. typhimurium CysG. Disruption of the cysG(B) gene in C. perfringens strain 13 by homologous recombination reduced cobalamin (vitamin B12) levels by a factor of 200. When grown in vitamin B12-deficient medium, the mutant strain showed a four-fold increase in its doubling time compared with that of the wild-type strain, and this effect was counteracted by supplementing the medium with vitamin B12. These results suggest that C. perfringens CysG(B) is involved in the chelation of cobalt to precorrin II as suggested for the CysG(B) domain of S. typhimurium CysG, enabling the synthesis of cobalamin.
Collapse
Affiliation(s)
- M Koyama
- Department of Pharmacy, Kagawa Medical University, Kita-gun, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Raux E, Schubert HL, Roper JM, Wilson KS, Warren MJ. Vitamin B12: Insights into Biosynthesis's Mount Improbable. Bioorg Chem 1999. [DOI: 10.1006/bioo.1998.1125] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
|
20
|
Abstract
Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.
Collapse
Affiliation(s)
- W G Zumft
- Lehrstuhl für Mikrobiologie, Universität Fridericiana, Karlsruhe, Germany
| |
Collapse
|
21
|
Raux E, Thermes C, Heathcote P, Rambach A, Warren MJ. A role for Salmonella typhimurium cbiK in cobalamin (vitamin B12) and siroheme biosynthesis. J Bacteriol 1997; 179:3202-12. [PMID: 9150215 PMCID: PMC179098 DOI: 10.1128/jb.179.10.3202-3212.1997] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The role of cbiK, a gene found encoded within the Salmonella typhimurium cob operon, has been investigated by studying its in vivo function in Escherichia coli. First, it was found that cbiK is not required for cobalamin biosynthesis in the presence of a genomic cysG gene (encoding siroheme synthase) background. Second, in the absence of a genomic cysG gene, cobalamin biosynthesis in E. coli was found to be dependent upon the presence of cobA(P. denitrificans) (encoding the uroporphyrinogen III methyltransferase from Pseudomonas denitrificans) and cbiK. Third, complementation of the cysteine auxotrophy of the E. coli cysG deletion strain 302delta a could be attained by the combined presence of cobA(P. denitrificans) and the S. typhimurium cbiK gene. Collectively these results suggest that CbiK can function in fashion analogous to that of the N-terminal domain of CysG (CysG(B)), which catalyzes the final two steps in siroheme synthesis, i.e., NAD-dependent dehydrogenation of precorrin-2 to sirohydrochlorin and ferrochelation. Thus, phenotypically CysG(B) and CbiK have very similar properties in vivo, although the two proteins do not have any sequence similarity. In comparison to CysG, CbiK appears to have a greater affinity for Co2+ than for Fe2+, and it is likely that cbiK encodes an enzyme whose primary role is that of a cobalt chelatase in corrin biosynthesis.
Collapse
Affiliation(s)
- E Raux
- Department of Molecular Genetics, Institute of Ophthalmology, University College London, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Rondon MR, Trzebiatowski JR, Escalante-Semerena JC. Biochemistry and molecular genetics of cobalamin biosynthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:347-84. [PMID: 9187059 DOI: 10.1016/s0079-6603(08)61010-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M R Rondon
- Department of Bacteriology, University of Wisconsin-Madison 53706-1567, USA
| | | | | |
Collapse
|
23
|
Glockner AB, Zumft WG. Sequence analysis of an internal 9.72-kb segment from the 30-kb denitrification gene cluster of Pseudomonas stutzeri. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1277:6-12. [PMID: 8950369 DOI: 10.1016/s0005-2728(96)00108-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The DNA segment was sequenced that links the nir-nor and nos gene clusters for denitrification of Pseudomonas stutzeri ATCC 14405. Of 10 predicted gene products, four are putative membrane proteins. Sequence similarity was detected with the subunit III of cytochrome-c oxidase (ORF175), PQQ3 of the biosynthetic pathway for pyrrolo-quinoline quinone (ORF393), S-adenosylmethionine-dependent uroporphyrinogen-III C-methyltransferase (ORF278), the cytochrome cd1 nitrite reductase and the NirF protein involved in the biosynthesis of heme d1 (ORF507), LysR type transcriptional regulators (ORF286), short-chain alcohol dehydrogenases (ORF247), and a hypothetical protein, YBEC, of Escherichia coli (ORF57). The current data together with previous work establish a contiguous DNA sequence of 29.2 kb comprising the supercluster of nos-nir-nor genes for denitrification in this bacterium.
Collapse
Affiliation(s)
- A B Glockner
- Lehrstuhl für Mikrobiologie, Universität Fridericiana, Karlsruhe, Germany
| | | |
Collapse
|
24
|
Roessner CA, Scott AI. Genetically engineered synthesis of natural products: from alkaloids to corrins. Annu Rev Microbiol 1996; 50:467-90. [PMID: 8905088 DOI: 10.1146/annurev.micro.50.1.467] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Because many natural products are of biological and medicinal importance, methods are continually being sought for studying their biosynthetic pathways, which may eventually result in increased production and the generation of novel compounds. Advances in genetic engineering have enabled the homologous or heterologous expression of many natural product biosynthetic genes from divergent sources, resulting in a supply of enzymes not readily available by isolation from the producing organism. Mixing and matching of these enzymes in cell-free reactions can provide information, not available by any other means, about enzyme mechanisms, pathway intermediates, and possible variations in the structure of the final product.
Collapse
Affiliation(s)
- C A Roessner
- Department of Chemistry, Texas A&M University, College Station 77843-3255, USA
| | | |
Collapse
|
25
|
Abstract
This review examines deoxyadenosylcobalamin (Ado-B12) biosynthesis, transport, use, and uneven distribution among living forms. We describe how genetic analysis of enteric bacteria has contributed to these issues. Two pathways for corrin ring formation have been found-an aerobic pathway (in P. denitrificans) and an anaerobic pathway (in P. shermanii and S. typhimurium)-that differ in the point of cobalt insertion. Analysis of B12 transport in E. coli reveals two systems: one (with two proteins) for the outer membrane, and one (with three proteins) for the inner membrane. To account for the uneven distribution of B12 in living forms, we suggest that the B12 synthetic pathway may have evolved to allow anaerobic fermentation of small molecules in the absence of an external electron acceptor. Later, evolution of the pathway produced siroheme, (allowing use of inorganic electron acceptors), chlorophyll (O2 production), and heme (aerobic respiration). As oxygen became a larger part of the atmosphere, many organisms lost fermentative functions and retained dependence on newer, B12 functions that did not involve fermentation. Paradoxically, Salmonella spp. synthesize B12 only anaerobically but can use B12 (for degradation of ethanolamine and propanediol) only with oxygen. Genetic analysis of the operons for these degradative functions indicate that anaerobic degradation is important. Recent results suggest that B12 can be synthesized and used during anaerobic respiration using tetrathionate (but not nitrate or fumarate) as an electron acceptor. The branch of enteric taxa from which Salmonella spp. and E. coli evolved appears to have lost the ability to synthesize B12 and the ability to use it in propanediol and glycerol degradation. Salmonella spp., but not E. coli, have acquired by horizontal transfer the ability to synthesize B12 and degrade propanediol. The acquired ability to degrade propanediol provides the selective force that maintains B12 synthesis in this group.
Collapse
Affiliation(s)
- J R Roth
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
26
|
Abstract
Despite the revolution caused by information from macromolecular sequences, the basis of bacterial classification remains the genus and the species. How do these terms relate to the variety of bacteria that exist on earth? In this paper, the inter- and intraspecies differences in amino acid sequence of several bacterial electron transport proteins, cytochromes c, and blue copper proteins are compared. For the soil and water organisms studied, bacterial species can be classed as "tight" when there is little intraspecies variation, or "loose" when this variation is large. For this set of proteins and organisms, interspecies variation is much larger than that within a species. Examples of "tight" species are Pseudomonas aeruginosa and Rhodobacter sphaeroides, while Pseudomonas stutzeri and Rhodopseudomonas palustris are loose species. The results are discussed in the context of the origin and age of bacterial species, and the distribution of genomes in "sequence space." The situation is probably different for commensal or pathogenic bacteria, whose population structure and evolution are linked to the properties of another organism.
Collapse
Affiliation(s)
- R P Ambler
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR Scotland
| |
Collapse
|
27
|
Jensen RA, Gu W. Evolutionary recruitment of biochemically specialized subdivisions of Family I within the protein superfamily of aminotransferases. J Bacteriol 1996; 178:2161-71. [PMID: 8636014 PMCID: PMC177921 DOI: 10.1128/jb.178.8.2161-2171.1996] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- R A Jensen
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, USA
| | | |
Collapse
|
28
|
Raux E, Lanois A, Levillayer F, Warren MJ, Brody E, Rambach A, Thermes C. Salmonella typhimurium cobalamin (vitamin B12) biosynthetic genes: functional studies in S. typhimurium and Escherichia coli. J Bacteriol 1996; 178:753-67. [PMID: 8550510 PMCID: PMC177722 DOI: 10.1128/jb.178.3.753-767.1996] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In order to study the Salmonella typhimurium cobalamin biosynthetic pathway, the S. typhimurium cob operon was isolated and cloned into Escherichia coli. This approach has given the new host of the cob operon the ability to make cobalamins de novo, an ability that had probably been lost by this organism. In total, 20 genes of the S. typhimurium cob operon have been transferred into E. coli, and the resulting recombinant strains have been shown to produce up to 100 times more corrin than the parent S. typhimurium strain. These measurements have been performed with a quantitative cobalamin microbiological assay which is detailed in this work. As with S. typhimurium, cobalamin synthesis is only observed in the E. coli cobalamin-producing strains when they are grown under anaerobic conditions. Derivatives of the cobalamin-producing E. coli strains were constructed in which genes of the cob operon were inactivated. These strains, together with S. typhimurium cob mutants, have permitted the determination of the genes necessary for cobalamin production and classification of cbiD and cbiG as cobl genes. When grown in the absence of endogenous cobalt, the oxidized forms of precorrin-2 and precorrin-3, factor II and factor III, respectively, were found to accumulate in the cytosol of the corrin-producing E. coli. Together with the finding that S. typhimurium cbiL mutants are not complemented with the homologous Pseudomonas denitrificans gene, these results lend further credence to the theory that cobalt is required at an early stage in the biosynthesis of cobalamins in S. typhimurium.
Collapse
Affiliation(s)
- E Raux
- Centre de Génétique Moléculaire, Laboratoire associé à l'Université Pierre et Marie Curie, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Woodcock SC, Warren MJ. Evidence for a covalent intermediate in the S-adenosyl-L-methionine-dependent transmethylation reaction catalysed by sirohaem synthase. Biochem J 1996; 313 ( Pt 2):415-21. [PMID: 8573073 PMCID: PMC1216924 DOI: 10.1042/bj3130415] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CysG, also known as uroporphyrinogen III methylase and sirohaem synthase (CysG; EC 2.1.1.107), is a multifunctional enzyme that is able to transform uroporphyrinogen III into sirohaem via two S-adenosyl-L-methionine (AdoMet)-dependent transmethylations, an NAD(+)-dependent dehydrogenation and a ferrochelation. The apparent tight binding of AdoMet to this multifunctional enzyme is investigated. The use of a rapid AdoMet binding assay demonstrates that CysG becomes labelled with both [methyl-3H]AdoMet and [carboxyl-14C]AdoMet. Further experiments show that the CysG-AdoMet complex is subsequently able to methylate uroporphyrinogen III. CysG remains associated with the labelled constituents of the AdoMet even after denaturation with urea and SDS/PAGE, suggesting that the AdoMet has become covalently linked to the protein. A rapid examination of some of the other transmethylases involved in corrin biosynthesis reveals that they bind the AdoMet in a similar fashion. A multistep transmethylation mechanism is proposed to explain the observed results.
Collapse
Affiliation(s)
- S C Woodcock
- Department of Molecular Genetics, Institute of Ophthalmology, London, UK
| | | |
Collapse
|
30
|
Stamford NP, Crouzet J, Cameron B, Alanine AI, Pitt AR, Yeliseev AA, Battersby AR. Biosynthesis of vitamin B12: the preparative multi-enzyme synthesis of precorrin-3A and 20-methylsirohydrochlorin (a 2,7,20-trimethylisobacteriochlorin). Biochem J 1996; 313 ( Pt 1):335-42. [PMID: 8546704 PMCID: PMC1216903 DOI: 10.1042/bj3130335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Bacillus subtilis genes hemB, hemC and hemD, encoding respectively the enzymes porphobilinogen synthase, hydroxymethylbilane synthase and uroporphyrinogen III synthase, have been expressed in Escherichia coli using a single plasmid construct. An enzyme preparation from this source converts 5-aminolaevulinic acid (ALA) preparatively and in high yield into uroporphyrinogen III. The Pseudomonas denitrificans genes cobA and cobI, encoding respectively the enzymes S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase (SUMT) and S-adenosyl-L-methionine:precorrin-2 methyltransferase (SP2MT), were also expressed in E. coli. When SUMT was combined with the coupled-enzyme system that produces uroporphyrinogen III, precorrin-2 was synthesized from ALA, and when SP2MT was also added the product from the coupling of five enzymes was precorrin-3A. Both of these products are precursors of vitamin B12, and they can be used directly for biosynthetic experiments or isolated as their didehydro octamethyl esters in > 40% overall yield. The enzyme system which produces precorrin-3A is sufficiently stable to allow long incubations on a large scale, affording substantial quantities (15-20 mg) of product.
Collapse
Affiliation(s)
- N P Stamford
- University Chemical Laboratory, University of Cambridge, U.K
| | | | | | | | | | | | | |
Collapse
|
31
|
Fujino E, Fujino T, Karita S, Sakka K, Ohmiya K. Cloning and sequencing of some genes responsible for porphyrin biosynthesis from the anaerobic bacterium Clostridium josui. J Bacteriol 1995; 177:5169-75. [PMID: 7665501 PMCID: PMC177302 DOI: 10.1128/jb.177.17.5169-5175.1995] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 6.2-kbp DNA fragment encoding the enzymes in the porphyrin synthesis pathway of a cellulolytic anaerobe, Clostridium josui, was cloned into Escherichia coli and sequenced. This fragment contained four hem genes, hemA, hemC, hemD, and hemB, in order, which were homologous to the corresponding genes from E. coli and Bacillus subtilis. A typical promoter sequence was found only upstream of hemA, suggesting that these four genes were under the control of this promoter as an operon. The hemA and hemD genes cloned from C. josui were able to complement the hemA and hemD mutations, respectively, of E. coli. The COOH-terminal region of C. josui HemA and the NH2-terminal region of C. josui HemD were homologous to E. coli CysG (Met-1 to Leu-151) and to E. coli CysG (Asp-213 to Phe-454) and Pseudomonas denitrificans CobA, respectively. Furthermore, the cloned 6.2-kbp DNA fragment complemented E. coli cysG mutants. These results suggested that both C. josui hemA and hemD encode bifunctional enzymes.
Collapse
Affiliation(s)
- E Fujino
- School of Bioresources, Mie University, Tsu, Japan
| | | | | | | | | |
Collapse
|
32
|
Pollich M, Klug G. Identification and sequence analysis of genes involved in late steps in cobalamin (vitamin B12) synthesis in Rhodobacter capsulatus. J Bacteriol 1995; 177:4481-7. [PMID: 7635831 PMCID: PMC177200 DOI: 10.1128/jb.177.15.4481-4487.1995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A 6.4-kb region of a 6.8-kb BamHI fragment carrying Rhodobacter capsulatus genes involved in late steps of cobalamin synthesis has been sequenced. The nucleotide sequence and genetic analysis revealed that this fragment contains eight genes arranged in at least three operons. Five of these eight genes show homology to genes involved in the cobalamin synthesis of Pseudomonas denitrificans and Salmonella typhimurium. The arrangement of these homologous genes differs considerably in the three genera. Upstream of five overlapping genes (named bluFEDCB), a promoter activity could be detected by using lacZ fusions. This promoter shows no regulation by oxygen, vitamin B12 (cobalamin), or cobinamide. Disruption of the bluE gene by a Tn5 insertion (strain AH2) results in reduced expression of the puf and puc operons, which encode pigment-binding proteins of the photosynthetic apparatus. The mutant strain AH2 can be corrected to a wild-type-like phenotype by addition of vitamin B12 or cobinamide dicyanide. Disruption of the bluB gene by an interposon (strain BB1) also disturbs the formation of the photosynthetic apparatus. The mutation of strain BB1 can be corrected by vitamin B12 but not by cobinamide. We propose that a lack of cobalamin results in deregulation and a decreased formation of the photosynthetic apparatus.
Collapse
Affiliation(s)
- M Pollich
- Institut für Mikro- und Molekularbiologie, Giessen, Germany
| | | |
Collapse
|
33
|
Nölling J, Pihl TD, Vriesema A, Reeve JN. Organization and growth phase-dependent transcription of methane genes in two regions of the Methanobacterium thermoautotrophicum genome. J Bacteriol 1995; 177:2460-8. [PMID: 7730278 PMCID: PMC176905 DOI: 10.1128/jb.177.9.2460-2468.1995] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two regions of the Methanobacterium thermoautotrophicum genome containing genes that encode enzymes involved in methanogenesis (methane genes) have been cloned and sequenced to determine the extent of methane gene clustering and conservation. One region from the M. thermoautotrophicum strains delta H and Winter, extending approximately 13.5 kb upstream from the adjacent mvhDGAB and mrtBDGA operons that encode the methyl-viologen-reducing hydrogenase (MVH) and the methyl coenzyme M reductase II (MRII), respectively, was sequenced, and 76% sequence identity and very similar gene organizations were demonstrated. Five closely linked open reading frames were located immediately upstream of the mvh operon and were designated flpECBDA. The flpCBD genes encode amino acid sequences that are 31, 47, and 65% identical to the primary sequences of the alpha and beta subunits of formate dehydrogenase and the delta subunit of MVH, respectively. Located immediately upstream of the flp genes was the mth gene, which encodes the H2-dependent methylene-tetrahydromethanopterin dehydrogenase (MTH). In contrast to this mth-flp-mvh-mrt cluster of methane genes, a separate approximately 5.4-kb genomic fragment cloned from M. thermoautotrophicum delta H contained only one methane gene, the mtd gene, which encodes the 8-hydroxy-5-deazaflavin (H2F420)-dependent methylene-tetrahydromethanopterin dehydrogenase (MTD). Northern (RNA) blot experiments demonstrated that mth was transcribed only at early growth stages in fermentor-grown cultures of M. thermoautotrophicum delta H, whereas mtd was transcribed at later growth stages and in the stationary phase. Very similar transcription patterns have been observed by T.D. Pihl, S. Sharma, and J. N. Reeve (J. Bacteriol. 176:6384-6391, 1994) for the MRI- and MRII-encoding operons, mrtBDGA and mcrBDCGA, im M. thermoautotrophicum deltaH, suggesting coordinated regulation of methane gene expression. In contrast to the growth phase-dependent transcription of the mth/mrt and mtd/mcr genes, transcription of the mvhDGAB and frhADGB operons, which encode the two (NiFe) hydrogenases in M. thermoautotrophicum deltaH, was found to occur at all growth stages.
Collapse
Affiliation(s)
- J Nölling
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
34
|
Sattler I, Roessner CA, Stolowich NJ, Hardin SH, Harris-Haller LW, Yokubaitis NT, Murooka Y, Hashimoto Y, Scott AI. Cloning, sequencing, and expression of the uroporphyrinogen III methyltransferase cobA gene of Propionibacterium freudenreichii (shermanii). J Bacteriol 1995; 177:1564-9. [PMID: 7883713 PMCID: PMC176773 DOI: 10.1128/jb.177.6.1564-1569.1995] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We cloned, sequenced, and overexpressed cobA, the gene encoding uroporphyrinogen III methyltransferase in Propionibacterium freudenreichii, and examined the catalytic properties of the enzyme. The methyltransferase is similar in mass (27 kDa) and homologous to the one isolated from Pseudomonas denitrificans. In contrast to the much larger isoenzyme encoded by the cysG gene of Escherichia coli (52 kDa), the P. freudenreichii enzyme does not contain the additional 22-kDa peptide moiety at its N-terminal end bearing the oxidase-ferrochelatase activity responsible for the conversion of dihydrosirohydrochlorin (precorrin-2) to siroheme. Since it does not contain this moiety, it is not a likely candidate for synthesis of a cobalt-containing early intermediate that has been proposed for the vitamin B12 biosynthetic pathway in P. freudenreichii. Uroporphyrinogen III methyltransferase of P. freudenreichii not only catalyzes the addition of two methyl groups to uroporphyrinogen III to afford the early vitamin B12 intermediate, precorrin-2, but also has an overmethylation property that catalyzes the synthesis of several tri- and tetra-methylated compounds that are not part of the vitamin B12 pathway. The enzyme catalyzes the addition of three methyl groups to uroporphyrinogen I to form trimethylpyrrocorphin, the intermediate necessary for biosynthesis of the natural products, factors S1 and S3, previously isolated from this organism. A second gene found upstream from the cobA gene encodes a protein homologous to CbiO of Salmonella typhimurium, a membrane-bound, ATP-dependent transport protein thought to be part of the cobalt transport system involved in vitamin B12 synthesis. These two genes do not appear to constitute part of an extensive cobalamin operon.
Collapse
Affiliation(s)
- I Sattler
- Center for Biological NMR, Chemistry Department, Texas A&M University, College Station 77843
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ogawa K, Akagawa E, Yamane K, Sun ZW, LaCelle M, Zuber P, Nakano MM. The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis. J Bacteriol 1995; 177:1409-13. [PMID: 7868621 PMCID: PMC176753 DOI: 10.1128/jb.177.5.1409-1413.1995] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bacillus subtilis can use either nitrate or nitrite as a sole source of nitrogen. The isolation of the nasABCDEF genes of B. subtilis, which are required for nitrate/nitrite assimilation, is reported. The probable gene products include subunits of nitrate/nitrite reductases and an enzyme involved in the synthesis of siroheme, a cofactor for nitrite reductase.
Collapse
Affiliation(s)
- K Ogawa
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Blanche F, Cameron B, Crouzet J, Debussche L, Thibaut D, Vuilhorgne M, Leeper FJ, Battersby AR. Vitamin B12: Wie das Problem seiner Biosynthese gelöst wurde. Angew Chem Int Ed Engl 1995. [DOI: 10.1002/ange.19951070404] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
De Mot R, Schoofs G, Nagy I, Vanderleyden J. Sequence of the cobA gene encoding S-adenosyl-L-methionine: uroporhyrinogen III methyltransferase of Pseudomonas fluorescens. Gene 1994; 150:199-200. [PMID: 7959054 DOI: 10.1016/0378-1119(94)90886-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sequence analysis of the region downstream of oprF, from Pseudomonas fluorescens OE 28.3, revealed the presence of cobA homologue encoding a putative S-adenosyl-L-methionine: uroporhyrinogen III methyltransferase. A similar gene organization exists in P. aeruginosa.
Collapse
Affiliation(s)
- R De Mot
- F. A. Janssens Laboratory of Genetics, Catholic University of Leuven, Heverlee, Belgium
| | | | | | | |
Collapse
|
38
|
Warren MJ, Bolt EL, Roessner CA, Scott AI, Spencer JB, Woodcock SC. Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem J 1994; 302 ( Pt 3):837-44. [PMID: 7945210 PMCID: PMC1137306 DOI: 10.1042/bj3020837] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The C-terminus of the Escherichia coli CysG protein, consisting of amino acids 202-457, was expressed as a recombinant protein using gene dissection methodology. Analysis of the activity of this truncated protein, termed CysGA, revealed that it was able to methylate uroporphyrinogen III in the same S-adenosyl-L-methionine (SAM)-dependent manner as the complete CysG protein. However, this truncated protein was not able to complement E. coli cysG cells, thereby suggesting that the first 201 amino acids of the CysG protein had an enzymic activity associated with the conversion of dihydrosirohydrochlorin into sirohaem. Analysis of the N-terminus of the CysG protein revealed the presence of a putative pyridine dinucleotide binding site. When the purified CysG protein was incubated with NADP+, uroporphyrinogen III and SAM the enzyme was found to catalyse a coenzyme-mediated dehydrogenation to form sirohydrochlorin. The CysGA protein on the other hand showed no such coenzyme-dependent activity. Analysis of the porphyrinoid material isolated from strains harbouring plasmids containing the complete and truncated cysG genes suggested that the CysG protein was also involved in ferrochelation. The evidence presented in this paper suggests that the CysG protein is a multifunctional protein involved in SAM-dependent methylation, pyridine dinucleotide dependent dehydrogenation and ferrochelation.
Collapse
Affiliation(s)
- M J Warren
- School of Biological Sciences, Queen Mary and Westfield College, London, U.K
| | | | | | | | | | | |
Collapse
|
39
|
Sofia HJ, Burland V, Daniels DL, Plunkett G, Blattner FR. Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res 1994; 22:2576-86. [PMID: 8041620 PMCID: PMC308212 DOI: 10.1093/nar/22.13.2576] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The DNA sequence of a 225.4 kilobase segment of the Escherichia coli K-12 genome is described here, from 76.0 to 81.5 minutes on the genetic map. This brings the total of contiguous sequence from the E.coli genome project to 725.1 kb (76.0 to 92.8 minutes). We found 191 putative coding genes (ORFs) of which 72 genes were previously known, and 110 of which remain unidentified despite literature and similarity searches. Seven new genes--arsE, arsF, arsG, treF, xylR, xylG, and xylH--were identified as well as the previously mapped pit and dctA genes. The arrangement of proposed genes relative to possible promoters and terminators suggests 90 potential transcription units. Other features include 19 REP elements, 95 computer-predicted bends, 50 Chi sites, and one grey hole. Thirty-one putative signal peptides were found, including those of thirteen known membrane or periplasmic proteins. One tRNA gene (proK) and two insertion sequences (IS5 and IS150) are located in this segment. The genes in this region are organized with equal numbers oriented with or against replication.
Collapse
Affiliation(s)
- H J Sofia
- Laboratory of Genetics, University of Wisconsin, Madison 53706
| | | | | | | | | |
Collapse
|
40
|
Abstract
In part because humans cannot synthesize vitamin B12 and must obtain it from organisms that produce it and because B12 deficiency leads to pernicious anemia, it has been important to understand how microorganisms build this quite complex substance. As shown here, an interdisciplinary attack was needed, which combined the strengths of genetics, molecular biology, enzymology, chemistry, and spectroscopy. This allowed the step-by-step synthetic pathway of B12 to be elucidated, and this approach has acted as a model for future research on the synthesis of substances in living organisms. One practical outcome of such an approach has been the improved availability of B12 for animal feedstuffs and human health.
Collapse
|
41
|
de Boer AP, Reijnders WN, Kuenen JG, Stouthamer AH, van Spanning RJ. Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans. Antonie Van Leeuwenhoek 1994; 66:111-27. [PMID: 7747927 DOI: 10.1007/bf00871635] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
By using the gene encoding the C-terminal part of the cd1-type nitrite reductase of Pseudomonas stutzeri JM300 as a heterologous probe, the corresponding gene from Paracoccus denitrificans was isolated. This gene, nirS, codes for a mature protein of 63144 Da having high homology with cd1-type nitrite reductases from other bacteria. Directly downstream from nirS, three other nir genes were found in the order nirECF. The organization of the nir gene cluster in Pa. denitrificans is different from the organization of nir clusters in some Pseudomonads. nirE has high homology with a S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase (uro'gen III methylase). This methylase is most likely involved in the heme d1 biosynthesis in Pa. denitrificans. The third gene, nirC, codes for a small cytochrome c of 9.3 kDa having high homology with cytochrome c55X of Ps. stutzeri ZoBell. The 4th gene, nirF, has no homology with other genes in the sequence databases and has no relevant motifs. Inactivation of either of these 4 genes resulted in the loss of nitrite and nitric oxide reductase activities but not of nitrous oxide reductase activity. nirS mutants lack the cd1-type nitrite reductase while nirE, nirC and nirF mutants produce a small amount of cd1-type nitrite reductase, inactive due to the absence of heme d1. Upstream from the nirS gene the start of a gene was identified which has limited homology with nosR, a putative regulatory gene involved in nitrous oxide reduction. A potential FNR box was identified between this gene and nirS.
Collapse
Affiliation(s)
- A P de Boer
- Department of Molecular and Cellular Biology, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Jones MC, Jenkins JM, Smith AG, Howe CJ. Cloning and characterisation of genes for tetrapyrrole biosynthesis from the cyanobacterium Anacystis nidulans R2. PLANT MOLECULAR BIOLOGY 1994; 24:435-448. [PMID: 8123787 DOI: 10.1007/bf00024112] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The genes for 5-aminolevulinic acid dehydratase (ALAD) and uroporphyrinogen III synthase (UROS), two enzymes in the biosynthetic pathway for tetrapyrroles, were independently isolated from a plasmid-based genomic library of Anacystis nidulans R2 (also called Synechococcus sp. PCC7942), by their ability to complement Escherichia coli strains carrying mutations in the equivalent genes (hemB and hemD respectively). The identity of the genes was confirmed by comparing the appropriate enzyme activities in complemented and mutant strains. Subclones of the original plasmids that were also capable of complementing the mutants were sequenced. The inferred amino acid sequence of the cyanobacterial HemB protein indicates a significant difference in the metal cofactor requirement from the higher-plant enzymes, which was confirmed by overexpression and biochemical analysis. The organisation of the cyanobacterial hemD locus differs markedly from other prokaryotes. Two open reading frames were found immediately upstream of hemD. The product of one shows considerable similarity to published sequences from other organisms for uroporphyrinogen III methylase (UROM), an enzyme involved in the production of sirohaem and cobalamins (including vitamin B-12). The product of the other shows motifs which are similar to those found in proteins responsible for metabolic regulation in yeast and indicates that this family of transcription control proteins, which has previously been reported only from eukaryotes, is also represented in prokaryotes.
Collapse
Affiliation(s)
- M C Jones
- Department of Biochemistry, University of Cambridge, UK
| | | | | | | |
Collapse
|
43
|
Pascarella S, Schirch V, Bossa F. Similarity between serine hydroxymethyltransferase and other pyridoxal phosphate-dependent enzymes. FEBS Lett 1993; 331:145-9. [PMID: 8405393 DOI: 10.1016/0014-5793(93)80314-k] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A structural homology of the pyridoxal-5'-phosphate (PLP)-dependent enzyme serine hydroxymethyltransferase (SHMT) with aspartate aminotransferase (AAT) is proposed. Although the two sequences are very dissimilar, a reasonable alignment was obtained using the profile analysis method. Sequences of AAT and dialkylglycine decarboxylase (DGD), for which crystal structure data are available, have been aligned on the basis of their structure superposition. A profile was then calculated and SHMT sequence aligned to it. Three of the four residues conserved in all aminotransferases (including the PLP-binding lysine) are matched. A profile search with DGD-AAT-SHMT profile is more selective and sensitive than individual sequence profiles for PLP-dependent enzyme detection. Potential homologies with the eryC1 gene product involved in erythromycin biosynthesis and with amino acid decarboxylases were observed. Homology with AAT will be used as a guideline for planning site-directed mutagenesis experiments on SHMT.
Collapse
Affiliation(s)
- S Pascarella
- Dipartimento di Scienze Biochimiche A Rossi Fanelli, Università La Sapienza, Roma, Italy
| | | | | |
Collapse
|
44
|
Roth JR, Lawrence JG, Rubenfield M, Kieffer-Higgins S, Church GM. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 1993; 175:3303-16. [PMID: 8501034 PMCID: PMC204727 DOI: 10.1128/jb.175.11.3303-3316.1993] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic conditions. Of the 30 cobalamin synthetic genes, 25 are clustered in one operon, cob, and are arranged in three groups, each group encoding enzymes for a biochemically distinct portion of the biosynthetic pathway. We have determined the DNA sequence for the promoter region and the proximal 17.1 kb of the cob operon. This sequence includes 20 translationally coupled genes that encode the enzymes involved in parts I and III of the cobalamin biosynthetic pathway. A comparison of these genes with the cobalamin synthetic genes from Pseudomonas denitrificans allows assignment of likely functions to 12 of the 20 sequenced Salmonella genes. Three additional Salmonella genes encode proteins likely to be involved in the transport of cobalt, a component of vitamin B12. However, not all Salmonella and Pseudomonas cobalamin synthetic genes have apparent homologs in the other species. These differences suggest that the cobalamin biosynthetic pathways differ between the two organisms. The evolution of these genes and their chromosomal positions is discussed.
Collapse
Affiliation(s)
- J R Roth
- Department of Biology, University of Utah, Salt Lake City 84112
| | | | | | | | | |
Collapse
|
45
|
Mehta PK, Christen P. Homology of pyridoxal-5'-phosphate-dependent aminotransferases with the cobC (cobalamin synthesis), nifS (nitrogen fixation), pabC (p-aminobenzoate synthesis) and malY (abolishing endogenous induction of the maltose system) gene products. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:373-6. [PMID: 8425548 DOI: 10.1111/j.1432-1033.1993.tb19907.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bacterial deletion mutants have indicated that the gene products of cobC, nifS, pabC and malY participate in important metabolic pathways, i.e. cobalamin synthesis, nitrogen fixation, synthesis of p-aminobenzoate and the regulation of the maltose system, respectively. However, the proteins themselves and their specific functions have not yet been identified. In the course of our studies on the evolutionary relationships among aminotransferases, we have found that the above gene products are homologous to aminotransferases. Profile analysis [Gribskov, M., Lüthy, R. & Eisenberg, D. (1990) Methods Enzymol. 183, 146-159] based on the amino acid sequences of certain subgroups of aminotransferases as probes attributed significant Z scores in the range 5-20 SD to the deduced amino acid sequences of the above gene products as included in the protein data base. Reciprocal profile analyses confirmed the homologies. All known aminotransferases are pyridoxal-5'-phosphate-dependent enzymes and catalyze the reversible transfer of amino groups from amino acids to oxo acids. The sequence homologies suggest that the above gene products are aminotransferases or other closely related pyridoxal-5'-phosphate-dependent enzymes probably catalyzing transformations of amino acids involving cleavage of a bond at C alpha.
Collapse
Affiliation(s)
- P K Mehta
- Biochemisches Institut, Universität Zürich, Switzerland
| | | |
Collapse
|
46
|
Blanche F, Maton L, Debussche L, Thibaut D. Purification and characterization of Cob(II)yrinic acid a,c-diamide reductase from Pseudomonas denitrificans. J Bacteriol 1992; 174:7452-4. [PMID: 1429467 PMCID: PMC207442 DOI: 10.1128/jb.174.22.7452-7454.1992] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An NADH-dependent flavoenzyme exhibiting cob(II)yrinic acid a,c-diamide reductase activity was purified 6,300-fold to homogeneity from Pseudomonas denitrificans and sequenced at its N terminus. This enzyme of the cobalamin biosynthetic pathway reduced to the Co(I) state all of the Co(II)-corrinoids isolated from this microorganism.
Collapse
Affiliation(s)
- F Blanche
- Département Analyse, Rhône-Poulenc Rorer S.A., Vitry-sur-Seine, France
| | | | | | | |
Collapse
|
47
|
Debussche L, Couder M, Thibaut D, Cameron B, Crouzet J, Blanche F. Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalyzing cobalt insertion in hydrogenobyrinic acid a,c-diamide during coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol 1992; 174:7445-51. [PMID: 1429466 PMCID: PMC207441 DOI: 10.1128/jb.174.22.7445-7451.1992] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hydrogenobyrinic acid a,c-diamide was shown to be the substrate of cobaltochelatase, an enzyme that catalyzes cobalt insertion in the corrin ring during the biosynthesis of coenzyme B12 in Pseudomonas denitrificans. Cobaltochelatase was demonstrated to be a complex enzyme composed of two different components of M(r) 140,000 and 450,000, which were purified to homogeneity. The 140,000-M(r) component was shown to be coded by cobN, whereas the 450,000-M(r) component was composed of two polypeptides specified by cobS and cobT. Each component was inactive by itself, but cobaltochelatase activity was reconstituted upon mixing CobN and CobST. The reaction was ATP dependent, and the Km values for hydrogenobyrinic acid a,c-diamide, Co2+, and ATP were 0.085 +/- 0.015, 4.2 +/- 0.2, and 220 +/- 36 microM, respectively. Spectroscopic data revealed that the reaction product was cob(II)yrinic acid a,c-diamide, and experiments with a coupled-enzyme incubation system containing both cobaltochelatase and cob(II)yrinic acid a,c-diamide reductase (F. Blanche, L. Maton, L. Debussche, and D. Thibaut, J. Bacteriol. 174:7452-7454, 1992) confirmed this result. This report not only provides the first evidence that hydrogenobyrinic acid and its a,c-diamide derivative are indeed precursors of adenosylcobalamin but also demonstrates that precorrin-6x, precorrin-6y, and precorrin-8x, three established precursors of hydrogenobyrinic acid (D. Thibaut, M. Couder, A. Famechon, L. Debussche, B. Cameron, J. Crouzet, and F. Blanche, J. Bacteriol. 174:1043-1049, 1992), are also on the pathway to cobalamin.
Collapse
Affiliation(s)
- L Debussche
- Département Analyse, Institut des Biotechnologies, Vitry-sur-Seine, France
| | | | | | | | | | | |
Collapse
|
48
|
DPH5, a methyltransferase gene required for diphthamide biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 1992. [PMID: 1508200 DOI: 10.1128/mcb.12.9.4026] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutant of Saccharomyces cerevisiae defective in the S-adenosylmethionine (AdoMet)-dependent methyltransferase step of diphthamide biosynthesis was selected by intracellular expression of the F2 fragment of diphtheria toxin (DT) and shown to belong to complementation group DPH5. The DPH5 gene was cloned, sequenced, and found to encode a 300-residue protein with sequence similarity to bacterial AdoMet:uroporphyrinogen III methyltransferases, enzymes involved in cobalamin (vitamin B12) biosynthesis. Both DPH5 and AdoMet:uroporphyrinogen III methyltransferases lack sequence motifs commonly found in other methyltransferases and may represent a new family of AdoMet:methyltransferases. The DPH5 protein was produced in Escherichia coli and shown to be active in methylation of elongation factor 2 partially purified from the dph5 mutant. A null mutation of the chromosomal DPH5 gene did not affect cell viability, in agreement with other studies indicating that diphthamide is not required for cell survival. The dph5 null mutant survived expression of three enzymically attenuated DT fragments but was killed by expression of fully active DT fragment A. Consistent with these results, elongation factor 2 from the dph5 null mutant was found to have weak ADP-ribosyl acceptor activity, which was detectable only in the presence of high concentrations of fragment A.
Collapse
|
49
|
Mattheakis LC, Shen WH, Collier RJ. DPH5, a methyltransferase gene required for diphthamide biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:4026-37. [PMID: 1508200 PMCID: PMC360293 DOI: 10.1128/mcb.12.9.4026-4037.1992] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A mutant of Saccharomyces cerevisiae defective in the S-adenosylmethionine (AdoMet)-dependent methyltransferase step of diphthamide biosynthesis was selected by intracellular expression of the F2 fragment of diphtheria toxin (DT) and shown to belong to complementation group DPH5. The DPH5 gene was cloned, sequenced, and found to encode a 300-residue protein with sequence similarity to bacterial AdoMet:uroporphyrinogen III methyltransferases, enzymes involved in cobalamin (vitamin B12) biosynthesis. Both DPH5 and AdoMet:uroporphyrinogen III methyltransferases lack sequence motifs commonly found in other methyltransferases and may represent a new family of AdoMet:methyltransferases. The DPH5 protein was produced in Escherichia coli and shown to be active in methylation of elongation factor 2 partially purified from the dph5 mutant. A null mutation of the chromosomal DPH5 gene did not affect cell viability, in agreement with other studies indicating that diphthamide is not required for cell survival. The dph5 null mutant survived expression of three enzymically attenuated DT fragments but was killed by expression of fully active DT fragment A. Consistent with these results, elongation factor 2 from the dph5 null mutant was found to have weak ADP-ribosyl acceptor activity, which was detectable only in the presence of high concentrations of fragment A.
Collapse
Affiliation(s)
- L C Mattheakis
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
50
|
Roessner CA, Warren MJ, Santander PJ, Atshaves BP, Ozaki S, Stolowich NJ, Iida K, Scott AI. Expression of 9 Salmonella typhimurium enzymes for cobinamide synthesis. Identification of the 11-methyl and 20-methyl transferases of corrin biosynthesis. FEBS Lett 1992; 301:73-8. [PMID: 1451790 DOI: 10.1016/0014-5793(92)80213-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nine of the cbi genes from the 17.5 kb cob operon of Salmonella typhimurium previously shown by genetic studies to be involved in the biosynthesis of cobinamide from precorrin-2, have been subcloned and expressed in Escherichia coli. Seven of the gene products were found in the soluble fraction of cell lysates and have been purified. The gene products corresponding to cbi E, F, H and L were shown by SAM binding and by homology with other SAM-binding proteins to be candidates for the methyltransferases of vitamin B12 biosynthesis. The enzymatic functions of the gene products of cbiL and cbiF are associated with C-methylation at C-20 of precorrin-2 and C-11 of precorrin-3.
Collapse
Affiliation(s)
- C A Roessner
- Department of Chemistry, Texas A&M University, College Station 77843-3255
| | | | | | | | | | | | | | | |
Collapse
|