1
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Wirth NT, Nikel PI. Combinatorial pathway balancing provides biosynthetic access to 2-fluoro- cis, cis-muconate in engineered Pseudomonas putida. CHEM CATALYSIS 2021; 1:1234-1259. [PMID: 34977847 PMCID: PMC8711041 DOI: 10.1016/j.checat.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/15/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022]
Abstract
The wealth of bio-based building blocks produced by engineered microorganisms seldom include halogen atoms. Muconate is a platform chemical with a number of industrial applications that could be broadened by introducing fluorine atoms to tune its physicochemical properties. The soil bacterium Pseudomonas putida naturally assimilates benzoate via the ortho-cleavage pathway with cis,cis-muconate as intermediate. Here, we harnessed the native enzymatic machinery (encoded within the ben and cat gene clusters) to provide catalytic access to 2-fluoro-cis,cis-muconate (2-FMA) from fluorinated benzoates. The reactions in this pathway are highly imbalanced, leading to accumulation of toxic intermediates and limited substrate conversion. By disentangling regulatory patterns of ben and cat in response to fluorinated effectors, metabolic activities were adjusted to favor 2-FMA biosynthesis. After implementing this combinatorial approach, engineered P. putida converted 3-fluorobenzoate to 2-FMA at the maximum theoretical yield. Hence, this study illustrates how synthetic biology can expand the diversity of nature's biochemical catalysis.
Collapse
Affiliation(s)
- Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Koentjoro MP, Ogawa N. STRUCTURAL STUDIES OF TRANSCRIPTIONAL REGULATION BY LysR-TYPE TRANSCRIPTIONAL REGULATORS IN BACTERIA. ACTA ACUST UNITED AC 2018. [DOI: 10.7831/ras.6.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Naoto Ogawa
- The United Graduate School of Agricultural Science, Gifu University
- Faculty of Agriculture, Shizuoka University
| |
Collapse
|
4
|
Kim J, Pérez-Pantoja D, Silva-Rocha R, Oliveros JC, de Lorenzo V. High-resolution analysis of the m-xylene/toluene biodegradation subtranscriptome of Pseudomonas putida mt-2. Environ Microbiol 2015; 18:3327-3341. [PMID: 26373670 DOI: 10.1111/1462-2920.13054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/30/2015] [Accepted: 09/12/2015] [Indexed: 11/28/2022]
Abstract
Pseudomonas putida mt-2 metabolizes m-xylene and other aromatic compounds through the enzymes encoded by the xyl operons of the TOL plasmid pWW0 along with other chromosomally encoded activities. Tiling arrays of densely overlapping oligonucleotides were designed to cover every gene involved in this process, allowing dissection of operon structures and exposing the interplay of plasmid and chromosomal functions. All xyl sequences were transcribed in response to aromatic substrates and the 3'-termini of both upper and lower mRNA operons extended beyond their coding regions, i.e. the 3'-end of the lower operon mRNA penetrated into the convergent xylS regulatory gene. Furthermore, xylR mRNA for the master m-xylene responsive regulator of the system was decreased by aromatic substrates, while the cognate upper operon mRNA was evenly stable throughout its full length. RNA sequencing confirmed these data at a single nucleotide level and refined the formerly misannotated xylL sequence. The chromosomal ortho route for degradation of benzoate (the ben, cat clusters and some pca genes) was activated by this aromatic, but not by the TOL substrates, toluene or m-xylene. We advocate this scenario as a testbed of natural retroactivity between a pre-existing metabolic network and a new biochemical pathway implanted through gene transfer.
Collapse
Affiliation(s)
- Juhyun Kim
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Danilo Pérez-Pantoja
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Rafael Silva-Rocha
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Juan Carlos Oliveros
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain.
| |
Collapse
|
5
|
Wang H, Ayala JC, Benitez JA, Silva AJ. RNA-seq analysis identifies new genes regulated by the histone-like nucleoid structuring protein (H-NS) affecting Vibrio cholerae virulence, stress response and chemotaxis. PLoS One 2015; 10:e0118295. [PMID: 25679988 PMCID: PMC4332508 DOI: 10.1371/journal.pone.0118295] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/13/2015] [Indexed: 12/20/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) functions as a transcriptional silencer by binding to AT-rich sequences at bacterial promoters. However, H-NS repression can be counteracted by other transcription factors in response to environmental changes. The identification of potential toxic factors, the expression of which is prevented by H-NS could facilitate the discovery of new regulatory proteins that may contribute to the emergence of new pathogenic variants by anti-silencing. Vibrio cholerae hns mutants of the El Tor biotype exhibit altered virulence, motility and environmental stress response phenotypes compared to wild type. We used an RNA-seq analysis approach to determine the basis of the above hns phenotypes and identify new targets of H-NS transcriptional silencing. H-NS affected the expression of 18% of all predicted genes in a growth phase-dependent manner. Loss of H-NS resulted in diminished expression of numerous genes encoding methyl-accepting chemotaxis proteins as well as chemotaxis toward the attractants glycine and serine. Deletion of hns also induced an endogenous envelope stress response resulting in elevated expression of rpoE encoding the extracytoplamic sigma factor E (σE). The RNA-seq analysis identified new genes directly repressed by H-NS that can affect virulence and biofilm development in the El Tor biotype cholera bacterium. We show that H-NS and the quorum sensing regulator HapR silence the transcription of the vieSAB three-component regulatory system in El Tor biotype V. cholerae. We also demonstrate that H-NS directly represses the transcription of hlyA (hemolysin), rtxCA (the repeat in toxin or RTX), rtxBDE (RTX transport) and the biosynthesis of indole. Of these genes, H-NS occupancy at the hlyA promoter was diminished by overexpression of the transcription activator HlyU. We discuss the role of H-NS transcriptional silencing in phenotypic differences exhibited by V. cholerae biotypes.
Collapse
Affiliation(s)
- Hongxia Wang
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, United States of America
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Julio C. Ayala
- University of Alabama at Birmingham Department of Microbiology, Birmingham, Alabama, United States of America
| | - Jorge A. Benitez
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, United States of America
| | - Anisia J. Silva
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
The LuxR-type regulator VpsT negatively controls the transcription of rpoS, encoding the general stress response regulator, in Vibrio cholerae biofilms. J Bacteriol 2013; 196:1020-30. [PMID: 24363348 DOI: 10.1128/jb.00993-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera is a waterborne diarrheal disease caused by Vibrio cholerae strains of serogroups O1 and O139. Expression of the general stress response regulator RpoS and formation of biofilm communities enhance the capacity of V. cholerae to persist in aquatic environments. The transition of V. cholerae between free-swimming (planktonic) and biofilm life-styles is regulated by the second messenger cyclic di-GMP (c-di-GMP). We previously reported that increasing the c-di-GMP pool by overexpression of a diguanylate cyclase diminished RpoS expression. Here we show that c-di-GMP repression of RpoS expression is eliminated by deletion of the genes vpsR and vpsT, encoding positive regulators of biofilm development. To determine the mechanism of this regulation, we constructed a strain expressing a vpsT-FLAG allele from native transcription and translation signals. Increasing the c-di-GMP pool induced vpsT-FLAG expression. The interaction between VpsT-FLAG and the rpoS promoter was demonstrated by chromatin immunoprecipitation. Furthermore, purified VpsT interacted with the rpoS promoter in a c-di-GMP-dependent manner. Primer extension analysis identified two rpoS transcription initiation sites located 43 bp (P1) and 63 bp (P2) upstream of the rpoS start codon. DNase I footprinting showed that the VpsT binding site at the rpoS promoter overlaps the primary P1 transcriptional start site. Deletion of vpsT significantly enhanced rpoS expression in V. cholerae biofilms that do not make HapR. This result suggests that VpsT and c-di-GMP contribute to the transcriptional silencing of rpoS in biofilms prior to cells entering the quorum-sensing mode.
Collapse
|
7
|
A quinazoline-2,4-diamino analog suppresses Vibrio cholerae flagellar motility by interacting with motor protein PomB and induces envelope stress. Antimicrob Agents Chemother 2013; 57:3950-9. [PMID: 23733460 DOI: 10.1128/aac.00473-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vibrio cholerae strains of serogroups O1 and O139, the causative agents of the diarrheal illness cholera, express a single polar flagellum powered by sodium motive force and require motility to colonize and spread along the small intestine. In a previous study, we described a high-throughput assay for screening for small molecules that selectively inhibit bacterial motility and identified a family of quinazoline-2,4-diamino analogs (Q24DAs) that (i) paralyzed the sodium-driven polar flagellum of Vibrios and (ii) diminished cholera toxin secreted by El Tor biotype V. cholerae. In this study, we provide evidence that a Q24DA paralyzes the polar flagellum by interacting with the motor protein PomB. Inhibition of motility with the Q24DA enhanced the transcription of the cholera toxin genes in both biotypes. We also show that the Q24DA interacts with outer membrane protein OmpU and other porins to induce envelope stress and expression of the extracellular RNA polymerase sigma factor σ(E). We suggest that Q24DA-induced envelope stress could affect the correct folding, assembly, and secretion of pentameric cholera toxin in El Tor biotype V. cholerae independently of its effect on motility.
Collapse
|
8
|
The histone-like nucleoid structuring protein (H-NS) is a repressor of Vibrio cholerae exopolysaccharide biosynthesis (vps) genes. Appl Environ Microbiol 2012; 78:2482-8. [PMID: 22287003 DOI: 10.1128/aem.07629-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity of Vibrio cholerae to form biofilms has been shown to enhance its survival in the aquatic environment and play important roles in pathogenesis and disease transmission. In this study, we demonstrated that the histone-like nucleoid structuring protein is a repressor of exopolysaccharide (vps) biosynthesis genes and biofilm formation.
Collapse
|
9
|
Interaction of the histone-like nucleoid structuring protein and the general stress response regulator RpoS at Vibrio cholerae promoters that regulate motility and hemagglutinin/protease expression. J Bacteriol 2011; 194:1205-15. [PMID: 22194453 DOI: 10.1128/jb.05900-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The bacterium Vibrio cholerae colonizes the human small intestine and secretes cholera toxin (CT) to cause the rice-watery diarrhea characteristic of this illness. The ability of this pathogen to colonize the small bowel, express CT, and return to the aquatic environment is controlled by a complex network of regulatory proteins. Two global regulators that participate in this process are the histone-like nucleoid structuring protein (H-NS) and the general stress response regulator RpoS. In this study, we address the role of RpoS and H-NS in the coordinate regulation of motility and hemagglutinin (HA)/protease expression. In addition to initiating transcription of hapA encoding HA/protease, RpoS enhanced flrA and rpoN transcription to increase motility. In contrast, H-NS was found to bind to the flrA, rpoN, and hapA promoters and represses their expression. The strength of H-NS repression at the above-mentioned promoters was weaker for hapA, which exhibited the strongest RpoS dependency, suggesting that transcription initiation by RNA polymerase containing σ(S) could be more resistant to H-NS repression. Occupancy of the flrA and hapA promoters by H-NS was demonstrated by chromatin immunoprecipitation (ChIP). We show that the expression of RpoS in the stationary phase significantly diminished H-NS promoter occupancy. Furthermore, RpoS enhanced the transcription of integration host factor (IHF), which positively affected the expression of flrA and rpoN by diminishing the occupancy of H-NS at these promoters. Altogether, we propose a model for RpoS regulation of motility gene expression that involves (i) attenuation of H-NS repression by IHF and (ii) RpoS-dependent transcription initiation resistant to H-NS.
Collapse
|
10
|
MacLean AM, Haerty W, Golding GB, Finan TM. The LysR-type PcaQ protein regulates expression of a protocatechuate-inducible ABC-type transport system in Sinorhizobium meliloti. Microbiology (Reading) 2011; 157:2522-2533. [DOI: 10.1099/mic.0.050542-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The LysR protein PcaQ regulates the expression of genes encoding products relevant to the degradation of the aromatic acid protocatechuate (3,4-dihydroxybenzoate), and we have previously defined a PcaQ DNA-binding site located upstream of the target pcaDCHGB operon in Sinorhizobium meliloti. In this work, we show that PcaQ also regulates the expression of the S. meliloti smb20568-smb20787-smb20786-smb20785-smb20784 gene cluster, which is predicted to encode an ABC transport system. ABC transport systems have not been shown before to transport protocatechuate, and we have designated this gene cluster pcaMNVWX. The transcriptional start site of pcaM was mapped, and the predicted PcaQ DNA-binding site was located at −73 to −58 relative to this site. Results from electrophoretic mobility shift assays with purified PcaQ and from expression assays indicated that PcaQ activates expression of the transport system in the presence of protocatechuate. To investigate this transport system further, we generated a pcaM deletion mutant (predicted to encode the substrate-binding protein) and introduced a polar insertion mutation into pcaN, a gene that is predicted to encode a permease. These mutants grew poorly on protocatechuate, presumably because they fail to transport protocatechuate. Genome analyses revealed PcaQ-like DNA-binding sites encoded upstream of ABC transport systems in other members of the α-proteobacteria, and thus it appears likely that these systems are involved in the uptake of protocatechuate.
Collapse
Affiliation(s)
- Allyson M. MacLean
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton L8S 4K1, Canada
| | - Wilfried Haerty
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton L8S 4K1, Canada
| | - G. Brian Golding
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton L8S 4K1, Canada
| | - Turlough M. Finan
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton L8S 4K1, Canada
| |
Collapse
|
11
|
Li D, Yan Y, Ping S, Chen M, Zhang W, Li L, Lin W, Geng L, Liu W, Lu W, Lin M. Genome-wide investigation and functional characterization of the beta-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeri A1501. BMC Microbiol 2010; 10:36. [PMID: 20137101 PMCID: PMC2907835 DOI: 10.1186/1471-2180-10-36] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/08/2010] [Indexed: 11/20/2022] Open
Abstract
Background Soil microorganisms are mainly responsible for the complete mineralization of aromatic compounds that usually originate from plant products or environmental pollutants. In many cases, structurally diverse aromatic compounds can be converted to a small number of structurally simpler intermediates, which are metabolized to tricarboxylic acid intermediates via the β-ketoadipate pathway. This strategy provides great metabolic flexibility and contributes to increased adaptation of bacteria to their environment. However, little is known about the evolution and regulation of the β-ketoadipate pathway in root-associated diazotrophs. Results In this report, we performed a genome-wide analysis of the benzoate and 4-hydroxybenzoate catabolic pathways of Pseudomonas stutzeri A1501, with a focus on the functional characterization of the β-ketoadipate pathway. The P. stutzeri A1501 genome contains sets of catabolic genes involved in the peripheral pathways for catabolism of benzoate (ben) and 4-hydroxybenzoate (pob), and in the catechol (cat) and protocatechuate (pca) branches of the β-ketoadipate pathway. A particular feature of the catabolic gene organization in A1501 is the absence of the catR and pcaK genes encoding a LysR family regulator and 4-hydroxybenzoate permease, respectively. Furthermore, the BenR protein functions as a transcriptional activator of the ben operon, while transcription from the catBC promoter can be activated in response to benzoate. Benzoate degradation is subject to carbon catabolite repression induced by glucose and acetate in A1501. The HPLC analysis of intracellular metabolites indicated that low concentrations of 4-hydroxybenzoate significantly enhance the ability of A1501 to degrade benzoate. Conclusions The expression of genes encoding proteins involved in the β-ketoadipate pathway is tightly modulated by both pathway-specific and catabolite repression controls in A1501. This strain provides an ideal model system for further study of the evolution and regulation of aromatic catabolic pathways.
Collapse
Affiliation(s)
- Danhua Li
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hou B, Li F, Yang X, Hong G. The properties of NodD were affected by mere variation in length within its hinge region. Acta Biochim Biophys Sin (Shanghai) 2009; 41:963-71. [PMID: 19902131 DOI: 10.1093/abbs/gmp090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Rhizobium leguminosarum bv. viciae, NodD, a member of the LysR-type transcriptional regulators, while auto-regulating, activates transcription of other nod genes in the presence of naringenin. A hinge region of NodD was previously identified in our laboratory as a functional region independent of its N-terminal DNA-binding and C-terminal regulatory domain. Further study was carried out to see the possible effect of the length variation in the hinge region on NodD properties. To our surprise, as many as seven classes of phenotypes were observed. Class I is deficient of activating nodA transcription and abolishes auto-regulation; class II is able to activate nodA transcription independently of naringenin and abolishes auto-regulation; class III retains autoregulating but partial activating ability; class IV is able to activate transcription independently of naringenin and retains auto-regulation; in class V, nodA is transcribed constitutively but the transcription level is drastically down-regulated in the presence of naringenin; in class VI, nodA is transcribed constitutively with higher induction ratio; in class VII, nodA is transcribed constitutively with lower induction ratio. To learn more about the possible mechanism, circular permutation assays were done, which showed that the length variation of the hinge of NodD caused by mutation led to the change in bend angles of nod promoter. This finding should help to get an insight into how transcriptional regulation is mediated by NodD at the molecular level as well as to understand the regulatory system of this important family.
Collapse
Affiliation(s)
- Bihe Hou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
13
|
Hou B, Li F, Yang X, Hong G. A small functional intramolecular region of NodD was identified by mutation. Acta Biochim Biophys Sin (Shanghai) 2009; 41:822-30. [PMID: 19779647 DOI: 10.1093/abbs/gmp073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Rhizobium leguminosarum bv. viciae, NodD, as a member of the LysR-type transcriptional regulators (LTTRs), exerts auto-regulation and activates transcription of other nod genes in the presence of naringenin. LTTRs were typically composed of N-terminal DNA-binding domain and C-terminal regulatory domain. In this study, by systematic insertion mutation, a region of 12 amino acids in length of NodD was identified as functional domain. Insertion mutants in this region appeared to acquire the ability of constitutively activating nodA gene and retained their auto-regulation properties. This identified region was shown to be a hinge of NodD as revealed through the model built using Swiss- PDB Viewer software. It is the first time to report that as a member of LysR family, NodD has been shown to contain a short intramolecular domain that influences its performance.
Collapse
Affiliation(s)
- Bihe Hou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
14
|
Cyclic AMP post-transcriptionally regulates the biosynthesis of a major bacterial autoinducer to modulate the cell density required to activate quorum sensing. FEBS Lett 2008; 582:3744-50. [PMID: 18930049 DOI: 10.1016/j.febslet.2008.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/29/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
Abstract
In Vibrio cholerae, expression of the quorum sensing regulator HapR is induced by the accumulation of a major autoinducer synthesized by the activity of CqsA. Here we show that the cAMP-cAMP receptor protein complex regulates cqsA expression at the post-transcriptional level. This conclusion is supported by the analysis of cqsA-lacZ fusions, the ectopic expression of cqsA in Deltacrp mutants and by Northern blot analysis showing that cqsA mRNA is unstable in Deltacrp and Deltacya (adenylate cyclase) mutants. Addition of cAMP to the culture of a Deltacya mutant restored cqsA mRNA stability and cholera autoinducer 1 production. Lowering intracellular cAMP levels by addition of d-glucose increased the cell density required to activate HapR. These results indicate that cAMP acts as a quorum modulator.
Collapse
|
15
|
Lin LX, Liu H, Zhou NY. MhbR, a LysR-type regulator involved in 3-hydroxybenzoate catabolism via gentisate in Klebsiella pneumoniae M5a1. Microbiol Res 2008; 165:66-74. [PMID: 18801651 DOI: 10.1016/j.micres.2008.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/03/2008] [Accepted: 08/03/2008] [Indexed: 10/21/2022]
Abstract
In Klebsiella pneumoniae M5a1, mhbTDHIM genes are involved in 3-hydroxybenzoate catabolism via the gentisate pathway. mhbR, which encodes a LysR-type transcriptional regulator, is divergently transcribed from the mhb structural genes. MhbR was found to be necessary for the expression of catabolic genes. Transcriptional studies demonstrated that the mhb structural genes are transcribed as an operon. The promoters of mhbR and the mhb operon are sigma(70)-type and overlap with each other. 5' Deletion analysis of the promoter transcription activity showed that a 233bp fragment (position -144 to +89 according to the transcriptional start site of mhb operon) contained the element necessary for induction. beta-Galactosidase activity assays and electrophoretic mobility shift assays showed that an inverted repeat sequence site 1 (ATAACCTCCAGGTTAT, position -70 to -55) within this fragment was critical for regulation.
Collapse
Affiliation(s)
- Lu-Xia Lin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | |
Collapse
|
16
|
Role of the histone-like nucleoid structuring protein in the regulation of rpoS and RpoS-dependent genes in Vibrio cholerae. J Bacteriol 2008; 190:7335-45. [PMID: 18790865 DOI: 10.1128/jb.00360-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Production of the Zn-metalloprotease hemagglutinin (HA)/protease by Vibrio cholerae has been reported to enhance enterotoxicity in rabbit ileal loops and the reactogenicity of live cholera vaccine candidates. Expression of HA/protease requires the alternate sigma factor sigma(S) (RpoS), encoded by rpoS. The histone-like nucleoid structuring protein (H-NS) has been shown to repress rpoS expression in Escherichia coli. In V. cholerae strains of the classical biotype, H-NS has been reported to silence virulence gene expression. In this study we examined the role of H-NS in the expression of HA/protease and motility in an El Tor biotype strain by constructing a Deltahns mutant. The Deltahns mutant exhibited multiple phenotypes, such as production of cholera toxin in nonpermissive LB medium, reduced resistance to high osmolarity, enhanced resistance to low pH and hydrogen peroxide, and reduced motility. Depletion of H-NS by overexpression of a dominant-negative allele or by deletion of hns resulted in diminished expression of HA/protease. Epistasis analysis of HA/protease expression in Deltahns, DeltarpoS, and Deltahns DeltarpoS mutants, analysis of RpoS reporter fusions, quantitative reverse transcription-PCR measurements, and ectopic expression of RpoS in DeltarpoS and DeltarpoS Deltahns mutants showed that H-NS posttranscriptionally enhances RpoS expression. The Deltahns mutant exhibited a lower degree of motility and lower levels of expression of flaA, flaC, cheR-2, and motX mRNAs than the wild type. Comparison of the mRNA abundances of these genes in wild-type, Deltahns, DeltarpoS, and Deltahns DeltarpoS strains revealed that deletion of rpoS had a more severe negative effect on their expression. Interestingly, deletion of hns in the rpoS background resulted in higher expression levels of flaA, flaC, and motX, suggesting that H-NS represses the expression of these genes in the absence of sigma(S). Finally, we show that the cyclic AMP receptor protein and H-NS act along the same pathway to positively affect RpoS expression.
Collapse
|
17
|
Yoshida M, Hiromoto T, Hosokawa K, Yamaguchi H, Fujiwara S. Ligand specificity of MobR, a transcriptional regulator for the 3-hydroxybenzoate hydroxylase gene of Comamonas testosteroni KH122-3s. Biochem Biophys Res Commun 2007; 362:275-80. [PMID: 17707338 DOI: 10.1016/j.bbrc.2007.07.190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 11/23/2022]
Abstract
MobR from Comamonas testosteroni KH122-3s is a member of the MarR family of transcriptional regulators and functions as a repressor for the mobA gene that encodes a 3-hydroxybenzoate 4-hydroxylase. 3-Hydroxybenzoate binds to MobR as a ligand, resulting in an efficient induction of mobA. Various 3-hydroxybenzoate analogues were examined for their inducibilities using the mobA::lacZ transcriptional fusion system. beta-Galactosidase was induced by the addition of 2,3-dihydroxybenzoate or 3,5-dihydroxybenzoate besides 3-hydroxybenzoate, suggesting that the hydroxyl group at position 3 is critical in addition to the carboxyl group on the aromatic ring. A gel mobility-shift assay also showed that MobR was released from the target DNA in the presence of these compounds. Circular dichroism studies demonstrated that MobR adopted two conformational states corresponding to the 3-hydroxybenzoate-bound and unbound forms. Other ligands also induced the structural change as well; however, the tertiary structures of converted forms were different from those by 3-hydroxybenzoate.
Collapse
Affiliation(s)
- Mariko Yoshida
- Department of Bioscience, Nanobiotechnology Research Center, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | | | | | |
Collapse
|
18
|
Putrinš M, Tover A, Tegova R, Saks Ü, Kivisaar M. Study of factors which negatively affect expression of the phenol degradation operon pheBA in Pseudomonas putida. Microbiology (Reading) 2007; 153:1860-1871. [PMID: 17526843 DOI: 10.1099/mic.0.2006/003681-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription of the plasmid-borne phenol catabolic operon pheBA in Pseudomonas putida is activated by the LysR-family regulator CatR in the presence of the effector molecule cis,cis-muconate (CCM), which is an intermediate of the phenol degradation pathway. In addition to the positive control of the operon, several factors negatively affect transcription initiation from the pheBA promoter. First, the activation of the pheBA operon depends on the extracellular concentration of phenol. The pheBA promoter is rapidly activated in the presence of micromolar concentrations of phenol in minimal growth medium, but the initiation of transcription from this promoter is severely delayed after sudden exposure of bacteria to 2.5 mM phenol. Second, the transcriptional activation from this promoter is impeded when the growth medium of bacteria contains amino acids. The negative effects of amino acids can be suppressed either by overproducing CatR or by increasing, the intracellular amount of CCM. However, the intracellular amount of CCM is a major limiting factor for the transcriptional activation of the pheBA operon, as accumulation of CCM in a P. putida catB-defective strain, unable to metabolize CCM (but expressing CatR at a natural level), almost completely relieves the negative effects of amino acids. The intracellular amount of CCM is negatively affected by the catabolite repression control protein via downregulating at the post-transcriptional level the expression of the pheBA-encoded catechol 1,2-dioxygenase and the phenol monooxygenase, the enzymes needed for CCM production.
Collapse
Affiliation(s)
- Marta Putrinš
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| | - Andres Tover
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| | - Radi Tegova
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| | - Ülle Saks
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| |
Collapse
|
19
|
Chae JC, Zylstra GJ. 4-Chlorobenzoate uptake in Comamonas sp. strain DJ-12 is mediated by a tripartite ATP-independent periplasmic transporter. J Bacteriol 2006; 188:8407-12. [PMID: 17041053 PMCID: PMC1698221 DOI: 10.1128/jb.00880-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fcb gene cluster involved in the hydrolytic dehalogenation of 4-chlorobenzoate is organized in the order fcbB-fcbA-fcbT1-fcbT2-fcbT3-fcbC in Comamonas sp. strain DJ-12. The genes are operonic and inducible with 4-chloro-, 4-iodo-, and 4-bromobenzoate. The fcbT1, fcbT2, and fcbT3 genes encode a transporter in the secondary TRAP (tripartite ATP-independent periplasmic) family. An fcbT1T2T3 knockout mutant shows a much slower growth rate on 4-chlorobenzoate compared to the wild type. 4-Chlorobenzoate is transported into the wild-type strain five times faster than into the fcbT1T2T3 knockout mutant. Transport of 4-chlorobenzoate shows significant inhibition by 4-bromo-, 4-iodo-, and 4-fluorobenzoate and mild inhibition by 3-chlorobenzoate, 2-chlorobenzoate, 4-hydroxybenzoate, 3-hydroxybenzoate, and benzoate. Uptake of 4-chlorobenzoate is significantly inhibited by ionophores which collapse the proton motive force.
Collapse
Affiliation(s)
- Jong-Chan Chae
- Biotech Center for Agriculture and the Environment, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | | |
Collapse
|
20
|
Kivistik PA, Putrins M, Püvi K, Ilves H, Kivisaar M, Hõrak R. The ColRS two-component system regulates membrane functions and protects Pseudomonas putida against phenol. J Bacteriol 2006; 188:8109-17. [PMID: 17012397 PMCID: PMC1698186 DOI: 10.1128/jb.01262-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As reported, the two-component system ColRS is involved in two completely different processes. It facilitates the root colonization ability of Pseudomonas fluorescens and is necessary for the Tn4652 transposition-dependent accumulation of phenol-utilizing mutants in Pseudomonas putida. To determine the role of the ColRS system in P. putida, we searched for target genes of response regulator ColR by use of a promoter library. Promoter screening was performed on phenol plates to mimic the conditions under which the effect of ColR on transposition was detected. The library screen revealed the porin-encoding gene oprQ and the alginate biosynthesis gene algD occurring under negative control of ColR. Binding of ColR to the promoter regions of oprQ and algD in vitro confirmed its direct involvement in regulation of these genes. Additionally, the porin-encoding gene ompA(PP0773) and the type I pilus gene csuB were also identified in the promoter screen. However, it turned out that ompA(PP0773) and csuB were actually affected by phenol and that the influence of ColR on these promoters was indirect. Namely, our results show that ColR is involved in phenol tolerance of P. putida. Phenol MIC measurement demonstrated that a colR mutant strain did not tolerate elevated phenol concentrations. Our data suggest that increased phenol susceptibility is also the reason for inhibition of transposition of Tn4652 in phenol-starving colR mutant bacteria. Thus, the current study revealed the role of the ColRS two-component system in regulation of membrane functionality, particularly in phenol tolerance of P. putida.
Collapse
Affiliation(s)
- Paula Ann Kivistik
- Estonian Biocentre and Institute of Molecular and Cell Biology, Tartu University, 51010 Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
21
|
Hiromoto T, Matsue H, Yoshida M, Tanaka T, Higashibata H, Hosokawa K, Yamaguchi H, Fujiwara S. Characterization of MobR, the 3-hydroxybenzoate-responsive transcriptional regulator for the 3-hydroxybenzoate hydroxylase gene of Comamonas testosteroni KH122-3s. J Mol Biol 2006; 364:863-77. [PMID: 17046018 DOI: 10.1016/j.jmb.2006.08.098] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 08/12/2006] [Accepted: 08/31/2006] [Indexed: 11/24/2022]
Abstract
Comamonas testosteroni KH122-3s is an aerobic soil bacterium that utilizes 3-hydroxybenzoate as a sole carbon and energy source. In this strain, 3-hydroxybenzoate hydroxylase (MobA) acts on the initial step of the degradation to produce 3,4-dihydroxybenzoate, which is subsequently subjected to the meta-cleavage pathway leading to tricarboxylic acid cycle intermediates. Gene walking analysis of the upstream region of mobA revealed an open reading frame (mobR) that encodes a transcriptional regulator of the MarR family. Here, we report that MobR negatively regulates the expression of mobA, and that the repression is relieved by binding of 3-hydroxybenzoate, the substrate for MobA. A primer extension experiment was performed to determine the transcription start site for mobA and identified it at 83 bp upstream of the mobA start codon, accompanied by a typical sigma70-type promoter. The mobR gene was expressed in Escherichia coli cells and the recombinant product was purified to homogeneity. Gel mobility-shift assays and DNase I footprinting analyses indicated that MobR binds as a homodimer to an imperfect inverted repeat within the mobA-mobR intergenic region, with an apparent dissociation constant of 11.5(+/- 0.5) nM. The operator site is located between the start codon and the promoter region for mobA, suggesting that MobR functions as a transcriptional repressor for mobA expression. The results of effector-binding assays indicated that MobR, but not its isomers 4-hydroxybenzoate and salicylate, is released from the operator site by the addition of 3-hydroxybenzoate. This dissociation process is highly cooperative, with a Hill coefficient of approximately 2. In addition, CD spectroscopic studies demonstrated that MobR adopts two conformational states corresponding to the effector-bound and unbound forms. These results suggest that the MobR dimer possesses at least two effector-binding sites, and that the effector binding to MobR induces an allosteric conformational change required for dissociation of the protein-DNA complex.
Collapse
Affiliation(s)
- Takeshi Hiromoto
- Department of Chemistry, Nanobiothechnology Research Center, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen XC, Feng J, Hou BH, Li FQ, Li Q, Hong GF. Modulating DNA bending affects NodD-mediated transcriptional control in Rhizobium leguminosarum. Nucleic Acids Res 2005; 33:2540-8. [PMID: 15872217 PMCID: PMC1088969 DOI: 10.1093/nar/gki537] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Rhizobium leguminosarum NodD binds to the nod box of the inducible nod gene nodA as a V-shaped tetramer and bends the nod box. In this work, we show that the nod gene inducer naringenin decreased gel mobility of nod box DNA–NodD complexes by sharpening the NodD-induced DNA bend, which correlated with nodA transcription activation. NodD can induce different DNA bends when the distance between the two half-sites of the nod box was modified, which severely affected NodD-mediated transcriptional control. One or two base pairs were deleted from, or inserted into, the two half-sites of the nod box of nodA. Circular permutation assays showed that such distance modulations allowed NodD to induce relaxed or sharpened DNA bending. In the case of 1 bp deletion, where the DNA bends were more relaxed than in the wild type, nodA transcription was repressed both in the absence and in the presence of inducer naringenin. In the cases of 1 and 2 bp insertion, where the DNA bends were much sharper than in wild type in the absence or presence of the inducer naringenin, nodA transcription was initiated constitutively with no requirement for the inducer naringenin or, even, the NodD regulating protein.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo-Fan Hong
- To whom correspondence should be addressed: Tel: +86 21 54921223; Fax: +86 21 54921011;
| |
Collapse
|
23
|
Peters M, Tomikas A, Nurk A. Organization of the horizontally transferred pheBA operon and its adjacent genes in the genomes of eight indigenous Pseudomonas strains. Plasmid 2005; 52:230-6. [PMID: 15518880 DOI: 10.1016/j.plasmid.2004.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 07/12/2004] [Indexed: 11/27/2022]
Abstract
Horizontal transfer of genes encoding phenol degradation (pheBA) in the environment has been previously described. Complete or partial phe-operon was redetected in plasmids of several indigenous Pseudomonas strains isolated from the river water. The sequences of up- and downstream regions of the acquired phe-DNA in eight different plasmids were analyzed. In all cases, miniature insertional elements or putative transposase genes were found suggesting transposase dependent pheBA integration into plasmids. In three cases, an open reading frame encoding homologue to the transcription regulator protein (CatR) of the pheBA operon was determined.
Collapse
Affiliation(s)
- Maire Peters
- Institute of Molecular and Cell Biology, University of Tartu and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia.
| | | | | |
Collapse
|
24
|
Tropel D, van der Meer JR. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 2004; 68:474-500, table of contents. [PMID: 15353566 PMCID: PMC515250 DOI: 10.1128/mmbr.68.3.474-500.2004] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Collapse
Affiliation(s)
- David Tropel
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
25
|
Chang HK, Mohseni P, Zylstra GJ. Characterization and regulation of the genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. J Bacteriol 2003; 185:5871-81. [PMID: 13129960 PMCID: PMC193950 DOI: 10.1128/jb.185.19.5871-5881.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthranilate (2-aminobenzoate) is an important intermediate in tryptophan metabolism. In order to investigate the degradation of tryptophan through anthranilate by Burkholderia cepacia, several plasposon mutations were constructed of strain DBO1 and one mutant with the plasposon insertion in the anthranilate dioxygenase (AntDO) genes was chosen for further study. The gene sequence obtained from flanking DNA of the plasposon insertion site revealed unexpected information. B. cepacia DBO1 AntDO (designated AntDO-3C) is a three-component Rieske-type [2Fe-2S] dioxygenase composed of a reductase (AndAa), a ferredoxin (AndAb), and a two-subunit oxygenase (AndAcAd). This is in contrast to the two-component (an oxygenase and a reductase) AntDO enzyme from Acinetobacter sp. strain ADP1, P. aeruginosa PAO1, and P. putida P111. AntDO from strains ADP1, PAO1, and P111 are closely related to benzoate dioxygenase, while AntDO-3C is closely related to aromatic hydrocarbon dioxygenases from Novosphingobium aromaticivorans F199 and Sphingomonas yanoikuyae B1 and 2-chlorobenzoate dioxygenase from P. aeruginosa strains 142 and JB2. Escherichia coli cells expressing the functional AntDO-3C genes transform anthranilate and salicylate (but not 2-chlorobenzoate) to catechol. The enzyme includes a novel reductase whose absence results in less efficient transformation of anthranilate by the oxygenase and ferredoxin. AndR, a possible AraC/XylS-type transcriptional regulator, was shown to positively regulate expression of the andAcAdAbAa genes. Anthranilate was the only effector (of 12 aromatic compounds tested) that was able to induce expression of the genes.
Collapse
Affiliation(s)
- Hung-Kuang Chang
- Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University, New Brunswick, New Jersey 08901-8520, USA.
| | | | | |
Collapse
|
26
|
Park J, Malinverni J, Adriaens P, Kukor JJ. Quantitative structure-activity relationship (QSAR) analysis of aromatic effector specificity in NtrC-like transcriptional activators from aromatic oxidizing bacteria. FEMS Microbiol Lett 2003; 224:45-52. [PMID: 12855166 DOI: 10.1016/s0378-1097(03)00400-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A quantitative structure-activity relationship (QSAR) approach was taken to provide mechanistic insights into the interaction between the chemical structure of inducing compounds and the transcriptional activation of aromatic monooxygenase operons among the XylR/DmpR subclass of bacterial NtrC-like transcriptional regulators. Compared to XylR and DmpR, a broader spectrum of effector compounds was observed for the TbuT system from Ralstonia pickettii PKO1. The results of QSAR analysis for TbuT suggested that a steric effect, rather than hydrophobic or electronic effects, may be the predominant factor in determining aromatic effector specificity, and the active site of the regulator may positively interact not only with the methyl moiety but also with the most electron-rich aryl side of an aromatic effector.
Collapse
Affiliation(s)
- Joonhong Park
- Center for Microbial Ecology, Michigan State University, A528 PSS Building, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
27
|
Silva AJ, Pham K, Benitez JA. Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1883-1891. [PMID: 12855739 DOI: 10.1099/mic.0.26086-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vibrio cholerae of both biotypes produce a soluble Zn(2+)-dependent metalloprotease: haemagglutinin/protease (Hap), encoded by hapA. Hap has been shown to have mucinolytic and cytotoxic activity. These activities are likely to play an important role in the pathogenesis of cholera and the reactogenicity of attenuated vaccine strains. Production of Hap requires transcriptional activation by the HapR regulator and is repressed by glucose. The present study shows that mucin purified from two sources, bile salts, and growth at 37 degrees C enhanced Hap protease production. Analysis of hapA and hapR promoter fusions with the lacZ gene showed both promoters to be activated in a cell-density-dependent pattern. Glucose repressed and mucin induced the hapA promoter by a HapR-independent mechanism. Bile had no effect on either hapR or hapA promoter activity. Expression of hapA was required for vibrios to translocate through a mucin-containing gel. These results suggest Hap to play an important role in cholera pathogenesis by promoting mucin gel penetration, detachment and spreading of infection along the gastrointestinal tract.
Collapse
Affiliation(s)
- Anisia J Silva
- California State University College of Science and Mathematics, Department Biology, 2555 East San Ramon Avenue, Fresno, CA 93740, USA
| | - Kim Pham
- California State University College of Science and Mathematics, Department Biology, 2555 East San Ramon Avenue, Fresno, CA 93740, USA
| | - Jorge A Benitez
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr, SW, Atlanta, GA 30310-1495, USA
| |
Collapse
|
28
|
Kovacikova G, Skorupski K. Binding site requirements of the virulence gene regulator AphB: differential affinities for the Vibrio cholerae classical and El Tor tcpPH promoters. Mol Microbiol 2002; 44:533-47. [PMID: 11972789 DOI: 10.1046/j.1365-2958.2002.02914.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The differential expression of virulence genes be-tween the two disease-causing biotypes of Vibrio cholerae, classical and El Tor, is primarily due to a single basepair change in the tcpPH promoter, which strongly influences the ability of the LysR regulator AphB to activate transcription in response to environmental conditions. We show here that this single basepair change influences virulence gene expression by dramatically altering the affinity of AphB for its recognition site in the tcpPH promoter. AphB binds greater than 10-fold more efficiently to a wild-type classical tcpPH promoter fragment with an A at -65 relative to a wild-type El Tor fragment that has a G at this position. As this single basepair change is located within the left arm of the LysR recognition motif (5'-TGCAA-N7-TTGCA), which extends from -69 to -53, a systematic mutagenesis of the other positions within this site was carried out to assess their influence on AphB binding in vitro and transcriptional activation in vivo. This analysis revealed that the left and right arms of the interrupted dyad display a high degree of symmetry with respect to their role in AphB binding. The right promoter proximal arm also plays a role in transcriptional activation that is distinct from its role in AphB binding. A second AphB binding site (5'-TGCAA-N7-TGTCA) was identified upstream of the aphB gene itself, which extends from +17 to +33 relative to the start of transcription and functions in autorepression. Although the sequences of the AphB binding sites at the tcpPH and aphB promoters are highly conserved, important differences exist in the way that AphB functions at each of these sites.
Collapse
Affiliation(s)
- Gabriela Kovacikova
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | |
Collapse
|
29
|
Tover A, Ojangu EL, Kivisaar M. Growth medium composition-determined regulatory mechanisms are superimposed on CatR-mediated transcription from the pheBA and catBCA promoters in Pseudomonas putida. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2149-2156. [PMID: 11495992 DOI: 10.1099/00221287-147-8-2149] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression of the phenol degradation pathway in Pseudomonas putida strain PaW85 requires coordinated transcription of the plasmid-borne pheBA operon encoding catechol 1,2-dioxygenase and phenol monooxygenase, respectively, and the chromosomally encoded catechol degradation catBCA operon. Transcriptional activation from the pheBA and catBCA promoters is regulated by CatR and the catechol degradation pathway intermediate cis,cis-muconate. Here it is shown that physiological control mechanisms are superimposed on this regulatory system. Transcriptional activation from the pheBA and catBCA promoters is growth-phase-regulated in P. putida cells grown on rich medium (LB medium). CatR-mediated transcription from these promoters is silenced on rich medium until the transition from exponential to stationary phase. A slight positive effect (threefold) of stationary-phase-specific sigma factor sigma(S) on transcription from the pheBA promoter was observed. Expression of the catBCA promoter was not influenced by the activity of this sigma factor. In contrast to rich growth medium, transcription from the pheBA and catBCA promoters in minimal medium containing a mixture of glucose and sodium benzoate was rapidly induced in exponential culture. It was shown that the presence of amino acids in the culture medium causes exponential silencing of the pheBA and catBCA promoters. The possibility that a hypothetical repressor protein could be involved in physiological control of transcription from the pheBA and catBCA promoters is discussed.
Collapse
Affiliation(s)
- Andres Tover
- Department of Genetics, Institute of Molecular and Cell Biology, Estonian Biocentre and Tartu University, Riia 23, 51010 Tartu, Estonia1
| | - Eve-Ly Ojangu
- Department of Genetics, Institute of Molecular and Cell Biology, Estonian Biocentre and Tartu University, Riia 23, 51010 Tartu, Estonia1
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Estonian Biocentre and Tartu University, Riia 23, 51010 Tartu, Estonia1
| |
Collapse
|
30
|
Kieboom J, de Bont J. Identification and molecular characterization of an efflux system involved in Pseudomonas putida S12 multidrug resistance. MICROBIOLOGY (READING, ENGLAND) 2001; 147:43-51. [PMID: 11160799 DOI: 10.1099/00221287-147-1-43] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The authors previously described srpABC, an operon involved in proton-dependent solvent efflux in the solvent-tolerant Pseudomonas putida S12. Recently, it was shown that organic solvents and not antibiotics induce this operon. In the present study, the authors characterize a new efflux pump, designated ArpABC, on the basis of two isolated chloramphenicol-sensitive transposon mutants. The arpABC operon is involved in the active efflux of multiple antibiotics, such as tetracycline, chloramphenicol, carbenicillin, streptomycin, erythromycin and novobiocin. The deduced amino acid sequences encoded by the three genes involved show a striking resemblance to proteins of the resistance/nodulation/cell division family, which are involved in both organic solvent and multiple drug efflux. These findings demonstrate that ArpABC is highly homologous to the MepABC and TtgABC efflux systems for organic solvents and multiple antibiotics. However, ArpABC does not contribute to organic solvent tolerance in P. putida S12 but is solely involved in multidrug resistance.
Collapse
Affiliation(s)
- J Kieboom
- Division of Industrial Microbiology, Department of Food Technology and Nutritional Sciences, Wageningen Agricultural University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | | |
Collapse
|
31
|
Vedler E, Kõiv V, Heinaru A. TfdR, the LysR-type transcriptional activator, is responsible for the activation of the tfdCB operon of Pseudomonas putida 2, 4-dichlorophenoxyacetic acid degradative plasmid pEST4011. Gene 2000; 245:161-8. [PMID: 10713456 DOI: 10.1016/s0378-1119(00)00017-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Pseudomonas putida EST4021, the tfdCB operon of plasmid pEST4011 encodes enzymes involved in 2,4-dichlorophenoxyacetic acid degradation. We have identified a gene, tfdR, important for the regulation of the tfdCB operon. Sequence analysis of the tfdR gene revealed an open reading frame with amino acid sequence similar to the LysR family of transcriptional activators. The tfdR gene is located upstream and transcribed divergently from the tfdCB operon. Utilizing primer extension analysis, the transcription initiation sites of the gene tfdR and the tfdCB operon were localized 85 (84)bp and 292bp upstream from the coding sequences of these genes, respectively. Multiple sequence analysis revealed that the genes tfdR, tfdC and tfdB of plasmid pEST4011 are most similar to the regulatory gene tfdR and the module 2 genes tfdC(II) and tfdB(II) of pJP4, respectively. The promoter-operator sequences of tfdR and its target tfdCB operon of pEST4011 have regions with highly conserved nucleotides characteristic for the catechol-subgroup LysR-type transcriptional activators. We showed that the pEST4011 tfdR gene product activates the expression of the tfdCB operon and the effector molecule for TfdR is 2,4-dichloro-cis,cis-muconate. Our data indicate that the structure and the mode of regulation of tfd genes are similar, despite the bacteria being isolated from different geographical regions.
Collapse
MESH Headings
- 2,4-Dichlorophenoxyacetic Acid/metabolism
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bacterial Proteins/physiology
- Base Sequence
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Databases, Factual
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Molecular Sequence Data
- Operon/genetics
- Plasmids/genetics
- Plasmids/metabolism
- Pseudomonas putida/genetics
- Pseudomonas putida/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- E Vedler
- Institute of Molecular and Cell Biology, Tartu University, 23 Riia Street, 51010, Tartu, Estonia.
| | | | | |
Collapse
|
32
|
Tover A, Zernant J, Chugani SA, Chakrabarty AM, Kivisaar M. Critical nucleotides in the interaction of CatR with the pheBA promoter: conservation of the CatR-mediated regulation mechanisms between the pheBA and catBCA operons. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 1):173-183. [PMID: 10658664 DOI: 10.1099/00221287-146-1-173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The promoter of the plasmid-borne pheBA genes encoding enzymes for phenol degradation resembles the catBCA promoter and is activated by CatR, the regulator of the chromosomally encoded catechol-degradative catBCA genes in Pseudomonas putida. In this study, site-directed mutagenesis of the pheBA promoter region was performed. The interrupted inverted repeat sequence of the CatR recognition binding site (RBS) of the pheBA promoter is highly homologous to that of the catBCA promoter. However, the RBS was shown not to be the sole important feature for high-affinity binding of CatR to this site. Mutagenesis of the activation binding site (ABS) of CatR, which overlaps the -35 hexamer sequence TTGGAT of the promoter, revealed that the two G nucleotides in this sequence are important for promoter activity but not for CatR binding. All other substitutions made in the ABS negatively affected both the promoter activity and CatR binding. The spacer sequence of the pheBA and catBCA promoters between the -10 and -35 hexamers is 19 bp, which is longer than optimal. However, reducing the spacer region of the pheBA promoter was not sufficient for CatR-independent promoter activation. An internal binding site (IBS) for CatR is located downstream of the transcriptional start site of the catBCA genes and it negatively regulates the operon. A similar IBS was identified in the case of the pheBA operon and tested for its functionality. The results indicate a conservation of CatR-mediated regulation mechanisms between the pheBA promoter and the catBCA promoter. This universal mechanism of CatR-mediated transcriptional activation could be of great importance in enabling catechol-degrading bacteria to expand their substrate range via horizontal transfer of the phenol degradative genes.
Collapse
Affiliation(s)
- Andres Tover
- Department of Genetics, Institute of Molecular and Cell Biology, Estonian Biocentre and Tartu University, 51010 Tartu, Estonia1
| | - Jana Zernant
- Department of Genetics, Institute of Molecular and Cell Biology, Estonian Biocentre and Tartu University, 51010 Tartu, Estonia1
| | - Sudha A Chugani
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA2
| | - Ananda M Chakrabarty
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA2
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Estonian Biocentre and Tartu University, 51010 Tartu, Estonia1
| |
Collapse
|
33
|
Chang HK, Zylstra GJ. Role of quinolinate phosphoribosyl transferase in degradation of phthalate by Burkholderia cepacia DBO1. J Bacteriol 1999; 181:3069-75. [PMID: 10322007 PMCID: PMC93761 DOI: 10.1128/jb.181.10.3069-3075.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two distinct regions of DNA encode the enzymes needed for phthalate degradation by Burkholderia cepacia DBO1. A gene coding for an enzyme (quinolinate phosphoribosyl transferase) involved in the biosynthesis of NAD+ was identified between these two regions by sequence analysis and functional assays. Southern hybridization experiments indicate that DBO1 and other phthalate-degrading B. cepacia strains have two dissimilar genes for this enzyme, while non-phthalate-degrading B. cepacia strains have only a single gene. The sequenced gene was labeled ophE, due to the fact that it is specifically induced by phthalate as shown by lacZ gene fusions. Insertional knockout mutants lacking ophE grow noticeably slower on phthalate while exhibiting normal rates of growth on other substrates. The fact that elevated levels of quinolinate phosphoribosyl transferase enhance growth on phthalate stems from the structural similarities between phthalate and quinolinate: phthalate is a competitive inhibitor of this enzyme and the phthalate catabolic pathway cometabolizes quinolinate. The recruitment of this gene for growth on phthalate thus gives B. cepacia an advantage over other phthalate-degrading bacteria in the environment.
Collapse
Affiliation(s)
- H K Chang
- Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | | |
Collapse
|
34
|
Madhusudhan KT, Luo J, Sokatch JR. In vitro transcriptional studies of the bkd operon of Pseudomonas putida: L-branched-chain amino acids and D-leucine are the inducers. J Bacteriol 1999; 181:2889-94. [PMID: 10217783 PMCID: PMC93734 DOI: 10.1128/jb.181.9.2889-2894.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BkdR is the transcriptional activator of the bkd operon, which encodes the four proteins of the branched-chain keto acid dehydrogenase multienzyme complex of Pseudomonas putida. In this study, hydroxyl radical footprinting revealed that BkdR bound to only one face of DNA over the same region identified in DNase I protection assays. Deletions of even a few bases in the 5' region of the BkdR-binding site greatly reduced transcription, confirming that the entire protected region is necessary for transcription. In vitro transcription of the bkd operon was obtained by using a vector containing the bkdR-bkdA1 intergenic region plus the putative rho-independent terminator of the bkd operon. Substrate DNA, BkdR, and any of the L-branched-chain amino acids or D-leucine was required for transcription. Branched-chain keto acids, D-valine, and D-isoleucine did not promote transcription. Therefore, the L-branched-chain amino acids and D-leucine are the inducers of the bkd operon. The concentration of L-valine required for half-maximal transcription was 2.8 mM, which is similar to that needed to cause half-maximal proteolysis due to a conformational change in BkdR. A model for transcriptional activation of the bkd operon by BkdR during enzyme induction which incorporates these results is presented.
Collapse
Affiliation(s)
- K T Madhusudhan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | |
Collapse
|
35
|
Kieboom J, Dennis JJ, Zylstra GJ, de Bont JA. Active efflux of organic solvents by Pseudomonas putida S12 is induced by solvents. J Bacteriol 1998; 180:6769-72. [PMID: 9852029 PMCID: PMC107788 DOI: 10.1128/jb.180.24.6769-6772.1998] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of the membrane-associated organic solvent efflux system SrpABC of Pseudomonas putida S12 was examined by cloning a 312-bp DNA fragment, containing the srp promoter, in the broad-host-range reporter vector pKRZ-1. Compounds that are capable of inducing expression of the srpABC genes include aromatic and aliphatic solvents and alcohols. General stress conditions such as pH, temperature, NaCl, or the presence of organic acids did not induce srp transcription. Although the solvent efflux pump in P. putida S12 is a member of the resistance-nodulation-cell division family of transporters, the srpABC genes were not induced by antibiotics or heavy metals.
Collapse
Affiliation(s)
- J Kieboom
- Division of Industrial Microbiology, Department of Food Technology and Nutritional Sciences, Wageningen Agricultural University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
36
|
McFall SM, Chugani SA, Chakrabarty AM. Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. Gene 1998; 223:257-67. [PMID: 9858745 DOI: 10.1016/s0378-1119(98)00366-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ortho-cleavage pathways of catechol and 3-chlorocatechol are central catabolic pathways of Pseudomonas putida that convert aromatic and chloroaromatic compounds to tricarboxylic acid (TCA)-cycle intermediates. They are encoded by the evolutionarily related catBCA and clcABD operons, respectively. Expression of the cat and clc operons requires the LysR-type transcriptional activators CatR and ClcR, and the inducer molecules cis,cis-muconate and 2-chloro-cis,cis-muconate. In addition to sequence similarities, CatR and ClcR share functional similarities which allow catR to complement clcR mutants. DNase-I footprinting, DNA bending and in vitro transcription analyses with RNA polymerase mutants indicate that CatR and ClcR activate transcription via a similar mechanism which involves interaction with the C-terminal domain of the alpha-subunit (alpha-CTD) of RNA polymerase. In vitro transcription assays with different regions of the clc promoter indicate that the ClcR dimer bound to the promoter proximal site (the activation binding site) interacts with the alpha-CTD. Gel shift assays and DNase-I footprinting have demonstrated that CatR occupies two adjacent sites proximal to the catBCA promoter in the presence of inducer and an additional binding site within the catB structural gene called the internal binding site (IBS). CatR binds the IBS with low intrinsic affinity that is increased by cooperativity in presence of the two promoter binding sites. Site-directed mutations in the IBS indicate a probable cis-acting repressor function for the IBS. The location of the IBS within the catB structural gene, the cooperativity observed in footprinting studies and phasing studies suggest that the IBS participates in the interaction of CatR with the upstream binding sites by looping out the intervening DNA. Although the core transcriptional activation mechanisms of CatR and ClcR have been conserved, nature has provided some flexibility to respond to different environmental signals in addition to the presence of inducer. Transcriptional fusion studies demonstrate that the expression from the clc promoter is repressed when the cells are grown on succinate, citrate or fumarate and that this repression is ClcR-dependent and occurs at the transcriptional level. The presence of these organic acids did not affect the expression from the cat promoter. In vitro transcription assays demonstrate that the TCA-cycle intermediate, fumarate, directly and specifically inhibits the formation of the clcA transcript. No such inhibition was observed when CatR was used as activator on either the cat or clc template. Since both the catechol and the chlorocatechol pathways feed into the TCA cycle, but only the chlorocatechol pathway is inhibited by fumarate, there is a subtle difference in the regulation of these two pathways where intracellular sensing of a TCA-cycle intermediate leads to a reduction of chloroaromatic degradation.
Collapse
Affiliation(s)
- S M McFall
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2153 North Campus Drive, Evanston, IL 60208, USA
| | | | | |
Collapse
|
37
|
Hõrak R, Kivisaar M. Expression of the transposase gene tnpA of Tn4652 is positively affected by integration host factor. J Bacteriol 1998; 180:2822-9. [PMID: 9603867 PMCID: PMC107244 DOI: 10.1128/jb.180.11.2822-2829.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/1997] [Accepted: 03/29/1998] [Indexed: 02/07/2023] Open
Abstract
Tn4652 is a derivative of the toluene degradation transposon Tn4651 that belongs to the Tn3 family of transposons (M. Tsuda and T. Iino, Mol. Gen. Genet. 210:270-276, 1987). We have sequenced the transposase gene tnpA of transposon Tn4652 and mapped its promoter to the right end of the element. The deduced amino acid sequence of tnpA revealed 96.2% identity with the putative transposase of Tn5041. Homology with other Tn3 family transposases was only moderate (about 20 to 24% identity), suggesting that Tn4652 and Tn5041 are distantly related members of the Tn3 family. Functional analysis of the tnpA promoter revealed that it is active in Pseudomonas putida but silent in Escherichia coli, indicating that some P. putida-specific factor is required for the transcription from this promoter. Additionally, tnpA promoter activity was shown to be modulated by integration host factor (IHF). The presence of an IHF-binding site upstream of the tnpA promoter enhanced the promoter activity. The positive role of IHF was also confirmed by the finding that the enhancing effect of IHF was not detected in the P. putida ihfA-deficient strain A8759. Moreover, the Tn4652 terminal sequences had a negative effect on transcription from the tnpA promoter in the ihfA-defective strain. This finding suggests that IHF not only enhances transcription from the tnpA promoter but also alleviates the negative effect of terminal sequences of Tn4652 on the promoter activity. Also, an in vitro binding assay demonstrated that both ends of Tn4652 bind IHF from a cell lysate of E. coli.
Collapse
Affiliation(s)
- R Hõrak
- Estonian Biocentre and Institute of Molecular and Cell Biology, Tartu University, EE2400 Tartu, Estonia.
| | | |
Collapse
|
38
|
Chugani SA, Parsek MR, Chakrabarty AM. Transcriptional repression mediated by LysR-type regulator CatR bound at multiple binding sites. J Bacteriol 1998; 180:2367-72. [PMID: 9573187 PMCID: PMC107177 DOI: 10.1128/jb.180.9.2367-2372.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The catBCA operon of Pseudomonas putida encodes enzymes involved in the catabolism of benzoate. Transcription of this operon requires the LysR-type transcriptional regulator CatR and an inducer molecule, cis,cis-muconate. Previous gel shift assays and DNase I footprinting have demonstrated that CatR occupies two adjacent sites proximal to the catBCA promoter in the presence of the inducer. We report the presence of an additional binding site for CatR downstream of the catBCA promoter within the catB structural gene. This site, called the internal binding site (IBS), extends from +162 to +193 with respect to the catB transcriptional start site and lies within the catB open reading frame. Gel shift analysis and DNase I footprinting determined that CatR binds to this site with low affinity. CatR binds cooperatively with higher affinity to the IBS in the presence of the two upstream binding sites. Parallel in vivo and in vitro studies were conducted to determine the role of the internal binding site. We measured beta-galactosidase activity of catB-lacZ transcriptional fusions in vivo. Our results suggest a probable cis-acting repressor function for the internal binding site. Site-directed mutagenesis of the IBS verified this finding. The location of the IBS within the catB structural gene, the cooperativity observed in footprinting studies, and phasing studies suggest that the IBS likely participates in the interaction of CatR with the upstream binding sites by looping out the intervening DNA.
Collapse
Affiliation(s)
- S A Chugani
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612, USA
| | | | | |
Collapse
|
39
|
Kim SI, Leem SH, Choi JS, Ha KS. Organization and transcriptional characterization of the cat1 gene cluster in Acinetobacter lwoffi K24. Biochem Biophys Res Commun 1998; 243:289-94. [PMID: 9473520 DOI: 10.1006/bbrc.1997.7912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previously, we have reported that two clustered cat genes from Acenitobacter lwoffi K24 had different arrangements, catB1C1A1 and catB2A2C2 (Kim, S.I., S.-H. Leem, J.-S. Choi, Y.H. Chung, S. Kim, Y.-M. Park, Y.K. Park, Y.N. Lee, and K.-S. Ha. 1997, J. Bacteriol. 179, 5226-5231). By further analysis of the organization of the cat1 gene cluster, we obtained a complete sequence of the catB1 gene, which encoded 40.8-kDa polypeptide containing 379 amino acids, and found a open reading frame (ORF) coding a putative regulatory protein in upstream region of catB1 on plasmid pCD1-1. This ORF encoded 34.2-kDa polypeptide containing 379 amino acids and had more than 40% identity with catR, LysR family regulatory protein of Pseudomonas putida. RT-PCR, Northern blot analysis and primer extension assay for transcriptional analysis of the cat1 gene cluster revealed that the catB1C1 genes were cotranscribed and the catA1 gene was independently transcribed.
Collapse
Affiliation(s)
- S I Kim
- Biomolecule Research Group, Korea Basic Science Institute, Taejon, Korea.
| | | | | | | |
Collapse
|
40
|
Leahy JG, Johnson GR, Olsen RH. Cross-regulation of toluene monooxygenases by the transcriptional activators TbmR and TbuT. Appl Environ Microbiol 1997; 63:3736-9. [PMID: 9293027 PMCID: PMC168682 DOI: 10.1128/aem.63.9.3736-3739.1997] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The toluene-3-monooxygenase from Burkholderia pickettii PKO1 and the toluene/benzene-2-monooxygenase from Burkholderia (Pseudomonas) sp. strain JS150 are distinct enzymes which differ not only in catalytic specificity and substrate range but also in the arrangement and sequence of the genes within the operons that encode the enzymes, tbuA1UBVA2C and tbmABCDEF, respectively. In the present study, we examined the transcriptional activation of the PtbuA1 and PtbmA promoters by their cognate regulators, TbuT and TbmR. TbmR and TbuT each exhibited activation of both PtbmA and PtbuA1, with toluene, benzene, and chlorobenzene serving as strong effectors. These results strongly suggest that TbmR is an NtrC-like regulator which is functionally homologous to TbuT, and they provide evidence for the evolutionary "recruitment" of the same or a similar type of regulator for both monooxygenase pathways.
Collapse
Affiliation(s)
- J G Leahy
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | |
Collapse
|
41
|
Chugani SA, Parsek MR, Hershberger CD, Murakami K, Ishihama A, Chakrabarty AM. Activation of the catBCA promoter: probing the interaction of CatR and RNA polymerase through in vitro transcription. J Bacteriol 1997; 179:2221-7. [PMID: 9079907 PMCID: PMC178958 DOI: 10.1128/jb.179.7.2221-2227.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The soil bacterium Pseudomonas putida is capable of degrading many aromatic compounds, including benzoate, through catechol as an intermediate. The catabolism of catechol is mediated by the catBCA operon, whose induction requires the pathway intermediate cis,cis-muconate as an inducer and the regulatory protein, CatR. CatR also regulates the plasmid-borne pheBA operon of P. putida PaW85, which is involved in phenol catabolism. We have used an in vitro transcription system to study the roles of CatR, cis,cis-muconate, Escherichia coli RNA polymerase, and promoter sequences in expression of the cat and phe operons. The assay confirmed the requirement of both CatR and cis,cis-muconate for transcript formation. We also examined the in vitro transcription of three site-directed mutants of the catBCA promoter; the results obtained compared favorably with previous in vivo data. The requirement of the alpha subunit of RNA polymerase for expression of the catBCA and the pheBA transcripts was also examined. The C-terminal region of the alpha subunit of RNA polymerase has been implicated in direct protein-protein contact with transcriptional regulatory proteins and/or direct contact with the DNA. We show that the carboxyl terminus of the alpha subunit is required for the expression of the catBCA and the pheBA operons because RNA polymerases with truncated alpha subunits were deficient in activation. Further experiments demonstrated the arginine at position 265 and the asparagine at position 268 of the alpha subunit as possible amino acids involved in activation. On the basis of these and previous results, we propose a model to explain the interaction of the different regulatory components leading to CatR-dependent activation of the catBCA operon.
Collapse
Affiliation(s)
- S A Chugani
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612, USA
| | | | | | | | | | | |
Collapse
|
42
|
Madhusudhan KT, Hester KL, Friend V, Sokatch JR. Transcriptional activation of the bkd operon of Pseudomonas putida by BkdR. J Bacteriol 1997; 179:1992-7. [PMID: 9068646 PMCID: PMC178924 DOI: 10.1128/jb.179.6.1992-1997.1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Reinvestigation of the transcriptional start site of the bkd operon of Pseudomonas putida revealed that the transcriptional start site was located 86 nucleotides upstream of the translational start. There was a sigma 70 binding site 10 bp upstream of the transcriptional start site. The dissociation constants for BkdR, the transcriptional activator of the bkd operon, were 3.1 x 10(-7) M in the absence of L-valine and 8.9 x 10(-8) M in the presence of L-valine. Binding of BkdR to substrate DNA in the absence of L-valine imposed a bend angle of 92 degrees in the DNA. In the presence of L-valine, the angle was 76 degrees. BkdR did not bind to either of the two fragments of substrate DNA resulting from digestion with AgeI. Because AgeI attacks between three potential BkdR binding sites, this suggests that binding of BkdR is cooperative. P. putida JS110 and JS112, mutant strains which do not express any of the components of branched-chain keto acid dehydrogenase, were found to contain missense mutations in bkdR resulting in R40Q and T22I changes in the putative helix-turn-helix of BkdR. Addition of glucose to the medium repressed expression of lacZ from a chromosomal bkdR-lacZ fusion, suggesting that catabolite repression of the bkd operon was the result of reduced expression of bkdR. These data are used to present a model for the role of BkdR in transcriptional control of the bkd operon.
Collapse
Affiliation(s)
- K T Madhusudhan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA
| | | | | | | |
Collapse
|
43
|
Byrne AM, Olsen RH. Cascade regulation of the toluene-3-monooxygenase operon (tbuA1UBVA2C) of Burkholderia pickettii PKO1: role of the tbuA1 promoter (PtbuA1) in the expression of its cognate activator, TbuT. J Bacteriol 1996; 178:6327-37. [PMID: 8892837 PMCID: PMC178508 DOI: 10.1128/jb.178.21.6327-6337.1996] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Burkholderia pickettii PKO1 metabolizes toluene and benzene via a chromosomally encoded toluene-3-monooxygenase pathway. Expression of the toluene-3-monooxygenase operon (tbuA1UBVA2C) is activated by the regulator, TbuT, in the presence of toluene. We have identified the TbuT coding region downstream of the toluene-3-monooxygenase structural genes by nucleotide sequence analysis and have shown that although TbuT is similar to XylR and DmpR, two members of the NtrC family of transcriptional activators which control toluene-xylene and (methyl)phenol catabolism, respectively, it is significantly different in the domain associated with effector specificity. Using a tbuA1-lacZ fusion reporter system, we determined that TbuT is activated not only by aromatic effectors but also the chlorinated aliphatic hydrocarbon trichloroethylene. Expression of tbuT and that of the tbuA1UBVA2C operon were found to be linked by readthrough transcription of tbuT from the toluene-3-monooxygenase promoter. As a result, transcription of tbuT is low when the toluene-3-monooxygenase operon is uninduced and high when expression of tbuA1UBVA2C is induced by toluene. Thus, the toluene-3-monooxygenase promoter drives the cascade expression of both the toluene-3-monooxygenase operon and tbuT, resulting in a positive feedback circuit. Examination of the nucleotide sequence upstream of the toluene-3-monooxygenase operon for promoter-like sequences revealed a -24 TGGC, -12 TTGC sequence, characteristic of sigma54 (rpoN)-dependent promoters. Primer extension and tbuA1-lacZ fusion analyses demonstrated that this -24, -12 promoter sequence, referred to as PtbuA1, was the toluene-3-monooxygenase promoter. Upstream of PtbuA1, a DNA region with dyad symmetry exhibited homology with the XylR-binding site present upstream of the Pu promoter. Deletions within this DNA sequence resulted in complete loss of expression from PtbuA1, suggesting that this region may serve as the TbuT-binding site.
Collapse
Affiliation(s)
- A M Byrne
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | |
Collapse
|
44
|
Abstract
The beta-ketoadipate pathway is a chromosomally encoded convergent pathway for aromatic compound degradation that is widely distributed in soil bacteria and fungi. One branch converts protocatechuate, derived from phenolic compounds including p-cresol, 4-hydroxybenzoate and numerous lignin monomers, to beta-ketoadipate. The other branch converts catechol, generated from various aromatic hydrocarbons, amino aromatics, and lignin monomers, also to beta-ketoadipate. Two additional steps accomplish the conversion of beta-ketoadipate to tricarboxylic acid cycle intermediates. Enzyme studies and amino acid sequence data indicate that the pathway is highly conserved in diverse bacteria, including Pseudomonas putida, Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Rhodococcus erythropolis, and many others. The catechol branch of the beta-ketoadipate pathway appears to be the evolutionary precursor for portions of the plasmid-borne ortho-pathways for chlorocatechol degradation. However, accumulating evidence points to an independent and convergent evolutionary origin for the eukaryotic beta-ketoadipate pathway. In the face of enzyme conservation, the beta-ketoadipate pathway exhibits many permutations in different bacterial groups with respect to enzyme distribution (isozymes, points of branch convergence), regulation (inducing metabolites, regulatory proteins), and gene organization. Diversity is also evident in the behavioral responses of different bacteria to beta-ketoadipate pathway-associated aromatic compounds. The presence and versatility of transport systems encoded by beta-ketoadipate pathway regulons is just beginning to be explored in various microbial groups. It appears that in the course of evolution, natural selection has caused the beta-ketoadipate pathway to assume a characteristic set of features or identity in different bacteria. Presumably such identities have been shaped to optimally serve the diverse lifestyles of bacteria.
Collapse
Affiliation(s)
- C S Harwood
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
45
|
Leahy JG, Byrne AM, Olsen RH. Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria. Appl Environ Microbiol 1996; 62:825-33. [PMID: 8975612 PMCID: PMC167849 DOI: 10.1128/aem.62.3.825-833.1996] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The degradation of trichloroethylene (TCE) by toluene-oxidizing bacteria has been extensively studied, and yet the influence of environmental conditions and physiological characteristics of individual strains has received little attention. To consider these effects, the levels of TCE degradation by strains distinguishable on the basis of toluene and nitrate metabolism were compared under aerobic or hypoxic conditions in the presence and absence of nitrate and an exogenous electron donor, lactate. Under aerobic conditions with toluene-induced cells, strains expressing toluene dioxygenases (Pseudomonas putida F1, Pseudomonas sp. strain JS150, Pseudomonas fluorescens CFS215, and Pseudomonas sp. strain W31) degraded TCE at low rates, with less than 12% of the TCE removed in 18 h. In contrast, strains expressing toluene monooxygenases (Burkholderia cepacia G4, Burkholderia pickettii PKO1, and Pseudomonas mendocina KR1) degraded 36 to 67% of the TCE over the same period. Under hypoxic conditions (1.7 mg of dissolved oxygen per liter) or when lactate was added as an electron donor, the extent of TCE degradation by toluene-induced cells was generally lower. In the presence of lactate, degradation of TCE by denitrifying strain PKO1 was enhanced by nitrate under conditions in which dissimilatory nitrate reduction was observed. The results of experiments performed with strains F1, G4, PKO1, and KR1 suggested that TCE or an oxidation product induces toluene degradation and that TCE induces its own degradation in the monooxygenase strains. The role of TCE as an inducer of toluene oxygenase activity in PKO1 was confirmed by performing a promoter probe analysis, in which we found that TCE activates transcription from the PKO1 3-monooxygenase operon promoter.
Collapse
Affiliation(s)
- J G Leahy
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | |
Collapse
|
46
|
Danganan CE, Shankar S, Ye RW, Chakrabarty AM. Substrate diversity and expression of the 2,4,5-trichlorophenoxyacetic acid oxygenase from Burkholderia cepacia AC1100. Appl Environ Microbiol 1995; 61:4500-4. [PMID: 8534119 PMCID: PMC167763 DOI: 10.1128/aem.61.12.4500-4504.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Burkholderia cepacia AC1100 uses the chlorinated aromatic compound 2,4,5-trichlorophenoxyacetic acid as a sole source of carbon and energy. The genes encoding the proteins involved in the first step (tftA and tftB [previously designated tftA1 and tftA2, respectively]) have been cloned and sequenced. The oxygenase, TftAB, is capable of converting not only 2,4,5-trichlorophenoxyacetic acid to 2,4,5-trichlorophenol but also a wide range of chlorinated aromatic phenoxyacetates to their corresponding phenolic derivatives, as shown by whole-cell and cell-free assays. The rate of substrate utilization by TftAB depends upon the extent of chlorination of the substrate, the positions of the chlorines, and the phenoxy group. These results indicate a mechanistic similarity between TftAB and the 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate-dependent dioxygenase, TfdA, from Alcaligenes eutrophus JMP134. The promoter of the oxygenase genes was localized by promoter-probe analysis, and the transcriptional start site was identified by primer extension. The beta-galactosidase activity of the construct containing the promoter region cloned upstream of the beta-galactosidase gene in the promoter-probe vector pKRZ-1 showed that this construct is constitutively expressed in Escherichia coli and in AC1100. The -35 and -10 regions of the oxygenase genes show significant sequence identity to typical Escherichia coli sigma 70 promoters.
Collapse
Affiliation(s)
- C E Danganan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago 60612, USA
| | | | | | | |
Collapse
|
47
|
Nichols NN, Harwood CS. Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway. J Bacteriol 1995; 177:7033-40. [PMID: 8522507 PMCID: PMC177579 DOI: 10.1128/jb.177.24.7033-7040.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pseudomonas putida PRS2000 degrades the aromatic acids benzoate and 4-hydroxybenzoate via two parallel sequences of reactions that converge at beta-ketoadipate, a derivative of which is cleaved to form tricarboxylic acid cycle intermediates. Structural genes (pca genes) required for the complete degradation of 4-hydroxybenzoate via the protocatechuate branch of the beta-ketoadipate pathway have been characterized, and a specific transport system for 4-hydroxybenzoate has recently been described. To better understand how P. putida coordinates the processes of 4-hydroxybenzoate transport and metabolism to achieve complete degradation, the regulation of pcaK, the 4-hydroxybenzoate transport gene, and that of pcaF, a gene required for both benzoate and 4-hydroxybenzoate degradation, were compared. Primer extension analysis and lacZ fusions showed that pcaK and pcaF, which are adjacent on the chromosome, are transcribed independently. PcaR, a transcriptional activator of several genes of the beta-ketoadipate pathway, is required for expression of both pcaF and pcaK, and the pathway intermediate beta-ketoadipate induces both genes. In addition to these expected regulatory elements, expression of pcaK, but not pcaF, is repressed by benzoate. This previously unrecognized layer of regulatory control in the beta-ketoadipate pathway appears to extend to the first two steps of 4-hydroxybenzoate degradation, since levels of 4-hydroxybenzoate hydroxylase and protocatechuate 3,4-dioxygenase activities were also depressed when cells were grown on a mixture of 4-hydroxybenzoate and benzoate. The apparent consequence of benzoate repression is that cells degrade benzoate in preference to 4-hydroxybenzoate. These findings indicate that 4-hydroxybenzoate transport is an integral feature of the beta-ketoadipate pathway in P. putida and that transport plays a role in establishing the preferential degradation of benzoate over 4-hydroxybenzoate. These results also demonstrate that there is communication between the two branches of the beta-ketoadipate pathway.
Collapse
Affiliation(s)
- N N Nichols
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
48
|
Romero-Arroyo CE, Schell MA, Gaines GL, Neidle EL. catM encodes a LysR-type transcriptional activator regulating catechol degradation in Acinetobacter calcoaceticus. J Bacteriol 1995; 177:5891-8. [PMID: 7592340 PMCID: PMC177415 DOI: 10.1128/jb.177.20.5891-5898.1995] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
On the basis of the constitutive phenotypes of two catM mutants of Acinetobacter calcoaceticus, the CatM protein was proposed to repress expression of two different loci involved in catechol degradation, catA and catBCIJFD (E. Neidle, C. Hartnett, and L. N. Ornston, J. Bacteriol. 171:5410-5421, 1989). In spite of its proposed negative role as a repressor, CatM is similar in amino acid sequence to positive transcriptional activators of the LysR family. Investigating this anomaly, we found that insertional inactivation of catM did not cause the phenotype expected for the disruption of a repressor-encoding gene: in an interposon-generated catM mutant, no cat genes were expressed constitutively, but rather catA and catB were still inducible by muconate. Moreover, this catM mutant grew poorly on benzoate, a process requiring the expression of all cat genes. The inducibility of the cat genes in this catM mutant was completely eliminated by a 3.5-kbp deletion 10 kbp upstream of catM. In this double mutant, catM in trans restored muconate inducibility to both catA and catB. These results suggested the presence of an additional regulatory locus controlling cat gene expression. The ability of CatM to function as an activator was also suggested by these results. In support of this hypothesis, in vivo methylation protection assays showed that CatM protects two guanines in a dyad 65 nucleotides upstream of the catB transcriptional start site, in a location and pattern typical of LysR-type transcriptional activators. Gel mobility shift assays indicated that CatM also binds to a region upstream of catA. DNA sequence analysis revealed a nucleotide near the 3' end of catM not present in the published sequence. Translation of the corrected sequence resulted in the deduced CatM protein being 52 residues longer than previously reported. The size, amino acid sequence, and mode of action of CatM now appear similar to, and typical of, what has been found for transcriptional activators in the LysR family. Analysis of one of the constitutive alleles of catM previously thought to encode a dysfunctional repressor indicated instead that it encodes an inducer-independent transcriptional activator.
Collapse
Affiliation(s)
- C E Romero-Arroyo
- Department of Microbiology, University of Georgia, Athens 30602, USA
| | | | | | | |
Collapse
|
49
|
Hershberger CD, Ye RW, Parsek MR, Xie ZD, Chakrabarty AM. The algT (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative sigma factor (sigma E). Proc Natl Acad Sci U S A 1995; 92:7941-5. [PMID: 7644517 PMCID: PMC41262 DOI: 10.1073/pnas.92.17.7941] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chronic infection by alginate-producing (mucoid) Pseudomonas aeruginosa is the leading cause of mortality among cystic fibrosis (CF) patients. During the course of sustained infection, the production of an alginate capsule protects the bacteria and allows them to persist in the CF lung. One of the key regulators of alginate synthesis is the algT (algU) gene encoding a putative alternative sigma factor (sigma E). AlgT was hyperproduced and purified from Escherichia coli. The N-terminal sequence of the purified protein matched perfectly with that predicted from the DNA sequence. The purified protein, in the presence of E. coli RNA polymerase core enzyme, was able to initiate transcription of an algT promoter. Deletion of the -35 region of this promoter abolished this activity in vitro as well as in vivo. These data indicate that the algT gene encodes a sigma factor that is autoregulatory.
Collapse
Affiliation(s)
- C D Hershberger
- Department of Microbiology and Immunology (M/C 790, University of Illinois College of Medicine, Chicago 60612, USA
| | | | | | | | | |
Collapse
|
50
|
Schlictman D, Shankar S, Chakrabarty AM. The Escherichia coli genes sspA and rnk can functionally replace the Pseudomonas aeruginosa alginate regulatory gene algR2. Mol Microbiol 1995; 16:309-20. [PMID: 7565093 DOI: 10.1111/j.1365-2958.1995.tb02303.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The algR2 (also known as algQ) gene of Pseudomonas aeruginosa has previously been identified as being necessary for alginate production at 37 degrees C. We have cloned two genes, from a cosmid library of Escherichia coli, which can restore mucoidy to an algR2 mutant of P. aeruginosa. The complementing regions of both cosmids were localized by subcloning restriction fragments. One of the E. coli genes identified here has not previously been described; we have named this gene rnk (regulator of nucleoside diphosphate kinase). It encodes a 14.9 kDa protein with no homology to any other protein. The other gene, sspA, is a regulator involved in stationary-phase regulation in E. coli. Either gene will restore mucoidy to an algR2-deficient strain of P. aeruginosa. AlgR2 has been shown to regulate at least two enzymes, succinyl-CoA synthetase (Scs) and nucleoside diphosphate kinase (Ndk), which form a complex in P. aeruginosa. When we examined the ability of the E. coli analogues to regulate Ndk, we found that rnk but not sspA was able to restore Ndk activity to the P. aeruginosa algR2 mutant. Furthermore, rnk was able to restore growth of the algR2 mutant in the presence of Tween 20, which inhibits other Ndk-like activities.
Collapse
Affiliation(s)
- D Schlictman
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago 60612, USA
| | | | | |
Collapse
|