1
|
Pawlowski K, Wibberg D, Mehrabi S, Obaid NB, Patyi A, Berckx F, Nguyen H, Hagen M, Lundin D, Brachmann A, Blom J, Herrera-Belaroussi A, Abrouk D, Pujic P, Hahlin AS, Kalinowski J, Normand P, Sellstedt A. Frankia [NiFe] uptake hydrogenases and genome reduction: different lineages of loss. FEMS Microbiol Ecol 2024; 100:fiae147. [PMID: 39479807 DOI: 10.1093/femsec/fiae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 12/18/2024] Open
Abstract
Uptake hydrogenase (Hup) recycles H2 formed by nitrogenase during nitrogen fixation, thereby preserving energy. Among root nodule bacteria, most rhizobial strains examined are Hup-, while only one Hup- Frankia inoculum had been identified. Previous analyses had led to the identification of two different [NiFe] hydrogenase syntons. We analysed the distribution of different types of [NiFe] hydrogenase in the genomes of different Frankia species. Our results show that Frankia strains can contain four different [NiFe] hydrogenase syntons representing groups 1f, 1h, 2a, and 3b according to Søndergaard, Pedersen, and Greening (HydDB: a web tool for hydrogenase classification and analysis. Sci Rep 2016;6:34212. https://doi.org/10.1038/srep34212.); no more than three types were found in any individual genome. The phylogeny of the structural proteins of groups 1f, 1h, and 2a follows Frankia phylogeny; the phylogeny of the accessory proteins does not consistently. An analysis of different [NiFe] hydrogenase types in Actinomycetia shows that under the most parsimonious assumption, all four types were present in the ancestral Frankia strain. Based on Hup activities analysed and the losses of syntons in different lineages of genome reduction, we can conclude that groups 1f and 2a are involved in recycling H2 formed by nitrogenase while group 1 h and group 3b are not.
Collapse
Affiliation(s)
- Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany
| | - Sara Mehrabi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Nadia Binte Obaid
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - András Patyi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Fede Berckx
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Han Nguyen
- Department of Plant Physiology, UPSC, Umeå University, 90187 Umeå, Sweden
| | - Michelle Hagen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Daniel Lundin
- Department of Biology and Environmental Science, Linnaeus University, 39182 Kalmar, Sweden
| | - Andreas Brachmann
- Biocenter of the LMU Munich, Genetics Section, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig Universität Giessen, 35392 Giessen, Germany
| | - Aude Herrera-Belaroussi
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Danis Abrouk
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Petar Pujic
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Ann-Sofi Hahlin
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany
| | - Philippe Normand
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Anita Sellstedt
- Department of Plant Physiology, UPSC, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
2
|
kammoun I, Miotello G, Ben Slama K, Armengaud J, Ghodhbane-Gtari F, Gtari M. The impact of Elaeagnus angustifolia root exudates on Parafrankia soli NRRL B-16219 exoproteome. J Genomics 2024; 12:58-70. [PMID: 38751381 PMCID: PMC11093716 DOI: 10.7150/jgen.93243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024] Open
Abstract
Root exudates from host plant species are known to play a critical role in the establishment and maintenance of symbiotic relationships with soil bacteria. In this study, we investigated the impact of root exudates from compatible host plant species; Elaeagnus angustifolia on the exoproteome of Parafrankia soli strain NRRL B-16219. A total of 565 proteins were evidenced as differentially abundant, with 32 upregulated and 533 downregulated in presence of the plant exudates. Analysis of the function of these proteins suggests that the bacterial strain is undergoing a complex metabolic reprogramming towards a new developmental phase elicited in presence of host plant root exudates. The upregulation of Type II/IV secretion system proteins among the differentially expressed proteins indicates their possible role in infecting the host plant, as shown for some rhizobia. Additionally, EF-Tu, proteins upregulated in this study, may function as an effector for the T4SSs and trigger plant defense responses. These findings suggest that Parafrankia soli may use EF-Tu to infect the actinorhizal host plant and pave the way for further investigations of the molecular mechanisms underlying the establishment of symbiotic relationships.
Collapse
Affiliation(s)
- Ikram kammoun
- Department of Biological and Chemical Engineering USCR Molecular Bacteriology and & Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Guylaine Miotello
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris-Saclay, SPI, 30200 Bagnols sur Cèze, France
| | - Karim Ben Slama
- Higher Institute of Applied Biological Sciences, Laboratory of Bioresources, Environment, and Biotechnology, University of Tunis El Manar, Tunis, Tunisia
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris-Saclay, SPI, 30200 Bagnols sur Cèze, France
| | - Faten Ghodhbane-Gtari
- Department of Biological and Chemical Engineering USCR Molecular Bacteriology and & Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, University of La Manouba, Sidi Thabet, Tunisia
| | - Maher Gtari
- Department of Biological and Chemical Engineering USCR Molecular Bacteriology and & Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| |
Collapse
|
3
|
Mukai K, Shibayama T, Imai Y, Hosaka T. Phenomenological interpretations of the mechanism for the concentration-dependent positive effect of antibiotic lincomycin on Streptomyces coelicolor A3(2). Appl Environ Microbiol 2023; 89:e0113323. [PMID: 37732750 PMCID: PMC10617593 DOI: 10.1128/aem.01133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 09/22/2023] Open
Abstract
The antibiotic lincomycin binds to the 23S ribosomal RNA peptidyl transferase loop region to inhibit protein synthesis. However, lincomycin can also stimulate the growth and secondary metabolism of actinomycetes in a concentration-dependent manner. In Streptomyces coelicolor A3(2), lincomycin stimulates the production of the blue-pigmented antibiotic actinorhodin at concentrations below the minimum inhibitory concentration. To better understand the molecular mechanism underlying these concentration-dependent positive effects, this study investigated how the target molecule, the ribosome, undergoes dynamic changes in the presence of lincomycin and explored the ribosome-related factors involved. Lincomycin, at a concentration that stimulates actinorhodin production of S. coelicolor A3(2), could restore temporarily arrested ribosome function by utilizing ribosome-related proteins and translation factors, presumably under the control of the transcription factor WblC protein that confers intrinsic resistance to multiple translation-inhibiting antibiotics, to eventually produce stable and active ribosomes even during the late growth phase. This qualitatively and quantitatively positive ribosome alteration can be advantageous for producing actinorhodin biosynthetic enzymes. A series of gene expression and biochemical analyses revealed that lincomycin at the concentration that induces ribosomal stabilization in S. coelicolor A3(2) could influence the localization of the 20S proteasome-related proteins, resulting in reduced proteasome activity. These findings suggest that the functional analysis of 20S proteasome represents a potential pivotal challenge for understanding the molecular mechanism of ribosome stabilization induced by lincomycin. Therefore, as lincomycin can dynamically alter its target molecule, the ribosome, we discuss the future issues and prospects for an increased understanding of the concentration-dependent properties of antibiotics. IMPORTANCE Antibiotics were originally defined as chemical compounds produced by a microbe that inhibits the growth of other microbes. However, an unexplained effect of this is that a low concentration of antibiotics, such as those below the minimum inhibitory concentration, can positively affect microbial growth and metabolism. The secondary metabolic activation of streptomycetes in the presence of the translation-inhibiting antibiotic lincomycin illustrates the concentration-dependent positive effect of the antibiotic. The significance of this study is that the phenomenological interpretation of the molecular mechanism of the concentration-dependent positive effect of lincomycin in Streptomyces coelicolor A3(2) has provided novel insight into the possible role of antibiotics in making their target molecules stable and active with the assistance of various related factors that benefit their function. Further exploration of this idea would lead to an essential understanding of antibiotics, including why actinomycetes make them and their role in nature.
Collapse
Affiliation(s)
- Keiichiro Mukai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Tomoko Shibayama
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
- Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Yu Imai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takeshi Hosaka
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Renaissance Center for Applied Microbiology, Shinshu University, Nagano, Japan
| |
Collapse
|
4
|
Berckx F, Bandong CM, Wibberg D, Kalinowski J, Willemse J, Brachmann A, Simbahan J, Pawlowski K. Streptomyces coriariae sp. nov., a novel streptomycete isolated from actinorhizal nodules of Coriaria intermedia. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748598 DOI: 10.1099/ijsem.0.005603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An actinobacterial strain, CMB-FB, was isolated from surface-sterilized root nodules of a Coriaria intermedia plant growing along Halsema Highway in the province of Benguet (Luzon, Philippines). The 16S rRNA gene sequence of CMB-FB showed high sequence similarity to those of the type strains of Streptomyces rishiriensis (99.4 %), Streptomyces humidus (99.1 %), Streptomyces cacaoi subsp. asoensis (99.0 %), and Streptomyces phaeofaciens (98.6 %). The major menaquinones of CMB-FB were composed of MK-9(H4), MK-9(H6) and MK-9(H8), and there was a minor contribution of MK-9(H10). The polar lipid profile consisted of phosphatidylethanolamine, unidentified aminolipids and phospholipids, a glycophospholipid and four unidentified lipids. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. The major fatty acids were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The results of physiological analysis indicated that CMB-FB was mesophilic. The results of phylogenetic, genome-genome distance calculation and average nucleotide identity analysis indicated that the isolated strain represents the type strain of a novel species. On the basis of these results, strain CMB-FB (=DSM 112754T=LMG 32457T) is proposed as the type strain of the novel species Streptomyces coriariae sp. nov.
Collapse
Affiliation(s)
- Fede Berckx
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Cyndi Mae Bandong
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.,Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany.,Present address: ELIXIR-DE, Institute of Bio- and Geosciences IBG-5 - Computational Metagenomics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany
| | - Joost Willemse
- Molecular Biotechnology, Institute of Biology, Leiden University, 2300 RA Leiden, Netherlands
| | | | - Jessica Simbahan
- Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Bonn SM, Fushman D. Backbone NMR resonance assignment of the intrinsically disordered UBact protein from Nitrospira nitrosa. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:129-134. [PMID: 35107780 PMCID: PMC9081246 DOI: 10.1007/s12104-022-10070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin signaling in eukaryotes is responsible for a variety of cellular outcomes, most notably proteasomal degradation. A recent bioinformatic study has revealed the existence of a new proteasomal operon in certain gram-negative bacteria phyla. This operon contains genes similar to those included in the prokaryotic ubiquitin-like protein (Pup) proteasomal operon, but do not themselves contain Pup. Instead, they encode for a protein termed UBact with 30% sequence similarity to Pup. Here, we report the near-complete NMR assignment of the backbone and partial assignment of the side chain chemical shifts of the UBact protein from Nitrospira nitrosa. The 1H-15N HSQC spectrum shows a narrow spread of proton NMR signals, characteristic of an intrinsically disordered protein. This chemical shift assignment will facilitate further NMR studies to explore the role of UBact in this new putative proteasomal operon.
Collapse
Affiliation(s)
- Steven M Bonn
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
6
|
Liu W, Triplett L, Chen XL. Emerging Roles of Posttranslational Modifications in Plant-Pathogenic Fungi and Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:99-124. [PMID: 33909479 DOI: 10.1146/annurev-phyto-021320-010948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Posttranslational modifications (PTMs) play crucial roles in regulating protein function and thereby control many cellular processes and biological phenotypes in both eukaryotes and prokaryotes. Several recent studies illustrate how plant fungal and bacterial pathogens use these PTMs to facilitate development, stress response, and host infection. In this review, we discuss PTMs that have key roles in the biological and infection processes of plant-pathogenic fungi and bacteria. The emerging roles of PTMs during pathogen-plant interactions are highlighted. We also summarize traditional tools and emerging proteomics approaches for PTM research. These discoveries open new avenues for investigating the fundamental infection mechanisms of plant pathogens and the discovery of novel strategies for plant disease control.
Collapse
Affiliation(s)
- Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Lindsay Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA;
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
7
|
von Rosen T, Keller LM, Weber-Ban E. Survival in Hostile Conditions: Pupylation and the Proteasome in Actinobacterial Stress Response Pathways. Front Mol Biosci 2021; 8:685757. [PMID: 34179091 PMCID: PMC8223512 DOI: 10.3389/fmolb.2021.685757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteria employ a multitude of strategies to cope with the challenges they face in their natural surroundings, be it as pathogens, commensals or free-living species in rapidly changing environments like soil. Mycobacteria and other Actinobacteria acquired proteasomal genes and evolved a post-translational, ubiquitin-like modification pathway called pupylation to support their survival under rapidly changing conditions and under stress. The proteasomal 20S core particle (20S CP) interacts with ring-shaped activators like the hexameric ATPase Mpa that recruits pupylated substrates. The proteasomal subunits, Mpa and pupylation enzymes are encoded in the so-called Pup-proteasome system (PPS) gene locus. Genes in this locus become vital for bacteria to survive during periods of stress. In the successful human pathogen Mycobacterium tuberculosis, the 20S CP is essential for survival in host macrophages. Other members of the PPS and proteasomal interactors are crucial for cellular homeostasis, for example during the DNA damage response, iron and copper regulation, and heat shock. The multiple pathways that the proteasome is involved in during different stress responses suggest that the PPS plays a vital role in bacterial protein quality control and adaptation to diverse challenging environments.
Collapse
Affiliation(s)
- Tatjana von Rosen
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Lena Ml Keller
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Eilika Weber-Ban
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Shen D, Xiao TT, van Velzen R, Kulikova O, Gong X, Geurts R, Pawlowski K, Bisseling T. A Homeotic Mutation Changes Legume Nodule Ontogeny into Actinorhizal-Type Ontogeny. THE PLANT CELL 2020; 32:1868-1885. [PMID: 32276984 PMCID: PMC7268803 DOI: 10.1105/tpc.19.00739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 05/05/2023]
Abstract
Some plants fix atmospheric nitrogen by hosting symbiotic diazotrophic rhizobia or Frankia bacteria in root organs known as nodules. Such nodule symbiosis occurs in 10 plant lineages in four taxonomic orders: Fabales, Fagales, Cucurbitales, and Rosales, which are collectively known as the nitrogen-fixing clade. Nodules are divided into two types based on differences in ontogeny and histology: legume-type and actinorhizal-type nodules. The evolutionary relationship between these nodule types has been a long-standing enigma for molecular and evolutionary biologists. Recent phylogenomic studies on nodulating and nonnodulating species in the nitrogen-fixing clade indicated that the nodulation trait has a shared evolutionary origin in all 10 lineages. However, this hypothesis faces a conundrum in that legume-type and actinorhizal-type nodules have been regarded as fundamentally different. Here, we analyzed the actinorhizal-type nodules formed by Parasponia andersonii (Rosales) and Alnus glutinosa (Fagales) and found that their ontogeny is more similar to that of legume-type nodules (Fabales) than generally assumed. We also show that in Medicago truncatula, a homeotic mutation in the co-transcriptional regulator gene NODULE ROOT1 (MtNOOT1) converts legume-type nodules into actinorhizal-type nodules. These experimental findings suggest that the two nodule types have a shared evolutionary origin.
Collapse
Affiliation(s)
- Defeng Shen
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| | - Ting Ting Xiao
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| | - Robin van Velzen
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
- Biosystematics Group, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Olga Kulikova
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| | - Xiaoyun Gong
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - René Geurts
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
9
|
Müller AU, Weber-Ban E. The Bacterial Proteasome at the Core of Diverse Degradation Pathways. Front Mol Biosci 2019; 6:23. [PMID: 31024929 PMCID: PMC6466877 DOI: 10.3389/fmolb.2019.00023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/18/2019] [Indexed: 12/02/2022] Open
Abstract
Proteasomal protein degradation exists in mycobacteria and other actinobacteria, and expands their repertoire of compartmentalizing protein degradation pathways beyond the usual bacterial types. A product of horizontal gene transfer, bacterial proteasomes have evolved to support the organism's survival under challenging environmental conditions like nutrient starvation and physical or chemical stresses. Like the eukaryotic 20S proteasome, the bacterial core particle is gated and must associate with a regulator complex to form a fully active protease capable of recruiting and internalizing substrate proteins. By association with diverse regulator complexes that employ different recruitment strategies, the bacterial 20S core particle is able to act in different cellular degradation pathways. In association with the mycobacterial proteasomal ATPase Mpa, the proteasome degrades substrates post-translationally modified with prokaryotic, ubiquitin-like protein Pup in a process called pupylation. Upon interaction with the ATP-independent bacterial proteasome activator Bpa, poorly structured substrates are recruited for proteasomal degradation. A potential third degradation route might employ a Cdc48-like protein of actinobacteria (Cpa), for which interaction with the 20S core was recently demonstrated but no degradation substrates have been identified yet. The alternative interaction partners and wide range of substrate proteins suggest that the bacterial proteasome is a modular, functionally flexible and conditionally regulated degradation machine in bacteria that encounter rapidly changing and challenging conditions.
Collapse
Affiliation(s)
- Andreas U Müller
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Eilika Weber-Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Bacterial proteasome activator bpa (rv3780) is a novel ring-shaped interactor of the mycobacterial proteasome. PLoS One 2014; 9:e114348. [PMID: 25469515 PMCID: PMC4254994 DOI: 10.1371/journal.pone.0114348] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/06/2014] [Indexed: 12/14/2022] Open
Abstract
The occurrence of the proteasome in bacteria is limited to the phylum of actinobacteria, where it is maintained in parallel to the usual bacterial compartmentalizing proteases. The role it plays in these organisms is still not fully understood, but in the human pathogen Mycobacterium tuberculosis (Mtb) the proteasome supports persistence in the host. In complex with the ring-shaped ATPase Mpa (called ARC in other actinobacteria), the proteasome can degrade proteins that have been post-translationally modified with the prokaryotic ubiquitin-like protein Pup. Unlike for the eukaryotic proteasome core particle, no other bacterial proteasome interactors have been identified to date. Here we describe and characterize a novel bacterial proteasome activator of Mycobacterium tuberculosis we termed Bpa (Rv3780), using a combination of biochemical and biophysical methods. Bpa features a canonical C-terminal proteasome interaction motif referred to as the HbYX motif, and its orthologs are only found in those actinobacteria encoding the proteasomal subunits. Bpa can inhibit degradation of Pup-tagged substrates in vitro by competing with Mpa for association with the proteasome. Using negative-stain electron microscopy, we show that Bpa forms a ring-shaped homooligomer that can bind coaxially to the face of the proteasome cylinder. Interestingly, Bpa can stimulate the proteasomal degradation of the model substrate β-casein, which suggests it could play a role in the removal of non-native or damaged proteins.
Collapse
|
11
|
Striebel F, Imkamp F, Özcelik D, Weber-Ban E. Pupylation as a signal for proteasomal degradation in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:103-13. [PMID: 23557784 DOI: 10.1016/j.bbamcr.2013.03.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/21/2013] [Accepted: 03/12/2013] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications in the form of covalently attached proteins like ubiquitin (Ub), were long considered an exclusive feature of eukaryotic organisms. The discovery of pupylation, the modification of lysine residues with a prokaryotic, ubiquitin-like protein (Pup), demonstrated that certain bacteria use a tagging pathway functionally related to ubiquitination in order to target proteins for proteasomal degradation. However, functional analogies do not translate into structural or mechanistic relatedness. Bacterial Pup, unlike eukaryotic Ub, does not adopt a β-grasp fold, but is intrinsically disordered. Furthermore, isopeptide bond formation in the pupylation process is carried out by enzymes evolutionary descendent from glutamine synthetases. While in eukaryotes, the proteasome is the main energy-dependent protein degradation machine, bacterial proteasomes exist in addition to other architecturally related degradation complexes, and their specific role along with the role of pupylation is still poorly understood. In Mycobacterium tuberculosis (Mtb), the Pup-proteasome system contributes to pathogenicity by supporting the bacterium's persistence within host macrophages. Here, we describe the mechanism and structural framework of pupylation and the targeting of pupylated proteins to the proteasome complex. Particular attention is given to the comparison of the bacterial Pup-proteasome system and the eukaryotic ubiquitin-proteasome system. Furthermore, the involvement of pupylation and proteasomal degradation in Mtb pathogenesis is discussed together with efforts to establish the Pup-proteasome system as a drug target. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Frank Striebel
- Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
12
|
Imanishi L, Vayssières A, Franche C, Bogusz D, Wall L, Svistoonoff S. Transformed hairy roots of Discaria trinervis: a valuable tool for studying actinorhizal symbiosis in the context of intercellular infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1317-24. [PMID: 21585269 DOI: 10.1094/mpmi-03-11-0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Among infection mechanisms leading to root nodule symbiosis, the intercellular infection pathway is probably the most ancestral but also one of the least characterized. Intercellular infection has been described in Discaria trinervis, an actinorhizal plant belonging to the Rosales order. To decipher the molecular mechanisms underlying intercellular infection with Frankia bacteria, we set up an efficient genetic transformation protocol for D. trinervis based on Agrobacterium rhizogenes. We showed that composite plants with transgenic roots expressing green fluorescent protein can be specifically and efficiently nodulated by Frankia strain BCU110501. Nitrogen fixation rates and feedback inhibition of nodule formation by nitrogen were similar in control and composite plants. In order to challenge the transformation system, the MtEnod11 promoter, a gene from Medicago truncatula widely used as a marker for early infection-related symbiotic events in model legumes, was introduced in D. trinervis. MtEnod11::GUS expression was related to infection zones in root cortex and in the parenchyma of the developing nodule. The ability to study intercellular infection with molecular tools opens new avenues for understanding the evolution of the infection process in nitrogen-fixing root nodule symbioses.
Collapse
Affiliation(s)
- Leandro Imanishi
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, Bernal, Argentina
| | | | | | | | | | | |
Collapse
|
13
|
Svistoonoff S, Sy MO, Diagne N, Barker DG, Bogusz D, Franche C. Infection-specific activation of the Medicago truncatula Enod11 early nodulin gene promoter during actinorhizal root nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:740-7. [PMID: 20459313 DOI: 10.1094/mpmi-23-6-0740] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The MtEnod11 gene from Medicago truncatula is widely used as an early infection-related molecular marker for endosymbiotic associations involving both rhizobia and arbuscular mycorrhizal fungi. In this article, heterologous expression of the MtEnod11 promoter has been studied in two actinorhizal trees, Casuarina glauca and Allocasuarina verticillata. Transgenic C. glauca and A. verticillata expressing a ProMtEnod11::beta-glucuronidase (gus) fusion were generated and the activation of the transgene investigated in the context of the symbiotic associations with the N-fixing actinomycete Frankia and both endo- and ectomycorrhizal fungi (Glomus intraradices and Pisolithus albus, respectively). ProMtEnod11::gus expression was observed in root hairs, prenodules, and nodules and could be correlated with the infection of plant cells by Frankia spp. However, no activation of the gus reporter gene was detected prior to infection or in response to either rhizobial Nod factors or the wasp venom peptide MAS-7. Equally, ProMtEnod11::gus expression was not elicited during the symbiotic associations with either ecto- or endomycorrhizal fungi. These observations suggest that, although there is a conservation of gene regulatory pathways between legumes and actinorhizal plants in cells accommodating endosymbiotic N-fixing bacteria, the events preceding bacterial infection or related to mycorrhization appear to be less conserved.
Collapse
Affiliation(s)
- Sergio Svistoonoff
- Groupe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées, Institut de Recherche pour le Développement, 911 avenue Agropolis, BP 5045, 34394 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
14
|
Gherbi H, Nambiar-Veetil M, Zhong C, Félix J, Autran D, Girardin R, Vaissayre V, Auguy F, Bogusz D, Franche C. Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:518-524. [PMID: 18393611 DOI: 10.1094/mpmi-21-5-0518] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In recent years, RNA interference has been exploited as a tool for investigating gene function in plants. We tested the potential of double-stranded RNA interference technology for silencing a transgene in the actinorhizal tree Allocasuarina verticillata. The approach was undertaken using stably transformed shoots expressing the beta-glucuronidase (GUS) gene under the control of the constitutive promoter 35S; the shoots were further transformed with the Agrobacterium rhizogenes A4RS containing hairpin RNA (hpRNA) directed toward the GUS gene, and driven by the 35S promoter. The silencing and control vectors contained the reporter gene of the green fluorescent protein (GFP), thus allowing a screening of GUS-silenced composite plantlets for autofluorescence. With this rapid procedure, histochemical data established that the reporter gene was strongly silenced in both fluorescent roots and actinorhizal nodules. Fluorometric data further established that the level of GUS silencing was usually greater than 90% in the hairy roots containing the hairpin GUS sequences. We found that the silencing process of the reporter gene did not spread to the aerial part of the composite A. verticillata plants. Real-time quantitative polymerase chain reaction showed that GUS mRNAs were substantially reduced in roots and, thereby, confirmed the knock-down of the GUS transgene in the GFP(+) hairy roots. The approach described here will provide a versatile tool for the rapid assessment of symbiotically related host genes in actinorhizal plants of the Casuarinaceae family.
Collapse
Affiliation(s)
- Hassen Gherbi
- Equipe Rhizogenèse, UMR DIA PC, IRD (Institut de Recherche pour le Développement), Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mastronunzio JE, Tisa LS, Normand P, Benson DR. Comparative secretome analysis suggests low plant cell wall degrading capacity in Frankia symbionts. BMC Genomics 2008; 9:47. [PMID: 18226217 PMCID: PMC2266912 DOI: 10.1186/1471-2164-9-47] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 01/28/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frankia sp. strains, the nitrogen-fixing facultative endosymbionts of actinorhizal plants, have long been proposed to secrete hydrolytic enzymes such as cellulases, pectinases, and proteases that may contribute to plant root penetration and formation of symbiotic root nodules. These or other secreted proteins might logically be involved in the as yet unknown molecular interactions between Frankia and their host plants. We compared the genome-based secretomes of three Frankia strains representing diverse host specificities. Signal peptide detection algorithms were used to predict the individual secretomes of each strain, and the set of secreted proteins shared among the strains, termed the core Frankia secretome. Proteins in the core secretome may be involved in the actinorhizal symbiosis. RESULTS The Frankia genomes have conserved Sec (general secretory) and Tat (twin arginine translocase) secretion systems. The potential secretome of each Frankia strain comprised 4-5% of the total proteome, a lower percentage than that found in the genomes of other actinobacteria, legume endosymbionts, and plant pathogens. Hydrolytic enzymes made up only a small fraction of the total number of predicted secreted proteins in each strain. Surprisingly, polysaccharide-degrading enzymes were few in number, especially in strain CcI3, with more esterolytic, lipolytic and proteolytic enzymes having signal peptides. A total of 161 orthologous proteins belong to the core Frankia secretome. Of these, 52 also lack homologs in closely related actinobacteria, and are termed "Frankia-specific." The genes encoding these conserved secreted proteins are often clustered near secretion machinery genes. CONCLUSION The predicted secretomes of Frankia sp. are relatively small and include few hydrolases, which could reflect adaptation to a symbiotic lifestyle. There are no well-conserved secreted polysaccharide-degrading enzymes present in all three Frankia genomes, suggesting that plant cell wall polysaccharide degradation may not be crucial to root infection, or that this degradation varies among strains. We hypothesize that the relative lack of secreted polysaccharide-degrading enzymes in Frankia reflects a strategy used by these bacteria to avoid eliciting host defense responses. The esterases, lipases, and proteases found in the core Frankia secretome might facilitate hyphal penetration through the cell wall, release carbon sources, or modify chemical signals. The core secretome also includes extracellular solute-binding proteins and Frankia-specific hypothetical proteins that may enable the actinorhizal symbiosis.
Collapse
Affiliation(s)
- Juliana E Mastronunzio
- Department of Molecular and Cell Biology, U-3125, University of Connecticut, Storrs, CT, USA.
| | | | | | | |
Collapse
|
16
|
Obertello M, Santi C, Sy MO, Laplaze L, Auguy F, Bogusz D, Franche C. Comparison of four constitutive promoters for the expression of transgenes in the tropical nitrogen-fixing tree Allocasuarina verticillata. PLANT CELL REPORTS 2005; 24:540-8. [PMID: 15940528 DOI: 10.1007/s00299-005-0963-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 03/01/2005] [Accepted: 03/08/2005] [Indexed: 05/02/2023]
Abstract
Allocasuarina verticillata is an actinorhizal tree that lives in symbiotic association with a nitrogen fixing actinomycete called Frankia. In the search for promoters that drive strong constitutive expression in this tropical tree, we studied the organ specificity of four different constitutive promoters (CaMV 35S, e35S, e35S-4ocs and UBQ1 from Arabidopsis thaliana) in stably transformed A. verticillata plants. The ss-glucuronidase (gus) gene was used as a reporter and expression studies were carried out by histochemical analyses on shoots, roots and actinorhizal nodules. While the 35S promoter was poorly expressed in the shoot apex and lateral roots, both the e35S and e35S-4ocs were found to drive high constitutive expression in the transgenic non-nodulated plants. In contrast, the UBQ1 promoter was very poorly expressed and appeared unsuitable for A. verticillata. We also showed that none of the promoters studied were active in the nodule infected cells, whatever the developmental stage studied.
Collapse
Affiliation(s)
- Mariana Obertello
- Groupe Rhizogénèse Symbiotique, UMR 1098, IRD (Institut de Recherche pour le Développement), 911 avenue Agropolis, BP 5045, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Santi C, von Groll U, Ribeiro A, Chiurazzi M, Auguy F, Bogusz D, Franche C, Pawlowski K. Comparison of nodule induction in legume and actinorhizal symbioses: the induction of actinorhizal nodules does not involve ENOD40. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:808-816. [PMID: 12971604 DOI: 10.1094/mpmi.2003.16.9.808] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two types of root nodule symbioses are known for higher plants, legume and actinorhizal symbioses. In legume symbioses, bacterial signal factors induce the expression of ENOD40 genes. We isolated an ENOD40 promoter from an actinorhizal plant, Casuarina glauca, and compared its expression pattern in a legume (Lotus japonicus) and an actinorhizal plant (Allocasuarina verticillata) with that of an ENOD40 promoter from the legume soybean (GmENOD40-2). In the actinorhizal Allocasuarina sp., CgENOD40-GUS and GmENOD40-2-GUS showed similar expression patterns in both vegetative and symbiotic development, and neither promoter was active during nodule induction. The nonsymbiotic expression pattern of CgENOD40-GUS in the legume genus Lotus resembled the nonsymbiotic expression patterns of legume ENOD40 genes; however, in contrast to GmENOD40-2-GUS, CgENOD40-GUS was not active during nodule induction. The fact that only legume, not actinorhizal, ENOD40 genes are induced during legume nodule induction can be linked to the phloem unloading mechanisms established in the zones of nodule induction in the roots of both types of host plants.
Collapse
Affiliation(s)
- Carole Santi
- Equipe Rhizogenèse, UMR 1098, Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pouch MN, Cournoyer B, Baumeister W. Characterization of the 20S proteasome from the actinomycete Frankia. Mol Microbiol 2000; 35:368-77. [PMID: 10652097 DOI: 10.1046/j.1365-2958.2000.01703.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Frankia is an actinomycete that fixes atmospheric nitrogen in symbiotic association with the root systems of a variety of non-leguminous plants, denominated actinorhizal plants. Information on the biology of proteolysis in Frankia is almost non-existent as it is extremely difficult to grow this organism. We have purified 20S proteasomes from Frankia strain ACN14a/ts-r. It is composed of one alpha-subunit and one beta-subunit, which assemble into the canonical structure of four rings of seven subunits each. The enzyme displayed a chymotrypsin-like activity against synthetic substrates and was sensitive to lactacystin, a specific proteasome inhibitor. Analysis of the structural genes and the flanking regions revealed a similar organization to Rhodococcus erythropolis, Mycobacterium tuberculosis and Streptomyces coelicolor and showed that the beta-subunit is encoded with a 52-amino-acid propeptide that is cleaved off in the course of the assembly. We report also for the first time the in vitro assembly of chimeric proteasomes composed of Frankia and Rhodococcus erythropolis subunits, which are correctly assembled and proteolytically active.
Collapse
Affiliation(s)
- M N Pouch
- Max-Planck-Institut für Biochemie, Abteilung Molekulare Strukturbiologie, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
19
|
Knipfer N, Seth A, Roudiak SG, Shrader TE. Species variation in ATP-dependent protein degradation: protease profiles differ between mycobacteria and protease functions differ between Mycobacterium smegmatis and Escherichia coli. Gene 1999; 231:95-104. [PMID: 10231573 DOI: 10.1016/s0378-1119(99)00087-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report here that the existence of the potentially broad substrate specificity protease Lon (also called La), is evolutionarily discontinuous within the order Actinomycetales. Lon homologues were identified in the fast-growing species Mycobacterium smegmatis, and the slow-growing species Micobacterium avium and Mycobacterium intracellulare. However, Lon homologues were not detected in the slow-growing species Mycobacterium tuberculosis, Mycobacterium bovis, or Mycobacterium leprae; or in the non-mycobacterial Actinomycetale Corynebacterium glutamica. To characterize the function of the Lon protease within the Actinomycetales, a viable M. smegmatis Deltalon strain was constructed, demonstrating that lon is not essential under certain conditions. Surprisingly, lon was also dispensable in M. smegmatis cells already lacking intact 20S proteasome alpha- and beta-subunit genes (called prcA and prcB, respectively). Creation of the later double deletion strain (prcBA::kan Deltalon) necessitated use of a novel gene deletion strategy that does not require an antibiotic resistance marker. The M. smegmatis prcBA::kan Deltalon double mutants displayed wild type (wt) growth rates and wt stress tolerances. In addition, the M. smegmatis prcBA::kan Deltalon double mutants degraded at wt rates the broad spectrum of truncated proteins induced by treating cells with puromycin. This later result was in sharp contrast to those in Escherichia coli, where either lon or hslUV single mutants are strongly impaired in their degradation of puromycyl peptides (hslV is a prcB homologue). Overall these data suggested that mycobacterial species contain additional ATP-dependent proteases that have broad substrate specificity. Consistent with this suggestion, M. smegmatis and M. tuberculosis each contain at least one homologue of ClpP, the proteolytic subunit common to the ClpAP and ClpXP proteases.
Collapse
Affiliation(s)
- N Knipfer
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Proteasomes are large, multisubunit proteases with highly conserved structures. The 26S proteasome of eukaryotes is an ATP-dependent enzyme of about 2 MDa, which acts as the central protease of the ubiquitin-dependent pathway of protein degradation. The core of the 26S complex is formed by the 20S proteasome, an ATP-independent, barrel-shaped protease of about 700 kDa, which has also been detected in archaebacteria and, more recently, in eubacteria. Currently, the distribution of 20S proteasomes in eubacteria appears limited to the actinomycetes, while most other eubacteria contain a related complex of simpler structure.
Collapse
Affiliation(s)
- A Lupas
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Hoffman L, Rechsteiner M. Regulatory features of multicatalytic and 26S proteases. CURRENT TOPICS IN CELLULAR REGULATION 1996; 34:1-32. [PMID: 8646844 DOI: 10.1016/s0070-2137(96)80001-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It should be clear from the foregoing accounts that our understanding of MCP and 26S regulation is still rudimentary. Moreover, we have only recently identified about a dozen natural substrates of these two proteases. Those outside the field may view the situation with some dismay. Those who study the MCP and 26S enzymes are provided with rich opportunities to address fundamental questions of protein catabolism and metabolic regulation.
Collapse
Affiliation(s)
- L Hoffman
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
22
|
Inoculant made of encapsulated Frankia: assessment of Frankia growth within alginate beads. World J Microbiol Biotechnol 1994; 10:118-21. [DOI: 10.1007/bf00357578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/18/1993] [Accepted: 05/19/1993] [Indexed: 10/26/2022]
|
23
|
Abstract
Frankia strains are N2-fixing actinomycetes whose isolation and cultivation were first reported in 1978. They induce N2-fixing root nodules on diverse nonleguminous (actinorhizal) plants that are important in ecological successions and in land reclamation and remediation. The genus Frankia encompasses a diverse group of soil actinomycetes that have in common the formation of multilocular sporangia, filamentous growth, and nitrogenase-containing vesicles enveloped in multilaminated lipid envelopes. The relatively constant morphology of vesicles in culture is modified by plant interactions in symbiosis to give a diverse array of vesicles shapes. Recent studies of the genetics and molecular genetics of these organisms have begun to provide new insights into higher-plant-bacterium interactions that lead to productive N2-fixing symbioses. Sufficient information about the relationship of Frankia strains to other bacteria, and to each other, is now available to warrant the creation of some species based on phenotypic and genetic criteria.
Collapse
Affiliation(s)
- D R Benson
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3044
| | | |
Collapse
|