1
|
Chen Z, Zhang Y, Mao D, Wang X, Luo Y. NaClO Co-selects antibiotic and disinfectant resistance in Klebsiella pneumonia: Implications for the potential risk of extensive disinfectant use during COVID-19 pandemic. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134102. [PMID: 38554506 DOI: 10.1016/j.jhazmat.2024.134102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/01/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024]
Abstract
The inappropriate use of antibiotics is widely recognized as the primary driver of bacterial antibiotic resistance. However, less attention has been given to the potential induction of multidrug-resistant bacteria through exposure to disinfectants. In this study, Klebsiella pneumonia, an opportunistic pathogen commonly associated with hospital and community-acquired infection, was experimentally exposed to NaClO at both minimum inhibitory concentration (MIC) and sub-MIC levels over a period of 60 days. The result demonstrated that NaClO exposure led to enhanced resistance of K. pneumonia to both NaClO itself and five antibiotics (erythromycin, polymyxin B, gentamicin, tetracycline, and ciprofloxacin). Concurrently, the evolved resistant strains exhibited fitness costs, as evidenced by decreased growth rates. Whole population sequencing revealed that both concentrations of NaClO exposure caused genetic mutations in the genome of K. pneumonia. Some of these mutations were known to be associated with antibiotic resistance, while others had not previously been identified as such. In addition, 11 identified mutations were located in the virulence factors, demonstrating that NaClO exposure may also impact the pathogenicity of K. pneumoniae. Overall, this study highlights the potential for the widespread use of NaClO-containing disinfectants during the COVID-19 pandemic to contribute to the emergence of antibiotic-resistant bacteria. ENVIRONMENTAL IMPLICATION: Considering the potential hazardous effects of disinfectant residues on environment, organisms and biodiversity, the sharp rise in use of disinfectants during COVID-19 pandemic has been considered highly likely to cause worldwide secondary disasters in ecosystems and human health. This study demonstrated that NaClO exposure enhanced the resistance of K. pneumonia to both NaClO and five antibiotics (erythromycin, polymyxin B, gentamicin, tetracycline, and ciprofloxacin), highlighting the widespread use of NaClO-containing disinfectants during the COVID-19 pandemic may increase the emergence of antibiotic-resistant bacteria in the environment.
Collapse
Affiliation(s)
- Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Yulin Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China.
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Pinatel E, Calcagnile M, Talà A, Damiano F, Siculella L, Peano C, De Benedetto GE, Pennetta A, De Bellis G, Alifano P. Interplay between non-coding RNA transcription, stringent phenotype and antibiotic production in Streptomyces. J Biotechnol 2022:S0168-1656(22)00029-3. [PMID: 35182607 DOI: 10.1016/j.jbiotec.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
While in recent years the key role of non-coding RNAs (ncRNAs) in regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces, and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: i.) the wild type strain; ii.) an isogenic pirA-defective mutant with central carbon metabolism imbalance, "relaxed" phenotype, and repression of antibiotic production; iii.) a pirA-derivative strain harboring a "stringent" RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.
Collapse
Affiliation(s)
- Eva Pinatel
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Clelia Peano
- Genomic Unit, IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Institute of Genetic and Biomedical Research, UoS of Milan, National Research Council, Rozzano, Milan, Italy
| | | | - Antonio Pennetta
- Department of Cultural Heritage, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
3
|
Interplay between Non-Coding RNA Transcription, Stringent/Relaxed Phenotype and Antibiotic Production in Streptomyces ambofaciens. Antibiotics (Basel) 2021; 10:antibiotics10080947. [PMID: 34438997 PMCID: PMC8388888 DOI: 10.3390/antibiotics10080947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022] Open
Abstract
While in recent years the key role of non-coding RNAs (ncRNAs) in the regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: (i) the wild-type strain; (ii) an isogenic pirA-defective mutant with central carbon metabolism imbalance, “relaxed” phenotype, and repression of antibiotic production; and (iii) a pirA-derivative strain harboring a “stringent” RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that the expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.
Collapse
|
4
|
Fondi M, Pinatel E, Talà A, Damiano F, Consolandi C, Mattorre B, Fico D, Testini M, De Benedetto GE, Siculella L, De Bellis G, Alifano P, Peano C. Time-Resolved Transcriptomics and Constraint-Based Modeling Identify System-Level Metabolic Features and Overexpression Targets to Increase Spiramycin Production in Streptomyces ambofaciens. Front Microbiol 2017; 8:835. [PMID: 28553270 PMCID: PMC5427115 DOI: 10.3389/fmicb.2017.00835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
In this study we have applied an integrated system biology approach to characterize the metabolic landscape of Streptomyces ambofaciens and to identify a list of potential metabolic engineering targets for the overproduction of the secondary metabolites in this microorganism. We focused on an often overlooked growth period (i.e., post-first rapid growth phase) and, by integrating constraint-based metabolic modeling with time resolved RNA-seq data, we depicted the main effects of changes in gene expression on the overall metabolic reprogramming occurring in S. ambofaciens. Moreover, through metabolic modeling, we unraveled a set of candidate overexpression gene targets hypothetically leading to spiramycin overproduction. Model predictions were experimentally validated by genetic manipulation of the recently described ethylmalonyl-CoA metabolic node, providing evidence that spiramycin productivity may be increased by enhancing the carbon flow through this pathway. The goal was achieved by over-expressing the ccr paralog srm4 in an ad hoc engineered plasmid. This work embeds the first metabolic reconstruction of S. ambofaciens and the successful experimental validation of model predictions and demonstrates the validity and the importance of in silico modeling tools for the overproduction of molecules with a biotechnological interest. Finally, the proposed metabolic reconstruction, which includes manually refined pathways for several secondary metabolites with antimicrobial activity, represents a solid platform for the future exploitation of S. ambofaciens biotechnological potential.
Collapse
Affiliation(s)
- Marco Fondi
- Department of Biology, University of FlorenceFlorence, Italy
| | - Eva Pinatel
- Institute of Biomedical Technologies, National Research CouncilSegrate, Italy
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research CouncilSegrate, Italy
| | | | - Daniela Fico
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of SalentoLecce, Italy
| | - Mariangela Testini
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Giuseppe E De Benedetto
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of SalentoLecce, Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, National Research CouncilSegrate, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, National Research CouncilSegrate, Italy
| |
Collapse
|
5
|
Li Z, Hu F, Ye R, Lv H, Zeng J. Influence of Al3+ on the titer of spiramycin and effective components in fermentor. Prep Biochem Biotechnol 2017; 47:481-488. [DOI: 10.1080/10826068.2017.1292290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhen Li
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fengxian Hu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruifang Ye
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Heping Lv
- Research and Development Department, Topfond Pharmaceutical Co., Ltd, Zhumadian, Henan, China
| | - Jun Zeng
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Yao J, Shao L, Chen D, Liu P, Zhang Y. Anaerobic biodegradation of spiramycin I and characterization of its new metabolites. Biosci Biotechnol Biochem 2017; 81:1051-1054. [PMID: 28095730 DOI: 10.1080/09168451.2017.1281003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Activated sludge was used to treat the wastewater containing spiramycin I. Three new metabolites were isolated and identified, which produced by oxidation of C6-aldehyde, hydrolysis of C5-mycaminose-mycarose and macrolactone ring-open reaction of spiramycin I in anaerobic digestion. And their antimicrobial activities were inactivated. Our results indicated that anaerobic biodegradation metabolites of spiramycin I could not induce bacterial resistance in environment.
Collapse
Affiliation(s)
- Jian Yao
- a State Key Laboratory of Natural Medicines, Department of Biochemistry , China Pharmaceutical University , Nanjing , China.,b State Key Laboratory of New Drug and Pharmaceutical Process , Shanghai Institute of Pharmaceutical Industry , Shanghai , China
| | - Lei Shao
- b State Key Laboratory of New Drug and Pharmaceutical Process , Shanghai Institute of Pharmaceutical Industry , Shanghai , China
| | - Daijie Chen
- b State Key Laboratory of New Drug and Pharmaceutical Process , Shanghai Institute of Pharmaceutical Industry , Shanghai , China
| | - Pengyu Liu
- b State Key Laboratory of New Drug and Pharmaceutical Process , Shanghai Institute of Pharmaceutical Industry , Shanghai , China
| | - Yubin Zhang
- a State Key Laboratory of Natural Medicines, Department of Biochemistry , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
7
|
Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 2015; 43:343-70. [PMID: 26364200 DOI: 10.1007/s10295-015-1682-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022]
Abstract
Actinomycetes continue to be important sources for the discovery of secondary metabolites for applications in human medicine, animal health, and crop protection. With the maturation of actinomycete genome mining as a robust approach to identify new and novel cryptic secondary metabolite gene clusters, it is critical to continue developing methods to activate and enhance secondary metabolite biosynthesis for discovery, development, and large-scale manufacturing. This review covers recent reports on promising new approaches and further validations or technical improvements of existing approaches to strain improvement applicable to a wide range of Streptomyces species and other actinomycetes.
Collapse
|
8
|
Beites T, Mendes MV. Chassis optimization as a cornerstone for the application of synthetic biology based strategies in microbial secondary metabolism. Front Microbiol 2015; 6:906. [PMID: 26441855 PMCID: PMC4563238 DOI: 10.3389/fmicb.2015.00906] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/19/2015] [Indexed: 02/06/2023] Open
Abstract
The increased number of bacterial genome sequencing projects has generated over the last years a large reservoir of genomic information. In silico analysis of this genomic data has renewed the interest in bacterial bioprospecting for bioactive compounds by unveiling novel biosynthetic gene clusters of unknown or uncharacterized metabolites. However, only a small fraction of those metabolites is produced under laboratory-controlled conditions; the remaining clusters represent a pool of novel metabolites that are waiting to be “awaken”. Activation of the biosynthetic gene clusters that present reduced or no expression (known as cryptic or silent clusters) by heterologous expression has emerged as a strategy for the identification and production of novel bioactive molecules. Synthetic biology, with engineering principles at its core, provides an excellent framework for the development of efficient heterologous systems for the expression of biosynthetic gene clusters. However, a common problem in its application is the host-interference problem, i.e., the unpredictable interactions between the device and the host that can hamper the desired output. Although an effort has been made to develop orthogonal devices, the most proficient way to overcome the host-interference problem is through genome simplification. In this review we present an overview on the strategies and tools used in the development of hosts/chassis for the heterologous expression of specialized metabolites biosynthetic gene clusters. Finally, we introduce the concept of specialized host as the next step of development of expression hosts.
Collapse
Affiliation(s)
- Tiago Beites
- I3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto, Portugal ; Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal
| | - Marta V Mendes
- I3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto, Portugal ; Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal
| |
Collapse
|
9
|
Zeng J, Ye RF, Zheng YT, Mao QG, Lv HP, Shi TT. Strain screening and sodium lactate effect on spiramycin production in Streptomyces spiramyceticus. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2107-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Zhu P, Chen D, Liu W, Zhang J, Shao L, Li JA, Chu J. Hydroxylation and hydrolysis: two main metabolic ways of spiramycin I in anaerobic digestion. BIORESOURCE TECHNOLOGY 2014; 153:95-100. [PMID: 24345568 DOI: 10.1016/j.biortech.2013.11.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 06/03/2023]
Abstract
The anaerobic degradation behaviors of five macrolides including spiramycin I, II, III, midecamycin and josamycin by sludge were investigated. Within 32days, 95% of spiramycin I, II or III was degraded, while the remove rate of midecamycin or josamycin was 75%. SPM I degradation was much higher in nutrition supplementation than that just in sludge. The degradation products and processes of spiramycin I were further characterized. Three molecules, designated P-1, P-2 and P-3 according to their order of occurrence, were obtained and purified. Structural determination was then performed by nuclear magnetic resonance and MS/MS spectra, and data indicated that hydroxylation and hydrolysis were main reactions during the anaerobic digestion of spiramycin I. P-1 is the intermediate of hydroxylation, and P-2 is the intermediate of hydrolysis. P-3 is the final product of the both reaction. This study revealed a hydroxylation and hydrolysis mechanism of macrolide in anaerobic digestion.
Collapse
Affiliation(s)
- Pei Zhu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, PR China; State Key Laboratory of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China
| | - Daijie Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, PR China
| | - Wenbin Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, PR China
| | - Jianbin Zhang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, PR China
| | - Lei Shao
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, PR China
| | - Ji-an Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, PR China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
11
|
Aigle B, Lautru S, Spiteller D, Dickschat JS, Challis GL, Leblond P, Pernodet JL. Genome mining of Streptomyces ambofaciens. J Ind Microbiol Biotechnol 2013; 41:251-63. [PMID: 24258629 DOI: 10.1007/s10295-013-1379-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/30/2013] [Indexed: 02/04/2023]
Abstract
Since the discovery of the streptomycin produced by Streptomyces griseus in the middle of the last century, members of this bacterial genus have been largely exploited for the production of secondary metabolites with wide uses in medicine and in agriculture. They have even been recognized as one of the most prolific producers of natural products among microorganisms. With the onset of the genomic era, it became evident that these microorganisms still represent a major source for the discovery of novel secondary metabolites. This was highlighted with the complete genome sequencing of Streptomyces coelicolor A3(2) which revealed an unexpected potential of this organism to synthesize natural products undetected until then by classical screening methods. Since then, analysis of sequenced genomes from numerous Streptomyces species has shown that a single species can carry more than 30 secondary metabolite gene clusters, reinforcing the idea that the biosynthetic potential of this bacterial genus is far from being fully exploited. This review highlights our knowledge on the potential of Streptomyces ambofaciens ATCC 23877 to synthesize natural products. This industrial strain was known for decades to only produce the drug spiramycin and another antibacterial compound, congocidine. Mining of its genome allowed the identification of 23 clusters potentially involved in the production of other secondary metabolites. Studies of some of these clusters resulted in the characterization of novel compounds and of previously known compounds but never characterized in this Streptomyces species. In addition, genome mining revealed that secondary metabolite gene clusters of phylogenetically closely related Streptomyces are mainly species-specific.
Collapse
Affiliation(s)
- Bertrand Aigle
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, 54506, Vandœuvre-lès-Nancy, France,
| | | | | | | | | | | | | |
Collapse
|
12
|
Post-PKS tailoring steps of the spiramycin macrolactone ring in Streptomyces ambofaciens. Antimicrob Agents Chemother 2013; 57:3836-42. [PMID: 23716060 DOI: 10.1128/aac.00512-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spiramycins are clinically important 16-member macrolide antibiotics produced by Streptomyces ambofaciens. Biosynthetic studies have established that the earliest lactonic intermediate in spiramycin biosynthesis, the macrolactone platenolide I, is synthesized by a type I modular polyketide synthase (PKS). Platenolide I then undergoes a series of post-PKS tailoring reactions yielding the final products, spiramycins I, II, and III. We recently characterized the post-PKS glycosylation steps of spiramycin biosynthesis in S. ambofaciens. We showed that three glycosyltransferases, Srm5, Srm29, and Srm38, catalyze the successive attachment of the three carbohydrates mycaminose, forosamine, and mycarose, respectively, with the help of two auxiliary proteins, Srm6 and Srm28. However, the enzymes responsible for the other tailoring steps, namely, the C-19 methyl group oxidation, the C-9 keto group reduction, and the C-3 hydroxyl group acylation, as well as the timing of the post-PKS tailoring reactions, remained to be established. In this study, we show that Srm13, a cytochrome P450, catalyzes the oxidation of the C-19 methyl group into a formyl group and that Srm26 catalyzes the reduction of the C-9 keto group, and we propose a timeline for spiramycin-biosynthetic post-PKS tailoring reactions.
Collapse
|
13
|
Artificial chromosomes to explore and to exploit biosynthetic capabilities of actinomycetes. J Biomed Biotechnol 2012; 2012:462049. [PMID: 22919271 PMCID: PMC3420335 DOI: 10.1155/2012/462049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/20/2012] [Accepted: 07/04/2012] [Indexed: 12/02/2022] Open
Abstract
Actinomycetes are an important source of biologically active compounds, like antibiotics, antitumor agents, and immunosuppressors. Genome sequencing is revealing that this class of microorganisms has larger genomes relative to other bacteria and uses a considerable fraction of its coding capacity (5–10%) for the production of mostly cryptic secondary metabolites. To access actinomycetes biosynthetic capabilities or to improve the pharmacokinetic properties and production yields of these chemically complex compounds, genetic manipulation of the producer strains can be performed. Heterologous expression in amenable hosts can be useful to exploit and to explore the genetic potential of actinomycetes and not cultivable but interesting bacteria. Artificial chromosomes that can be stably integrated into the Streptomyces genome were constructed and demonstrated to be effective for transferring entire biosynthetic gene clusters from intractable actinomycetes into more suitable hosts. In this paper, the construction of several shuttle Escherichia coli-Streptomyces artificial chromosomes is discussed together with old and new strategies applied to improve heterologous production of secondary metabolites.
Collapse
|
14
|
Development of a genetic system for combinatorial biosynthesis of lipopeptides in Streptomyces fradiae and heterologous expression of the A54145 biosynthesis gene cluster. Appl Environ Microbiol 2010; 76:6877-87. [PMID: 20802082 DOI: 10.1128/aem.01248-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A54145 factors are calcium-dependent lipopeptide antibiotics produced by Streptomyces fradiae NRRL 18160. A54145 is structurally related to the clinically important daptomycin, and as such may be a useful scaffold for the development of a novel lipopeptide antibiotic. We developed methods to genetically manipulate S. fradiae by deletion mutagenesis and conjugal transfer of plasmids from Escherichia coli. Cloning the complete pathway on a bacterial artificial chromosome (BAC) vector and the construction of ectopic trans-complementation with plasmids utilizing the φC31 or φBT1 site-specific integration system allowed manipulation of A54145 biosynthesis. The BAC clone pDA2002 was shown to harbor the complete A54145 biosynthesis gene cluster by heterologous expression in Streptomyces ambofaciens and Streptomyces roseosporus strains in yields of >100 mg/liter. S. fradiae mutants defective in LptI methyltransferase function were constructed, and they produced only A54145 factors containing glutamic acid (Glu₁₂), at the expense of factors containing 3-methyl-glutamic acid (3mGlu₁₂). This provided a practical route to produce high levels of pure Glu₁₂-containing lipopeptides. A suite of mutant strains and plasmids was created for combinatorial biosynthesis efforts focused on modifying the A54145 peptide backbone to generate a compound with daptomycin antibacterial activity and activity in Streptococcus pneumoniae pulmonary infections.
Collapse
|
15
|
Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 2010; 37:759-72. [DOI: 10.1007/s10295-010-0730-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/22/2010] [Indexed: 10/19/2022]
|
16
|
Fate of antibacterial spiramycin in river waters. Anal Bioanal Chem 2009; 396:1539-50. [DOI: 10.1007/s00216-009-3318-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/26/2009] [Accepted: 11/15/2009] [Indexed: 11/26/2022]
|
17
|
Karray F, Darbon E, Oestreicher N, Dominguez H, Tuphile K, Gagnat J, Blondelet-Rouault MH, Gerbaud C, Pernodet JL. Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens. MICROBIOLOGY-SGM 2008; 153:4111-4122. [PMID: 18048924 DOI: 10.1099/mic.0.2007/009746-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spiramycin, a 16-membered macrolide antibiotic used in human medicine, is produced by Streptomyces ambofaciens; it comprises a polyketide lactone, platenolide, to which three deoxyhexose sugars are attached. In order to characterize the gene cluster governing the biosynthesis of spiramycin, several overlapping cosmids were isolated from an S. ambofaciens gene library, by hybridization with various probes (spiramycin resistance or biosynthetic genes, tylosin biosynthetic genes), and the sequences of their inserts were determined. Sequence analysis showed that the spiramycin biosynthetic gene cluster spanned a region of over 85 kb of contiguous DNA. In addition to the five previously described genes that encode the type I polyketide synthase involved in platenolide biosynthesis, 45 other genes have been identified. It was possible to propose a function for most of the inferred proteins in spiramycin biosynthesis, in its regulation, in resistance to the produced antibiotic or in the provision of extender units for the polyketide synthase. Two of these genes, predicted to be involved in deoxysugar biosynthesis, were inactivated by gene replacement, and the resulting mutants were unable to produce spiramycin, thus confirming their involvement in spiramycin biosynthesis. This work reveals the main features of spiramycin biosynthesis and constitutes a first step towards a detailed molecular analysis of the production of this medically important antibiotic.
Collapse
Affiliation(s)
- Fatma Karray
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| | - Emmanuelle Darbon
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| | - Nathalie Oestreicher
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| | - Hélène Dominguez
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| | - Karine Tuphile
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| | - Josette Gagnat
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| | | | - Claude Gerbaud
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| | - Jean-Luc Pernodet
- CNRS UMR8621, Université Paris-Sud, Institut de Génétique et Microbiologie, Bâtiment 400, F-91405 Orsay Cedex, France
| |
Collapse
|
18
|
Yijun H, Weijia Z, Wei J, Chengbo R, Ying L. Disruption of a fur-like gene inhibits magnetosome formation in Magnetospirillum gryphiswaldense MSR-1. BIOCHEMISTRY (MOSCOW) 2008; 72:1247-53. [PMID: 18205608 DOI: 10.1134/s0006297907110119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, a genomic library of Magnetospirillum gryphiswaldense MSR-1 strain was constructed and a fur-like gene (encoding Fur protein, ferric uptake regulator) was isolated and sequenced. This gene consisted of 420 bp and encoded 139 amino acid residues. To investigate the function of this gene in MSR-1, a fur mutant was generated by double crossover with a kanamycin cassette inserted into its coding region. Iron uptake and magnetosome formation were dramatically inhibited by disruption of fur. Iron content analysis of the fur mutant indicated that it contained approximately 0.037% by dry weight, which was at least 10-fold less than that observed in the wild type. Electron microscopy revealed the absence of a magnetosome in the fur mutant, although it was able to tolerate 1 mM H2O2 at 10-fold higher level than wild-type. These data suggest that Fur protein may possess a novel function in magnetic bacteria.
Collapse
Affiliation(s)
- Huang Yijun
- State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | | | | | | | | |
Collapse
|
19
|
Kim MK, Ha HS, Choi SU. Conjugal transfer using the bacteriophage ϕC31 att/int system and properties of the attB site in Streptomyces ambofaciens. Biotechnol Lett 2007; 30:695-9. [DOI: 10.1007/s10529-007-9586-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/22/2007] [Accepted: 10/24/2007] [Indexed: 11/29/2022]
|
20
|
Choulet F, Aigle B, Gallois A, Mangenot S, Gerbaud C, Truong C, Francou FX, Fourrier C, Guérineau M, Decaris B, Barbe V, Pernodet JL, Leblond P. Evolution of the Terminal Regions of the Streptomyces Linear Chromosome. Mol Biol Evol 2006; 23:2361-9. [PMID: 16956972 DOI: 10.1093/molbev/msl108] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Comparative analysis of the Streptomyces chromosome sequences, between Streptomyces coelicolor, Streptomyces avermitilis, and Streptomyces ambofaciens ATCC23877 (whose partial sequence is released in this study), revealed a highly compartmentalized genetic organization of their genome. Indeed, despite the presence of specific genomic islands, the central part of the chromosome appears highly syntenic. In contrast, the chromosome of each species exhibits large species-specific terminal regions (from 753 to 1,393 kb), even when considering closely related species (S. ambofaciens and S. coelicolor). Interestingly, the size of the central conserved region between species decreases as the phylogenetic distance between them increases, whereas the specific terminal fraction reciprocally increases in size. Between highly syntenic central regions and species-specific chromosomal parts, there is a notable degeneration of synteny due to frequent insertions/deletions. This reveals a massive and constant genomic flux (from lateral gene transfer and DNA rearrangements) affecting the terminal contingency regions. We speculate that a gradient of recombination rate (i.e., insertion/deletion events) toward the extremities is the force driving the exclusion of essential genes from the terminal regions (i.e., chromosome compartmentalization) and generating a fast gene turnover for strong adaptation capabilities.
Collapse
Affiliation(s)
- Frédéric Choulet
- Laboratoire de Génétique et Microbiologie, UMR INRA 1128, IFR 110, Université Henri Poincaré Nancy 1, Faculté des Sciences et Techniques, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Colombié V, Bideaux C, Goma G, Uribelarrea JL. Effects of glucose limitation on biomass and spiramycin production by Streptomyces ambofaciens. Bioprocess Biosyst Eng 2005; 28:55-61. [PMID: 16195896 DOI: 10.1007/s00449-005-0015-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
Spiramycin production by Streptomyces ambofaciens Sp181110 with glucose as the carbon source was studied under a controlled nutritional environment. In a batch culture, the glucose excess after ammonium depletion led to pyruvate and alpha-ketoglutarate accumulation. 85 mg/l of spiramycin were produced in less than 70 h during the stationary and maintenance phase on these acids after glucose exhaustion. Fed-batch strategy was designed to study spiramycin production without by-product formation and glucose accumulation. In these conditions, up to 150 mg/l were produced in less than 80 h during the stationary phase on glucose. The antibiotic titre was found independent of the glucose feeding under carbon limitation and the importance of putative intracellular reserves formed after nutrient exhaustion was suggested. Besides, spiramycin production was not inhibited by the limiting flux of glucose.
Collapse
Affiliation(s)
- V Colombié
- Département de génie biologique et alimentaire, UMR-CNRS 5504 UR-INRA 792, Institut National des Sciences Appliquées, Complexe scientifique de Rangueil, 31077 Toulouse cedex, France
| | | | | | | |
Collapse
|
22
|
Reeves CD, Ward SL, Revill WP, Suzuki H, Marcus M, Petrakovsky OV, Marquez S, Fu H, Dong SD, Katz L. Production of hybrid 16-membered macrolides by expressing combinations of polyketide synthase genes in engineered Streptomyces fradiae hosts. ACTA ACUST UNITED AC 2005; 11:1465-72. [PMID: 15489173 DOI: 10.1016/j.chembiol.2004.08.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 08/06/2004] [Accepted: 08/10/2004] [Indexed: 11/28/2022]
Abstract
Combinations of the five polyketide synthase (PKS) genes for biosynthesis of tylosin in Streptomyces fradiae (tylG), spiramycin in Streptomyces ambofaciens (srmG), or chalcomycin in Streptomyces bikiniensis (chmG) were expressed in engineered hosts derived from a tylosin-producing strain of S. fradiae. Surprisingly efficient synthesis of compounds predicted from the expressed hybrid PKS was obtained. The post-PKS tailoring enzymes of tylosin biosynthesis acted efficiently on the hybrid intermediates with the exception of TylH-catalyzed hydroxylation of the methyl group at C14, which was efficient if C4 bore a methyl group, but inefficient if a methoxyl was present. Moreover, for some compounds, oxidation of the C6 ethyl side chain to an unprecedented carboxylic acid was observed. By also expressing chmH, a homolog of tylH from the chalcomycin gene cluster, efficient hydroxylation of the 14-methyl group was restored.
Collapse
|
23
|
Pang X, Aigle B, Girardet JM, Mangenot S, Pernodet JL, Decaris B, Leblond P. Functional angucycline-like antibiotic gene cluster in the terminal inverted repeats of the Streptomyces ambofaciens linear chromosome. Antimicrob Agents Chemother 2004; 48:575-88. [PMID: 14742212 PMCID: PMC321545 DOI: 10.1128/aac.48.2.575-588.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces ambofaciens has an 8-Mb linear chromosome ending in 200-kb terminal inverted repeats. Analysis of the F6 cosmid overlapping the terminal inverted repeats revealed a locus similar to type II polyketide synthase (PKS) gene clusters. Sequence analysis identified 26 open reading frames, including genes encoding the beta-ketoacyl synthase (KS), chain length factor (CLF), and acyl carrier protein (ACP) that make up the minimal PKS. These KS, CLF, and ACP subunits are highly homologous to minimal PKS subunits involved in the biosynthesis of angucycline antibiotics. The genes encoding the KS and ACP subunits are transcribed constitutively but show a remarkable increase in expression after entering transition phase. Five genes, including those encoding the minimal PKS, were replaced by resistance markers to generate single and double mutants (replacement in one and both terminal inverted repeats). Double mutants were unable to produce either diffusible orange pigment or antibacterial activity against Bacillus subtilis. Single mutants showed an intermediate phenotype, suggesting that each copy of the cluster was functional. Transformation of double mutants with a conjugative and integrative form of F6 partially restored both phenotypes. The pigmented and antibacterial compounds were shown to be two distinct molecules produced from the same biosynthetic pathway. High-pressure liquid chromatography analysis of culture extracts from wild-type and double mutants revealed a peak with an associated bioactivity that was absent from the mutants. Two additional genes encoding KS and CLF were present in the cluster. However, disruption of the second KS gene had no effect on either pigment or antibiotic production.
Collapse
Affiliation(s)
- Xiuhua Pang
- Laboratoire de Génétique et Microbiologie, UMR INRA-UHP 1128, IFR 110, Nancy 1, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Schauner C, Dary A, Lebrihi A, Leblond P, Decaris B, Germain P. Modulation of lipid metabolism and spiramycin biosynthesis in Streptomyces ambofaciens unstable mutants. Appl Environ Microbiol 1999; 65:2730-7. [PMID: 10347068 PMCID: PMC91403 DOI: 10.1128/aem.65.6.2730-2737.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces ambofaciens is prone to genetic instability involving genomic rearrangements at the extremities of the chromosomal DNA. An amplified DNA sequence (ADS205), including an open reading frame (orfPS), is responsible for the reversible loss of spiramycin production in the mutant strain NSA205 (ADS205(+) Spi-). The product of orfPS is homologous to polyketide synthase systems (PKSs) involved in the biosynthesis of erythromycin and rapamycin and is overexpressed in strain NSA205 compared with the parental strain RP181110. As PKSs and fatty acid synthase systems have the same precursors, we tested the possibility that overexpression of orfPS also affects lipid metabolism in strain NSA205. This report focuses on comparative analysis of lipids in strain RP181110, the mutant strain NSA205, and a derivative, NSA228 (ADS205(-) Spi+). NSA205 showed a dramatically depressed lipid content consisting predominantly of phospholipids and triacylglycerols. This lipid content was globally restored in strain NSA228, which had lost ADS205. Furthermore, strains RP181110 and NSA205 presented similar phospholipid and triacylglycerol compositions. No abnormal fatty acids were detected in NSA205.
Collapse
Affiliation(s)
- C Schauner
- Laboratoire de Fermentations et de Bioconversions Industrielles, ENSAIA, Institut National Polytechnique de Lorraine, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
25
|
Kuhstoss S, Huber M, Turner JR, Paschal JW, Rao RN. Production of a novel polyketide through the construction of a hybrid polyketide synthase. Gene 1996; 183:231-6. [PMID: 8996112 DOI: 10.1016/s0378-1119(96)00565-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The lactone rings of the polyketides platenolide and tylactone are synthesized by condensation of acetate-, proprionate-, and butyrate-derived precursors. A hybrid tylactone/platenolide synthase was constructed to determine if the choice of substrate is programmed by the polyketide synthase and to ascertain if a substrate different than that normally used in the first step of platenolide synthesis could be incorporated into the final polyketide. In this work, we report the successful incorporation of a propionate in place of the acetate normally used in the first step of platenolide synthesis. This result demonstrates that polyketide synthases choose a particular substrate at defined steps and provides strong evidence that substrate choice is programmed by the acyl transferase domain of a large, multifunctional polyketide synthase.
Collapse
Affiliation(s)
- S Kuhstoss
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- A W Birch
- Organish-Chemishes Institut, Universität Zürich, Switzerland
| | | |
Collapse
|
27
|
Affiliation(s)
- L Katz
- Abbott Laboratories Department 93D, Abbott Park, IL 60064-3500, USA
| | | |
Collapse
|
28
|
Kirst HA. Semi-synthetic derivatives of 16-membered macrolide antibiotics. PROGRESS IN MEDICINAL CHEMISTRY 1994; 31:265-95. [PMID: 8029476 DOI: 10.1016/s0079-6468(08)70022-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The fermentation-derived 16-membered and 14-membered macrolides have been equally productive sources of semi-synthetic derivatives which have significantly extended the utility of the macrolide class as important antibiotics. New derivatives, prepared by both chemical and biochemical methods, have exhibited a variety of improved features, such as an expanded antimicrobial spectrum, increased potency, greater efficacy, better oral bioavailability, extended chemical and metabolic stability, higher and more prolonged concentrations in tissues and fluids, lower and less frequent dosing, and/or diminished side-effects [302]. However, even more improvements are both achievable and necessary if problems such as resistance to existing antibiotics continue to rise [303, 304]. Newer semi-synthetic macrolides which satisfy these important needs should be anticipated as the contributions from new fields such as genetic engineering of macrolide-producing organisms and more powerful computational chemistry are combined with the more traditional disciplines of chemical synthesis, bioconversions, and screening fermentation broths.
Collapse
Affiliation(s)
- H A Kirst
- Natural Products Research Division, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285
| |
Collapse
|
29
|
Dary A, Kaiser P, Bourget N, Thompson CJ, Simonet JM, Decaris B. Large genomic rearrangements of the unstable region in Streptomyces ambofaciens are associated with major changes in global gene expression. Mol Microbiol 1993; 10:759-69. [PMID: 7934838 DOI: 10.1111/j.1365-2958.1993.tb00946.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Global gene expression is dramatically altered by genomic rearrangements in Streptomyces ambofaciens RP181110. Partial genome mapping of two derivatives of strain RP181110 (strains NSA205 and NSA228) revealed rearrangements located in the unstable region of the genome (deletion in strain NSA228; deletion and amplification in strain NSA205). Computerized comparisons of pulse-labelled proteins separated by two-dimensional electrophoresis have revealed numerous differences in gene expression among the three strains during both exponential and stationary phases of growth: 31 proteins were absent in both mutant strains, 16 were absent only in strain NSA228, 17 were absent only in strain NSA205 and 9 were found to be present or overexpressed in strain NSA205. Thus, in spite of the scarcity of genetic markers in the unstable region and its dispensability for growth under laboratory conditions, these results suggest that it includes genes which are actively expressed. Spontaneous gene amplifications, which occur frequently in this region of the chromosome, can further activate their expression.
Collapse
Affiliation(s)
- A Dary
- Laboratoire de Génétique et Microbiologie, Faculté des Sciences, Université de Nancy I, Vandoeuvre les Nancy, France
| | | | | | | | | | | |
Collapse
|
30
|
MacNeil T, Gewain KM, MacNeil DJ. Deletion analysis of the avermectin biosynthetic genes of Streptomyces avermitilis by gene cluster displacement. J Bacteriol 1993; 175:2552-63. [PMID: 8478321 PMCID: PMC204556 DOI: 10.1128/jb.175.9.2552-2563.1993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Streptomyces avermitilis produces a group of glycosylated, methylated macrocyclic lactones, the avermectins, which have potent anthelmintic activity. A homologous recombination strategy termed gene cluster displacement was used to construct Neor deletion strains with defined endpoints and to clone the corresponding complementary DNA encoding functions for avermectin biosynthesis (avr). Thirty-five unique deletions of 0.5 to > 100 kb over a continuous 150-kb region were introduced into S. avermitilis. Analysis of the avermectin phenotypes of the deletion-containing strains defined the extent and ends of the 95-kb avr gene cluster, identified a regulatory region, and mapped several avr functions. A 60-kb region in the central portion determines the synthesis of the macrolide ring. A 13-kb region at one end of the cluster is responsible for synthesis and attachment of oleandrose disaccharide. A 10-kb region at the other end has functions for positive regulation and C-5 O methylation. Physical analysis of the deletions and of in vivo-cloned fragments refined a 130-kb physical map of the avr gene cluster region.
Collapse
Affiliation(s)
- T MacNeil
- Department of Microbial Chemotherapeutics and Molecular Genetics, Merck Research Laboratories, Rahway, New Jersey 07065
| | | | | |
Collapse
|
31
|
Khosla C, Ebert-Khosla S, Hopwood DA. Targeted gene replacements in a Streptomyces polyketide synthase gene cluster: role for the acyl carrier protein. Mol Microbiol 1992; 6:3237-49. [PMID: 1453961 DOI: 10.1111/j.1365-2958.1992.tb01778.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A methodology was developed to construct any desired chromosomal mutation in the gene cluster that encodes the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor A3(2). A positive selection marker (resistance gene) is first introduced by double crossing-over into the chromosomal site of interest by use of an unstable delivery plasmid. This marker is subsequently replaced by the desired mutant allele via a second high-frequency double recombination event. The technology has been used to: (i) explore the significance of translational coupling between two adjacent PKS genes; (ii) prove that the acyl carrier protein (ACP) encoded by a gene in the cluster is necessary for the function of the actinorhodin PKS; (iii) provide genetic evidence supporting the hypothesis that serine 42 is the site of phosphopantetheinylation in the ACP of the actinorhodin PKS; and (iv) demonstrate that this ACP can be replaced by a Saccharopolyspora fatty acid synthase ACP to generate an active hybrid PKS.
Collapse
Affiliation(s)
- C Khosla
- Department of Genetics, John Innes Institute, John Innes Centre, Norwich, UK
| | | | | |
Collapse
|
32
|
Arrowsmith TJ, Malpartida F, Sherman DH, Birch A, Hopwood DA, Robinson JA. Characterisation of actI-homologous DNA encoding polyketide synthase genes from the monensin producer Streptomyces cinnamonensis. MOLECULAR & GENERAL GENETICS : MGG 1992; 234:254-64. [PMID: 1508151 DOI: 10.1007/bf00283846] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cloned DNA encoding polyketide synthase (PKS) genes from one Streptomyces species was previously shown to serve as a useful hybridisation probe for the isolation of other PKS gene clusters from the same or different species. In this work, the actI and actIII genes, encoding components of the actinorhodin PKS of Streptomyces coelicolor, were used to identify and clone a region of homologous DNA from the monensin-producing organism S. cinnamonensis. A 4799 bp fragment containing the S. cinnamonensis act-homologous DNA was sequenced. Five open reading frames (ORFs 1-5) were identified on one strand of this DNA. The five ORFs show high sequence similarities to ORFs that were previously identified in the granaticin, actinorhodin, tetracenomycin and whiE PKS gene clusters. This allowed the assignment of the following putative functions to these five ORFS: a heterodimeric beta-ketoacyl synthase (ORF1 and ORF2), an acyl carrier protein (ORF3), a beta-ketoacyl reductase (ORF5), and a bifunctional cyclase/dehydrase (ORF4). The ORFs are encoded in the order ORF1-ORF2-ORF3-ORF5-ORF4, and ORFs-1 and -2 show evidence for translational coupling. This act-homologous region therefore appears to encode a PKS gene cluster. A gene disruption experiment using the vector pGM160, and other evidence, suggests that this cluster is not essential for monensin biosynthesis but rather is involved in the biosynthesis of a cryptic aromatic polyketide in S. cinnamonensis. An efficient plasmid transformation system for S. cinnamonensis has been established, using the multicopy plasmids pWOR120 and pWOR125.
Collapse
|
33
|
Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 1992; 116:43-9. [PMID: 1628843 DOI: 10.1016/0378-1119(92)90627-2] [Citation(s) in RCA: 1154] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have constructed cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. All vectors contain the 760-bp oriT fragment from the IncP plasmid, RK2. Transfer functions need to be supplied in trans by the E. coli donor strain. We have incorporated into these vectors selectable antibiotic-resistance markers (AmR, ThR, SpR) that function in Streptomyces spp. and other features that should allow for: (i) integration via homologous recombination between cloned DNA and the Streptomyces spp. chromosome, (ii) autonomous replication, or (iii) site-specific integration at the bacteriophage phi C31 attachment site. Shuttle cosmids for constructing genomic libraries and bacteriophage P1 cloning vector capable of accepting approx. 100-kb fragments are also described. A simple mating procedure has been developed for the conjugal transfer of these vectors from E. coli to Streptomyces spp. that involves plating of the donor strain and either germinated spores or mycelial fragments of the recipient strain. We have shown that several of these vectors can be introduced into Streptomyces fradiae, a strain that is notoriously difficult to transform by PEG-mediated protoplast transformation.
Collapse
Affiliation(s)
- M Bierman
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN 46285-0424
| | | | | | | | | | | |
Collapse
|
34
|
Geistlich M, Losick R, Turner JR, Rao RN. Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene in Streptomyces ambofaciens. Mol Microbiol 1992; 6:2019-29. [PMID: 1508047 DOI: 10.1111/j.1365-2958.1992.tb01374.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A key step in the biosynthesis of macrolide antibiotics is the assembly of a large macrocyclic lactone ring by a multienzyme protein complex called the polyketide synthase. In the species Streptomyces ambofaciens, the polyketide synthase for the assembly of the 16-membered ring of the macrolide antibiotic spiramycin is encoded by the biosynthetic gene srmG. Here we show that the accumulation of transcripts from the srmG promoter is governed by the regulatory gene srmR, whose predicted product, a 65 kDa polypeptide, is not significantly similar in its deduced amino acid sequence to that of previously reported proteins in the protein databases. The srmR gene product is also required for the accumulation of transcripts from srmX, an additional gene in the vicinity of srmR, but not for the accumulation of transcripts from srmR itself. Interestingly, mutations in srmR prevent the accumulation of transcripts from the spiramycin resistance gene srmB, but this is an indirect consequence of the failure of srmR mutants to produce spiramycin, which is an inducer of its own resistance gene. The possibility that srmR is the prototype for a new class of regulatory genes governing early events in the biosynthesis of macrolide antibiotics is discussed.
Collapse
Affiliation(s)
- M Geistlich
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | |
Collapse
|
35
|
Simonet JM, Schneider D, Volff JN, Dary A, Decaris B. Genetic instability in Streptomyces ambofaciens: inducibility and associated genome plasticity. Gene 1992; 115:49-54. [PMID: 1612449 DOI: 10.1016/0378-1119(92)90539-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA amplification and deletions occur at high frequency in unstable regions localized on the Streptomyces ambofaciens chromosome. The structure of these regions was investigated, leading to the identification of internal reiterations which could play a role in the deletion and/or amplification mechanism(s). UV irradiation and treatments with mitomycin C, oxolinic acid and novobiocin were shown to efficiently induce genetic instability. Finally, mutator strains were isolated, in which genetic instability was dramatically increased. The involvement of an SOS-like response in genetic instability in S. ambofaciens is proposed.
Collapse
Affiliation(s)
- J M Simonet
- Laboratoire de Génétique et Microbiologie, Faculté des Sciences, Université de Nancy I, France
| | | | | | | | | |
Collapse
|
36
|
Berg CM, Vartak NB, Wang G, Xu X, Liu L, MacNeil DJ, Gewain KM, Wiater LA, Berg DE. The m gamma delta-1 element, a small gamma delta (Tn1000) derivative useful for plasmid mutagenesis, allele replacement and DNA sequencing. Gene 1992; 113:9-16. [PMID: 1314210 DOI: 10.1016/0378-1119(92)90664-b] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transposon gamma delta (Tn1000), a 6-kb member of the Tn3 family, is widely used for plasmid mutagenesis. A 1.8-kb derivative of gamma delta was constructed that contains the kan gene from Tn5 and the resolution (res) site from gamma delta cloned between 40-bp inverted repeats of gamma delta's delta (delta) end. This element, named m gamma delta-1, lacks the genes encoding transposase and resolvase, and therefore depends on its host to supply transposition and resolution functions. Thus, in strains lacking gamma delta, m gamma delta-1 will not transpose. The m gamma delta-1 element is shown to be useful for mutagenesis of plasmids, DNA sequencing, and allele replacement (in Streptomyces avermitilis).
Collapse
Affiliation(s)
- C M Berg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-2131
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 1992; 111:61-8. [PMID: 1547955 DOI: 10.1016/0378-1119(92)90603-m] [Citation(s) in RCA: 581] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An integration vector for gene analysis in Streptomyces has been constructed. This vector replicates in Escherichia coli, and integrates into Streptomyces by homologous recombination between a cloned fragment and the genome. To overcome methylation-specific restriction barriers, an E. coli mutant triply defective in DNA methylation was constructed as a source for the integration plasmids. The frequency of integration of pVE616 derivatives into the Streptomyces avermitilis genome was proportional to the size of the cloned DNA. Derivatives of pVE616, containing fragments from pVE650, a plasmid with a 24-kb insert of S. avermitilis DNA, were used in complementation analyses of seven S. avermitilis mutants defective in glycosylation of avermectin (Av). Three complementation groups, located in a 7-kb region, were identified. Derivatives of pVE616, containing fragments from the 18-kb of DNA adjacent to the glycosylation region, were integrated into an Av producer. Av produced from the integrants was substantially reduced, indicating that the 18 kb also encodes gene products which are involved in Av biosynthesis.
Collapse
Affiliation(s)
- D J MacNeil
- Merck Sharp and Dohme Research Laboratories, Rahway, NJ 07065
| | | | | | | | | | | |
Collapse
|
38
|
Chapter 14. Genetic Engineering of Antibiotic Producing Organisms. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1992. [DOI: 10.1016/s0065-7743(08)60412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
39
|
Abstract
Antibiotic biosynthesis pathways are found in a broad range of Gram positive prokaryotes, a smaller range of Gram negative prokaryotes and a limited range of eukaryotes. A variety of techniques can be used to identify the genes involved in the biosynthesis of these compounds ranging from genetic complementation and interspecific gene transfer to polymerase chain reaction amplification and transposon mutagenesis. The dissection of these cloned pathways and the understanding of their structure and regulation has led to insights into the structure and function of antibiotic biosynthesis genes. With new knowledge of the structural similarities and relationships between related antibiotic biosynthesis pathways, the possibility of directed manipulation of specific genes to allow synthesis of novel antibiotics is now possible.
Collapse
Affiliation(s)
- R Kirby
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
40
|
Kuhstoss S, Richardson MA, Rao RN. Plasmid cloning vectors that integrate site-specifically in Streptomyces spp. Gene 1991; 97:143-6. [PMID: 1995427 DOI: 10.1016/0378-1119(91)90022-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cloning vectors based on the Streptomyces ambofaciens plasmid pSAM2 and the streptomycete phage phi C31 were developed for use in Streptomyces spp. These vectors replicate in Escherichia coli but integrate by site-specific recombination in Streptomyces spp. Both pSAM2-based and phi C31-based vectors transformed a number of different Streptomyces spp; however, the phi C31-based vectors consistently transformed at higher frequencies than pSAM2-based vectors. Southern analysis indicated that the phi C31-based vectors integrated at a unique site in the S. ambofaciens chromosome, while the pSAM2-based vectors gave complex patterns which could indicate structural instability or use of multiple loci. Both types of vectors utilize the apramycin (Am)-resistance gene which can be selected in E. coli and Streptomyces spp. with either Am or the commercially available antibiotic Geneticin (G418).
Collapse
Affiliation(s)
- S Kuhstoss
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285
| | | | | |
Collapse
|
41
|
Affiliation(s)
- R H Baltz
- Department of Molecular Genetics, Eli Lilly and Company, Indianapolis, Indiana 46285
| |
Collapse
|